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On weak drop property and quasi-weak drop property

by

J. H. Qiu (Suzhou)

Abstract. Every weakly sequentially compact convex set in a locally convex space
has the weak drop property and every weakly compact convex set has the quasi-weak
drop property. An example shows that the quasi-weak drop property is strictly weaker
than the weak drop property for closed bounded convex sets in locally convex spaces (even
when the spaces are quasi-complete). For closed bounded convex subsets of quasi-complete
locally convex spaces, the quasi-weak drop property is equivalent to weak compactness.
However, for closed bounded convex sets in sequentially complete locally convex spaces,
even the weak drop property does not imply weak compactness. A quasi-complete locally
convex space is semi-reflexive if and only if its closed bounded convex subsets have the
quasi-weak drop property. For strong duals of quasi-barrelled spaces, semi-reflexivity is
equivalent to every closed bounded convex set having the quasi-weak drop property. From
this, reflexivity of a quasi-complete, quasi-barrelled space (in particular, a Fréchet space)
is characterized by the quasi-weak drop property of the space and of the strong dual.

1. Introduction. Let (X, ‖ ‖) be a Banach space and B(X) the closed
unit ball {x ∈ X : ‖x‖ ≤ 1}. Given x0 6∈ B(X), the convex hull of x0

and B(X) is called the drop generated by x0 and denoted by D(x0, B(X)).
Daneš [3] proved that in any Banach space (X, ‖ ‖), for every closed set A at
positive distance from B(X), there exists an x0 ∈A such that D(x0, B(X))
∩ A = {x0}. Modifying the assumption of the Daneš drop theorem, Role-
wicz [23] began the study of the drop property for the closed unit ball.
He defined the norm ‖ ‖ to have the drop property if for every closed set
A disjoint from B(X) there exists an x0 ∈ A such that D(x0, B(X)) ∩ A
= {x0}, and he proved that if the norm ‖ ‖ has the drop property then
(X, ‖ ‖) is reflexive (see [23, Theorem 5]). Giles, Sims and Yorke [7] defined
the following weaker variant: the norm ‖ ‖ has the weak drop property if for
every weakly sequentially closed set A disjoint from B(X), there exists an
x0 ∈ A such that D(x0, B(X))∩A = {x0}, and they showed that this prop-
erty is equivalent to (X, ‖ ‖) being reflexive. Moreover Kutzarova [11] and
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Giles and Kutzarova [6] extended the discussion of the drop and weak drop
properties to closed bounded convex sets in Banach spaces. A series of pro-
found results concerning these properties have been obtained (for example,
see [1, 2, 5–7, 11–19, 21–24, 26] and references therein). A closed bounded
convex subset B of X is said (see [6]) to have the weak drop property if
for every weakly sequentially closed set A disjoint from B there exists an
x0 ∈ A such that D(x0, B) ∩ A = {x0}. For closed bounded convex sets in
Banach spaces, the weak drop property is equivalent to weak compactness
(see [6, Theorem 3] or [18, Proposition 4.4.7]).

If we replace “weakly sequentially closed set A” with “weakly closed
set A” in the above definition of the weak drop property, then we obtain
[22] a new drop property—the quasi-weak drop property , which seems more
natural and weaker than the weak drop property. Although a weakly sequen-
tially closed set need not be weakly closed even in a separable Banach space
[22, Example 2.2], using streaming sequences introduced by Rolewicz [23],
we proved [22, Theorem 2.2] that for closed bounded convex sets in Fréchet
spaces (i.e. complete metrizable locally convex spaces), the quasi-weak drop
property is equivalent to the weak drop property and both are equivalent
to weak compactness (equivalently, weak sequential compactness or weak
countable compactness, see [10, p. 318]). From this we know that a Fréchet
space is reflexive if and only if every closed bounded convex set in the space
has the quasi-weak drop property [22, Corollary 2.1].

In this paper, we prove that in locally convex spaces every weakly se-
quentially compact convex set has the weak drop property and every weakly
compact convex set has the quasi-weak drop property. We construct an ex-
ample showing that the quasi-weak drop property is strictly weaker than
the weak drop property for closed bounded convex sets in locally convex
spaces (even when the locally convex spaces are quasi-complete). Moreover
we show that for closed bounded convex subsets of quasi-complete locally
convex spaces, the quasi-weak drop property is equivalent to weak compact-
ness. Thus a quasi-complete locally convex space is semi-reflexive if and only
if its closed bounded convex subsets all have the quasi-weak drop property.
However, for closed bounded convex sets in sequentially complete locally
convex spaces, even the weak drop property does not imply weak compact-
ness. Since the strong duals of quasi-barrelled spaces are quasi-complete,
applying the above criterion for semi-reflexivity we conclude that for strong
duals of quasi-barrelled spaces, semi-reflexivity is equivalent to every closed
bounded convex set having the quasi-weak drop property. Since a quasi-
complete quasi-barrelled space is reflexive if and only if its strong dual is
reflexive, we may characterize reflexivity of a quasi-complete quasi-barrelled
space (in particular, a Fréchet space) by using the quasi-weak drop property
of the space and of the strong dual.
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2. Weak drop property and weak sequential compactness. The
concept of the weak drop property for closed bounded convex sets in Banach
spaces ([6]) can be extended to bounded convex sets in locally convex spaces.
A bounded convex set B in a locally convex space is said to have the weak
drop property if for every weakly sequentially closed set A disjoint from B
there exists an x0 ∈ A such that D(x0, B) ∩ A = {x0}. We shall see that
every weakly sequentially compact convex set in a locally convex space has
the weak drop property. In this paper, for a locally convex space (X, T ) we
denote its topological dual by X∗ and denote the weak topology on X by
σ(X,X∗). First we give the following.

Lemma 2.1. Let (X, T ) be a locally convex space and B a weakly se-
quentially compact convex subset of (X, T ). Suppose that A ⊂ X is a weakly
sequentially closed set which is disjoint from B. Then for any a0 ∈ A and
ε > 0, there exists a1 ∈ D(a0, B) ∩ A such that

D(a1, B) ∩ A ⊂ {ta1 + (1− t)b : b ∈ B, 1− ε < t ≤ 1}.
Proof. Denote the absolutely convex hull of the set {a0} ∪ B by W .

Following [10, §20, 6(5)] we can easily prove that W remains weakly se-
quentially compact. Clearly, W is a sequentially complete disk. Hence W
is a Banach disk (see [20, Corollary 3.2.5]), that is, (sp[W ], pW ) is a Ba-
nach space, where sp[W ] denotes the linear span of W and pW denotes the
Minkowski gauge of W . We observe easily that D(a0, B) ∩A−B is weakly
sequentially compact and that

D(a0, B) ∩A−B ⊂ D(a0, B)−B ⊂W −W ⊂ sp[W ].

Clearly, the topology on sp[W ] generated by pW is finer than the one
induced by the weak topology, hence the weakly sequentially closed set
D(a0, B) ∩ A − B is closed in (sp[W ], pW ). Since A is disjoint from B,
D(a0, B) ∩ A is disjoint from B and 0 6∈ D(a0, B) ∩ A − B. Thus we may
assume that

α := inf{pW (x− y) : x ∈ D(a0, B) ∩A, y ∈ B} > 0.

For ε > 0, there exist a1 ∈ D(a0, B) ∩A and b1 ∈ B such that

pW (a1 − b1) < α(1 + ε).

Any x ∈ D(a1, B) ∩ A can be written as

x = ta1 + (1− t)b, 0 < t ≤ 1, b ∈ B.
Here t cannot be 0, since otherwise x = b ∈ A ∩ B, which contradicts the
assumption that A is disjoint from B. Since B is convex, tb1 + (1− t)b ∈ B
and we have

α ≤ pW (x− tb1 − (1− t)b) = pW (ta1 − tb1) = tpW (a1 − b1) < tα(1 + ε).
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From this,
1 < t(1 + ε) and 1− ε < 1

1 + ε
< t ≤ 1.

This means that

D(a1, B) ∩A ⊂ {ta1 + (1− t)b : 1− ε < t ≤ 1, b ∈ B}.
Theorem 2.1. Let (X, T ) be a locally convex space and B a weakly

sequentially compact convex subset of (X, T ). Then B has the weak drop
property , that is, for any weakly sequentially closed set A disjoint from B,
there exists x0 ∈ A such that D(x0, B) ∩ A = {x0}.

Proof. Take ε1 > ε2 > . . . > 0 such that
∑∞
i=1 εi ≤ 1. By Lemma 2.1,

for any given a0 ∈ A and ε1 > 0, there exists a1 ∈ D(a0, B) ∩A such that

D(a1, B) ∩A ⊂ {ta1 + (1− t)b : 1− ε1 < t ≤ 1, b ∈ B}.
For the above a1 ∈ A and ε2 > 0, again using Lemma 2.1, there exists
a2 ∈ D(a1, B) ∩A such that

D(a2, B) ∩A ⊂ {ta2 + (1− t)b : 1− ε2 < t ≤ 1, b ∈ B}.
Repeating this process, we obtain a sequence {an} ⊂ A which has the fol-
lowing representations:

a1 = t0a0 + (1− t0)b0, where b0 ∈ B, 0 ≤ t0 ≤ 1;

an+1 = tnan + (1− tn)bn, where bn ∈ B, 1− εn < tn ≤ 1.

If there exists a natural number sequence n1 < n2 < . . . such that every
ani = a0, then for any z ∈ D(a0, B) ∩ A = D(ani , B) ∩A, we have

z = λiani + (1− λi)b′ni = λia0 + (1− λi)b′ni ,

where b′ni ∈ B and 1 − εni < λi ≤ 1. Clearly λi
i→ 1 and {b′ni}i∈N is a

bounded sequence, hence
z = lim

i→∞
(λia0 + (1− λi)b′ni) = a0.

Thus D(a0, B) ∩ A = {a0} and the result is obvious. Now we might as well
assume that every an 6= a0. It is easy to see that

an+1

= (an+1−an) + (an−an−1) + . . .+ (a2−a1) + a1

= (1− tn)(bn−an) + (1− tn−1)(bn−1−an−1) + . . .+ (1− t1)(b1−a1) + a1.

From this,
an+k+1 − an+1

= (1− tn+k)(bn+k − an+k) + . . .+ (1− tn+1)(bn+1 − an+1)

∈ (1− tn+k)(B −D(an+k−1, B)) + . . .+ (1− tn+1)(B −D(an, B))

⊂ (1− tn+k)(B −D(a0, B)) + . . .+ (1− tn+1)(B −D(a0, B)).
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Remarking that B −D(a0, B) is a convex set containing 0, we have

an+k+1 − an+1 ∈
( n+k∑

i=n+1

(1− ti)
)

(B −D(a0, B))

⊂
( n+k∑

i=n+1

εi

)
(B −D(a0, B)) ⊂ 2

( n+k∑

i=n+1

εi

)
W,

where W denotes the absolutely convex hull of the set {a0} ∪ B. Since∑∞
i=1 εi <∞, {an}n∈N is a Cauchy sequence in (sp[W ], pW ). As seen in the

proof of Lemma 2.1, (sp[W ], pW ) is a Banach space, hence there exists an
x0 ∈ sp[W ] such that

(∗) an
n→ x0 in (sp[W ], pW ).

For any fixed n ∈ N and every k ∈ N,

an+k ∈ D(an+k−1, B) ∩A ⊂ . . . ⊂ D(an, B) ∩ A.

From (∗), an+k
k→ x0 in (X,σ(X,X∗)), and since D(an, B) ∩ A is weakly

sequentially closed, we have

x0 ∈ D(an, B) ∩ A ⊂ D(a0, B) ∩ A.
Now for any z ∈ D(x0, B) ∩ A, we conclude that z ∈ D(an, B) ∩ A. Thus z
can be written as follows:

z = µnan + (1− µn)bn, where bn ∈ B, 1− εn < µn ≤ 1.

Hence

z−an = (1−µn)(bn−an) ∈ (1−µn)(B−D(an−1, B)) ⊂ (1−µn)(B−D(a0, B)).

Since 1 − µn n→ 0 and B − D(a0, B) is bounded in (X, T ), z − an n→ 0 in
(X, T ), or an

n→ z in (X, T ). Combining this with (∗), we have z = x0, and
hence D(x0, B) ∩A = {x0}.

3. Quasi-weak drop property and weak compactness. In [22], we
introduced a new drop property as follows.

Definition 3.1 (see [22, Definition 2.1]). Let B be a closed bounded
convex set in a locally convex space X. If for any weakly closed set A disjoint
from B, there exists an x0 ∈ A such that D(x0, B) ∩ A = {x0}, then B is
said to have the quasi-weak drop property .

Next we shall investigate the relationship between the quasi-weak drop
property and weak compactness.

Theorem 3.1. Let B be a weakly compact convex set in a locally con-
vex space (X, T ). Then B has the quasi-weak drop property , that is, for
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any weakly closed set A disjoint from B, there exists an x0 ∈ A such that
D(x0, B) ∩A = {x0}.

Proof. Since B is weakly compact and A is weakly closed, A − B :=
{x − y : x ∈ A, y ∈ B} is weakly closed; see [8, p. 148] or [25, Lem-
ma 6-5-11]. Remarking that A is disjoint from B, we have 0 6∈ A − B =
clw(A − B), where clw(A − B) denotes the weak closure of A − B. On the
other hand, it is easy to prove that “B is weakly compact” implies “B is
locally complete” (on local completeness, see [20, Chapter 5]). By [21, Co-
rollary 3.1], there exists an x0 ∈ A such that D(x0, B) ∩ A = {x0}.

Since weak duals of barrelled spaces are quasi-complete (see [8, p. 218]
or [10, p. 297]), by Theorem 3.1 we have the following.

Corollary 3.1. Let (X, T ) be a barrelled space. Then every closed
bounded convex set in (X∗, σ(X∗,X)) has the quasi-weak drop property.

Proof. Let B be any closed bounded convex set in (X∗, σ(X∗,X)). Since
(X, T ) is barrelled, B is σ(X∗,X)-compact. By Theorem 3.1, B has the
quasi-weak drop property.

For closed bounded convex sets in Fréchet spaces, we proved [22] that
the quasi-weak drop property is equivalent to weak compactness, and hence
it is equivalent to the weak drop property. But for closed bounded convex
sets in locally convex spaces, the quasi-weak drop property and the weak
drop property are two different concepts. We construct an example showing
that the quasi-weak drop property is strictly weaker than the weak drop
property even in quasi-complete locally convex spaces.

Example 3.1. As is well known, (l1, ‖ ‖1)∗ = l∞. Denote the topological
dual of (l∞, ‖ ‖∞) by (l∞)∗ and for any f ∈ (l∞)∗, define ‖f‖ := sup{|f(η)| :
η ∈ l∞, ‖η‖∞ ≤ 1}. Let (l∞)∗ be endowed with a locally convex topology
T which is finer than the weak topology σ((l∞)∗, l∞) and coarser than the
Mackey topology τ((l∞)∗, l∞) (in particular, T may be the weak topology
or the Mackey topology). Set (X, T ) := ((l∞)∗, T ); then (X, T )∗ = l∞.
Since (l∞, ‖ ‖∞) is a barrelled space, ((l∞)∗, σ((l∞)∗, l∞)) is quasi-complete
and hence (X, T ) = ((l∞)∗, T ) is also quasi-complete. Denote the closed
unit ball in ((l∞)∗, ‖ ‖) by B, that is, B = {f ∈ (l∞)∗ : ‖f‖ ≤ 1}. By the
Alaoglu–Bourbaki Theorem, B is σ((l∞)∗, l∞)-compact. This means that B
is a weakly compact convex set in the quasi-complete locally convex space
(X, T ). By Theorem 3.1, we conclude that B has the quasi-weak drop prop-
erty in (X, T ). However we shall show that B does not have the weak drop
property. By the canonical imbedding from (l1, ‖ ‖1) into ((l∞)∗, ‖ ‖), we
may regard l1 as a subspace of ((l∞)∗, ‖ ‖). We denote by en the nth unit
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vector of l1. Put
x1 = 2e1,

x2 = e1 +
1
2
e2,

x3 =
1
2
e1 +

1
4
e2 +

1
2
e3,

x4 =
1
4
e1 +

1
8
e2 +

1
4
e3 +

1
2
e4,

In general,

xn =
1

2n−2 e1 +
1

2n−1 e2 +
1

2n−2 e3 + . . .+
1
2
en for n ≥ 2.

Clearly,

xn+1 =
1
2
xn +

1
2
en+1 ∈ D(xn, B)

and

‖xn‖1 =
1

2n−2 +
1

2n−1 +
1

2n−2 + . . .+
1
2

= 1 +
1

2n−1 > 1.

Hence xn 6∈ B for all n. It is easy to observe that

‖xn − xm‖1 ≥
1
2

for n 6= m.

Let A := {xn : n ∈ N}. Then A is a closed set in (l1, ‖ ‖1). Since every
σ(l1, l∞)-Cauchy sequence in l1 is a ‖ ‖1-Cauchy sequence (for example, see
[10, p. 281]), the set A is sequentially closed in ((l∞)∗, σ((l∞)∗, l∞)). In
other words, it is weakly sequentially closed in (X, T ). Also, it is disjoint
from B, as we have previously seen that ‖xn‖1 = ‖x̂n‖ > 1. Since xm 6= xn
for m 6= n and xn+1 ∈ D(xn, B) ∩ A, we conclude that

D(xn, B) ∩ A 6= {xn} for every n.

That is, B does not have the weak drop property.

At the end of [22], we proposed the following open problems. Let B
be a closed bounded convex set in a locally complete (respectively, sequen-
tially complete, or quasi-complete) locally convex space (X, T ). Is the state-
ment “B has the quasi-weak drop property” equivalent to “B is weakly
compact”? For a locally complete (respectively, sequentially complete, or
quasi-complete) locally convex space (X, T ), is the statement “every closed
bounded convex subset of X has the quasi-weak drop property” equivalent
to “(X, T ) is semi-reflexive”? Now we show that the answers to the above
problems are affirmative for (X, T ) quasi-complete, and negative for (X, T )
sequentially complete (or locally complete). Thus the problems are com-
pletely solved in these cases. First we recall the following famous result of
James.
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Lemma 3.1 (see [4, p. 59] or [9]). In a quasi-complete locally convex
space X, a weakly closed subset B is weakly compact if and only if every
f ∈ X∗ attains its supremum on B. Here X∗ denotes the topological dual
of X.

Lemma 3.2 (see [22, Lemma 2.1]). Let {xn} be a sequence in a Hausdorff
topological space X. If {xn} has no cluster point , then the set A := {xn :
n ∈ N} is a closed set.

Theorem 3.2. Let (X, T ) be a quasi-complete locally convex space and
B a closed bounded convex subset of (X, T ). Then B has the quasi-weak
drop property if and only if it is weakly compact.

Proof. By Theorem 3.1, we only need to prove that “B has the quasi-
weak drop property” implies “B is weakly compact”. For any f ∈ X∗ \ {0},
let M := sup{f(x) : x ∈ B}. Then M < ∞ since B is bounded. Without
loss of generality, we may assume that 0 ∈ B and M > 0. Choose x1 6∈ B
such that

f(x1) >
4
3
M

and choose yn ∈ B such that

f(yn) >
(

1− 1
3n+1

)
M, n ∈ N.

We define a sequence {xn} recursively by xn+1 := (xn+yn)/2. Assume that

f(xn) >
3n + 1

3n
M.

Then

f(xn+1) =
1
2
f(xn) +

1
2
f(yn) >

1
2
· 3n + 1

3n
M +

1
2

(
1− 1

3n+1

)
M

=
1
2

(
3n + 1

3n
+ 1− 1

3n+1

)
M =

3n+1 + 1
3n+1 M.

By induction we conclude that for every n,

f(xn) >
3n + 1

3n
M > M.

Obviously xn 6∈ B and yn ∈ B, hence xn 6= yn and xn+1 = (xn+yn)/2 6= xn.
Assume that the sequence {xn} has no weak cluster point. Then the set
A :=

⋃{xn : n ∈ N} is weakly closed by Lemma 3.2. By the assumption
that B has the quasi-weak drop property, there exists xn ∈ A such that
D(xn, B) ∩ A = {xn}. However we also have xn+1 ∈ D(xn, B) ∩ A and
xn+1 6= xn, a contradiction. Thus {xn} has a weak cluster point x0. Hence
{f(xn)} has a cluster point f(x0). Since f(xn) > M for all n, we conclude
that f(x0) ≥M .
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On the other hand,

xn+1 =
xn + yn

2
=
xn−1

22 +
yn−1

22 +
yn
2

=
xn−2

23 +
yn−2

23 +
yn−1

22 +
yn
2

= . . . =
x1

2n
+
y1

2n
+

y2

2n−1 + . . .+
yn
2

=
1
2n

(x1 − y1) +
(

y1

2n−1 +
y2

2n−1 +
y3

2n−2 + . . .+
yn
2

)

=
1
2n

(x1 − y1) + zn+1,

where

zn+1 =
y1

2n−1 +
y2

2n−1 +
y3

2n−2 + . . .+
yn
2
∈ conv({y1, . . . , yn}) ⊂ B.

Since

xn+1 − zn+1 =
1
2n

(x1 − y1) n→ 0

and x0 is a weak cluster point of {xn}, it is also a weak cluster point of {zn}.
Since zn ∈ B for all n and B is weakly closed, we have x0 ∈ B. Hence
f(x0) ≤ M . Combining this with the previous conclusion that f(x0) ≥ M ,
we have f(x0) = M . By Lemma 3.1, B is weakly compact.

From Theorem 3.2, we have the following drop characterization of semi-
reflexive locally convex spaces.

Theorem 3.3. Let (X, T ) be a quasi-complete locally convex space.
Then (X, T ) is semi-reflexive if and only if every closed bounded convex
set in (X, T ) has the quasi-weak drop property.

Noting that in Lemma 3.1 the assumption that X is quasi-complete can
be replaced by the closed convex hull of B being complete in the Mackey
topology τ(X,X∗) (see [4, p. 65]), we have the following.

Theorem 3.4. Let (X, T ) be a locally convex space and B a closed
bounded convex subset of (X, T ) which is τ(X,X∗)-complete. Then B has
the quasi-weak drop property if and only if B is weakly compact.

Theorem 3.5. Let (X, T ) be a locally convex space which is quasi-com-
plete for the Mackey topology τ(X,X∗). Then (X, T ) is semi-reflexive if and
only if every closed bounded convex set in (X, T ) has the quasi-weak drop
property.

However, if we only assume that (X, T ) is sequentially complete, the
result of Theorem 3.2 is not true anymore. In fact, for closed bounded convex
subsets of sequentially complete locally convex spaces, even the weak drop
property does not imply weak compactness.
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Example 3.2. Let α run through an index set Λ of cardinality d. We
denote by l1

d the vector space of all vectors x = (ξα) for which at most
countably many coordinates are non-zero and

∑
α∈Λ |ξα| < ∞, where all

ξα are real numbers or complex numbers. For any x = (ξα) ∈ l1
d , de-

fine ‖x‖1 =
∑
α∈Λ |ξα|. Then (l1

d , ‖ ‖1) is a Banach space with dual l∞d ,
which consists of all vectors x = (ξα) with ‖x‖∞ = supα∈Λ |ξα| < ∞ (see
[10, p. 137]). Suppose that d > ℵ0, and denote by H the subspace of l∞d
consisting of all x = (ξα) with at most countably many non-zero coordi-
nates ξα. Let H be endowed with any locally convex topology T which
is finer than (or equal to) the weak topology σ(H, l 1

d ) and is coarser than
(or equal to) the Mackey topology τ(H, l1

d ). Then (H, T ) and (H,σ(H, l1
d ))

have the same dual l1
d and they have the same closed convex sets. In par-

ticular (H, T ) has a base of 0-neighborhoods whose members are closed in
(H,σ(H, l1

d )). By [25, Theorem 6-1-13], (H, T ) is sequentially complete if so
is (H,σ(H, l1

d )). Let x(n) = (ξ(n)
α )α∈Λ, n = 1, 2, . . . , be a Cauchy sequence

in (H,σ(H, l1
d )). Then there exists a countable subset {α1, α2, . . .} of Λ such

that

ξ(n)
α = 0, ∀n ∈ N, ∀α ∈ Λ \ {α1, α2, . . .}.

For any fixed αk, {ξ(n)
αk }n∈N is a scalar Cauchy sequence, hence there ex-

ists ξ(0)
αk such that ξ(n)

αk → ξ
(0)
αk as n → ∞. Since {x(n)}n∈N is a bounded

sequence in (l∞d , σ(l∞d , l1
d )), and (l∞d , ‖ ‖∞) is the strong dual of the Banach

space (l1
d , ‖ ‖1), by the uniform boundedness principle, there exists M > 0

such that ‖x(n)‖∞ ≤ M for every n. That is, supn∈N supα∈Λ |ξ(n)
α | ≤ M .

Define x = (ξα) as follows: ξαk = ξ
(0)
αk for k = 1, 2, . . . , and ξα = 0 for

any α ∈ Λ \ {α1, α2, . . .}. Obviously x ∈ H and ‖x‖∞ ≤ M . For any fixed
y = (ηα)α∈Λ ∈ l1

d , we have

|〈x(n), y〉 − 〈x, y〉| =
∣∣∣
∑

α∈Λ
ξ(n)
α ηα −

∑

α∈Λ
ξα ηα

∣∣∣

=
∣∣∣
∞∑

k=1

ξ(n)
αk

ηαk −
∞∑

k=1

ξαk ηαk

∣∣∣

≤
∞∑

k=1

|ξ(n)
αk
− ξ(0)

αk
| |ηαk |.

For any ε > 0, there exists k0 ∈ N such that
∑∞
k=k0+1 |ηαk | < ε/(4M + 1).

Since ξ(n)
αk → ξ

(0)
αk as n→∞, there exists n0 ∈ N such that

k0∑

k=1

|ξ(n)
αk − ξ(0)

αk | |ηαk | <
ε

2
, ∀n ≥ n0.



Weak drop property 199

When n ≥ n0, we have

|〈x(n), y〉 − 〈x, y〉| ≤
∞∑

k=1

|ξ(n)
αk
− ξ(0)

αk
| |ηαk |

=
k0∑

k=1

|ξ(n)
αk
− ξ(0)

αk
| |ηαk |+

∞∑

k=k0+1

|ξ(n)
αk
− ξ(0)

αk
| |ηαk |

<
ε

2
+

ε

4M + 1
· 2M < ε.

That is to say, x(n) → x as n → ∞, in (H,σ(H, l1
d )). Thus (H,σ(H, l1

d )) is
sequentially complete. Put

B = {x = (ξα) ∈ H : ‖x‖∞ = sup
α∈Λ
|ξα| ≤ 1}.

Then clearly B is closed in (H,σ(H, l1
d )) and hence in (H, T ). Thus B is a

closed bounded convex set in the sequentially complete locally convex space
(H, T ). We know [10, p. 313] that B is σ(H, l 1

d )-sequentially compact but is
not σ(H, l1

d )-compact. By Theorem 2.1, B has the weak drop property but
it is not weakly compact.

4. Quasi-weak drop property for strong duals. In this section we
shall consider the quasi-weak drop property for closed bounded convex sets
in strong duals of quasi-barrelled spaces. We shall give a drop characteri-
zation of the semi-reflexivity of strong duals of quasi-barrelled spaces. For
the notion of quasi-barrelled spaces (i.e. infrabarrelled spaces), we refer to
[8, 10, or 25]. First we give the following:

Lemma 4.1. Let (X, T ) be a quasi-barrelled space. Then its strong dual
(X∗, β(X∗,X)) is quasi-complete.

Proof. Let B be any closed bounded set in (X∗, β(X∗,X)). Since (X, T )
is quasi-barrelled, B ⊂ X∗ is τ -equicontinuous and hence relatively
σ(X∗,X)-compact. Assume that {fδ} ⊂ B is a β(X∗,X)-Cauchy net. Then
{fδ} is certainly a σ(X∗,X)-Cauchy net. Since B is relatively σ(X∗,X)-

compact, there exists f0 ∈ X∗ such that fδ
δ→ f0 in (X∗, σ(X∗,X)). Be-

cause {fδ} is a β(X∗,X)-Cauchy net and (X∗, β(X∗,X)) has a σ(X∗,X)-

closed 0-neighborhood base, we deduce that fδ
δ→ f0 in (X∗, β(X∗,X)) (see

[25, Lemma 6-1-11]). Since B is β(X∗,X)-closed, f0 ∈ B. Thus we have
shown that (X∗, β(X∗,X)) is quasi-complete.

Combining Lemma 4.1 with Theorems 3.2 and 3.3, we obtain immedi-
ately the following:

Theorem 4.1. Let (X, T ) be a quasi-barrelled space and B a closed
bounded convex subset of (X∗, β(X∗,X)). Then B is σ(X∗,X∗∗)-compact
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if and only if B has the quasi-weak drop property , i.e. for each σ(X∗,X∗∗)-
closed set A disjoint from B, there exists an f0 ∈ A such that D(f0, B)∩A
= {f0}.

Theorem 4.2. Let (X, T ) be a quasi-barrelled space. Then the strong
dual (X∗, β(X∗,X)) is semi-reflexive if and only if every closed bounded
convex subset of (X∗, β(X∗,X)) has the quasi-weak drop property.

If (X, T ) is a quasi-complete quasi-barrelled space (in fact, such a space
must be barrelled, see [8, p. 217] or [10, p. 368]), we shall obtain more
interesting results. To this end, we will need the following lemmas.

Lemma 4.2 (see [8, p. 229]). The strong dual (X∗, β(X∗,X)) of a re-
flexive space (X, T ) is reflexive.

Lemma 4.3 (see [25, Problem 10-2-115]). Let (X, T ) be a quasi-complete
locally convex space. If (X∗, β(X∗,X)) is semi-reflexive, then (X, T ) is
semi-reflexive.

Theorem 4.3. Let (X, T ) be a quasi-complete quasi-barrelled space
(equivalently , a quasi-complete barrelled space). Then the following state-
ments are equivalent :

(i) (X, T ) is reflexive.
(ii) (X∗, β(X∗,X)) is reflexive.
(iii) (X∗, β(X∗,X)) is semi-reflexive.
(iv) Every closed bounded convex set in (X, T ) has the quasi-weak drop

property.
(v) Every closed bounded convex set in (X∗, β(X∗,X)) has the quasi-

weak drop property.

Proof. (i)⇒(ii). See Lemma 4.2.
(ii)⇒(iii). This is obvious.
(iii)⇒(i). By Lemma 4.3, (X, T ) is semi-reflexive. Also, (X, T ) is quasi-

barrelled. Hence (X, T ) is reflexive (see [8, p. 229] or [10, p. 302]).
(i)⇔(iv). Since (X, T ) is quasi-complete, by Theorem 3.3 we know that

statement (iv) is equivalent to (X, T ) being semi-reflexive. And since (X, T )
is quasi-barrelled, (X, T ) being semi-reflexive is equivalent to it being reflex-
ive.

(iii)⇔(v). This follows from Theorem 4.2.

Obviously a Fréchet space is a quasi-complete, quasi-barrelled space.
Moreover we proved [22] that for closed bounded convex subsets of a Fréchet
space, the quasi-weak drop property is equivalent to the weak drop property.
Therefore we have:
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Corollary 4.1. Let (X, d) be a Fréchet space. Then all the statements
in Theorem 4.3 are equivalent , and each is equivalent to the statement that
every closed bounded convex set in (X, d) has the weak drop property.

Corollary 4.2. Let (X, ‖ ‖) be a Banach space. Then the following
statements are equivalent :

(i) The space (X, ‖ ‖) is reflexive.
(ii) The norm ‖ ‖ has the weak drop property.
(iii) The norm ‖ ‖ has the quasi-weak drop property.
(iv) The strong dual (X∗, ‖ ‖∗) is reflexive.
(v) The norm ‖ ‖∗ has the weak drop property.
(vi) The norm ‖ ‖∗ has the quasi-weak drop property.

Here ‖ ‖∗ denotes the natural norm on dual X∗, i.e. ‖f‖∗ = sup{|f(x)| :
x ∈ X, ‖x‖ ≤ 1} for any f ∈ X∗.

The author would like to thank the referee for his valuable comments
and suggestions.
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