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Estimation of the Szlenk index
of Banach spaces via Schreier spaces

by

Ryan Causey (College Station, TX)

Abstract. For each ordinal α < ω1, we prove the existence of a Banach space with
a basis and Szlenk index ωα+1 which is universal for the class of separable Banach spaces
with Szlenk index not exceeding ωα. Our proof involves developing a characterization of
which Banach spaces embed into spaces with an FDD with upper Schreier space estimates.

1. Introduction. Two types of questions have long been of significance
in Banach space theory: those of universality and those of coordinatization.
One early result which answers a question of each type is that of the univer-
sality of C[0, 1] for the class of all separable Banach spaces. This result also
affirmatively answers the question of whether any separable Banach space
can be embedded in a space with a basis. Other questions of coordinatization
which naturally follow this one include determining when one can embed a
particular type of Banach space, such as a reflexive space or an Asplund
space, into a Banach space with a coordinate system which has the same or
related properties.

Two other important results concerning universality are those of Pełczyń-
ski [14], who showed that there exist Banach spaces X,Xu with a basis and
an unconditional basis, respectively, so that if Y is any Banach space with
a basis (respectively unconditional basis), then Y embeds complementably
in X (respectively Xu). In fact, the basis of Y is equivalent to a subse-
quence of the basis of X (respectively the basis of Xu), and the closed span
of this subsequence is a complemented subspace of X (respectively Xu).
Some early major results concerning coordinatization are those of Zippin
[17], who showed that any separable reflexive space may be embedded into
a space with shrinking and boundedly-complete basis, and any space with
separable dual can be embedded into a space with a shrinking basis. It is

2010 Mathematics Subject Classification: Primary 46B03; Secondary 46B20.
Key words and phrases: Szlenk index, universality, embedding in spaces with finite-
dimensional decompositions, Schreier spaces.

DOI: 10.4064/sm216-2-4 [149] c© Instytut Matematyczny PAN, 2013



150 R. Causey

no coincidence that we have linked these two types of questions here. The
power of bases and other coordinate systems can greatly simplify embedding
and universality questions. For example, Schechtman’s space W , which has
a finite-dimensional decomposition and the property that any space with a
finite-dimensional decomposition embeds almost isometrically into W [15],
was used to construct universal spaces in [13], [3]. The technique we use for
making questions of universality more tractable will be to embed a space with
certain properties into a space with FDD with the same or related properties.

Another tool used in the study of universality is the Szlenk index. With
it, Szlenk [16] answered in the negative whether there exists a separable, re-
flexive space which is universal for the class of all separable, reflexive Banach
spaces. Since then, this and other ordinal indices have seen fruitful use in Ba-
nach space theory. The Szlenk index completely characterizes up to isomor-
phism the separable C(K) spaces [8]. It was shown by Odell, Schlumprecht,
and Zsák that Tsirelson spaces act as a sort of upper envelope, via subse-
quential tree estimates, for certain classes of Banach spaces with bounded
Szlenk index [13]. Tree estimates were shown to be the uncoordinatized ver-
sion of the notion of block estimates. In Section 2, we define the relevant
notions to relate the results concerning tree and block estimates.

Filling a role similar to that played by the Tsirelson spaces are the
Schreier spaces. In Section 3 we will define for each ordinal α < ω1 the
Schreier family Sα, a family of subsets of the natural numbers, and then use
the family Sα to define the Schreier space Xα and deduce some facts about
them. The proofs of our main theorems are presented in Section 5. In that
section, we begin by observing that we can weaken slightly the hypotheses
of a theorem from [3] connecting tree estimates to block estimates. We then
establish the following connection between Szlenk index and Schreier space
estimates.

Theorem 1.1. If X is a Banach space and α is a countable ordinal with
Sz(X) ≤ ωα, then X satisfies subsequential Xα-upper tree estimates.

We conclude that section by proving a universality result.

Theorem 1.2. For every countable ordinal α, there exists a Banach
space Z with FDD E = (En) satisfying subsequential Xα-upper block es-
timates such that if X is any separable Banach space with Sz(X) ≤ ωα, then
X embeds into Z.

Combining this theorem with a result of Johnson, Rosenthal, and Zippin
and a result of Odell, Schlumprecht, and Zsák, we can deduce the following.

Corollary 1.3. For every countable ordinal α, there exists a Banach
space W with a basis and Sz(W ) ≤ ωα+1 such that if X is any separable
Banach space with Sz(X) ≤ ωα then X embeds into W .
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This is a strengthening of a theorem from [3], which proved the above in
the case that α = βω for some β < ω1.

2. Definitions and notation. Throughout, unless otherwise stated,
Banach spaces are real, separable, and infinite-dimensional.

A sequence (En) of finite-dimensional spaces is called a finite-dimensional
decomposition (FDD) for a Banach space Z if for each z ∈ Z there exists
a unique sequence (zn) so that zn ∈ En and z =

∑∞
n=1 zn. Let Z be a

Banach space with an FDD E = (En) and n ∈ N. We let PEn denote the nth
coordinate projection PEn : Z → En defined by

∑
zi 7→ zn, where zi ∈ Ei for

all i ∈ N. For z ∈ Z, we define suppE z = {n : PEn z 6= 0}. If no confusion is
possible, we may write supp z for suppE z. For A ⊂ N finite, PEA =

∑
n∈A P

E
n .

The projection constant K(E,Z) of (En) is defined by

K = K(E,Z) = sup
m≤n
‖PE[m,n]‖,

By the Principle of Uniform Boundedness, K is finite. We call an FDD E
for Z bimonotone ifK(E,Z) = 1. If a space Z has an FDD E, one can always
endow Z with an equivalent norm which makes E a bimonotone FDD for Z.

A sequence (Fn) is a blocking of (En) if there exist 1 = m0 < m1 < · · ·
such that Fn =

⊕mn−1
j=mn−1

Ej for all n ∈ N. If (En) is an FDD for a Banach
space Z, then the blocking (Fn) is an FDD for Z with projection constant
not exceeding that of (En).

For any sequence (En) of finite-dimensional spaces, we let

c00

( ∞⊕
n=1

En

)
=
{
(zn) : zn ∈ En ∀n ∈ N, {i ∈ N : zn 6= 0} is finite

}
.

This space is dense in any Banach space for which (En) is an FDD.
If Z is a Banach space with FDD (En), we let Z(∗) denote the closure of

c00(
⊕∞

n=1E
∗
n) in Z∗. We call an FDD (En) for a Banach space Z shrinking

if Z∗ = Z(∗). It is not necessarily true that the embedding E∗n ↪→ Z∗ is
isometric unless (En) is bimonotone. The norm on E∗n is that induced by Z∗,
and not the norm it inherits as the dual of En. If (En) is bimonotone, then
Z(∗)(∗) = Z.

An FDD (En) for a Banach space Z is called boundedly-complete if when-
ever zn ∈ En and supN∈N ‖

∑N
n=1 zn‖ < ∞, then

∑∞
n=1 zn converges in Z.

Any space with a boundedly-complete FDD is naturally a dual space.
A sequence (finite or infinite) of finitely supported nonzero vectors (zn)

so that
max suppE zn < min suppE zn+1

for all appropriate n is called a block sequence with respect to E. When no
confusion is possible, we simply call (zn) a block sequence.
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Throughout, we will through an abuse of notation conflate a basis for
a Banach space (en) with the corresponding FDD in which each finite-
dimensional space is the span of the corresponding basis vector.

Definition 2.1. If (en) and (fn) are sequences in some Banach spaces
and C > 0 is such that ∥∥∥∑ ancn

∥∥∥ ≤ C∥∥∥∑ anfn

∥∥∥
for all (an) ∈ c00, then we say that (en) is C-dominated by (fn), or that (fn)
C-dominates (en). We say (en), (fn) are C-equivalent if there exist con-
stants A,B > 0 so that AB ≤ C, (en) A-dominates (fn), and (fn) B-
dominates (en).

We say (fn) dominates (en), or (en) is dominated by (fn), if there is some
C > 0 so that (fn) C-dominates (en). We say (en) and (fn) are equivalent if
there exists some C > 0 so that they are C-equivalent.

Definition 2.2. Let V be a Banach space with normalized, 1-uncondi-
tional basis (vn). Then (vn) is C-right dominant (respectively C-left domi-
nant) if for subsequences (kn), (ln) of N so that kn ≤ ln for each n, (vkn)
is C-dominated by (respectively C-dominates) (vln). We say (vn) is right
dominant (respectively left dominant) if it is C-right dominant (respectively
C-left dominant) for some C ≥ 1.

We say that (vn) is C-block-stable if whenever (xn), (yn) are normalized
block sequences in V with

max(suppV (xn) ∪ suppV (yn)) < min(suppV (xn+1) ∪ suppV (yn+1)),

then (xn) and (yn) are C-equivalent. We say (vn) is block-stable if it is C-
block-stable for some C.

Definition 2.3. Let Z be a Banach space with an FDD E = (En), let
V be a Banach space with a normalized, 1-unconditional basis (vn), and let
1 ≤ C < ∞. We say E satisfies subsequential C-V - upper block estimates
in Z if any normalized block sequence (zn) in Z is C-dominated by (vmn),
where mn = min suppE zn. We say E satisfies subsequential C-V -lower block
estimates in Z if any normalized block sequence (zn) C-dominates (emn). We
say E satisfies subsequential V -upper (respectively lower) block estimates in
Z if there is some C such that E satisfies C-V -upper (respectively lower)
block estimates in Z.

A standard perturbation argument gives the following, which allows flex-
ibility in choosing the indices for norm estimates of block sequences.

Proposition 2.4. Let V be a Banach space with normalized, 1-uncondi-
tional basis (vn), and let Z be a Banach space with FDD (En) which satisfies
subsequential C-V -upper (respectively lower) block estimates in Z. Then if
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(xn) is a normalized block sequence in E and (kn) is a subsequence of N with
max supp xn < kn+1 ≤ min supp xn+1 for all n, then (xn) is C-dominated
by (respectively C-dominates) (vkn).

Next, we define the uncoordinatized version of block estimates, which
was first considered in [12].

Definition 2.5. For l ∈ N, we define

Tl = {(n1, . . . , nl) : n1 < · · · < nl, ni ∈ N}
and

T∞ =
∞⋃
l=1

Tl, T even
∞ =

∞⋃
l=1

T2l.

An even tree in a Banach space X is a family (xt)t∈T even
∞ in X. Sequences

of the form (x(t,k))k>k2n−1 , where n ∈ N and t = (k1, . . . , k2n−1) ∈ T∞, are
called nodes. A sequence of the form (k2n−1, x(k1,...,k2n))

∞
n=1 with k1< k2< · · ·

is called a branch of the tree. An even tree is called weakly null if every node
is a weakly null sequence. If X is a dual space, an even tree is called w∗ null
if every node is w∗ null. If X has an FDD E = (En), a tree is called a block
even tree of E if every node is a block sequence of E.

If T ⊂ T even
∞ is closed under taking restrictions so that for each t ∈ T∪{∅}

and for eachm ∈ N the set {n ∈ N : (t,m, n) ∈ T} is either empty or infinite,
and if the latter occurs for infinitely many values of m, then we call (xt)t∈T
a full subtree. Such a tree can be relabeled to a family indexed by T even

∞ and
the branches of (xt)t∈T are branches of (xt)t∈T even

∞ , while the nodes of (xt)t∈T
are subsequences of the nodes of (xt)t∈T even

∞ .

Definition 2.6. Let V be a Banach space with normalized, 1-uncondi-
tional basis (vn) and C ≥ 1. Let X be an infinite-dimensional Banach space.
We say that X satisfies subsequential C-V -lower tree estimates if every nor-
malized, weakly null even tree (xt)t∈T even

∞ inX has a branch (k2n−1, x(k1,...,k2n))
so that (x(k1,...,k2n))n C-dominates (vk2n−1)n. We say X satisfies subsequen-
tial C-V -upper tree estimates if every normalized, weakly null even tree
(xt)t∈T even

∞ in X has a branch (k2n−1, x(k1,...,k2n)) so that (x(k1,...,k2n))n is
C-dominated by (vk2n−1).

We say that X satisfies subsequential V -upper (respectively lower) tree
estimates if it satisfies C-V -upper (respectively lower) tree estimates for
some C ≥ 1.

If X is a subspace of a dual space, we say that X satisfies subsequential
C-V -lower w∗ tree estimates if every w∗ null even tree (xt)t∈T even

∞ in X has
a branch (x(n1,...,n2i))

∞
i=1 which C-dominates (vn2i−1).

For C ≥ 1, let AV (C) be the class of Banach spaces which satisfy sub-
sequential C-V -upper tree estimates, and AV =

⋃
C≥1AV (C). We prove in
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Section 5 that this class has a universal element. That is, it contains an
element into which any other element of this class embeds.

The upper and lower estimates are dual notions in a very natural way.
We make this precise below.

Proposition 2.7 ([12, Lemma 3]). If Z is a Banach space with
FDD (En), and V is a Banach space with normalized, 1-unconditional ba-
sis (vn), then the following are equivalent:

(1) (En) satisfies subsequential V -upper block estimates in Z.
(2) (E∗n) satisfies subsequential V (∗)-lower block estimates in Z(∗).

Lemma 2.8 ([3, Lemma 2.7]). Let X be a Banach space with separable
dual, and let V = (vn) be a normalized, 1-unconditional, right dominant
basis. If X satisfies subsequential V -upper tree estimates, then X∗ satisfies
subsequential V (∗)-lower w∗ tree estimates.

We will, using established embedding theorems and a particular method
of constructing new Banach spaces with FDDs from old, find spaces with
FDDs with the desired properties. Our usual space for doing so will be the
space ZV .

Definition 2.9. If Z is a Banach space with FDD E = (En) and V is a
Banach space with normalized, 1-unconditional basis (vn), we define a new
norm on c00(

⊕∞
n=1En) by

‖z‖ZV =max
{∥∥∥ n∑

i=1

‖PE[mi−1,mi)
z‖Zvmi−1

∥∥∥
V
: 1 ≤ m0< · · ·<mn, n, mi ∈N

}
.

We then let ZV be the completion of c00(
⊕∞

n=1En) under the norm ‖ · ‖ZV .
Then (En) is an FDD for ZV with K(E,ZV ) ≤ K(E,Z). We connect some
properties of the FDD (En) for ZV and of the basis (vn) of V .

Proposition 2.10 ([12, Corollary 7, Lemma 8]). Let V be a Banach space
with a normalized, 1-unconditional basis (vn), and Z a space with FDD (En).

(1) If (vn) is boundedly-complete, then (En) is a boundedly-complete FDD
for ZV .

(2) If (vn) is a shrinking basis for V and (En) is a shrinking FDD for Z,
then (En) is a shrinking FDD for ZV .

We conclude this section with generalizations of Lemmas 2 and 10
from [12]. The proofs are very similar, but we include them for completeness.
The difference is that we do not assume block stability of (vn), but only that
(vn) satisfies lower block estimates in itself. This means that for a normal-
ized block sequence (xn) in V with min suppxn = mn, there is some C ≥ 1
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such that (xn) C-dominates (vmn). We will use the following abbreviation. If
M = (mn) is a subsequence of N, and (vn) is a basis for the Banach space V ,
we let VM denote the closed linear span of (vmn) in V .

Lemma 2.11. If V is a Banach space with normalized, 1-unconditional
basis (vn) which satisfies subsequential C-V -lower block estimates in itself,
and Z is a space with FDD (En), then (En) satisfies subsequential 2C-V -
lower block estimates in ZV .

Proof. Fix a normalized block sequence (zn) in ZV and (an) ∈ c00. Let
mn = min supp zn. For each n ∈ N, fix an increasing sequence (k

(n)
i )lni=0 of

natural numbers so that

1 =
∥∥∥ ln∑
i=1

‖PE
[k

(n)
i−1,k

(n)
i )

zn‖Zvk(n)i−1

∥∥∥
V
.

Because the basis (vn) is bimonotone, we can assume that k(n)0 ≤ mn

< k
(n)
1 and k(n)ln

= mn+1. For each n and 1 ≤ i ≤ nl, put m
(n)
i = k

(n)
i . Put

m
(n)
0 = mn. Then because k(n)i = m

(n)
i for each i > 0, we get∥∥∥ ln∑

i=2

‖PE
[m

(n)
i−1,m

(n)
i )

zn‖Zvm(n)
i−1

∥∥∥
V
=
∥∥∥ ln∑
i=2

‖PE
[k

(n)
i−1,k

(n)
i )

zn‖Zvm(n)
i−1

∥∥∥
V
.

Using the triangle inequality and noting that PE
[m

(n)
0 ,m

(n)
1 )

zn = PE
[k

(n)
0 ,k

(n)
1 )

zn,
we see that

1 ≤ 2max
{
‖PE

[m
(n)
0 ,m

(n)
1 )

zn‖Z ,
∥∥∥ ln∑
i=2

‖PE
[k

(n)
i−1,k

(n)
i )

zn‖Zvm(n)
i−1

∥∥∥
V

}
≤ 2
∥∥∥ ln∑
i=1

‖PE
[m

(n)
i−1,m

(n)
i )

zn‖Zvm(n)
i−1

∥∥∥
V
.

Let yn =
∑ln

i=1 ‖PE[m(n)
i−1,m

(n)
i )

zn‖Zvm(n)
i−1

. We note that min supp yn = mn.

We have already shown that ‖yn‖ ≥ 1/2. Let (ai) ∈ c00 and let (ki)
l
i=0

be the concatenation of the sequences (m
(n)
i )lni=0 for each 1 ≤ n ≤ M =

max supp(aj). For z =
∑∞

i=1 anzn, we get

‖z‖ZV ≥
∥∥∥ l∑
i=1

‖PE[ki−1,ki)
z‖Zvki−1

∥∥∥
V
=
∥∥∥ ∞∑
n=1

ln∑
i=1

an‖PE
[m

(n)
i−1,m

(n)
i )

zn‖Zvm(n)
i−1

∥∥∥
V

=
∥∥∥ ∞∑
n=1

anyn

∥∥∥
V
≥ 1

C

∥∥∥ ∞∑
n=1

an‖yn‖vmn
∥∥∥
V
≥ 1

2C

∥∥∥ ∞∑
n=1

anvmn

∥∥∥
V
.

This gives the result.
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Remark 2.12. We cannot omit the initial part of the proof above in
which we pass from the k(n)i to the m(n)

i . That is, we could not have assumed
that k(n)0 = min supp zn and 1 =

∥∥∑ln
i=1 ‖PE[k(n)i−1,k

(n)
i )

zn‖Zvk(n)i−1

∥∥
V
. In fact, the

factor of 2 which occurs above is sharp.
To see this, let V = R⊕1 c0 and let (vn) denote the natural basis for V .

Then (vn) is normalized and 1-unconditional. If we let (en) denote the canon-
ical c0 basis, and let zn = 1

2e2n+
1
2e2n+1, (zn) is a normalized block sequence

in cV0 . To see this, observe that∥∥‖P[1,2n+1)zn‖c0v1 + ‖P[2n+1,2n+2)zn‖c0v2n+1

∥∥
V
=

1

2
+

1

2
= 1.

But if 2n ≤ k0 < k1 < · · · < kl, then∥∥∥ l∑
i=1

‖P[ki−1,ki)zn‖c0vki−1

∥∥∥
V
=
∥∥∥ l∑
i=1

‖P[ki−1,ki)zn‖c0vki−1

∥∥∥
c0
≤ 1

2
.

Lemma 2.13. Let V be a Banach space with normalized, 1-unconditional
basis (vn) which satisfies subsequential V -lower block estimates in V . If
M = (mn) is a subsequence of N and Z is a space with FDD E = (En) sat-
isfying subsequential VM -lower block estimates in Z, then W = Z ⊕∞ VN\M
has an FDD satisfying subsequential V -lower block estimates in W .

Proof. Let C be such that (vn) satisfies subsequential C-V -lower block
estimates in V and such that E satisfies subsequential C-VM -lower block
estimates in Z.

We define an FDD F = (Fn) of W by

Fn =

{
span(vn), n /∈M ,
Ek, n = mk.

Let P and Q be the projections onto Z and VN\M , respectively. Let (zn) be a
normalized block sequence in W , and let bn = min suppF zn. Let xn = Pzn,
yn = Qzn. Let N1 = {n : xn 6= 0}, N2 = {n : yn 6= 0}. We note that (yn)n∈N2

is a block sequence in V with bn ≤ min suppV yn < bn+1 for each n ∈ N2.
Applying Proposition 2.4, we get∥∥∥∑

n∈N2

anyn

∥∥∥
V
≥ C−1

∥∥∥∑
n∈N2

an‖yn‖vbn
∥∥∥
V
.

Next, we note that (xn)n∈N1 is a block sequence in E. For n ∈ N1, let
pn = min suppE xn. Unraveling the definition of VM -lower block estimates
in Z gives ∥∥∥∑

n∈N1

anxn

∥∥∥
Z
≥ C−1

∥∥∥∑
n∈N1

an‖xn‖Zvmpn
∥∥∥
V
.
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We note that, by construction, bn ≤ mpn < bn+1. Applying Proposition 2.4
to (vbn)n∈N1 and (vmpn )n∈N1 shows that∥∥∥∑

n∈N1

an‖xn‖Zvmpn
∥∥∥
V
≥ C−1

∥∥∥∑
n∈N1

an‖xn‖Zvbn
∥∥∥
V
.

Letting z =
∑∞

n=1 anzn, we get∥∥∥ ∞∑
n=1

anvbn

∥∥∥
V
≤
∥∥∥ ∞∑
n=1

an(‖xn‖Z + ‖yn‖V )vbn
∥∥∥
V

≤
∥∥∥∑
n∈N1

an‖xn‖Zvbn
∥∥∥
V
+
∥∥∥∑
n∈N2

an‖yn‖V vbn
∥∥∥
V

≤ 2max
{∥∥∥∑

n∈N1

an‖xn‖Zvbn
∥∥∥
V
,
∥∥∥∑
n∈N2

an‖yn‖V vbn
∥∥∥
V

}
≤ 2max

{
C2
∥∥∥∑
n∈N1

anxn

∥∥∥
Z
, C
∥∥∥∑
n∈N2

anyn

∥∥∥
V

}
= 2max{C2‖Pz‖Z , C‖Qz‖V } ≤ 2C2‖z‖W .

We quote a fact from [3] relating the concept of infinite games to trees and
branches. For more information about these infinite games, see [10]. First we
must recall some of their notation. If X is a Banach space, A ⊂ [N× SX ]ω,
and ε ∈ (0, 1), we let

Aε= {(kn, yn) ∈ [N×SX ]ω : ∃(ln, xn) ∈ A, ln≤ kn, ‖xn−yn‖<ε2−n ∀n∈ N}.

In the following proposition, the closure Aε is with respect to the product
topology on [N× SX ]ω. For it, we also need the following definition.

Definition 2.14. Let E = (En) be an FDD for a Banach space X and
let δ = (δn) with δn ↓ 0. A sequence (xn) ⊂ SX is called a δ-skipped block
with respect to (En) if there exist integers 1 = k0 < k1 < · · · so that for all
n ∈ N,

‖PE(kn−1,kn)
yn − yn‖ < δn.

Proposition 2.15 ([3, Proposition 2.6]). Let X be an infinite-dimen-
sional closed subspace of a dual space Z with boundedly-complete FDD (En).
Let A ⊂ [N× SX ]ω. The following are equivalent:

(1) For all ε > 0 there exists (Kn) ⊂ N with K1 < K2 < · · · , δ =
(δn) ⊂ (0, 1) with δn ↓ 0 and a blocking F = (Fn) of (En) such
that if (xn) ⊂ SX is a δ-skipped block sequence of (Fn) in Z with
‖xn − PF(rn−1,rn)

‖ < δn for all n ∈ N, where 1 ≤ r0 < r1 < · · · , then
(Krn−1 , xn) ∈ Aε.

(2) For all ε > 0, every normalized w∗ null even tree in X has a branch
in Aε.
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3. Schreier families, Schreier spaces. Throughout this section, we
will assume subsets of N are written in increasing order. Let [N]<ω denote
the set of all finite subsets of N, and [N] the set of all infinite subsets of N. We
associate a set F with the function 1F ∈ {0, 1}N and consider this space with
the product topology. We consider the families [N], [N]<ω as being ordered
by extension. That is, the predecessors of an element are its initial segments.
We write E ≤ F if maxE ≤ minF . We write n ≤ F if n ≤ minF . By
convention, min ∅ =∞, max ∅ = 0. A family F ⊂ [N]<ω is called hereditary
if, whenever E ∈ F and F ⊂ E, then F ∈ F . Note that a hereditary family
is compact if and only if it contains no strictly ascending chains.

Given two (finite or infinite) subsequences (kn), (ln) ⊂ N of the same
length, we say (ln) is a spread of (kn) if kn ≤ ln. We call a family F ⊂ [N ]<ω

spreading if it contains all spreads of its elements.
We next recall the definitions of the Schreier families. Let

S0 = {{n} : n ∈ N} ∪ {∅}.
Next, let α < ω1 and assume that Sβ has been defined for all ordinals β ≤ α.
Let

Sα+1 =
{ m⋃
n=1

En : m ≤ E1 < · · · < Em, En ∈ Sα for all n
}
.

If α < ω1 is a limit ordinal, take αn so that αn ↑ α. Define

Sα = {F : ∃n ≤ F ∈ Sαn}.
The Schreier families thus defined are compact, hereditary, and spread-

ing. Note that for α a limit ordinal, Sα depends upon the choice of the
sequence (αn). This will not affect the properties of Sα relied upon in this
paper.

Recall that c00 denotes all finitely nonzero sequences in R. For x = (xn) ∈
c00 and E ∈ [N]<ω, we define Ex = (χE(n)xn), the projection of x onto E.
For a countable ordinal α, define the norm ‖ · ‖α on c00 by

‖x‖α = max
E∈Sα

‖Ex‖1.

Here, ‖·‖1 denotes the `1 norm. We let Xα be the completion of c00 under the
norm ‖ · ‖α, and call this space the Schreier space of order α. We note that
the canonical basis (en) for c00 becomes a normalized, 1-unconditional basis
for Xα. Moreover, since the Schreier families are spreading, Xα is 1-right
dominant for each α < ω1.

Proposition 3.1. The basis (en) of Xα satisfies subsequential 2-Xα-
upper block estimates in itself.

Proof. First, choose sequences (mn), (kn) with mn ≤ kn < mn+1. We
prove that (emn) 2-dominates (ekn). Fix (an) ∈ c00. Let x =

∑∞
n=1 anemn ,
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y =
∑∞

n=1 anekn . Fix E ∈ Sα so that ‖Ey‖1 = ‖y‖α. Let N = {n : kn ∈ E}
and K = {kn : n ∈ N}, M = {mn : n ∈ N}. Then K ⊂ E, and K ∈ Sα.

We note that ‖Ey‖1 =
∑

n∈N |an|.
If |aminN | > 1

2

∑
n∈N |an| =

1
2‖y‖α, let F = {mminn}. Otherwise, let

F = {mn : n ∈ N, n 6= minN}.

In the second case, F is a spread of {kn : n ∈ N, n 6= maxN} ⊂ K. We note
that the first case failing means N must have at least two elements, so this
set is nonempty. In either case, F ∈ Sα.

In the first case, ‖Fx‖1 = |aminN | > 1
2‖y‖α. In the second case,

‖Fx‖1 =
∑
n∈N

n> minN

|an| ≥
1

2

∑
n∈N
|an| =

1

2
‖y‖α.

Thus ‖x‖α ≥ ‖y‖α, and we see that (emn) 2-dominates (ekn).
Next, fix any normalized block sequence (xn) ⊂ Xα. Let min suppxn

= mn. Fix (an) ∈ c00, and choose E ∈ Sα so that∥∥∥E ∞∑
n=1

anxn

∥∥∥
1
=
∥∥∥ ∞∑
n=1

anxn

∥∥∥
α
.

Let N = {n : E ∩ suppxn 6= ∅}. For each n ∈ N , choose kn ∈ E ∩ suppxn.
Then ∥∥∥ ∞∑

n=1

anxn

∥∥∥
α
=
∥∥∥E∑

n∈N
anxn

∥∥∥
1
=
∑
n∈N
|an| ‖Exn‖1

≤
∑
n∈N
|an| =

∥∥∥E∑
n∈N

anekn

∥∥∥
1
≤
∥∥∥∑
n∈N

anekn

∥∥∥
α

≤ 1

2

∥∥∥∑
n∈N

anemn

∥∥∥
α
≤ 1

2

∥∥∥ ∞∑
n=1

anemn

∥∥∥
α
.

The space Xα is embeddable in C([1, ωωα ]) [1]. Consequently, Xα is c0-
saturated for each α < ω1, and it easily follows that Xα cannot be block-
stable for 0 < α. This means (en) cannot satisfy subsequential Xα-lower
block estimates in Xα. For our purposes, however, one-sided estimates will
suffice.

We conclude this section by recalling a theorem of Gasparis from infinite
Ramsey theory.

Theorem 3.2 ([4]). If F ,G ⊂ [N]<ω are hereditary and N ∈ [N], then
there exists M ∈ [N ] so that either

F ∩ [M ]<ω ⊂ G or G ∩ [M ]<ω ⊂ F .
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4. Ordinal indices. Let σ be an arbitrary set. We let σ<ω denote all
finite sequences in σ, including the sequence of length zero, denoted (∅).
A tree on σ is a nonemptyset subset F ⊂ σ<ω closed under taking initial
segments. We call a tree hereditary if every subsequence of a member of F
is a member of F .

If x = (x1, . . . , xm) and y = (y1, . . . , yn), we denote the concatenation of
x with y by (x,y). If F ⊂ σ<ω and x ∈ σ<ω, then

F(x) = {y ∈ σ<ω : (x,y) ∈ F}.

If F is a tree on σ and F(x) 6= ∅, then F(x) is also a tree on σ. If F is
hereditary, so is F(x) and F(x) ⊂ F .

If σω is the set of all (infinite) sequences in σ, S ⊂ σω, and F is a tree
on σ, we define the S-derivative F ′S of F by

F ′S = {x ∈ σ<ω : ∃(yi) ∈ S so that (x, yn) ∈ F for all n}.
We next define higher order derivatives of the tree F :

F (0)
S = F ,

F (α+1)
S = (F (α)

S )′S for all α < ω1,

F (α)
S =

⋂
β<α

F (β)
S for a limit ordinal α < ω1.

It is clear that these collections are decreasing with respect to containment
as the ordinal increases, and that F (α)

S 6= ∅ is a tree whenever it is nonempty.
We define the S-index of F by IS(F) = min{α : F (α)

S = ∅} if such an
α < ω1 exists, and IS(F) = ω1 otherwise.

We outline the indices which will be of particular interest to us. If
F ⊂ [N]<ω is a hereditary family, we can consider it as a hereditary tree
on N. If S is the set of strictly increasing subsequences of N and F is com-
pact and hereditary, then IS(F) = ICB(F), the Cantor–Bendixson index of
F as a topological space. We note that the Cantor–Bendixson index is a
topological invariant. Moreover, if F ,G ⊂ [N]<ω are compact, hereditary,
and F ⊂ G, then ICB(F) ≤ ICB(G).

If σ is any set and S = σω, then the index IS(F) is called the order of
the tree F , denoted o(F). We note that, since S is as large as possible, the
order is the largest possible ordinal index. That is, if S′ ⊂ σω and F is a
tree on σ, then IS′(F) ≤ o(F).

Next, we consider the case of a Banach space X and the collection S of
all weakly null sequences in the unit sphere SX . In this case, for a tree F
on SX , we denote this index, called the weak index, by IS(F) = Iw(F).

Our last example is the block index. If Z is a Banach space with an FDD
E = (En), a block tree of (En) in Z is a tree F on SZ so that each element
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is a (finite) block sequence of (En). We let S be the set of infinite normalized
block sequences of (En) in Z. In this case, the S-index of a block tree F ,
denoted Ibl(F), is the block index of F . We note that (En) is shrinking if
and only if every normalized block sequence is weakly null. This means that
for any block tree F in SZ , Ibl(F) ≤ Iw(F). In all cases with which we are
concerned, the block index will be with respect to a specified FDD or some
blocking thereof. Since the block index of a tree with respect to one FDD is
the same as that of the same tree with respect to any blocking of that FDD,
there will be no ambiguity.

A set S ⊂ σω contains diagonals if every subsequence of a sequence in S
also lies in S and for every sequence (xn) ⊂ S, there exist i1 < i2 < · · · in
N so that (xn,in) ∈ S, where xn = (xn,i)i. The sets S used above to give
the Cantor–Bendixson index, the order, and the block index of a tree all
clearly contain diagonals. If X∗ is a separable Banach space, then the weak
topology on BX is metrizable and the set of weakly null sequences in SX
contains diagonals.

Given a tree F ⊂ [N]<ω on N, a family (xF )F∈F\{∅} in σ will be considered
as the tree

{(x{m1}, x{m1,m2}, . . . , x{m1,...,mk}) : k ≥ 0, {m1, . . . ,mk} ∈ F}
on σ.

With this convention, we can state a special case of a proposition which
has been very useful in computing certain ordinal indices.

Proposition 4.1 ([13, Proposition 5]). Let σ be an arbitrary set and let
S ⊂ σ<ω. If S contains diagonals, then for a tree F on σ and for a countable
ordinal α, the following are equivalent:

(1) ωα < IS(F).
(2) There is a family (xF )F∈Sα\{∅}⊂F so that for all F ∈ Sα\MAX(Sα),

the sequence (xF∪{n})n>maxF is in S.

We need a few more pieces of notation to relay some useful propositions.
If X is a separable Banach space, F ⊂ S<ωX , and ε = (εn) ⊂ (0, 1), we write

FXε = {(xn)Nn=1 ∈ S<ωX : N ∈N, ∃(yn)Nn=1 ∈F , ‖xn−yn‖≤ εn,∀n=1, . . . , N}.

Let Z be a Banach space with FDD E = (En), and let F be a block tree
of (En) in Z. We write Σ(E,Z) for the set of all finite, normalized block
sequences of (En) in Z. For ε = (εn) ⊂ (0, 1), we let

FE,Zε = FZε ∩Σ(E,Z).

Finally, the compression F̃ of F is

F̃ = {F ∈ [N]<ω : ∃(zn)|F |n=1 ∈ F , F = {min suppE zn : n = 1, . . . , |F |}}.
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Proposition 4.2 ([13, Proposition 6]). Let X ⊂ Y be Banach spaces
with separable duals, and let F ⊂ S<ωX be a tree on SX . Then for all ε =

(εn) ⊂ (0, 1) we have Iw(FYε ) ≤ Iw(FX5ε).

Proposition 4.3 ([13, Proposition 8]). Let Z be a Banach space with
FDD E = (En). Let F be a hereditary block tree of (En) in Z. Then for
all ε = (εn) ⊂ (0, 1) and for all limit ordinals α, if Ibl(FE,Zε ) < α, then
ICB(F̃) < α.

Next, we have the Bourgain `1 index of a Banach space. For a Banach
space X and K ≥ 1, we define

T (X,K) =
{
(xn) ∈ S<ωX :

(xn) is K basic, K
∥∥∥∑ anxn

∥∥∥ ≥∑ |an| ∀(an) ⊂ R
}
.

Similarly, if X has basis (en), we define Tb(X,K, (en)) = T (X,K) ∩
Σ((en), X). These are hereditary trees. We define I(X,K) = o(T (X,K)),
the order of the tree T (X,K). We define Ib(X,K, (en)) = o(Tb(X,K, (en)).
Finally, we define

I(X) = sup
K≥1

I(X,K) and Ib(X, (en)) = sup
K≥1

Ib(X,K, (en)).

Roughly speaking, the index I gives some measure of the complexity of the
finite-dimensional `1 structures contained within X. The Ib index gives some
measure of the complexity of the finite-dimensional `1 structures contained
within the block basic sequences ofX. It is important to note that, in general,
Ib is distinct from the previously defined block index Ibl. Moreover, by [1,
Theorem 3.14], Ib(X, (en)) = ω1 if and only if X contains an isomorphic
copy of `1.

We now recall the Szlenk index of a separable Banach space. Let X be a
separable Banach space, and K a weak∗ compact subset of X∗. For ε > 0,
we define

(K)′ε = {z ∈ K : for all w∗-neighborhoods U of z, diam(U ∩K) > ε}.

It is easily verified that (K)′ε is also weak∗ compact. We let

P0(K, ε) = K,

Pα+1(K, ε) = (Pα(K, ε))
′
ε for α < ω1,

Pα(K, ε) =
⋂
β<α

Pβ(K, ε) for α < ω1, α a limit ordinal.

If there exists some α < ω1 so that Pα(K, ε) = ∅, we define

η(K, ε) = min{α : Pα(K) = ∅}.
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Otherwise, we set η(K, ε) = ω1. Then we define the Szlenk index of a Banach
space X, denoted Sz(X), to be

Sz(X) = sup
ε>0

η(BX∗ , ε).

The Szlenk index is one of several slicing indices. The following two facts
come from [16]:

(1) For a Banach space X, Sz(X) < ω1 if and only if X∗ is separable,
(2) If X ≤ Y , then Sz(X) ≤ Sz(Y ).

The above definition of the index is, in some cases, intractable. A con-
nection between weak indices and the Szlenk index has been very useful in
computations. For this, we will be concerned with a specific type of tree.

For a Banach space X and ρ ∈ (0, 1], we let

HXρ =
{
(xn) ∈ S<ωX :

∥∥∥∑ anxn

∥∥∥ ≥ ρ∑ an ∀(an) ⊂ R+
}
.

Clearly HXρ is a hereditary tree on SX for all ρ ∈ (0, 1]. We collect two tools
which will facilitate the computation of the Szlenk indices of the Schreier
spaces.

Theorem 4.4 ([1, Theorems 3.22, 4.2]). If X is a Banach space with X∗
separable, there exists some ordinal β < ω1 so that Sz(X) = ωβ. Moreover,

Sz(X) = sup
ρ∈(0,1)

Iw(HXρ ).

Corollary 4.5. Let V be a Banach space with normalized, 1-uncondi-
tional, shrinking basis (vn). If Z is a Banach space with shrinking FDD E
which satisfies subsequential V -upper block estimates, then Sz(Z) ≤ Sz(V ).

Proof. The proof is a generalization of Proposition 17 of [13].
Let α < ω1 be such that Sz(V ) = ωα. Assume Sz(Z) > ωα. By Theo-

rem 4.4 there exists some ρ ∈ (0, 1] so that Iw(HZρ ) > ωα. Then by Propo-
sition 4.1 there exists some normalized tree (xE)E∈Sα\{∅} ⊂ HZρ so that
for each E ∈ Sα \ MAX(Sα), (xE∪{n})n>maxE is weakly null. We can, by
shrinking ρ and using standard perturbation and pruning arguments, as-
sume that (xE)E∈Sα\{∅} is a block tree with the added requirement that
each branch is a block sequence. Let C ≥ 1 be such that E satisfies subse-
quential C-V -upper block estimates in Z. Then (vmE ) is a normalized block
tree, wheremE = min suppxE . Because the branches of this tree C dominate
the branches of the tree (xE)E∈Sα\{∅}, (vmE )E∈Sα\{∅} ⊂ HVρC−1 .

Moreover, since all nodes are block sequences, mE∪{n} →∞ as n→∞ if
E ∈ Sα \MAX(Sα). Because the basis for V is shrinking, (vmE∪{n})n>maxE

is weakly null for such E. But the existence of such a tree, again by Propo-
sition 4.1, means Sz(V ) > ωα. This is a contradiction, and we have the
result.
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Now, we make an observation regarding the spaces which will be our
main tools.

Proposition 4.6. For α < ω1, Sz(Xα) = ωα+1.

Proof. By [1, Theorem 5.5], we know Ib(Xα, (en)) = ωα+1. Then Xα

contains no copy of l1, or else I(Xα) = ω1. Since the canonical basis is un-
conditional, this means it must be shrinking. Therefore the tree (emaxE)E∈Sα
is such that all nodes are weakly null. Moreover, each branch is of the form
(en)n∈E for some E ∈ Sα. This branch is isometrically l|E|1 , and so this tree
is contained in HXα1 . By Proposition 4.1, Iw(HXα1 ) > ωα.

Thus we need only show that Sz(Xα) ≤ ωα+1. If not, there must exist
some ρ ∈ (0, 1] so that Iw(HXαρ ) > ωα+1. By standard perturbation argu-
ments, we can assume that there is a block tree (xE)E∈Sα+1\{∅} ⊂ HXα

ρ . This
means that if (xn) is a branch in the tree and (an) ⊂ R+,∥∥∥∑ anxn

∥∥∥ ≥ ρ∑ an.

But because (xn) is a block sequence and the canonical basis for the Schreier
space Xα is 1-unconditional, this means ρ−1‖

∑
anxn‖ ≥

∑
|an| for all

(an) ⊂ R. Thus (xE)E∈Sα+1\{∅} ⊂ Tb(Xα, ρ
−1, (en)). Then

ωα+1 = Ib(Xα, (en)) ≥ Ib(Xα, ρ
−1, (en)) ≥ o(Sα+1) > ωα+1.

This is a contradiction, and we get the result.

5. Proof of main theorems. We include the proof of the first theo-
rem here for completeness. It can be found in [3], where slightly stronger
hypotheses were used.

Theorem 5.1 ([3, Theorem 1.1]). If V is a Banach space with normal-
ized, 1-unconditional, shrinking, right dominant basis (vn) which satisfies
subsequential V -upper block estimates in V , and X is a Banach space with
separable dual, then the following are equivalent:

(1) X satisfies subsequential V -upper tree estimates.
(2) X is a quotient of a space Z with Z∗ separable and Z satisfying

subsequential V -upper tree estimates.
(3) X is a quotient of a space Z with a shrinking FDD satisfying subse-

quential V -upper block estimates.
(4) There exists a w∗-w∗ continuous embedding of X∗ into Z∗, a space

with boundedly-complete FDD (F ∗i ) satisfying subsequential V
∗-lower

block estimates.
(5) X is isomorphic to a subspace of a space with a shrinking FDD sat-

isfying subsequential V -upper block estimates.
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Proof. First, we note that (5)⇒(1) and (3)⇒(2) are trivial.
(1)⇒(4). Let D ≥ 1 be such that (vn) is D-right dominant. By the re-

mark preceding Proposition 1 of [12], (v∗n) is D-left dominant. By [2, Corol-
lary 8], there exists a space Z with shrinking, bimonotone FDD E = (En)
for which there is a quotient map Q : Z → X. The map Q∗ : X∗ → Z∗ is
an into isomorphism. After renorming X if necessary, we can assume that X
has the quotient norm induced by Q, and so Q∗ is an isometric embedding.
By Lemma 2.8, X∗ satisfies subsequential C-V ∗-lower w∗ tree estimates for
some C ≥ 1. As Q∗X∗ ⊂ Z∗ is w∗ closed, we may apply Proposition 2.15
with

A = {(in, xn)∞n=1 ∈ [N× SQ∗X∗ ] : (xn) C-dominates (vin)}

and ε > 0 so that

Aε ⊂ {(in, xn) ∈ [N× SQ∗X∗ ] : (xn) 2CD-dominates (vin)}.

This gives sequences (Kn) ∈ [N] and δ = (δn) ⊂ (0, 1) and a blocking
(Fn) of (E∗n) such that if (xn) ⊂ SQ∗X∗ and ‖xn − PF(rn−1,rn)

xn‖ < 2δn for
some sequence (rn) ∈ [N], then (Krn−1 , xn) ∈ Aε. Hence, the sequence (xn)
2CD-dominates (vKrn−1

).
Take a blocking G = (Gn) of (Fn) defined by Gn =

⊕mn
j=mn−1+1 Fj for

some (mn) ∈ [N] such that there exists (en) ⊂ SQ∗X∗ with ‖en − PGn en‖ <
δn/2 for all n. In order to continue, we need the following result from [10]
which is based on an argument due to W. B. Johnson [5]. [10, Corollary 4.4]
was stated for reflexive spaces. Here we state it for w∗ closed subspaces of
dual spaces with a boundedly-complete FDD: The proof is easily seen to
work in this case. Also note that conditions (4) and (5) in 5.2 which were
not stated in [10] follow easily from the proof there.

Proposition 5.2 ([10, Lemma 4.3, Corollary 4.4]). Let Y be a w∗-closed
subspace of a dual space Z with boundedly-complete FDD A = (An) having
projection constant K. Let η = (ηn) ⊂ (0, 1) with ηn ↓ 0. Then there ex-
ists (Nn)

∞
n=1 ∈ [N] such that the following holds: Given (kn)

∞
n=0 ∈ [N] and

x ∈ SY , there exists xn ∈ Y and tn ∈ (Nkn−1 , Nkn) for all n ∈ N with N0 = 0,
and t0 = 0 such that

(1) x =
∑∞

n=1 xn

and for all n ∈ N we have

(2) either ‖xn‖ < ηn or ‖xn − PA(tn−1,tn)
xn‖ < ηn‖xn‖,

(3) ‖xn − PA(tn−1,tn)
x‖ < ηn,

(4) ‖xn‖ < K + 1,
(5) ‖PAtnx‖ < ηn.
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We apply Proposition 5.2 to Y = Q∗X∗, A = G, and η = δ, which gives
a sequence (Nn). We set Hn =

⊕Nn
i=Nn−1+1Gi for each n ∈ N. To make

notation easier we deduce V ∗M = (v∗Mn
) be the subsequence of (v∗n) defined

by Mn = KmNn .
Fix x ∈ SQ∗X∗ and a sequence (kn)

∞
n=0 ∈ [N]. The proof of [12, Theo-

rem 4.1(a)] shows∥∥∥ ∞∑
n=1

‖PH[kn−1,kn)
x‖Z∗v∗Mkn−1

∥∥∥
V ∗
≤ 4D2C(1 + 2∆+ 2) + 2 + 3∆.

where ∆ =
∑∞

n=1 δn. Thus the norms ‖ · ‖Z∗ and ‖ · ‖
(Z∗)V

∗
M

are equivalent
on Q∗X∗. As the norm on each Hn is unchanged, a coordinatewise null
sequence in Q∗X∗ ⊂ Z will still be coordinatewise null in (Z∗)V

∗
M . Hence the

map Q∗ : X∗ → (Z∗)V
∗
M is still w∗-w∗ continuous.

We see (Z∗)V ∗M has a boundedly-complete FDD (Hn) which satisfies sub-
sequential V ∗M -lower block estimates by Proposition 2.4 and Lemma 2.11.
We can now fill in the FDD as in Lemma 2.13 to get W = (Z∗)V

∗
M ⊕∞ V ∗N\M

with FDD (Fn). The natural embedding of (Z∗)V ∗M into W is w∗-w∗ contin-
uous. Hence there is a w∗-w∗ continuous embedding of X∗ into W . Finally,
from the fact that (Hn) satisfies subsequential V ∗M -lower block estimates
in (Z∗)V

∗
M , we deduce that (Fn) satisfies subsequential V ∗-lower block esti-

mates in W .
(4)⇒(3). This is clear because if (F ∗n) is a boundedly-complete FDD

of Z∗, then (Fn) is a shrinking FDD of its predual Z, and a w∗-w∗ con-
tinuous embedding T : X∗ → Z∗ must be the adjoint of some quotient
map Q : Z → X. Also, (F ∗n) having subsequential V ∗-lower block estimates
is equivalent to (Fn) having subsequential V -upper block estimates by Propo-
sition 2.7.

(3)⇒(1). Let (Fn) be a bimonotone, shrinking FDD which satisfies sub-
sequential B-V -upper block estimates in Z, and Q : Z → X be a quotient
map. Let D be such that (vn) is D-right dominant. There exists C > 0 such
that BX ⊂ Q(CBZ). We will need a lemma from [3].

Lemma 5.3 ([3, Lemma 3.2]). Let X and Z be Banach spaces, F = (Fn)
a bimonotone FDD for Z, and Q : Z → X be a quotient map. If (xn) ⊂ SX
is weakly null and Q(CBZ) ⊃ BX for some C > 0, then for all ε > 0
and n ∈ N, there exists N ∈ N and z ∈ 2CBZ such that P[1,n]z = 0 and
‖Qz − xN‖ < ε.

Let (xt)t∈T even
∞ ⊂ SX be a weakly null even tree in X, and let η ∈ (0, 1).

By Lemma 5.3 we may pass to a full subtree (x′t)t∈T even
∞ so that there ex-

ists a block tree (zt)t∈T even
∞ ⊂ 2CBZ such that ‖Q(zt) − x′t‖ < η2−l for
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all l ∈ N and t = (k1, . . . , k2l) ∈ T even
∞ . Now choose 1 = k1 < k2 < · · ·

such that max supp z(k1,...,k2n) < k2n+1 < min supp z(k1,...,k2n+2) for all n.
Then (z(k1,...,k2n)) is 2BC-dominated by (vk2n−1), and hence (x′(k1,...,k2n)) is
3BC-dominated by (vk2n−1) provided η was chosen sufficiently small. Finally,
the branch (k2n−1, x

′
(k1,...,k2n)

) corresponds to a branch (l2n−1, x(l1,...,l2n)) in
the original tree with kn ≤ ln for all n. Since (vn) is right dominant, it
follows that (x(l1,...,l2n)) is 3BCD-dominated by (vl2n−1). Thus X satisfies
subsequential 3BCD-V -upper tree estimates.

(2)⇒(1). We assume that X is a quotient of a space Z with separable
dual such that Z satisfies subsequential V -upper tree estimates. By (1)⇒(3)
applied to Z, Z is a quotient of a space Y with shrinking FDD satisfy-
ing subsequential V -upper block estimates. X is then also a quotient of Y ,
so by (3)⇒(1) we deduce that X satisfies subsequential V -upper tree esti-
mates.

(1)⇒(5). Our proof will be based on the proof of [12, Theorem 4.1(b)].
Assume X satisfies V -upper tree estimates. By a theorem from Zippin [17],
we may assume, after renorming X if necessary, that there is a Banach
space Z with a shrinking, bimonotone FDD (Fn) and an isometric embedding
i : X → Z. Also, by [2, Corollary 8] there is a Banach spaceW with shrinking
FDD (En) and a quotient map Q : W → X. Thus we have a quotient
map i∗ : Z∗ → X∗ and an embedding Q∗ : X∗ → W ∗. We can assume,
after renorming W if necessary, that Q∗ is an isometric embedding. Note
that (F ∗n), (E∗n) are boundedly-complete FDDs of Z∗ and W ∗, respectively,
and that X∗ has the quotient norm induced by i∗. Let K be the projection
constant of (En) in W .

By Lemma 2.8, X∗ satisfies subsequential C-V ∗-lower w∗ tree estimates
for some C ≥ 1. Choose D ≥ 1 so that (vn) is D-right dominant. Since Q∗X∗
is w∗ closed in W ∗, we can apply Proposition 2.15 as in (1)⇒(4). That is,
after blocking (E∗n), we can find sequences (Kn) ∈ [N] and δ = (δn) ⊂ (0, 1)

with δn ↓ 0 such that if (x∗n) ⊂ SQ∗X∗ is a 2Kδ-skipped block of (E∗n)

with ‖x∗n − PE
∗

(rn−1,rn)
x∗n‖ < 2Kδn for all n, where 1 ≤ r0 < r1 < · · · ,

then (v∗Krn−1
) is 2CD-dominated by (x∗n) and, moreover, using standard

perturbation arguments and making δ smaller if necessary, we can assume
that if (w∗n) ⊂ W ∗ satisfies ‖x∗n − w∗n‖ < δn for all n, then (w∗n) is a basic
sequence equivalent to (x∗n) with projection constant at most 2K. We can
also assume ∆ =

∑∞
n=1 δn < 7−1.

Choose a sequence (εn)⊂ (0, 1) with εn ↓ 0 and 3K(K+1)
∑∞

i=n εi< δ
2
n

for all n. After blocking (E∗n) if necessary, we can assume that for any sub-
sequent blocking (Dn) of E∗ there is a sequence (en) in SQ∗X∗ such that
‖en − PDn en‖ < εn/2K for all n.
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Using Johnson and Zippin’s blocking lemma [7] we may assume, af-
ter further blocking of our FDDs (E∗n) and (F ∗n) if necessary, that given
k < l, if z∗ ∈

⊕
n∈(k,l) F

∗
n with ‖z∗‖ ≤ 1, then ‖PE∗[1,k)Q

∗i∗z∗‖ < εk and
‖PE[l,∞)Q

∗i∗z∗‖ < εl, and that this holds if one passes to any further block-
ing of (F ∗n) and the corresponding blocking of (E∗n). Note that the hypotheses
of the Johnson–Zippin lemma are not satisfied here, but the proof is seen to
apply since we have boundedly-complete FDDs and the map Q∗i∗ is w∗-w∗

continuous.
We now continue as in the proof of [12, Theorem 4.1(b)]. We replace

F ∗n by the quotient space F̃n = i∗(F ∗n). We let Z̃ be the completion of
c00(

⊕
F̃n) with respect to the norm ||| · ||| defined in [12] on c00(

⊕∞
n=1 F̃n)

to be
|||z̃||| = max

k<m

∥∥∥ m∑
n=k

i∗(zn)
∥∥∥,

where z̃ =
∑
z̃n. We obtain a quotient map ĩ : Z̃ → X∗. We note that

the results corresponding to [12, Proposition 4.9(b),(c)] are valid here as
their proof does not require reflexitivity (part (a) is not required, nor valid,
here).

Finally, we find a blocking (G̃n) of (F̃n) and a subsequence V ∗M = (v∗mn)

such that ĩ is still a quotient map of Z̃V ∗M (G̃) onto X∗ and it is still w∗-w∗

continuous (note that (G̃n) is boundedly-complete in Z̃V
∗
M (G̃) by Proposi-

tion 2.10). To find suitable G̃ and (mn) we follow the proof of [12, Theo-
rem 4.1(b)] verbatim. We only need to note that [12, Lemma 4.10] is valid
since we are working with boundedly-complete FDDs and w∗-w∗ continu-
ous maps. Note that G̃ satisfies subsequential V ∗m-lower block estimates in
Z̃V

∗
M (G̃) by Lemma 2.11. Again, we fill out the FDD as in Lemma 2.13

to obtain Y = Z̃V
∗
M (G̃) ⊕∞ V ∗N\M with FDD satisfying subsequential V ∗-

lower block estimates in W . Since the corresponding FDDs in the sum are
boundedly-complete, so is the FDD for Y . The quotient map onto Y we have
obtained is therefore the adjoint of an embedding of X into the predual of Y .
By Proposition 2.7, since Y satisfies subsequential V ∗-lower block estimates,
the predual satisfies subsequential V -upper block estimates.

This completes the proof of Theorem 5.1.

The following proof is similar to that contained in [3] of a similar state-
ment with the hypothesis of block stability. For completeness, we include a
proof of the more general statement with weaker hypotheses. In it, we make
reference to the class AV , which was introduced before Proposition 2.7.

Theorem 5.4 ([3, Corollary 3.3]). Let V be a Banach space with nor-
malized, 1-unconditional, shrinking, right dominant basis (vn) which satisfies
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subsequential V -upper block estimates in V . Then the class AV contains a
universal element Z which has shrinking, bimonotone FDD.

Proof. By a result of Schechtman [15], there exists a space W with bi-
monotone FDD E = (En) with the property that any space X with bi-
monotone FDD F = (Fn) naturally almost isometrically embeds into W .
Moreover, for any ε > 0, there exists a (1 + ε)-embedding T : X → W and
(kn) ∈ [N] so that T (Fn) = Ekn and

∑∞
n=1 P

E
kn

is a norm-1 projection of W
onto T (X).

Since the basis (v∗n) of V ∗ is boundedly-complete, Proposition 2.10 implies
that the sequence (E∗n) is a boundedly-complete FDD for the space (W (∗))V

∗ .
It follows that (En) is a shrinking FDD of the space Z = ((W (∗))V

∗
)(∗) and

that Z∗ = (W (∗))V
∗ . We denote by ‖ · ‖W , ‖ · ‖W (∗) , ‖ · ‖Z , and ‖ · ‖Z∗ the

norms of W , W (∗), Z, and Z∗, respectively.
By Lemma 2.11, (En) satisfies subsequential V ∗-lower block estimates

in Z∗. By Proposition 2.7, (En) satisfies subsequential V -upper block esti-
mates in Z. This is because Z∗ = Z(∗).

If X is any space with separable dual and then subsequential V -upper
tree estimates, then X embeds into a space Y with shrinking, bimonotone
FDD which satisfies subsequential V -upper block estimates. If we prove the
result for Y , this will imply the result for X, so we can assume that X
itself has a shrinking, bimonotone FDD F = (Fn) satisfying subsequential
V -upper block estimates. By our choice of W , we can also assume X is
a 1-complemented subspace of W and that (Fn) = (Ekn) for some subse-
quence (kn) of N. It suffices to show that the norms ‖ · ‖W and ‖ · ‖Z are
equivalent on X.

Let C ≥ 1 be chosen so that (E∗kn) satisfies subsequential C-V ∗-lower
block estimates in X∗, and (vn) is C-right dominant and satisfies subse-
quential C-V -upper block estimates in V . This means (v∗n) is C-left dom-
inant and satisfies subsequential C-V ∗-lower block estimates in V ∗. Let
w∗ ∈ c00(

⊕
E∗kn). Clearly ‖w

∗‖W (∗) ≤ ‖w∗‖Z∗ .
Choose 1 ≤ m0 < m1 < · · · < ml so that

‖w∗‖Z∗ =
∥∥∥ l∑
n=1

‖PE∗[mn−1,mn)
w∗‖W (∗)v∗mn−1

∥∥∥
V ∗
.

By discarding terms from the tuple (mn), we can assume PE∗[mn−1,mn)
w∗ 6= 0

for each n. We must, however, be judicious about choosing how to discard
elements from the tuple, since discarding elements from (mn) affects which
of the vectors v∗mn occur in the sum above. If PE∗[mn−1,mn)

w∗ = 0, we delete
mn−1, not mn, from the tuple. This leaves the sum above unchanged. If we
instead delete mn when PE∗[mn−1,mn)

w∗ = 0, this may change the value of the
above norm if (v∗n) fails to be 1-right dominant.



170 R. Causey

Choose j1 < · · · < jl so that kjn = min suppE∗ P
E∗

[mn−1,mn)
w∗. Then

‖w∗‖Z∗ =
∥∥∥ l∑
n=1

‖PE∗[mn−1,mn)
w∗‖W (∗)v∗mn−1

∥∥∥
V ∗

≤ C
∥∥∥ l∑
n=1

‖PE∗[mn−1,mn)
w∗‖W (∗)v∗kjn

∥∥∥
V ∗

≤ C2
∥∥∥ l∑
n=1

‖PF ∗[jn,jn+1)
w∗‖W (∗)v∗jn

∥∥∥
V ∗
≤ C3‖w∗‖W (∗) .

The first inequality comes from the fact that (v∗n) satisfies subsequential
C-V ∗-lower block estimates in V ∗ and an application of Proposition 2.4.
The second comes from C-left dominance. The third comes from the fact
that (F ∗n) satisfies subsequential C-V ∗-lower block estimates in X∗.

This proves that ‖ · ‖W (∗) and ‖ · ‖Z∗ are equivalent on c00(
⊕
E∗kn). Since

X is 1-complemented in W , X∗ is 1-complemented in W (∗). Since
∑

n P
E∗
kn

is still a norm-1 projection from Z∗ onto c00(
⊕
Ekn)

Z∗
, it follows for any

w ∈ c00(
⊕
Ekn) that

C−3‖w‖W ≤ ‖w‖Z ≤ ‖w‖W ,

which gives the claim.

In the following theorem, Xα denotes the Schreier space of order α, de-
fined before Proposition 3.1, and (ei) is the unit vector basis of Xα.

Theorem 5.5. Let α < ω1 and C > 2. Let Z be a Banach space with
a shrinking, bimonotone FDD (En), and let X be an infinite-dimensional
closed subspace. If Sz(X) ≤ ωα then there exists M = (mn)

∞
n=0 ∈ [N]

with 1 = m0 ≤ m1 < · · · and δ = (δn) ⊂ (0, 1) so that if (xn) is a
normalized δ-block sequence of H = (Hn), where Hn =

⊕mn−1
i=mn−1

Ei, with
‖xn − PH[sn−1,sn)

xn‖ < δn for some 0 ≤ s0 < s1 < · · · , then (xn) is C-
dominated by (emsn−1

) ⊂ Xα.

Proof. Fix 2 < D < C. Choose ρ ∈ (0, 1/3) so that 2(1− ρ)−2 < D. Let

Fn =
{
(xj) ∈ S<ωX :

∥∥∥∑ ajxj

∥∥∥ ≥ 2ρn+1
∑

aj ∀(aj) ⊂ R+
}
.

Then Fn is a hereditary tree on S<ωX for each n. Next, for each n, fix εn =
(εi,n)

∞
i=1 ⊂ (0, 1) so that 10

∑
i εi,n ≤ ρn+1 and both functions i, n 7→ εi,n

are decreasing. We note that the requirement that 10
∑

i εi,n ≤ ρn means

(5.1) (Fn)Z10εn ⊂
{
(zj) ∈ S<ωZ :

∥∥∥∑ ajzj

∥∥∥ ≥ ρn+1
∑

aj ∀(aj) ⊂ R+
}
.



Estimation of Szlenk index 171

Let Gn = Σ(E,Z)∩ (Fn)Zεn . This is a hereditary block tree of (En) in Z.
Let G̃n be its compression. By Proposition 4.2, Iw((Fn)Z2εn) ≤ Iw((Fn)

X
10εn

).
Because of the containment in (5.1), Theorem 4.4 implies Iw((Fn)X10εn)

< Sz(X).
Since (Gn)E,Zεn

⊂ (Fn)Z2εn , we have Ibl((Gn)E,Zεn
) ≤ Iw((Fn)Z2εn). Since

Sz(X) is a limit ordinal, Proposition 4.3 gives

ICB(G̃n) < Sz(X) ≤ ωα.
Put M0 = N \ {1}. We note that Sα and G̃1 are hereditary trees

on [N]<ω. By Theorem 3.2, there exists some M1 ∈ [M0 \ {minM0}] so
that either

Sα ∩ [M1]
<ω ⊂ G̃1 or G̃1 ∩ [M1]

<ω ⊂ Sα.

If we let M1 = (m
(1)
n ), then the map n 7→ m

(1)
n induces a homeomorphism

between Sα and Sα ∩ [M1]
<ω. Since ICB(Sα) = ωα + 1, we cannot have the

first containment. Thus G̃1 ∩ [M1]
<ω ⊂ Sα.

Next, assume we have chosen M1 ⊃ M2 ⊃ · · · ⊃ Ml so that minMn <
minMn+1 for each 1 ≤ n < l and G̃n ∩ [Mn]

<ω ⊂ Sα for each 1 ≤ n ≤ l.
Apply Theorem 3.2 again to get a set Ml+1 ∈ [Ml \ {minMl}] so that either

Sα ∩ [Ml+1]
<ω ⊂ G̃l+1 or G̃l+1 ∩ [Ml+1]

<ω ⊂ Sα.
For the same reason as before, the first containment cannot hold. Thus we
have a decreasing sequence (Mn) ⊂ [N] so that 1 < minM1 < minM2 < · · ·
and G̃n ∩ [Mn]

<ω ⊂ Sα for each n. We let m0 = 1, mn = minMn, and
M = (mn)n≥0. Note that (mi)i≥n ⊂Mn for each n.

Fix a sequence δ = (δn) ⊂ (0, 1) so that for each n,

3δn < min{εn,n, ρ−n−1},(5.2)

3

∞∑
n=1

δn < C −D.(5.3)

Suppose (xn) is a δ-block sequence in the blocked FDD G defined as in
the statement of the theorem using the chosen mn, and 1 ≤ s1 < s2 < · · · is
such that ‖PG[sn−1,sm)xn − xn‖ < δn. Define

zn =
PH[sn−1,sn)

xn

‖PH[sn−1,sn)
xn‖

.

It follows from this definition that ‖zn − xn‖ < 2δn. Let (wn) be a normal-
ized block sequence so that suppH wn ⊂ suppH zn, ‖zn − wn‖ < δn, and
min suppE wn = msn−1 . Then ‖xn − wn‖ < 3δn for each n. From (5.3), it
suffices to prove that (wn) is D-dominated by (emsn−1

) to show that (xn) is
C-dominated by (emsn−1

).
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Fix a = (an) ∈ c00. Let w∗ ∈ SZ∗ be such that w∗(
∑∞

n=1 anwn) =
‖
∑∞

n=1 anwn‖. For any F ⊂ N, we let ms(F ) = {msn−1 : n ∈ F}. For
each j, let

I+j = {n ∈ supp(a) : n < j, ρj < w∗(wn) ≤ ρj−1},
I−j = {n ∈ supp(a) : n < j, ρj < −w∗(wn) ≤ ρj−1},
J+
j = {n ∈ supp(a) : n ≥ j, ρj < w∗(wn) ≤ ρj−1},
J−j = {n ∈ supp(a) : n ≥ j, ρj < −w∗(wn) ≤ ρj−1}.

We will prove that ms(J±j ) ∈ Sα for each j. We note that sn−1 ≥ n,
which means

ms(J±j ) = (msn−1)n∈J±j
⊂ (mn)n≥j ⊂Mj .

We will show that (wn)n∈ms(J+
j ) ∈ Gj = Σ(E,Z) ∩ (Fj)Zεn . Containment in

Σ(E,Z) is clear. For each n ∈ ms(J+
j ),

w∗(xn) ≥ w∗(wn)− w∗(wn − xn) > ρj − 3δj ≥ ρj − ρj+1 > 2ρj+1.

Here, we use the definition of J+
j and the fact that ρ < 1/3. By the geometric

version of the Hahn–Banach Theorem, the existence of such a w∗ ∈ BZ∗ is
sufficient to deduce that (xn)n∈J+

j
∈ Fj .

Since min J+
j ≥ j, n ∈ J

+
j ,

‖xn − wn‖ < 3δn ≤ εn,n ≤ εj,n.

Thus (wn)n∈J±j
is an εj-perturbation of (xn)n∈J+

j
, hence (wn)n∈J+

j
∈ Gj .

This means ms(J+
j ) ∈ G̃j . Combining these results yields

ms(J+
j ) ∈ G̃j ∩ [Mj ]

<ω ⊂ Sα.

A similar argument using −w∗ shows that ms(J−j ) ∈ Sα.
We note that∑

n∈J±j

anw
∗(wn) ≤ ρj−1

∑
n∈J±j

|an| = ρj−1
∥∥∥ ∑
n∈J±j

anemsn−1

∥∥∥
Xα

≤ ρj−1
∥∥∥ ∞∑
n=1

anemsn−1

∥∥∥
Xα
.

By 1-unconditionality, |ak| ≤ ‖
∑∞

n=1 anemsn−1
‖Xα . Because |I±j | < j, it

follows that ∑
n∈I±j

anw
∗(wn) ≤ ρj−1(j − 1)

∥∥∥ ∞∑
n=1

anemsn−1

∥∥∥
Xα
.
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Consequently,∥∥∥ ∞∑
n=1

anwn

∥∥∥ =
∞∑
j=1

∑
n∈I+j

anw
∗(wn) +

∞∑
j=1

∑
n∈I−j

anw
∗(wn)

+

∞∑
j=1

∑
n∈J+

j

anw
∗(wn) +

∞∑
j=1

∑
n∈J−j

anw
∗(wn)

≤
∥∥∥ ∞∑
n=1

anemsn−1

∥∥∥
Xα

∞∑
j=1

(2(j − 1)ρj−1 + 2ρj−1)

= 2
∥∥∥ ∞∑
n=1

anemsn−1

∥∥∥
Xα

∞∑
j=1

jρj−1 =
2

(1−ρ)2
∥∥∥ ∞∑
n=1

anemsn−1

∥∥∥
Xα

< D
∥∥∥ ∞∑
n=1

anemsn−1

∥∥∥
Xα
.

This implies the desired conclusion.

Proof of Theorem 1.1. Because X has countable Szlenk index, X∗ must
be separable. By a theorem of Zippin [17], X embeds into a space Z with
shrinking, bimonotone FDD E. By renorming X with an equivalent norm,
we can assume X is isometrically a subspace of Z. Fix C > 2 and take
M = (mn)n≥0 and δ given in Theorem 5.5, and let H be the corresponding
blocking.

Take a normalized, weakly null even tree (xt)t∈T even
∞ . Put s0 = 1, k1 = 1.

Next, assume s0 < s1 < · · · < sl−1 and n1 < · · · < n2l−1 have been chosen
so that

‖PH[sn−1,sn)
x(k1,...,k2n) − x(k1,...,k2n)‖ < δn

for each n < l. Because nodes are weakly null, there exists k2l > k2l−1 so
that

‖PH[1,sl−1)
x(k1,...,k2l)‖ < δl.

Next, choose sl > sl−1 so that

‖PH[sl−1,sl)
x(k1,...,k2l) − x(k1,...,k2l)‖ < δl.

Finally, choose k2l+1 > max{msl , k2l}.
We deduce that (k2n−1, x(k1,...,k2n))

∞
n=1 is C-dominated by (emsn−1

). Since
msn−1 < k2n−1 and the Schreier spaces are 1-right dominant, the branch
(k2n−1, x(k1,...,k2n)) is C-dominated by (ek2n−1). Thus X has subsequential
Xα-upper tree estimates.

The following corollary proves Theorem 1.2 and Corollary 1.3.
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Corollary 5.6. Let α be a countable ordinal. There exists a Banach
space Z with bimonotone, shrinking FDD E which satisfies subsequential
Xα-upper block estimates in Z such that Z is universal for the class
{X : Sz(X) ≤ ωα}. Moreover, there exists a Banach space W with a ba-
sis such that Sz(W ) ≤ ωα+1 and W is also universal for this class.

Proof. Let Z be the universal space for the class AXα guaranteed by The-
orem 5.4, and let E be its FDD. From the proof of Theorem 5.4, we see that
E satisfies subsequential Xα-upper block estimates in Z. If X is a Banach
space such that Sz(X) ≤ ωα, then X∗ is separable [16]. By Corollary 5.6,
X satisfies subsequential Xα-upper tree estimates. By the definition of AXα
and choice of Z, X embeds into Z. By Corollary 4.5 and Proposition 4.6,

Sz(Z) ≤ Sz(Xα) = ωα+1.

By [6, Corollary 4.12], there exists a sequence of finite-dimensional spaces
(Hn) so that ifD = (

⊕∞
n=1Hn)2, thenW = Z⊕D has a basis. Since the FDD

(Hn) satisfies `2-upper block estimates in D, Sz(D) ≤ ω [11, Theorem 3].
By [13, Proposition 14],

Sz(W ) = max{Sz(Z), Sz(D)} ≤ ωα+1.

Remark 5.7. We summarize what we have shown. We have established
that if α < ω1, then

{X : Sz(X) ≤ ωα} ( AXα ⊂ {X : Sz(X) ≤ ωα+1}.

The first inclusion comes from Corollary 5.6. The strict inclusion comes by
noting that Xα satisfies subsequential Xα-upper block estimates but has
Szlenk index ωα+1. The second inclusion is a consequence of Corollary 4.5
and Proposition 4.6.

6. Applications

Definition 6.1. For Banach spaces X,Y , we consider X⊗Y as a space
of bounded operators from Y ∗ into X, endowed with the topology induced
by the operator norm. For each expression

∑l
n=1 xn ⊗ yn, we define( l∑

n=1

xn ⊗ yn
)
(y∗) =

l∑
n=1

y∗(yn)xn, xn ∈ X, yn ∈ Y, y∗ ∈ Y ∗.

We denote by X ⊗Y the space of equivalence classes of all such expressions,
where two expressions are equivalent if they determine the same operator.

Since such operators are finite rank, they are compact. Thus the comple-
tion of the injective product, denoted X ⊗̂ε Y , must be contained within the
compact operators, K(Y ∗, X).
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It is easy to verify that (
∑l

n=1 xn⊗yn)∗ =
∑l

n=1 yn⊗xn ∈ Y ⊗εX. Thus,
via adjoints, X ⊗ε Y is isometrically isomorphic to Y ⊗εX, and the same is
true of the completions. This means that if u ∈ X ⊗̂εY , then u∗ ∈ K(X∗, Y ).

Definition 6.2. A Banach space X is said to have the approximation
property if, for any C ⊂ X compact and ε > 0, there exists a bounded, finite
rank operator T : X → X such that ‖Tx− x‖ < ε for all x ∈ C.

If either X or Y has the approximation property, then any element
u ∈ K(X,Y ) is the limit of bounded, finite rank operators. Since any
space with an FDD has the approximation property, if E has FDD (Ei)

and u ∈ K(X,E) for some Banach space X, then PE[1,n]u→ u in norm.

Proposition 6.3. Let V be a Banach space with normalized, 1-uncondi-
tional basis (en). Let X,E be Banach spaces, E with FDD (En) satisfying
subsequential C-V -upper block estimates. Let un : X → E be bounded op-
erators and 1 = k0 < k1 < · · · < kl natural numbers such that un(X) ⊂⊕kn−1

j=kn−1
Ej. Then ∥∥∥ l∑

n=1

un

∥∥∥ ≤ C∥∥∥ l∑
n=1

‖un‖ekn−1

∥∥∥.
Proof. Let u =

∑l
n=1 un. Take x ∈ BX . Let N = {n ≤ l : un(x) 6= 0}. If

this set is empty, then u(x) = 0. Otherwise, (un(x))n∈N is a block sequence
in E. Let mn = min suppun(x). By Proposition 2.4, we see that

‖u(x)‖Z ≤ C
∥∥∥∑
n∈N
‖un(x)‖Zekn−1

∥∥∥
V
≤
∥∥∥ l∑
n=1

‖un‖ekn−1

∥∥∥.
Since this holds for any x ∈ BX , we get the result.

Definition 6.4. Let E,F be Banach spaces with shrinking, bimonotone
FDDs (En), (Fn). Then let

Hn = span(Ei ⊗ε Fj : max{i, j} = n).

We call this the square blocking.

Proposition 6.5. If W,Z are Banach spaces with FDDs (En), (Fn),
then (Hn) is an FDD for W ⊗̂ε Z. If (En), (Fn) are shrinking, so is (Hn).

Proof. Let PA = PEA and QA = PFA denote the projections in E,F ,
respectively. Then PHn : E ⊗̂ε F → Hn is defined by PHn (u) = P[1,n]uQ

∗
[1,n]

− P[1,n)uQ
∗
[1,n), where P∅ = Q∅ = 0. This means PH[1,n] : E ⊗̂ε F →

⊕n
i=1Hi

is given by PH[1,n](u) = P[1,n]uQ
∗
[1,n].

Since u : F ∗ → E is compact, P[1,n]u → u in norm as n → ∞. More-
over, since u∗ : E∗ → F is compact, Q[1,n]u

∗ → u∗. But this means that
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uQ∗[1,n] → u. So

‖u− P[1,n]uQ
∗
[1,n]‖ ≤ ‖u− P[1,n]u‖+ ‖P[1,n]u− P[1,n]uQ

∗
[1,n]‖

≤ ‖u− P[1,n]u‖+ ‖u− uQ∗[1,n]‖ → 0.

Thus PH[1,n](u) → u. Moreover, if um ∈ Hm then PnumQ
∗
n − Pn−1umQ∗n−1

= δmnum. Hence if u =
∑∞

m=1 um, um ∈ Hm, then un = PnuQ
∗
n, and we

have uniqueness. So (Hn) is an FDD of E ⊗̂ε F .
The FDD (Hn) is shrinking if any sequence (xn) ⊂ BE⊗̂εF such that

PH[1,n]xn = P[1,n]xnQ
∗
[1,n] = 0 is weakly null. A sequence (xn) ⊂ E ⊗̂ε F is

weakly null if and only if for any g∗ ∈ E∗ and f∗ ∈ F ∗, g∗ ⊗ f∗(xn) → 0
(Lemma 1.1 of [9]). Here, g∗ ⊗ f∗(x) = g∗(x(f∗)). But

xn = P[1,n]xnQ
∗
[1,n]+P[1,n]xnQ

∗
(n,∞)+P(n,∞)xn = P[1,n]xnQ

∗
(n,∞)+P(n,∞)xn.

Take f∗ ∈ F ∗ and g∗ ∈ E; then

g∗(P[1,n]xnQ
∗
(n,∞)f

∗) ≤ ‖g∗‖ ‖Q∗(n,∞)f
∗‖ → 0

because (Fn) is shrinking. Thus P[1,n]xnQ
∗
(n,∞)f

∗ is weakly null in E,
and P[1,n]xnQ

∗
(n,∞) is weakly null in E ⊗̂ε F . A similar argument shows that

P(n,∞)xn is weakly null. Thus xn = P[1,n]xnQ
∗
(n,∞)+P(n,∞)xn is weakly null.

This means that (Hn) is a shrinking FDD.

Lemma 6.6. Let V be a Banach space with normalized, 1-unconditional
basis (vn). Let W,Z be Banach spaces with shrinking, bimonotone FDDs
(En), (Fn) satisfying subsequential C-V -upper block estimates. Then W ⊗̂εZ
with FDD (Hn) satisfies subsequential 2C-V -upper block estimates.

Proof. Take a normalized sequence (un) in W ⊗̂ε Z which is a block
sequence with respect to (Hn). Let mn = min suppun. Then un =

PE[1,mn+1)
unP

F ∗

[1,mn+1)
and 0 = PE[1,mn)unP

F ∗

[1,mn)
. Let

an = PE[mn,mn+1)
unP

F ∗

[1,mn)
, b1 = 0, bn = unP

F ∗

[mn,mn+1)
.

By construction, an + bn = un for all n. The bimonotonicity of the FDDs
gives ‖an‖, ‖bn‖ ≤ 1 for each n. Let N1 = {n : an 6= 0}, N2 = {n : bn 6= 0}.
We note that for n ∈ N2, the adjoint of bn satisfies b∗n = PF[mn,mn+1)

u∗n 6= 0.
Moreover, (an)n∈N1 , (b∗n)n∈N2 satisfy the hypotheses of Proposition 6.3 as
operators from Z∗ to W and from W ∗ to Z, respectively. This means that
for any (cn) ⊂ R,∥∥∥∑

n∈N1

cnan

∥∥∥ ≤ C∥∥∥∑
n∈N1

cn‖an‖vmn
∥∥∥ ≤ C∥∥∥ ∞∑

n=1

anvmn

∥∥∥.
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Similarly, ∥∥∥∑
n∈N2

cnbn

∥∥∥ =
∥∥∥∑
n∈N2

cnb
∗
n

∥∥∥ ≤ C∥∥∥ ∞∑
n=1

anvmn

∥∥∥.
Then ∥∥∥ ∞∑

n=1

cnun

∥∥∥ ≤ ∥∥∥∑
n∈N1

cnan

∥∥∥+ ∥∥∥∑
n∈N2

cnbn

∥∥∥ ≤ 2C
∥∥∥ ∞∑
n=1

cnvmn

∥∥∥.
Theorem 6.7. Let X,Y be nonzero Banach spaces with seprable duals.

If either space has finite-dimension, then Sz(X ⊗̂εY ) = max{Sz(X),Sz(Y )}.
Otherwise, let β < ω1 be such that max{Sz(X),Sz(Y )} = ωβ. Then

Sz(X ⊗̂ε Y ) ≤ ωβ+1.

If β = 1 or β = αω for some α < ω1, then Sz(X ⊗̂ε Y ) = ωβ.

Proof. Since both X and Y embed into X ⊗̂ε Y , max{Sz(X),Sz(Y )} ≤
Sz(X ⊗̂ε Y ).

Consider the case that 0 < n = dimX < ∞. Then X is isomorphi-
cally `n∞. This means

X ⊗̂ε Y = `n∞ ⊗̂ε Y =
( n⊕
i=1

Y
)
∞
.

By [13, Proposition 14], (
⊕n

i=1 Y )∞ = max{Sz(X),Sz(Y )} = Sz(Y ).
Assume both spaces have infinite-dimension. If β = 1, then by [11, The-

orem 3] there exists some q > 1 so that X,Y satisfy subsequential `q-upper
tree estimates. In this case, put V = `q. If β = αω, then by [3] there exists
some c ∈ (0, 1) so that X,Y satisfy subsequential Tα,c-upper tree estimates.
Here, Tα,c is the Tsirelson space of order α. In this case, put V = Tα,c. If we
are not in one of these two cases, X,Y satisfy subsequential Xβ-upper tree
estimates, and we let V = Xβ .

By Theorem 1.1, there exist spaces W,Z with shrinking, bimonotone
FDDs E,F , respectively, which satisfy subsequential V -upper block esti-
mates and so that X,Y embed inW,Z, respectively. Because injective tensor
products respect subspaces,X⊗̂εY ↪→W ⊗̂εZ. Thus Sz(X⊗̂εY )≤ Sz(W ⊗̂εZ).
By Lemma 6.6, W ⊗̂ε Z satisfies subsequential V -upper block estimates. By
Corollary 4.5, Sz(W ⊗̂ε Z) ≤ Sz(V ). Since Sz(`q) = ω, Sz(Tα,c) = ωαω [13,
Proposition 16], and Sz(Xβ) = ωβ+1, we have the result.
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