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Generic linear cocycles over a minimal base

by

Jairo Bochi (Rio de Janeiro)

Abstract. We prove that a generic linear cocycle over a minimal base dynamics
of finite dimension has the property that the Oseledets splitting with respect to any
invariant probability coincides almost everywhere with the finest dominated splitting.
Therefore the restriction of the generic cocycle to a subbundle of the finest dominated
splitting is uniformly subexponentially quasiconformal. This extends a previous result for
SL(2,R)-cocycles due to Avila and the author.

1. Introduction

1.1. Statement of the result. Let X be a compact Hausdorff space,
and let E be a real vector bundle with base space X. We will always assume
that the fibers E(x) have constant finite dimension.

Let T : X → X be a homeomorphism. A vector bundle automorphism
covering T is a map A : E→ E whose restriction to an arbitrary fiber E(x) is
a linear isomorphism onto the fiber E(Tx); this isomorphism will be denoted
by A(x). Let Aut(E, T ) be the set of those automorphisms. When the vector
bundle is trivial, an automorphism is usually called a linear cocycle.

We endow E with a Riemannian metric, and Aut(E, T ) with the uniform
topology, that is, the topology induced by the distance

d(A,B) := sup
x∈X
‖A(x)−B(x)‖,

where ‖·‖ denotes the operator norm induced by the Riemannian metric.

Given A ∈ Aut(E, T ), an (ordered) splitting of the vector bundle

E = E1 ⊕ · · · ⊕ Ek
is called dominated (or exponentially separated) if it is A-invariant and there
are constants c > 0 and τ > 1 such that for all x ∈ X and all unit vectors
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v1 ∈ E1(x), . . . , vk ∈ Ek(x), we have

‖An(x) · vi‖
‖An(x) · vi+1‖

> cτn, ∀n ≥ 0.

(In fact, it is always possible to choose an adapted Riemannian metric so
that c = 1; see [Go].)

There exists a unique such splitting into a maximal number k of bundles,
which is called the finest dominated splitting of A. If k = 1, this is just a
trivial splitting. The finest dominated splitting refines any other dominated
splitting of A. (See e.g. [BDV] for these and other properties of dominated
spittings.)

Given A ∈ Aut(E, T ), the Oseledets theorem (see e.g. [Ar]) provides a
set R ⊂ X of full probability (i.e., such that µ(R) = 1 for every T -invariant
probability measure µ) such that each fiber E(x) over a point x ∈ R splits
into subspaces having the same Lyapunov exponents. This Oseledets splitting
is A-invariant, measurable, but in general not continuous. For example, the
dimensions of the subbundles may depend on the basepoint. Notice that
the Oseledets splitting always refines the finest dominated splitting, since
domination forces a gap between Lyapunov exponents.

It is shown in [BV] that for any ergodic measure µ, the generic automor-
phism A has the property that the Oseledets splitting coincides µ-almost
everywhere with the finest dominated splitting above the support of the
measure. In this paper we obtain this property simultaneously for all mea-
sures, under suitable assumptions:

We say the space X has finite dimension if it is homeomorphic to a
subset of some Euclidean space. For instance, subsets of manifolds (assumed
as usual to be Hausdorff and second countable) have finite dimension. We
say that the homeomorphism T is minimal if every orbit is dense.

Main Theorem 1.1. Let T : X → X be a minimal homeomorphism of
a compact space X of finite dimension, and let E be a vector bundle over X.
Let R be the set of A ∈ Aut(E, T ) with the following property: for every
T -invariant probability measure µ, the Oseledets splitting with respect to µ
coincides µ-almost everywhere with the finest dominated splitting of A. Then
R is a residual subset of Aut(E, T ).

Thus if A ∈ R has a finest dominated splitting into k subbundles, then
at almost every point x with respect to each invariant probability measure,
there are exactly k different Lyapunov exponents. Of course, these values
are a.e. constant if the measure is ergodic; they may however depend on the
measure.

Since a minimal homeomorphism may have uncountably many ergodic
measures, Theorem 1.1 is not a consequence of the aforementioned result
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of [BV]. Actually, the theorem was proved first in the case of SL(2,R)-
cocycles in [AB].

It is evident that the minimality assumption is necessary for the validity
of Theorem 1.1; it is easy to see that it cannot be replaced e.g. by transitivity.
An example from [AB] shows that it is not sufficient to assume that T has
a unique minimal set. As in [AB], we do not know whether the assumption
that X has finite dimension is actually necessary.

1.2. Uniform properties. As a consequence of Main Theorem 1.1, the
Oseledets splitting of a generic automorphism varies continuously; moreover
the time needed to see a definite separation between expansion rates along
different Oseledets subbundles is uniform. All these properties are much
stronger than those provided by the Oseledets theorem itself.

Let us discuss another uniform property that follows from Theorem 1.1,
and that depends on information on all invariant measures.

If L is a linear automorphism between inner product vector spaces, define
the mininorm of L as

m(L) := ‖L−1‖−1,

and the quasiconformal distortion of L as

(1.1) κ(L) := log

(
‖L‖
m(L)

)
.

For an interpretation of this quantity in terms of angle distortion, see
[BV, Lemma 2.7].

Let us say that an automorphism A ∈ Aut(E, T ) is uniformly subexpo-
nentially quasiconformal if for every ε > 0 there exists cε > 0 such that

κ(An(x)) ≤ cε + εn for all x ∈ X, n ≥ 0.

Then, as an addendum to the Main Theorem 1.1, we have:

Proposition 1.2. The elements of R are exactly the automorphisms
A ∈ Aut(E, T ) whose restrictions A|Ei to each bundle of the finest dominated
splitting E1 ⊕ · · · ⊕ Ek are uniformly subexponentially quasiconformal.

1.3. Applications. It is shown in [BN] that if A ∈ Aut(E, T ) is uni-
formly subexponentially quasiconformal then for every ε > 0, there is a Rie-
mannian metric on E with respect to which the quasiconformal distortion
is less than ε; moreover if ε is small then a perturbation of A is confor-
mal with respect to this metric. Putting these results together with Main
Theorem 1.1, one can show the following:

Theorem 1.3 ([BN, Thm. 2.4]). Let T : X → X be a minimal homeo-
morphism of a compact space X of finite dimension, and let E be a vector
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bundle over X. Then there exists a dense subset D ⊂ Aut(E, T ) with the
following properties: For every A ∈ D there exists a Riemannian metric
on the vector bundle E with respect to which the subbundles of the finest
dominated splitting of A are orthogonal, and the restriction of A to each of
these subbundles is conformal. Moreover, this metric is adapted in the sense
of [Go].

This result is used in the proof of the following:

Theorem 1.4 ([Bo]). Let T : X → X be a minimal diffeomorphism of a
compact manifold X, and let E be a vector bundle over X whose fibers have
dimension d ≥ 3. Let O be the (open) set formed by the automorphisms
A ∈ Aut(E, T ) that have a dominated splitting. Let C ⊂ Aut(E, T ) be a
homotopy class. Then C ∩ O is either empty or dense in C.

1.4. Comments on the proof and organization of the paper. To
prove Theorem 1.1 we use ideas and tools developed in [AB] to deal with
the SL(2,R) case. The basic strategy for mixing different expansion rates on
higher dimensions is similar to that from [BV], but uses a characterization
of domination from [BG] to find suitable places to perturb. As in [BV],
the desired residual set is obtained as the set of continuity points of some
semicontinuous function.

Despite these overlaps, dealing simultaneously with several Lyapunov
exponents with respect to all invariant measures presents substantial new
difficulties. We introduce an especially convenient semicontinuous function
Z to measure quasiconformal distortion. This function was in fact suggested
by some ideas from [BB]. The proof that the mixing mechanism actually
produces a discontinuity of Z is also more delicate: It is essential not to be
too greedy, and instead attack only the points on X where the distortion is
comparatively large. This is explained in §3.2.

The paper is organized as follows:

In §2 we explain several preliminaries, and reduce the proof of Main
Theorem 1.1 to a result (Lemma 2.9) on the existence of discontinuities of
a certain function (related to Z).

In §3 we prove Lemma 3.1, which produces suitable perturbations along
a segment of orbit.

In §4 we explain how to patch those local perturbations to prove Lem-
ma 2.9 and thus conclude the proof.

2. Initial considerations. In this section, X is a compact Hausdorff
space X, the map T : X → X is at least continuous, and E is a vector bundle
over X of dimension d.
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We denote the set of all T -invariant probability measures by M(T ).
A Borel set B ⊂ X is said to have zero probability (resp. full probability)
with respect to a continuous map T : X → X if µ(B) is 0 (resp. 1) for every
T -invariant probability measure µ.

2.1. Semi-uniform subadditive ergodic theorem. Proposition 1.2
yields equivalence between a uniform property onM(T ) and a uniform prop-
erty on X. The following Theorem 2.1 is often useful to obtain equivalences
of this kind.

Recall that a sequence of functions fn : X → R is called subadditive if
fn+m ≤ fn + fm ◦ Tn.

Theorem 2.1 (Semi-uniform subadditive ergodic theorem; [Sc, Thm. 1],
[SS, Thm. 1.7]). Let T : X → X be a continuous map of a compact Haus-
dorff space X. Let fn : X → R be continuous functions forming a subadditive
sequence. Then

sup
µ∈M(T )

lim
n→∞

1

n

�

X

fn dµ = lim
n→∞

1

n
sup
x∈X

fn(x).

Notice that by Fekete’s lemma both limits above can be replaced by inf’s.
Also recall that for every µ ∈ M(T ), by Kingman’s subadditive ergodic
theorem the sequence fn(x)/n actually converges to a value in [−∞,∞) for
every point x on a full probability subset.

2.2. Maximal asymptotic distortion. Recall the definition (1.1) of
the quasiconformal distortion κ. Notice that κ is subadditive, meaning that
if Li : Ei → Ei+1 (i = 1, 2) are isomorphisms between inner product spaces
then κ(L2L1) ≤ κ(L2) + κ(L1).

Given an automorphism A ∈ Aut(E, T ), define

(2.1) K(A) := inf
n≥1

1

n
sup
x∈X

κ(An(x)).

(By Fekete’s lemma, the inf can be replaced by a limit.) Being an infimum
of continuous functions, K : Aut(A,E)→ [0,∞) is upper semicontinuous.

Notice that A is uniformly subexponentially quasiconformal (as defined
in the Introduction) if and only if K(A) = 0.

If L is an isomorphism between inner product vector spaces of dimen-
sion d, its singular values (i.e., the eigenvalues of (L∗L)1/2) will be written
as s1(L) ≥ · · · ≥ sd(L); so s1(L) = ‖L‖ and sd(L) = m(L).

Given A ∈ Aut(E, T ), the following Lyapunov exponents exist for every
x in a full probability subset of X:

χi(A, x) := lim
n→∞

1

n
log si(A

n(x)) (i = 1, . . . , d).
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Let us denote their averages with respect to some µ ∈M(T ) by

χi(A,µ) :=
�

X

χi(A, x) dµ(x).

It follows from Theorem 2.1 that

(2.2) K(A) = sup
µ∈M(T )

[χ1(A,µ)− χd(A,µ)].

In particular, A is uniformly subexponentially quasiconformal if and only if
for every point x in a full probability subset, all Lyapunov exponents of A
at x are equal.

2.3. Distortion inside the bundles of a dominated splitting. Let
us review the basic robustness property of dominated splittings:

Proposition 2.2. Suppose that the automorphism A ∈ Aut(E, T ) has a

dominated splitting E1 ⊕ · · · ⊕ Ek. Then every automorphism Ã sufficiently
close to A has a dominated splitting Ẽ1 ⊕ · · · ⊕ Ẽk such that, for each i =
1, . . . , k, the fibers of Ẽi have the same dimension and are uniformly close
to the fibers of Ei.

We call Ẽ1⊕· · ·⊕ Ẽk the continuation of the original dominated splitting
for A. We remark that the continuation of a finest dominated splitting is
not necessarily finest.

For any A ∈ Aut(E, T ), define

Kfine(A) := max
i
K(A|Ei),

where E1 ⊕ · · · ⊕ Ek is the finest dominated splitting of A.

Notice that if A ∈ Aut(E, T ) and F ⊂ E is an A-invariant subbundle,
then K(A) ≥ K(A|F). In particular, we have:

Proposition 2.3. Kfine(A) ≤ K(A).

We use this to show the following:

Proposition 2.4. The map Kfine : Aut(E, T ) → [0,∞) is upper semi-
continuous.

Proof. Let A ∈ Aut(E, T ) have finest dominated splitting E1⊕ · · · ⊕Ek,
and let ε > 0. Let Ã be a perturbation of A, and let Ẽ1 ⊕ · · · ⊕ Ẽk be the
continuation of the splitting, as given by Proposition 2.2. Each restriction
Ã|Ẽi is conjugate to a perturbation of A|Ei. Since K is upper semicontinuous
and invariant under conjugation, we have K(Ã|Ẽi) ≤ K(A|Ẽi) + ε. Since
the finest dominated splitting of Ã refines Ẽ1 ⊕ · · · ⊕ Ẽk, it follows from
Proposition 2.3 that Kfine(Ã) ≤ Kfine(A) + ε.
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Notice that the set R from the statement of Main Theorem 1.1 (or from
Proposition 1.2, which is now obvious) is precisely

{A ∈ Aut(E, T ); Kfine(A) = 0},

which by the proposition above is a Gδ set. The hard part of the proof of
the Main Theorem is to show that R is dense.

Actually, we will see later that R is the set of points of continuity of
Kfine, and therefore it is a residual set. However, it is not convenient to
work with Kfine directly. We will introduce alternative ways of measuring
quasiconformal distortion that will turn out to be more appropriate.

2.4. Another measure of quasiconformal distortion. Let E and
F be inner product spaces of dimension d, and let L : E → F be an isomor-
phism. Recall that s1(L) ≥ · · · ≥ sd(L) denote the singular values of L. Let
λi(L) := log si(L). Define also

σ0(L) := 0 and σi(L) := λ1(L) + · · ·+ λi(L) for i = 1, . . . , d.

In particular, σ1(L) = log ‖L‖ and σd(L) = log |detL|.
Consider the graph of the function i ∈ {0, 1, . . . , d} 7→ σi(L) ∈ R. By

affine interpolation we obtain a graph over the interval [0, d], which we call
the σ-graph of L. The fact that the sequence λi(L) is nonincreasing means
that this graph is concave. In particular, the σ-graph of L is above the line
joining (0, 0) and (d, σd(L)). Let us define ζ(L) as the area between this line
and the σ-graph (see Figure 1). This amounts to

(2.3) ζ(L) = σ1(L) + · · ·+ σd−1(L)− d− 1

2
σd(L).

σi(L)
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Fig. 1. The upper curve is the σ-graph of some L. The shaded area is ζ(L). The area of
the marked triangle is γ3(L).

Of course, ζ(L) ≥ 0, and equality holds if and only if all singular values
of L are equal, i.e., L is conformal. (Actually, it is not difficult to show that
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for every fixed dimension d, each quantity κ and ζ is bounded by a uniform
multiple of the other.)

Like κ, the functions just defined enjoy the property of subadditivity:

Proposition 2.5. The functions σ1, . . . , σd−1 and ζ are subadditive, and
the function σd is additive.

Proof. We recall some facts about exterior powers (see e.g. [Ar, § 3.2.3]).
Let

∧iE denote the ith exterior power of E. The inner product in E induces
an inner product on

∧iE; actually if {e1, . . . , ed} is an orthonormal basis of E
then {ej1 ∧ · · · ∧ eji ; 1 ≤ j1 < · · · < ji ≤ d} is an orthonormal basis of

∧iE.

The isomorphism L : E → F induces an isomorphism
∧iL :

∧iE →
∧iF ,

and its norm is:

‖
∧iL‖ = expσi(L).

Since operator norms are submultiplicative, it follows that σi(·) is subaddi-

tive. Moreover, since
∧dE is 1-dimensional, σd(·) is additive. It follows from

the definition (2.3) that ζ(·) is subadditive.

Let us introduce other quantities that will be used later, namely the
following “half-gaps” between the λ’s:

γi(L) :=
λi(L)− λi+1(L)

2
=
−σi−1(L) + 2σi(L)− σi+1(L)

2
(1 ≤ i < d).

Geometrically, these numbers are the areas of the triangles determined
by three consecutive vertices in the σ-graph: see Figure 1. In particular,
γi(L) ≤ ζ(L) for each i. On the other hand, the maximal half-gap is com-
parable to ζ(L), as the following lemma shows:

Lemma 2.6. If L is an isomorphism between inner product spaces of
dimension d ≥ 2, then

max
i∈{1,...,d−1}

γi(L) ≥ bd ζ(L),

where bd ∈ (0, 1] is a constant depending only on d.

Proof. A calculation shows that ζ(L) =
∑d−1

i=1 i(d − i)γi(L). Therefore
the conclusion holds with

bd :=
( d−1∑
i=1

i(d− i)
)−1

=
6

d(d2 − 1)
.

Of course, Lemma 2.6 is just a property of concave graphs. Despite its
simplicity, this property will play a significant role here, as it does (to a
lesser extent) in [BB].
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2.5. Maximal quantities. Given A ∈ Aut(E, T ), we define

(2.4) Z(A) := inf
n≥1

1

n
sup
x∈X

ζ(An(x)).

Then the function Z : Aut(E, T )→ [0,∞) is upper semicontinuous.

The analog of formula (2.2) for Z is

(2.5) Z(A) = sup
µ∈M(T )

ζ
(
diag(χ1(A,µ), . . . , χd(A,µ))

)
.

For any A ∈ Aut(E, T ), define

Zfine(A) := max
i
Z(A|Ei),

where E1 ⊕ · · · ⊕ Ek is the finest dominated splitting of A.

Proposition 2.7. Zfine(A) ≤ Z(A) for every A ∈ Aut(E, T ).

Proof. Let A ∈ Aut(E, T ), and let E1⊕· · ·⊕Ek be the finest dominated
splitting of A. Take i such that K(A|Ei) = Kfine(A). Let m := dim(E1 ⊕
· · · ⊕ Ei−1) and ` := dimEi. Applying (2.5) to the automorphism A|Ei, we
have

Z(A|Ei) = sup
µ∈M(T )

ζ
(
diag(χm+1(A,µ), . . . , χm+`(A,µ))

)
.

It follows from the interpretation of ζ as area that

ζ
(
diag(χm+1(A,µ), . . . , χm+`(A,µ))

)
≤ ζ
(
diag(χ1(A,µ), . . . , χd(A,µ))

)
for every µ ∈M(T ). Therefore Z(A|Ei) ≤ Z(A), as we wanted to show.

Using Proposition 2.7 instead of Proposition 2.3, the same argument that
proved Proposition 2.4 yields:

Proposition 2.8. The map Zfine : Aut(E, T ) → [0,∞) is upper semi-
continuous.

Of course, Z (resp. Zfine) vanishes if and only if K (resp. Kfine) vanishes.
Actually the main conclusions of §§2.2 and 2.3 could have been obtained
using the functions Z and Zfine instead; but we have preferred the proofs
that seemed more natural.

2.6. Setting up the proof. In the next sections, we will prove the
following:

Lemma 2.9. Let T be a minimal homeomorphism of a space of finite
dimension. Then for every ε > 0 there exists Ã ∈ Aut(E, T ) such that
‖Ã(x)−A(x)‖ < ε for each x ∈ X and

Zfine(Ã) < adZfine(A) + ε,

where ad ∈ (0, 1) is a constant depending only on the dimension d.
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An immediate consequence of Lemma 2.9 is that A is a point of conti-
nuity of the function Zfine(·) if and only if Zfine(A) = 0. Since the points
of continuity of a semicontinuous function on a Baire space form a residual
set, Main Theorem 1.1 follows.

Therefore we are reduced to proving Lemma 2.9. Actually, if suffices to
prove it in the particular case that A has no nontrivial dominated splitting:

Proof of the general case assuming the particular case. Assume that
Lemma 2.9 is already proved for automorphisms of bundles of any dimen-
sion without nontrivial dominated splittings, thus providing a sequence (ad).
Replacing each ad with max(a1, . . . , ad), we can assume that this sequence
is nondecreasing.

Let A ∈ Aut(E, T ), and let E1⊕· · ·⊕Ek be the finest dominated splitting
of A. Let ε > 0, and take a positive ε′ � ε. Each restriction A|Ei is an
automorphism with no dominated splitting and therefore, by the particular
case, there exists an ε′-perturbation Bi ∈ Aut(Ei, T ) such that Z(Bi) <

adZ(A|Ei)+ε′. Let Ã ∈ Aut(E, T ) be such that Ã|Ei = Bi; then Ã is ε-close
to A. The finest dominated splitting of Ã refines E1⊕ · · · ⊕Ek, and thus by
Proposition 2.7,

Zfine(Ã) ≤ max
i
Z(Ã|Ei) ≤ max

i
(adZ(Ei) + ε) = adZfine(A) + ε.

Remark 2.10. The validity of Lemma 2.9 is equivalent to the validity of
an analogous statement for Kfine. The reason why Zfine is more convenient to
work with is that we know how to prove (the particular case of) Lemma 2.9
with a single perturbation, while producing a discontinuity of Kfine would
probably require a more complicated procedure.

Remark 2.11. Other upper semicontinuous functions on Aut(E, T ) that
suggest themselves are

Σi(A) := inf
n≥1

1

n
sup
x∈X

σi(A
n(x)), i = 1, . . . , d.

At first sight, these may seem the “right” functions to consider, especially
since the proof from [BV] consists in finding a discontinuity of an analogous
function (where the sup is replaced by an integral). However, it is not clear
how to actually use these functions to prove Main Theorem 1.1.

3. Reducing nonconformality along segments of orbit. This sec-
tion is devoted to the proof of the following result, which plays a role similar
to Lemma 2 in [AB]:

Main Lemma 3.1. Suppose that T is minimal and without periodic or-
bits, A ∈ Aut(E, T ) has no nontrivial dominated splitting, and ε > 0. Then
there exists N ∈ N with the following properties: For every x ∈ X and every
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n ≥ N , there exists a sequence of linear maps

E(x)
L0−→ E(Tx)

L1−→ · · · Ln−1−−−→ E(Tnx)

with ‖Lj −A(T j(x))‖ < ε for each j and such that

1

n
ζ(Ln−1 · · ·L0) < adZ(A) + ε,

where ad ∈ (0, 1) is a constant depending only on the dimension d.

3.1. Preliminary lemmas. If E1 ⊕ · · · ⊕Ek is a nontrivial dominated
splitting for some A ∈ Aut(E, T ), then its indices are the numbers

dim(E1), dim(E1 ⊕ E2), . . . , dim(E1 ⊕ · · · ⊕ Ek−1).

We will need the following implicit characterization of these indices:

Theorem 3.2 ([BG, Thm. A]). An automorphism A ∈ Aut(E, T ) has a
dominated splitting of index i if and only if there exist c > 0 and τ > 1 such
that

si(A
n(x))

si+1(An(x))
> cτn for all x ∈ X and n ≥ 0.

In other words, the indices of domination correspond to exponentially
large gaps between singular values.

Absence of domination permits us to significantly change the orbits of
vectors by performing small perturbations. One operation of this kind is
described by the following lemma:

Lemma 3.3. Assume that A ∈ Aut(E, T ) has no dominated splitting of
index i. Then for every ε > 0 there exist m ∈ N and a nonempty open set
W ⊂ X with the following properties: For every x ∈ W and every pair of
subspaces E ⊂ E(x) and F ⊂ E(Tmx) with respective dimensions i and d−i,
there exists a sequence of linear maps

E(x)
L0−→ E(Tx)

L1−→ · · · Lm−1−−−→ E(Tmx)

with ‖Lj −A(T jx)‖ < ε for each j and such that

Lm−1 · · ·L0(E) ∩ F 6= {0}.
For the proof, we will need the following standard result, which can be

shown by the same arguments as in the proof of [BV, Prop. 7.1].

Lemma 3.4. For any C > 0 and α > 0, there exists k ∈ N with the
following properties. If L0, L1, . . . , Lk−1 ∈ GL(d,R) satisfy ‖L±1

k ‖ ≤ C, and
v, w ∈ Rd are nonzero vectors such that

‖Lk−1 · · ·L0w‖/‖w‖
‖Lk−1 · · ·L0v‖/‖v‖

>
1

2
,

then there exist nonzero vectors u0, u1, . . . , uk ∈ Rd such that u0 = v,
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uk = Lk−1 · · ·L0(w), and

](uj+1, Lj(uj)) < α for each j = 0, . . . , k − 1.

Proof of Lemma 3.3. Suppose A ∈ Aut(E, T ) has no dominated splitting
of index i. Let ε > 0 be given. Let C > 1 be such that ‖A(x)±1‖ ≤ C for
all x ∈ X. Fix a positive α � ε, and let k = k(C,α) ∈ N be given by
Lemma 3.4. Define open sets

W (m) :=

{
x ∈M ;

si+1(Am(x))

si(Am(x))
> C2k(1/2)m/k−1

}
.

Notice that if W (m) = ∅ for all sufficiently large m, then by Theorem
3.2 there is a dominated splitting of index i, contradicting the hypothesis.
Therefore we can fix m > k such that W = W (m) 6= ∅.

Now fix a point x ∈W and spaces E ⊂ E(x), F ⊂ E(Tmx) with respec-
tive dimensions i and d− i. For simplicity, write P = Am(x).

Claim 3.5. There exist unit vectors v ∈ E and w ∈ P−1(F ) such that
‖Pv‖ ≤ si(P ) and ‖Pw‖ ≥ si+1(P ).

Proof of the claim. Let {e1, . . . , ed} be a basis of E(x) formed by eigen-
vectors of (P ∗P )1/2 corresponding to the eigenvalues s1(P ) ≥ · · · ≥ sd(P ).
Let Ẽ be the space spanned by ei, . . . , ed. Since dimE = i, the intersection
E ∩ Ẽ contains a unit vector v. Then ‖Pv‖ ≤ si(P ), proving the first part
of the claim. The proof of the second part is analogous.

Claim 3.6. There exists ` with 0 ≤ ` < m− k such that

‖Ak+`(x) · w‖/‖A`(x) · w‖
‖Ak+`(x) · v‖/‖A`(x) · v‖

>
1

2
.

Proof of the claim. Assume the contrary. Then

si+1(P )

si(P )
≤ ‖Pw‖
‖Pv‖

≤
(

1

2

)bm/kc
C2k,

which contradicts the fact that x ∈W .

Next we apply Lemma 3.4 to the vectors ṽ = A`(x) · v, w̃ = A`(x) · w
and the linear maps L̃0 = A(T `x), . . . , L̃k−1 = A(T `+k−1x). We obtain
nonzero vectors u0, . . . , uk such that u0 = v, uk = A`+k(x) · w, and
](uj+1, A(T `+jx) · uj) < α for each j = 0, . . . , k − 1.

To conclude the proof, we need to define the linear maps L0, . . . , Lm−1.
Since α is small, for each j = 0, . . . , k − 1 we can find an ε-perturbation
L`+j of A(T `+jx) such that Lj(uj) and uj+1 are collinear. We define the
remaining maps as

Lj = A(T jx) if 0 ≤ j ≤ ` or `+ k ≤ j ≤ m.
Then Lm−1 · · ·L0(v) is collinear to Am(w). This proves Lemma 3.3.
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The next lemma indicates how the perturbations provided by Lemma 3.3
can be used to manipulate singular values. For simplicity of notation, we
state the lemma in terms of matrices instead of bundle maps.

Lemma 3.7. Let P,Q ∈ GL(d,R) and i ∈ {1, . . . , d − 1}. Then there
are subspaces E,F ⊂ Rd with respective dimensions i, d − i and with the
following property: If R ∈ GL(d,R) satisfies R(E) ∩ F 6= {0}, then

σi(QRP ) ≤ σi(P ) + σi(Q)− 2 min{γi(P ), γi(Q)}+ cd max{1, log ‖R‖},

where cd > 0 depends only on d.

A similar estimate appears in the proof of [BV, Prop. 4.2].

Proof. Let P , Q, and i be given. Fix an orthonormal basis {e1, . . . , ed}
of eigenvectors of (PP ∗)1/2 corresponding to the eigenvalues s1(P ), . . . ,
sd(P ), and let E be the subspace spanned e1, . . . , ei. Analogously, fix an
orthonormal basis {f1, . . . , fd} of eigenvectors of (Q∗Q)1/2 corresponding to
the eigenvalues s1(Q), . . . , sd(Q), and let F be the subspace spanned by
fi+1, . . . , fd.

Now take R ∈ GL(d,R) such that R(E) ∩ F 6= {0}.
Define also ēj := sj(P )P−1(ej) and f̄j := (sj(Q))−1Q(ej), for j =

1, . . . , d. Then {ē1, . . . , ēd} and {f̄1, . . . , f̄d} are orthonormal bases formed
by eigenvectors of (P ∗P )1/2 and (QQ∗)1/2, respectively.

As in the proof of Lemma 2.5, we will use exterior powers. Consider the
following subsets of

∧iRd:

B0 = {ēj1 ∧ · · · ∧ ēji ; 1 ≤ j1 < · · · < ji ≤ d},
B1 = {ej1 ∧ · · · ∧ eji ; 1 ≤ j1 < · · · < ji ≤ d},
B2 = {fj1 ∧ · · · ∧ eji ; 1 ≤ j1 < · · · < ji ≤ d},
B3 = {f̄j1 ∧ · · · ∧ f̄ji ; 1 ≤ j1 < · · · < ji ≤ d},

each endowed with the lexicographical order. These are all orthonormal
bases of

∧iRd. We represent the maps
∧iP ,

∧iR,
∧iQ as

(
d
i

)
×
(
d
i

)
matrices

P, R, Q with respect to these bases

(
∧iRd,B0)

∧i
P

−−−→ (
∧iRd,B1)

∧i
R

−−−→ (
∧iRd,B2)

∧i
Q

−−−→ (
∧iRd,B3).

Then the matrices P and Q are diagonal with positive diagonal entries. The
largest and second largest entries of P are respectively

P11 = s1(P ) · · · si(P ) and P22 = s1(P ) · · · si−1(P )si+1(P ).

Analogously, the largest and second largest entries of Q are respectively

Q11 = s1(Q) · · · si(Q) and Q22 = s1(Q) · · · si−1(Q)si+1(Q).
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Claim 3.8. R11 = 0.

Proof of the claim. By assumption, there exists a nonzero vector w ∈
E ∩ R−1(F ). Choose ` ∈ {1, . . . , i} such that {e1, . . . , e`−1, w, e`+1, . . . , ei}
is a basis for E. Therefore the first element of the basis B1 is a multiple of
ξ := e1 ∧ · · · ∧ e`−1 ∧ w ∧ e`+1 ∧ · · · ∧ ei. We have

(
∧iR)(ξ) = R(e1) ∧ · · · ∧R(e`−1) ∧R(w) ∧R(e`+1) ∧ · · · ∧R(ei).

Write each R(ej) as a linear combination of vectors f1, . . . , fd, write R(w)
(which is in F ) as a linear combination of vectors fi+1, . . . , fd, and substi-
tute in the expression above. We obtain a linear combination of the vectors
fj1 ∧ · · · ∧ fji where f1 ∧ · · · ∧ fi does not appear. This means that the

first coordinate of (
∧iR)(ξ) with respect to the basis B2 is zero. Therefore

R11 = 0.

Now let M = QRP, i.e., the matrix that represents
∧i(QRP ) with

respect to the bases B0 and B3. Then the norm of M is expσi(QRP ). This
norm is comparable to maxα,β |Mαβ|. We estimate each entry as follows:

|Mαβ| = Qαα |Rαβ|Pββ ≤ |Rαβ| max{Q11P22,Q22P11}.

On one hand, maxα,β |Rαβ| is comparable to ‖R‖ = eσi(R) ≤ ‖R‖i. On the
other hand,

log(Q11P22) = σi(P ) + σi(Q)− 2γi(P ),

log(Q22P11) = σi(P ) + σi(Q)− 2γi(Q),

and so the lemma follows.

3.2. Proof of Main Lemma 3.1. First, let us give an outline of the
proof. If the segment {x, Tx, . . . , Tn−1x} of the orbit is long, then by min-
imality it will regularly visit the sets from Lemma 3.3 where the lack of
domination is manifest. We will choose a single one of those visits, and then
perform a perturbation of the kind given by Lemma 3.3 on a relatively short
subsegment, in order to obtain by Lemma 3.7 a drop in one σi value of the
long product. We have to ensure that this drop is a significant one.

Similar strategies are used in [AB] and [BV]. In [BV], the short per-
turbative subsegment is chosen basically halfway along the segment; that
this is a suitable position for perturbation is a consequence of the Oseledets
theorem. In the minimal SL(2,R) situation considered in [AB], the middle
position is not necessarily the most convenient one, but nevertheless it is
easy to see that there exists a suitable position that produces a big drop.

The considerations here are more delicate. We actually apply Lemma 3.3
and Lemma 3.7 to the index i0 which maximizes the half-gap γi0(An(x)) and
so is likely to produce a bigger drop in the ζ-area (see Fig. 1). Suppose we
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break An(x) = QP into left and right unperturbed subsegments (disre-
garding the short middle term). Similarly to [AB], we choose the breaking
point so that γi0(P ) ' γi0(Q). Then we need to estimate the drop in ζ. By
subadditivity, σi(A

n(x)) ≤ σi(P ) + σi(Q) for each i. On the other hand,
since the lengths k and n − k of P and Q are big, the values k−1ζ(P ) and
(n−k)−1ζ(Q) are essentially bounded by Z(A). We can assume that for the
point x under consideration, the value n−1ζ(An(x)) is already sufficiently
close to Z(A), because otherwise no perturbation is needed. It follows that
ζ(An(x)) ' ζ(P )+ζ(Q) and therefore σi(A

n(x)) ' σi(P )+σi(Q) for each i.
This allows us to recover an “Oseledets-like” situation and carry on the esti-
mates easily. The actual argument is more subtle, because in order to prove
the Main Lemma we need to consider points x such that n−1ζ(An(x)) is
close, but not extremely close, to Z(A). We proceed with the formal proof.

Proof of the Main Lemma. Let b = bd be given by Lemma 2.6, and define

(3.1) a = ad :=
1

1 + b/2
.

Let A ∈ Aut(E, T ) be without nontrivial dominated splitting, and let ε > 0.
Take a positive number δ � ε; how small it needs to be will become apparent
along the proof.

For each i = 1, . . . , d−1, we apply Lemma 3.3 and thus obtain an integer
mi and a nonempty open set Wi ⊂ X with the following property: along
segments of orbits of length mi starting from Wi, we can ε-perturb the
linear maps in order to make any given i-dimensional space intersect any
given (d− i)-dimensional space.

Since T is minimal, there exists m′ ∈ N such that

(3.2)

m′⋃
j=0

T j(Wi) = X for each i = 1, . . . , d− 1.

Let also m′′ ∈ N be such that

(3.3) j ≥ m′′ ⇒ ζ(Aj(y)) < (Z(A) + δ)j, ∀y ∈ X.

Take

(3.4) N ≥ δ−1 max{m1, . . . ,md−1,m
′,m′′}.

Fix any point x ∈ X and any n ≥ N . We can assume that

(3.5)
1

n
ζ(An(x)) ≥ aZ(A),

because otherwise the unperturbed maps Lj = A(T j(x)) satisfy the conclu-
sion of the Main Lemma.
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Let i0 ∈ {1, . . . , d− 1} be such that γi0(An(x)) = maxi γi(A
n(x)). Thus,

by Lemma 2.6,

(3.6) γi0(An(x)) ≥ b ζ(An(x)).

Let us write m0 = mi0 , for simplicity. Given an integer k ∈ [0, n −m0],
we factorize An(x) as QkRkPk, where

Pk := Ak(x), Rk := Am0(T kx), Qk := An−k−m0(T k+m0x).

In what follows, we will use big O notation; the comparison constants
are allowed to depend only on A (and d).

Claim 3.9. There exists k ∈ [m′′, n − m0 − m′′] such that T kx ∈ Wi0

and

(3.7) |γi0(Pk)− γi0(Qk)| ≤ O(δn).

Proof of the claim. Notice the following facts:

• |γi0(Aj+1(x))− γi0(Aj(x))| ≤ O(1) for every j.
• So, letting ∆j := γi0(Aj(x)) − γi0(An−j(T jx)), we have |∆j+1 − ∆j |
≤ O(1).
• Since ∆0 = −∆n, there exists j0 ∈ [0, n] such that |∆j0 | ≤ O(1).
• So there exists j1 ∈ [m′′, n−m0−m′′] such that |∆j1 | ≤ O(m′′+m0).
• So, by (3.2), there exists k ∈ [m′′, n−m0 −m′′] such that T kx ∈ Wi0

and |∆k| ≤ O(m′′ +m0 +m′).

Since the left hand side of (3.7) is ≤ |∆k| + O(m0), the claim follows
from (3.4).

Let k be fixed from now on, and write P = Pk, R = Rk, Q = Qk.

Let E ⊂ E(T kx) and F ⊂ E(T k+m0x) be the subspaces with respec-
tive dimensions i0 and d − i0 obtained by applying Lemma 3.7 to the
maps P and Q. Since T kx ∈ Wi0 , we can apply Lemma 3.3 and find lin-
ear maps L̃j : E(T k+jx) → E(T k+j+1x) (where j = 0, . . . ,m0 − 1) each

ε-close to the respective A(T k+jx), whose product R̃ := L̃m0−1 · · · L̃0 satis-
fies R̃(E) ∩ F 6= {0}. The maps Lj (j = 0, . . . , n − 1) that we are looking

for are Lj = L̃j−k if k ≤ j < k + m0, and Lj = A(T jx) otherwise. So

their product is Ln−1 · · ·L0 = QR̃P . Notice that ‖R̃‖ ≤ O(m0) ≤ O(δn).
Therefore Lemma 3.7 gives

(3.8) σi0(QR̃P ) ≤ σi0(P ) + σi0(Q)− 2 min{γi0(P ), γi0(Q)}+O(δn).

To conclude the proof, we need to estimate ζ(QR̃P ). Begin by noticing
that, as a consequence of (3.3),

(3.9) ζ(P ) + ζ(Q) ≤ Z(A)n+O(δn).
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Also, since σi(R) ≤ O(m0) ≤ O(δn), subadditivity and additivity give

(3.10) σi(P ) + σi(Q)

{≥ σi(An(x))−O(δn) for each i = 1, . . . , d− 1,

≤ σd(An(x)) +O(δn) for i = d.

Claim 3.10. The following inequality holds:

(3.11) ζ(P )+ζ(Q)−ζ(An(x)) ≥ −γi0(P )−γi0(Q)+γi0(An(x))−O(δn).

Remark 3.11. Since (3.11) is an important estimate in the proof, it
is worthwhile to interpret it geometrically. Consider the concave graphs of
σi(A

n(x)) and σi(P )+σi(Q). By (3.10), modulo a small error, the first graph
is below the second one and their endpoints meet. The quantities γi0(An(x))
and γi0(P ) + γi0(Q) are the areas of triangles touching the corresponding
graphs, as in Fig. 1. Now, if the first quantity is substantially greater than
the second, then concavity forces the existence of a large hole between the
two graphs, and therefore the ζ-area of the second graph is substantially
larger than the ζ-area of the first one.

Proof of the claim. Since the functions γi0 and ζ are invariant under
composition with homotheties, we can assume for simplicity that σd = 0,
i.e., |det | = 1, for all the linear maps involved. Notice that for any L with
|detL| = 1, we have

ζ(L) + γi0(L) =
d−1∑
i=1

ui σi(L), where ui :=


1 if |i− i0| > 1,

1/2 if |i− i0| = 1,

2 if i = i0.

In particular,

ζ(P ) + γi0(P ) + ζ(Q) + γi0(Q)− ζ(An(x))− γi0(An(x))

=
d−1∑
i=1

ui [σi(P ) + σi(Q)− σi(An(x))]︸ ︷︷ ︸
≥−δn (by (3.10))

≥ −dδn,

which completes the proof of (3.11).

Next, we estimate

γi0(P ) + γi0(Q) ≥ γi0(An(x)) + ζ(An(x))− ζ(P )− ζ(Q)−O(δn) by (3.11)

≥ (b+ 1)ζ(An(x))− ζ(P )− ζ(Q)−O(δn) by (3.6)

≥ (b+ 1)aZ(A)n− Z(A)n−O(δn) by (3.9)

= (ab+ a− 1)Z(A)n−O(δn).

Therefore, using (3.7),

2 min{γi0(P ), γi0(Q)} = γi0(P ) + γi0(Q)− |γi0(P )− γi0(Q)|
≥ (ab+ a− 1)Z(A)n−O(δn).
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Substituting this into (3.8) we obtain

σi0(QR̃P ) ≤ σi0(P ) + σi0(Q)− (ab+ a− 1)Z(A)n+O(δn).

So it follows from (3.10) that

ζ(QR̃P ) ≤ ζ(P ) + ζ(Q)− (ab+ a− 1)Z(A)n+O(δn).

Using (3.9) we obtain

ζ(QR̃P ) ≤ (2− ab− a)︸ ︷︷ ︸
=a (by (3.1))

Z(A)n+O(δn)︸ ︷︷ ︸
<εn

.

This concludes the proof of the Main Lemma.

4. Patching the perturbations. Here we will use Main Lemma 3.1
to prove Lemma 2.9 and therefore the Main Theorem. The arguments are
essentially the same as in [AB].

To begin, we recall some results from [AB] on zero probability sets.

Theorem 4.1 ([AB, Lemma 3]). Let X be a compact space of finite
dimension, and let T : X → X be a homeomorphism without periodic orbits.
Then there exists a basis of the topology of X consisting of sets U such that
∂U has zero probability.

This is the only place where we use the assumption that X has finite
dimension. (Actually, the proof of the theorem consists in finding sets U
such that no point in X visits ∂U more than dimX times.)

The next result follows from a simple Krylov–Bogoliubov argument:

Lemma 4.2 ([AB, Lemma 7]). Let T : X → X be a continuous mapping
of a compact space X. If K ⊂ X is a compact set with zero probability then
for every ε > 0, there exist an open set V ⊃ K and n∗ ∈ N such that

x ∈ X, n ≥ n∗ ⇒ #{x, Tx, . . . , Tn−1x} ∩ V < εn.

We also need the following result that decomposes the space into two
Rokhlin towers:

Lemma 4.3 ([AB, Lemma 6]). Let X be a nondiscrete compact space,
and let T : X → X be a minimal homeomorphism. Then for any N ∈ N,
there exists an open set B ⊂ X such that:

• the return time from B to itself under iterations of T assumes only
the values N and N + 1;
• ∂B has zero probability.

Since we are working with not necessarily trivial vector bundles E, we
need to introduce local coordinates.

Let us fix a finite open cover {D̂m} of X by trivializing domains, together
with bundle charts ξm : D̂m×Rd → E. For each x ∈ D̂m, the map Hm(x) :=
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ξm(x, ·) is an isomorphism from Rd to E(x). We can assume that there is a
finer cover {Dm} of X with Dm ⊂ D̂m for each m.

It is convenient to fix a constant C > 0 such that

(4.1) ‖(Hm(x))±1‖ ≤ C and ζ(Hm(x)) ≤ C, ∀m, ∀x ∈ Dm.

Any B ∈ Aut(E, X) can be represented in local coordinates by a family of
(uniformly continuous) maps B(m,m′) : Xm ∩ T−1(Xm′)→ GL(d,R) defined
by:

(4.2) B(m,m′)(x) := (Hm′(Tx))−1 ◦B(x)◦Hm(x), x ∈ Xm∩T−1(Xm′).

Let us call this the (m,m′)-local representation of B(x).
Now we have all the tools we need to conclude the proof.

Proof of Lemma 2.9. As explained in §2.6, it is sufficient to consider the
particular case where the automorphism A ∈ Aut(E, T ) has no nontrivial
dominated splitting. If the space X is discrete then it consists of a single
periodic orbit, and it follows that Z(A) = 0. So we can assume that X is
nondiscrete, i.e., T has no periodic orbits.

Fix ε > 0; we can assume that

(4.3) ε < inf
x∈X

m(A(x)).

As a consequence, if a linear map L : E(x) → E(Tx) has ‖L − A(x)‖ < ε,
then it is invertible; moreover ζ(L) is bounded by some C0 = C0(A, ε). Let
ε′ > 0 be small enough that

(1 + C0)ε′ < ε/3,(4.4)

C2(C2 + 1)ε′ < ε,(4.5)

where C is as in (4.1). Let N = N(A, ε′) ∈ N be given by Main Lemma 3.1.
We can assume that N is large enough that

(4.6) 2C/N < ε/3.

Recall that {Dm} is a cover of X by trivializing domains. By uniform con-
tinuity of the local representations (4.2), there exists ρ > 0 such that

(4.7)

x, y ∈ Dm ∩ T−1(Dm′), d(x, y) < ρ ⇒ ‖A(m,m′)(x)−A(m,m′)(y)‖ < ε′.

Choose an open cover {Wi}i=1,...,k of X with the following properties:

• it refines the cover {Dm0∩T−1(Dm1)∩· · ·∩T−N−1(DmN+1)}m0,...,mN+1 ;
• diamT j(Wi) < ρ for each i = 1, . . . , k and j = 0, 1, . . . , N + 1;
• the sets ∂Wi have zero probability.

(To guarantee the last requirement we use Theorem 4.1.) For each i =
1, . . . , k and each j = 0, 1, . . . , N + 1, we fix an index m(i, j) such that
T j(Wi) ⊂ Dm(i,j).
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Let B be the set given by Lemma 4.3. Let B` be the set of points in

B whose first return to B occurs in time `. Then BN = B ∩ T−N (B) and
BN+1 = B rBN , and in particular ∂B` has zero probability. Let

B`,i := B` ∩Wi r (W1 ∪ . . . ∪Wi−1)

for each (`, i) ∈ {N,N + 1} × {1, . . . , k}.
Let I be the set of pairs (`, i) such that B`,i 6= ∅. Let also J be the set of
(`, i, j) such that (`, i) ∈ I and 0 ≤ j ≤ `− 1. For each α = (`, i, j) ∈ J , let
Xα := T j(B`,i). Notice that {Xα}α∈J is a finite partition of X. Moreover,
each ∂Xα has zero probability, and so by Lemma 4.2 there exist an open set
V ⊃

⋃
α∈J ∂Xα and n∗ ∈ N such that

(4.8) x ∈ X, n ≥ n∗ ⇒ #{x, Tx, . . . , Tn−1x} ∩ V <
ε′n

N + 1
.

For each (`, i) ∈ I, choose y`,i ∈ B`,i. For each j = 0, 1, . . . , `, let
y`,i,j := T j(y`,i). Applying Main Lemma 3.1, we find L`,i,0, . . . , L`,i,`−1 so
that

‖L`,i,j −A(y`,i,j)‖ < ε′ ∀j = 0, 1, . . . , `− 1, and(4.9)

ζ(L`,i,`−1 · · ·L`,i,0) < (aZ(A) + ε′)`,(4.10)

where a = ad ∈ (0, 1) is a constant.
For each α = (`, i, j) ∈ J , let {Ãα(x) : E(x)→ E(Tx)}x∈Xα be the family

of linear maps uniquely characterized by the following properties:

• Ãα(yα) = Lα;

• letting m = m(i, j) and m′ = m(i, j + 1), the local representation

Ã
(m,m′)
α (x) does not depend on x ∈ Xα.

It follows from (4.9) and (4.1) that

‖Ã(m,m′)
α (yα)−A(m,m′)

α (yα)‖ < C2ε′.

So, by (4.7),

‖Ã(m,m′)
α (yα)−A(m,m′)

α (x)‖ < (C2 + 1)ε′ for all x ∈ Xα.

It follows that

(4.11) ‖Ãα(x)−A(x)‖ < C2(C2 + 1)ε′︸ ︷︷ ︸
<ε (by (4.5))

for all x ∈ Xα.

For every x ∈ B`,i, the products

Ã`,i,`−1(T `−1x) · · · Ã`,i,0(x) and L`,i,`−1 · · ·L`,i,0
have the same (m(i, 0),m(i, `))-local representation. It follows from (4.10)
and (4.1) that

(4.12) x ∈ B`,i ⇒ ζ
(
Ã`,i,`−1(T `−1x) · · · Ã`,i,0(x)

)
< (aZ(A)+ε′)`+ 2C.
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Now consider the open cover {V }∪{intXα}α∈J of X. Since X is compact
Hausdorff, we can find a continuous partition of unity {ψ}∪{ϕα}α∈J subordi-

nate to this cover. For each x ∈ X, define a linear map Ã(x) : E(x)→ E(Tx)
by

Ã(x) := ψ(x)A(x) +
∑
α∈J

ϕα(x)Ãα(x).

By (4.11), we have ‖Ã(x)−A(x)‖ < ε, and it follows from (4.3) that Ã(x) is
invertible. Thus Ã ∈ Aut(E, T ). Also, ζ(Ã(x)) ≤ C0 for every x.

Take n large enough so that

(4.13) n ≥ n∗ and 2C0N < (ε/3)n.

We will give a uniform upper bound for ζ(Ãn(x)). Fix x ∈ X and write

n = p+ `1 + · · ·+ `r + q

in such a way that the points

x1 = T p(x), x2 = T p+`1(x), . . . , xr+1 = T p+`1+···+`r(x)

are exactly the points in the orbit segment x, T (x), . . . , Tn−1(x) that belong
to B. Then p, q ∈ [0, N ] and `1, . . . , `r ∈ [N,N + 1].

The points xj such that j 6= r + 1 and {xj , Txj , . . . , T `j−1xj} ∩ V = ∅
will be called good. By subadditivity,

ζ(Ãn(x)) ≤
∑

xj is good

ζ(Ã`j (xj)) + C0

(
n−

∑
xj is good

`j

)
.

Notice the following estimates:

• If xj is good then ζ(Ã`j (xj)) is less than the right hand side of (4.12)
with ` = `j .
• There are at most r ≤ N−1n good points.
• By (4.8), the number in large brackets is at most 2N + ε′n; equality

may only hold in case each segment

{xj , Txj , . . . , T `j−1xj} (for j = 1, . . . , r)

contains at most one point of V .

Then we obtain

ζ(Ãn(x)) ≤ (aZ(A) + ε′)n+ 2CN−1n+ C0(2N + ε′n).

Using (4.4), (4.6), and (4.13), we conclude that ζ(Ãn(x)) < (aZ(A) + ε)n.

So Z(Ã) < aZ(A) + ε, as we wanted to prove.
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