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Subnormal operators, cyclic vectors and reductivity

by

Béla Nagy (Budapest)

Abstract. Two characterizations of the reductivity of a cyclic normal operator in
Hilbert space are proved: the equality of the sets of cyclic and ∗-cyclic vectors, and the
equality L2(µ) = P2(µ) for every measure µ equivalent to the scalar-valued spectral
measure of the operator. A cyclic subnormal operator is reductive if and only if the first
condition is satisfied. Several consequences are also presented.

1. Introduction. Reductive normal operators were studied first by Hal-
mos [HN] and Wermer [W], and important related properties for subnormal
operators were investigated by Bram [BJ]. Dyer, Pedersen and Porcelli [D]
proved (see also [A]) that every operator in a separable Hilbert space of
dimension greater than 1 has a nontrivial invariant subspace if and only if
each reductive operator is normal.

The general concept of cyclicity with respect to a set A of operators
was studied in approximation problems connected with invariant subspaces
(see, e.g., [NI, pp. 312–313]). The notions of cyclicity proper and ∗-cyclicity
correspond to the simplest cases A := {T} and {T, T ∗}, respectively, for a
bounded linear operator T ∈ B(H) in the Hilbert space H.

For any vector h and any bounded linear operator T in a separable Hilbert
space H let R(h, T ) ≡ R(h) denote the smallest T -reducing subspace con-
taining h, and let I(h, T ) ≡ I(h) denote the smallest T -invariant subspace
containing h. The vector h in H is called a ∗-cyclic vector for the bounded
linear operator T if R(h, T ) ≡ R(h) = H. We shall then write h ∈ ∗cyc(T )
and, if the latter set is nonvoid, call T a ∗-cyclic operator. The vector h ∈ H
is a cyclic vector for T if I(h, T ) ≡ I(h) = H. We shall then write h ∈ cyc(T )
and, if the latter set is nonvoid, call T cyclic. Clearly, cyc(T ) ⊂ ∗cyc(T ),
and the inclusion may be proper. Bram [BJ] proved that if the operator is
normal, and the latter set is nonvoid, so is the former, i.e. a normal operator
N is ∗-cyclic if and only if it is cyclic.
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It is known that this property does not hold for each operator T ∈ B(H):
denoting the unilateral shift of multiplicity 1 by S, the orthogonal sum
T := S ⊕ S is not cyclic, but T ∗ = S∗ ⊕ S∗ is (cf. [HP, Problem 163]). It
follows that the subnormal operator T is ∗-cyclic though not cyclic.

Feldman [F] proved a large number of deep results on the existence of
∗-cyclic and cyclic vectors for subnormal operators. Among other useful
facts on cyclicity, he showed that the adjoint of a pure subnormal operator
is cyclic, and that a subnormal operator has a cyclic adjoint if and only if
it is ∗-cyclic. We shall refer to his results wherever they are close to ours.

A normal operator N is said to be reductive (or completely normal, or to
have the property (P)) if each of its invariant subspaces is orthogonally re-
ducing. In modern usage this definition (without the parentheses) applies to
each operator T , and is equivalent to Lat(T ) = Lat(T ∗), where Lat denotes
the family of invariant subspaces.

Recall some characterizations of reductive normal operators. The normal
operator N is reductive if and only if 1) or 2) or 3) below holds:

1) For every pair x, y ∈ H satisfying 〈Nkx, y〉 = 0 for every k ∈
N0 := {0, 1, 2, . . . } we have 〈E(b)x, y〉 = 0 for every Borel set b, where
E is the resolution of the identity for N , and 〈 , 〉 denotes scalar product in
H ([W, Lemma 2]).

2) P∞(µ) = L∞(µ) for some (and then every) scalar-valued spectral
measure µ for N (see Sarason [SW, p. 14] or [CT, Corollary 1.3 on p. 310]).
Here P∞(µ) denotes the weak∗ closure of the set of the polynomials in
L∞(µ), and a scalar-valued spectral measure µ for N is any nonnegative
Borel measure mutually absolutely continuous with respect to E.

3) The adjoint N∗ is in the closed (in the weak operator topology) sub-
algebra of B(H) generated by N and the identity I (Sarason [SA]).

Note that Scroggs [Sc] proved that int[σ(N)] 6= ∅ implies that N is
not reductive, whereas Wermer [W, Theorem 7] showed that the conditions
int[σ(N)] = ∅ and C \ σ(N) connected together imply that N is reductive.
Here int denotes interior of the set, and σ denotes spectrum.

Ross and Wogen noted in [R, p. 1538] that if a cyclic normal operator T
is reductive, then cyc(T ) = ∗cyc(T ). One of the aims of this paper is to show
that this statement (clearly) holds without assuming normality and, what is
more remarkable, the converse holds for (cyclic) normal and even subnormal
operators. As an application, another characterization of the reductivity of
a cyclic normal operator will be given in terms of the condition

P2(µ) = L2(µ)

(for exact definitions and conditions see Section 2). Further, several conse-
quences will be studied.
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2. Normal operators

Theorem 2.1. If a cyclic operator T ∈ B(H) is reductive, then cyc(T )
= ∗cyc(T ). In the converse direction: if cyc(N) = ∗cyc(N) for a cyclic
normal operator N , then N is reductive. Hence a cyclic normal operator N
is reductive if and only if cyc(N) = ∗cyc(N).

Proof. Assume first that T is reductive and c ∈ ∗cyc(T ). Then the min-
imal T -reducing subspace containing c, i.e. the space R(c, T ), is the whole
space H. Since T is reductive, the minimal T -invariant subspace contain-
ing c, i.e. the space I(c, T ), is T -reducing. Hence I(c, T ) = R(c, T ) = H, i.e.
c ∈ cyc(T ).

Assume now that cyc(N) = ∗cyc(N) for a cyclic normal operator N .
Assume that X is an N -invariant subspace of H. Denote the smallest N -
reducing subspace containing X by R(X), and assume that R(X) 6= X.
Then there is x ∈ X such that I(x,N) ⊂ X, but the generated reducing
subspace R(x,N) is not contained in X. Denote the orthogonal projection
of H onto R(x,N) by P . Then PH is invariant for N and N∗, hence PN =
NP . The restriction N |R(x,N) is a ∗-cyclic normal operator for which x ∈
∗cyc(N |R(x,N)).

By assumption,N is ∗-cyclic. Let y0 be any vector in ∗cyc(N). Then there
is a compactly supported regular Borel measure µ on C and an isometric
isomorphism V : H → L2(µ) such that V NV −1 = Nµ (multiplication by
the independent variable on K := support(µ)), and V y0 = 1 (the function
equal to 1 [µ], i.e. µ-a.e., cf. [CF, IX.3.4]). Then V x ∈ L2(µ) ∩ V R(x,N).
Let h := {c ∈ K : [V x](c) 6= 0}, and let w ∈ L2(µ) be any vector with the
property that {c ∈ K : w(c) 6= 0} = K \ h (both relations understood [µ]).
Then the vectors x and V −1w are orthogonal in the space H, since their
images V x and w are orthogonal in L2(µ). Further, the sum V x+w ∈ L2(µ)
is not zero on K [µ], hence is a ∗-cyclic vector for Nµ. It follows that the
vector z := x+ V −1w is in ∗cyc(N) = cyc(N).

Let y be any vector in cyc(N), and let sp denote closed linear span. Then

sp[N jy : j ∈ N0] = I(y,N) = H.

Assume that an arbitrary T ∈ B(H) commutes with N . By a well-known
theorem of Fuglede (see, e.g., [CS, p. 81]), T commutes with N∗. Hence
the closure of the range, TH, is a reducing subspace for N , thus N |TH is
normal, and

sp[N jTy : j ∈ N0] ⊃ TI(y,N) = TH.

This implies that

I(Ty,N |TH) = TI(y,N) = TH.

Hence Ty ∈ cyc(N |TH).
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The orthogonal projection P of H onto the reducing subspace R(x,N)
commutes with N . By the preceding paragraph, x= Pz ∈ cyc(N |PH). It
follows that

I(x,N) = I(x,N |PH) = PH = R(x,N),

a contradiction. This shows that R(X) = X, i.e. each N -invariant subspace
of H is N -reducing.

Remark. The relation x ∈ ∗cyc(N |R(x,N)) is equivalent to V x ∈
∗cyc(Nµ|V R(x,N)). Indeed, V N = NµV and the Fuglede–Putnam theo-
rem imply V N∗ = N∗µV . Since V is a homeomorphism,

V R(x,N) = V sp[N jN∗kx : j, k ∈ N0] = sp[N j
µN
∗k
µ V x : j, k ∈ N0]

= R(V x,Nµ).

From this the stated equivalence follows.

Remark. If µ is any scalar-valued spectral measure for the cyclic normal
operator N , then N is unitarily equivalent to the operator Nµ of multiplica-
tion by the complex variable on the Hilbert space L2(µ) ≡ L2(σ(N), B, µ),
where B denotes the family of Borel sets. N is reductive if and only if Nµ

is reductive. By Theorem 2.1, this holds if and only if ∗cyc(Nµ) = cyc(Nµ).
This is the case if and only if, for any f ∈ L2(µ),

f(z) 6= 0 µ-a.e. ⇔ clos{pf : p ∈ P} = L2(µ).

Here clos denotes closure in L2(µ), and P denotes the set of all polynomials
in z. Taking f(z) := 1, we see that if Nµ is cyclic and reductive, then P2(µ),
the closure of the polynomials in L2(µ), is equal to L2(µ).

As usual, we call two measures µ and m as above equivalent and write
µ ∼ m iff they are mutually absolutely continuous. This is the case if and
only if the multiplication operators Nµ and Nm are unitarily equivalent:
Nµ
∼= Nm. Recall that Bram [BJ, Theorem 6] has proved that for every

cyclic normal operator Nµ there is a measure m such that µ ∼ m and
P2(m) = L2(m).

Sarason [SW, p. 14] asked about a characterization of a (fixed) measure
µ satisfying P2(µ) = L2(µ). Note that the similarity of this question to his
characterization of reductivity there is clear. Later, for instance, Trent [T]
gave such a characterization. For the structure of the general space P2(µ)
see, e.g., Conway [CS, Corollary V.4.4] and Thomson [Th, Theorem 5.8].

We now prove

Theorem 2.2. A cyclic normal operator N is reductive if and only if
(with the notation used in the preceding Remark) for every measure µ equiv-
alent to the scalar-valued spectral measure for N we have

P2(µ) = L2(µ).
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Proof. The “only if” statement has been proved in the preceding Re-
mark. We prove the “if” statement now.

Assume that f ∈ ∗cyc(Nm) for a fixed measure m equivalent to the
scalar-valued spectral measure for N (or, equivalently, for Nm). This means
that f ∈ L2(m), |f | > 0 [m]. Define the measure µ by dµ := |f |2dm. Clearly,
µ ∼ m, and it is easy to check that

L2(m)f−1 = L2(µ).

By assumption, the latter space is equal to P2(µ). Hence for every x ∈ L2(m)
there is a sequence {pn} of complex polynomials such that�

|pn − xf−1|2 dµ→ 0 (n→∞).

It follows that�
|pnf − x|2 dm =

�
|pn − xf−1|2|f |2 dm→ 0 (n→∞).

This shows that f ∈ cyc(Nm). Theorem 2.1 shows that Nm is reductive,
hence so is N .

3. Subnormal operators. For the basics on subnormal operators we
refer to the monographs by Conway [CS], [CT]. If S is a (bounded) subnor-
mal operator acting in the Hilbert space H, we shall denote (one fixed of)
its minimal normal extension(s), acting in the Hilbert space K ⊃ H, by N .
We shall apply the introduced notation to both operators S and N , and add
the following one:

We shall say that condition C(S) holds if cyc(S) = ∗cyc(S), and use
similarly C(N) for the operator N .

The following facts concerning our problem are well known or can readily
be proved with the help of Theorem 2.1 above.

Scholium. Assume that the subnormal operator S is cyclic. The follow-
ing statements are equivalent:

(1) S is reductive,

(2) N is reductive,

(3) S = N and C(N) holds,

(4) N∗H ⊂ H and C(N) holds.

Each of them evidently implies that C(S) holds.

Proof. We only give short references. (1) implies (3) by [CS, Proposition
VIII.1.15, p. 425] (see also [Th, Theorem 5.8]), and Theorem 2.1 above. (3)
clearly implies (4), and (4) implies (2) by Theorem 2.1 above. If (2) holds,
then pick any x ∈ cyc(S). Since Nkx = Skx for k ∈ N0, the subspace

I(x,N) = I(x, S) = H



102 B. Nagy

is N -invariant. By assumption (2), H is then also N∗-invariant. It follows
that the space of the minimal normal extension is also H, i.e. the operator
S = N is normal and reductive, thus (1) holds.

Consider the situation that the subnormal operator S is cyclic and condi-
tion C(S) holds. Note that C(S) is a condition that involves only S (and not
the minimal normal extension N). Do then the statements in the Scholium
follow?

Working in this direction we shall need the basic fact on not neces-
sarily reductive cyclic subnormal operators that was proved by Bram [BJ,
Lemma 4] and reproved by Yoshino [Y, Lemma 1]. We shall complete and
formulate it here in a slightly more precise form, and give a short proof.

Proposition 3.1. Assume that the subnormal operator S has a cyclic
vector x ∈ H. Then the minimal normal extension N ∈ B(K) is also cyclic,
and x ∈ ∗cyc(N). Further,

cyc(S) ⊂ ∗cyc(N) ∩H ⊂ ∗cyc(S).

Proof. Consider the subspace

M := sp[N∗mNnx : m,n ∈ N0].

Since x ∈ cyc(S), and Nnx = Snx for each n ∈ N0, we have H ⊂ M .
Clearly, M is the reducing subspace R(x,N). Since N is the minimal normal
extension, we have M = K, hence x ∈ ∗cyc(N)∩H. Bram [BJ, Theorem 6]
proved that a normal operator N is ∗-cyclic if and only if it is cyclic.

Let h ∈ ∗cyc(N) ∩ H. Then the induced reducing subspace R(h,N) is
equal to K ⊃ H. Denote the orthogonal projection of K onto H by P . Then
PR(h,N) = PK = H. Consequently (cf. [CT, p. 31]), H = P sp[N∗mNnh :
m,n ∈ N0] ⊂ sp[PN∗mNnh : m,n ∈ N0] = sp[S∗mSnh : m,n ∈ N0] ⊂ H.
We have obtained R(h, S) = H, thus the proof is complete.

Remark. The last paragraph shows that h ∈ ∗cyc(N)∩H even implies
that h is a strongly ∗-cyclic vector for S in the terminology of Feldman [F,
p. 381 or p. 387]. This means that sp[S∗mSnh : m,n ∈ N0] = H.

The following result is [BJ, Corollary 2, pp. 86–87] formulated in our
terminology.

Proposition 3.2. Assume that S is subnormal on H, N is its minimal
normal extension on K ⊃ H, and P denotes the orthogonal projection of K
onto H. Then

P [cyc(N∗)] ⊂ cyc(S∗) ⊂ ∗cyc(S).

Proof. Since N is normal, by [BJ, Theorem 6], the following three sets
are simultaneously void (or not):

cyc(N∗), ∗cyc(N∗) ≡ ∗cyc(N), cyc(N).
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Assume there is k ∈ K ∩ cyc(N∗) (otherwise there is nothing to prove), and
let g := Pk. For every n ∈ N0 we then have

S∗ng = S∗nPk = PN∗nk.

It follows that

H ⊃ sp[S∗ng : n ∈ N0] = sp[PN∗nk : n ∈ N0]

⊃ P sp[N∗nk : n ∈ N0] = PK = H.

This proves the first containment, and the second is evident.

Remark. Feldman [F, Corollary 4.12] showed that if ∗cyc(S) is nonvoid,
so is cyc(S∗). Moreover, [F, Corollary 3.2] shows that then the set cyc(S∗)
is dense in H, hence the same is valid for ∗cyc(S).

Proposition 3.3. Assume that the subnormal operator S is cyclic, and
is not normal. Then there is g ∈ cyc(S) satisfying N∗g /∈ H.

Proof. By assumption, the Hilbert space K of the minimal normal ex-
tension N of S properly contains the space H of S. Since

K = sp[N∗nh : n ∈ N0, h ∈ H],

there is h ∈ H with N∗h /∈ H. By a result of Gehér ([G], see also [SF]), for
every cyclic operator S we have sp[cyc(S)] = H. If we had N∗[cyc(S)] ⊂ H,
then we would also have N∗H ⊂ H, a contradiction.

The following result will describe the relations between generated reduc-
ing and invariant subspaces, respectively, for an orthogonal sum decompo-
sition of a general operator.

Proposition 3.4. Consider any operator S ∈ B(H) and its decom-
position with the help of orthogonal projections Pk satisfying PkS = SPk
(k ∈ N0) into the orthogonal sum

S = S0 ⊕ S1 ⊕ · · · (Sk = S|PkH, k ∈ N0).

Consider any vector f ∈ H and its decomposition with the help of these
orthogonal projections,

f = f0 ⊕ f1 ⊕ · · · ∈ H,
where fk = Pkf (k ∈ N0). Then the generated reducing and invariant sub-
spaces satisfy

R(f, S) ⊂
∞⊕
k=0

PkR(f, S) =

∞⊕
k=0

R(fk, Sk),

I(f, S) ⊂
∞⊕
k=0

PkI(f, S) =

∞⊕
k=0

I(fk, Sk).
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Hence

PkR(f, S) = R(fk, Sk), PkI(f, S) = I(fk, Sk) (k ∈ N0).

Proof. We shall prove the statement for the reducing subspaces, the
proof for the invariant subspaces being similar and even simpler. Denote

X(f) :=

∞⊕
k=0

R(fk, Sk).

It is clear that

H ⊃ X(f) =

∞⊕
k=0

R(fk, Sk) 3 f0 ⊕ f1 ⊕ · · · = f.

The orthogonal sum of S-reducing subspaces is S-reducing, hence the sub-
space X(f) is S-reducing. It follows that

f ∈ R(f, S) ⊂ X(f).

Hence we obtain

fk = Pkf ∈ PkR(f, S) ⊂ PkX(f) = R(fk, Sk) (k ∈ N0).

We show that PkR(f, S) is a reducing subspace for Sk for each k. Indeed,

SkPkR(f, S) = SPkR(f, S) = PkSR(f, S) ⊂ PkR(f, S),

since S leaves R(f, S) invariant. The adjoint of an orthogonal sum is the
orthogonal sum of the adjoints of the summands, hence we obtain

(Sk)
∗PkR(f, S) = S∗PkR(f, S) = PkS

∗R(f, S) ⊂ PkR(f, S).

The fact that fk ∈ PkR(f, S) and the minimality of the reducing subspace
R(fk, Sk) imply that R(fk, Sk) ⊂ PkR(f, S). Hence

PkR(f, S) = R(fk, Sk) (k ∈ N0).

Remark. For the generated invariant subspaces the stated contain-
ment may be proper. Indeed, let m denote normalized Lebesgue measure
on the unit circle T, let ck be closed, pairwise disjoint arcs of T such that
m(T \

⋃∞
k=0 ck) = 0, and f := 1 ∈ L2(m). Then the polynomials are dense

in L2(m|ck) for every k ∈ N0, but not in L2(m). Denote by S the opera-
tor of multiplication by the variable in L2(m), and apply the notation of
Proposition 3.4. It follows that

I(1, S) = P 2(m) 6= L2(m) =

∞⊕
k=0

I(1k, Sk).

The next theorem is our main result on a cyclic subnormal operator S
satisfying condition C(S). The proof is based on Proposition 3.1.
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Theorem 3.5. If a subnormal operator S is cyclic and condition C(S)
holds, then S = N . Hence S is reductive.

Proof. It is known that S is a cyclic subnormal operator if and only if S
is unitarily equivalent to the operator Sµ of multiplication by the variable
z on the space P2(µ) for some compactly supported Borel measure µ on C.
Hence there are pairwise disjoint Borel sets b0, b1, . . . in C such that the
restricted measures µn := µ|bn (n ∈ N0) satisfy (cf. [Th, Theorem 5.8], [CS,
pp. 297–298])

(1) µ =
∑∞

n=0 µn,

(2) H ≡ P2(µ) = L2(µ0)⊕P2(µ1)⊕P2(µ2)⊕ · · · ,
(3) for n ∈ N the subspace P2(µn) is either infinite-dimensional and con-

tains no nontrivial characteristic functions, or is the zero subspace.

Here the generalized Hardy spaces P2(µ),P2(µn) are the closures of the
spaces of polynomials in L2(µ), L2(µn), respectively. The operators Sn :=
Sµ|P2(µn) are cyclic subnormal irreducible operators for every n ∈ N, and
S0 := Sµ|L2(µ0) is normal. The irreducibility of Sn (n ∈ N) implies that for
each such n every nonzero vector fn ∈ P2(µn) is ∗-cyclic for Sn: otherwise
some R(fn, Sn) would be an Sn-reducing subspace of P2(µn).

Assume that for a fixed n ∈ N the subspace P2(µn) is infinite-dimen-
sional. Then the invariant subspace theorem of S. Brown [BS] implies that
there is a nonzero vector gn /∈ cyc(Sn). [CT, Example 2.13, p. 41] shows that
the minimal normal extension of the operator Sµ is an operator Nµ acting
in L2(µ). By assumption and by Proposition 3.1, we have

cyc(Sµ) = ∗cyc(Nµ) ∩H = ∗cyc(Sµ).

It is known that the middle set is equal to

{h ∈ P2(µ) : h 6= 0 [µ]}.
Denote by Pn the orthogonal projection of P2(µ) onto P2(µn), and by Mn

multiplication by the characteristic function χn of the set bn above. Then
(cf. [Th, Theorem 5.8])

PnP
2(µ) = MnP

2(µ) = P2(µn).

We shall show that

cyc(Sn) = Mn[cyc(Sµ)] = Mn[∗cyc(Sµ)] = ∗cyc(Sn).

We start from the left-hand equality. Let h ∈ cyc(Sµ). If f ∈ P2(µ), then
for some sequence {pk} of polynomials (in one variable) we have�

|pkh− f |2 dµ→ 0 (k →∞).

Therefore�
|pkχnh− χnf |2 dµ =

�
|pkh− f |2χn dµ→ 0 (k →∞).
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By the orthogonal sum representation (2), each fn ∈ P2(µn) has the form
χnf , where f ∈ P2(µ). Since dµn = χndµ, we see that χnh ∈ cyc(Sn). We
have proved that

cyc(Sn) ⊃Mn[cyc(Sµ)].

To prove the converse containment, let hn ∈ cyc(Sn). Then for every fn ∈
P2(µn) there is a sequence {pk} of polynomials (in one variable) such that�

|pkhn − fn|2 dµn → 0 (k →∞).

It follows that hn 6= 0 [µn]. Indeed, µn{hn = 0} > 0 would imply that the
function (element) en ∈ P2(µn) equal to 1 on this set cannot be approxi-
mated as prescribed above. This shows that there is h ∈ P2(µ) satisfying

hn = χnh, h 6= 0 [µ].

Thus h ∈ cyc(Sµ), and

cyc(Sn) ⊂Mn[cyc(Sµ)].

It follows that we have equality here. The proof of the stated equality for
the ∗-cyclic sets is even simpler.

We have thus obtained

cyc(Sn) = ∗cyc(Sn) = P2(µn) \ {0}.
This shows that the nonzero vector gn cannot lie in P2(µn) \ cyc(Sn). It
follows that each subspace P2(µn) (n ∈ N) is the zero subspace, and the
operator Sµ is normal. By Theorem 2.1, S = N is reductive.

Corollary. Let H be a (not necessarily separable) complex Hilbert
space, and let N ∈ B(H) be a reductive (sub)normal operator. Then there
are reducing subspaces Hk (k ∈ ω) for N such that

H =
⊕
k∈ω

Hk, N =
⊕
k∈ω

(N |Hk),

and the summands N |Hk =: Nk satisfy

cyc(Nk) = ∗cyc(Nk) 6= ∅ (k ∈ ω).

In the converse direction: Assume that for a subnormal (or normal)
operator N ∈ B(H) there is an orthogonal decomposition with the properties
above. Then the operator N is not necessarily reductive.

Proof. Assume first that the operator N is reductive subnormal. It is
known ([CS, p. 425]) that then N is normal. It is also known that each
normal operator, hence N , can be decomposed into an orthogonal sum of
restrictions to ∗-cyclic subspaces Hk for N . The parts Nk := N |Hk of the
reductive operator N are clearly reductive and cyclic. Applying Theorem 2.1
to each part, we obtain

cyc(Nk) = ∗cyc(Nk) 6= ∅ (k ∈ ω).
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In the other direction: By the assumption and Theorem 2.1, each part Nk

is reductive. The following remark will explicitly show that the orthogonal
sum N of reductive normal operators Nk is not necessarily reductive.

Remark. Concerning the last sentence, see the remarkable paper by
Wiggen [Wi]. A simple example there shows that there are unitary reduc-
tive operators such that their orthogonal sum is the (nonreductive unitary)
bilateral shift of multiplicity 1. On the other hand, it is proved there that
the statement

“if T ∈ B(H) is reductive, then T ⊕ T is reductive (on H ⊕H)”

is equivalent to the statement that each operator in B(H) has a nontrivial
invariant subspace in a Hilbert space H of dimension greater than 1.

The well-known remarkable result of Dyer, Pedersen and Porcelli [D] on
reductive operators and the invariant subspace problem can be completed
as follows.

Theorem 3.6. Assume that the complex Hilbert space H is separable.
The following are equivalent:

(1) each reductive operator N ∈ B(H) is normal,
(2) each reductive operator N ∈ B(H) is subnormal,
(3) each reductive operator N ∈ B(H) satisfies ∗cyc(N) 6= H \ {0},
(4) each operator T ∈ B(H) satisfies cyc(T ) 6= H \ {0},
(5) each operator T ∈ B(H) has a nontrivial invariant subspace.

Proof. (1) clearly implies (2) (in fact, they are known to be equiva-
lent; see, e.g., [CS, p. 425]). They imply that each reductive operator has a
nontrivial invariant subspace, hence there exists a nonzero noncyclic vector
for N . By Theorem 2.1, then (3) holds. If (3) is valid, but (4) is not, then
there is an operator T ∈ B(H) such that cyc(T ) = H \ {0}. Hence for every
nonzero x ∈ H we have

I(x, T ) = H = R(x, T ).

It follows that T is reductive, and ∗cyc(T ) = H \ {0} contradicts (3). If (4)
holds, then each operator T ∈ B(H) has a nonzero noncyclic vector, hence
a nontrivial invariant subspace, thus (5) is valid. The proof that (5) implies
(1) is given in [A].

Remark. It is clear that for any operator T ∈ B(H) and any vector
x ∈ H we have

R(x, T ) = R(x, T ∗).

We have seen that if T is reductive and x ∈ H, this implies I(x, T ) = H ⇔
I(x, T ∗) = H, which means

cyc(T ) = cyc(T ∗).
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The question may arise whether the last equality for a cyclic operator T
implies that T is reductive. A negative answer is contained in the fact that
this equality holds (cf. [HP, Problem 164]) for each cyclic normal operator T
(including the nonreductive ones).

The following example may illustrate some results of the paper.

Example. Let µ be a nonnegative measure defined on the Borel sets of
the unit circle

T := {z ∈ C : |z| = 1},
and let m denote normalized Lebesgue measure on T (satisfying m(T) = 1).
On the Hilbert space H := L2(T, µ) consider the operator T := Nµ of
multiplication by the variable z ∈ T. It is well known to be unitary, and
[NO, 4.8.1–2, p. 75] shows that for f ∈ L2(T, µ) we have

f ∈ ∗cyc(Nµ) ⇔ |f(z)| > 0 [µ].

Further, the decomposition µ = µa + µs into absolutely continuous and
singular parts (with respect to m) implies

f = fa ⊕ fs ∈ L2(T, µa)⊕ L2(T, µs), dµ = wdm+ dµs,

where w is the Radon–Nikodym derivative dµa/dm. Now [NO, 4.8.1-2, p. 75]
shows that

f ∈ cyc(Nµ) ⇔ |f(z)| > 0 [µ] and log |faw1/2| /∈ L1(T,m).

By Theorem 2.1, Nµ is reductive if and only if for every f ∈ L2(T, µ),

|f(z)| > 0 [µ] ⇒ log |faw1/2| /∈ L1(T,m).

Consider first the special case µ = m. Then fa = f , w ≡ 1. Hence Nm is
reductive if and only if log |f | /∈ L1(T,m) for every f ∈ L2(T,m) satisfying
|f(z)| > 0 [m], which is clearly false.

Consider now the case when µ is 0 on an arc of T, and is identical to m
outside this arc. Then w = 0 on this arc, hence log |faw1/2| /∈ L1(T,m). It
follows that the operator Nµ is reductive (cf. also [W, Theorem 7]).
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