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Characterizing Fréchet–Schwartz spaces
via power bounded operators
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Abstract. We characterize Köthe echelon spaces (and, more generally, those Fréchet
spaces with an unconditional basis) which are Schwartz, in terms of the convergence of
the Cesàro means of power bounded operators defined on them. This complements similar
known characterizations of reflexive and of Fréchet–Montel spaces with a basis. Every
strongly convergent sequence of continuous linear operators on a Fréchet–Schwartz space
does so in a special way. We single out this type of “rapid convergence” for a sequence of
operators and study its relationship to the structure of the underlying space. Its relevance
for Schauder decompositions and the connection to mean ergodic operators on Fréchet–
Schwartz spaces is also investigated.

1. Introduction. A continuous linear operator T acting on a Fréchet
space X is called power bounded (resp. mean ergodic, uniformly mean er-
godic) if the sequence {Tn}∞n=1 of iterates (resp. the sequence of the Cesàro
means {n−1

∑n
k=1 T

k}∞n=1) is equicontinuous (resp. convergent for the strong
operator toplogy τs, convergent for the uniform operator topology τb).

J. von Neumann (1931) proved that unitary operators in Hilbert spaces
are mean ergodic. F. Riesz (1938) showed that every power bounded operator
on an Lp-space (1 < p <∞) is mean ergodic. In 1939 E. R. Lorch extended
this result to all reflexive Banach spaces. It quickly became evident that there
was an intimate connection between geometric properties of the underlying
Banach space X and mean ergodic operators on X. Concerning the converse,
in 1997 E. Yu. Emel’yanov [13] showed that every Banach lattice with the
property that every power bounded operator on the space is mean ergodic is
necessarily reflexive. A major breakthrough came in 2001 when V. P. Fonf,
M. Lin and P. Wojtaszczyk [14] established the following characterizations
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for a Banach space X with a basis:

(i) X is finite-dimensional if and only if every power bounded operator
on X is uniformly mean ergodic.

(ii) X is reflexive if and only if every power bounded operator on X is
mean ergodic.

That paper initiated an immediate interest for analogous questions in the
setting of Fréchet spaces.

The result of Emel’yanov was extended in [10], where it was shown that
a Fréchet lattice X is reflexive if and only if every power bounded operator
on X is mean ergodic. An analogue of (i) is also presented in [10]. Namely,
a discrete Fréchet lattice X is Montel (i.e., bounded sets are relatively com-
pact) if and only if every power bounded operator lying in the centre Z(X)
of X is uniformly mean ergodic. Concerning further results along the lines of
(i) and (ii) above, it is known that a Fréchet space X with a basis is Montel
if and only if every power bounded operator on X is uniformly mean ergodic
[1, Theorem 1.3], and that X is reflexive if and only if every power bounded
operator on X is mean ergodic [1, Theorem 1.4]. For analogous results in
the setting of locally convex spaces we refer to [2]; see also [24], [25]. If the
Fréchet space X is not assumed to have a basis, then X is Montel if and
only if every power bounded, mean ergodic operator defined on any closed
subspace of X is uniformly mean ergodic [1, Theorem 5.4], and X is reflexive
if and only if every power bounded operator defined on any closed subspace
of X is mean ergodic [1, Proposition 5.1].

At a conference in Trier in 2008, where the above mentioned results were
presented for the first time, Prof. A. Pełczyński suggested that there should
be similar criteria available which characterize Fréchet–Schwartz spaces. In
order to be able to distinguish between “Montel” and “Schwartz” it is nec-
essary to find an appropriate notion of operator convergence, stronger than
τb-convergence. The aim of this paper is to present such a notion and to
invoke it to address Pełczyński’s suggestion.

Let {Sk}∞k=1 be a sequence of continuous linear operators on a Fréchet
space X, whose topology is generated by a fundamental, increasing sequence
of seminorms {qn}∞n=1. Then {Sk}∞k=1 is called rapidly convergent if there
exists a continuous linear operator S on X such that for every n ∈ N there
exists m > n with

lim
k→∞

sup {qn((Sk − S)x) : qm(x) ≤ 1} = 0,

in which case we write Sk
(R)−−→ S for k → ∞. Whenever Sk

(R)−−→ S for
k → ∞, then also τb-limk→∞ Sk = S. However, since there exist Fréchet–
Montel spaces which fail to be Schwartz, τb-convergence of a sequence of
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operators need not imply its rapid convergence: this follows from the fact
that τs-convergence of a sequence of operators in a Montel space implies
its τb-convergence and from the characterization presented in Corollary 3.4.
Namely, a Fréchet space X 6= {0} is Schwartz if and only if every sequence
of operators on X which is τs-convergent is also rapidly convergent.

A response to Pełczyński’s suggestion, via the notion of rapid conver-
gence, is presented in the final two sections. In Section 4 we introduce the
new notion of an operator being rapidly mean ergodic. A deep result of
S. F. Bellenot [3] stating that each Fréchet–Schwartz space is a closed sub-
space of a Fréchet–Schwartz space with an unconditional basis, plays a role
in establishing the main result of §4 (Theorem 4.6). Namely, let X be a
Fréchet space which is a closed subspace of a Fréchet space with an uncon-
ditional basis. Then X is Schwartz if and only if every closed subspace Y
of X has the property that every power bounded operator on Y is rapidly
mean ergodic. In the final section this result is refined (see Theorem 5.6)
for the important class of Fréchet spaces λp(A), p ∈ [1,∞) ∪ {0}, known as
Köthe echelon spaces, all of which have an unconditional basis. Indeed, it is
shown that λp(A) is Schwartz if and only if every power bounded operator
on λp(A) is rapidly mean ergodic.

2. Preliminaries. Our notation for locally convex Hausdroff spaces,
briefly lcHs, is standard; we refer to [16], [18], [19], [23], [26]. More detailed
information on Fréchet and Köthe echelon spaces can be found in [6], [7],
[23]. A standard reference for mean ergodic operators is [20]. We begin with
some definitions and notation which will facilitate the reading of the paper.

Let X be a lcHs and ΓX a system of continuous seminorms determining
the topology of X. The strong operator topology τs in the space L(X) of all
continuous linear operators from X into itself is determined by the family of
seminorms

qx(S) := q(Sx), S ∈ L(X),

for each x ∈ X and q ∈ ΓX ; we write Ls(X) for L(X) equipped with this
topology. Denote by B(X) the collection of all bounded subsets of X. The
topology τb of uniform convergence on bounded sets is defined in L(X) via
the seminorms

qB(S) := sup
x∈B

q(Sx), S ∈ L(X),

for each B ∈ B(X) and q ∈ ΓX ; we write Lb(X) for L(X) equipped with
this topology. For X a Banach space, τb is the operator norm topology
in L(X). If X is metrizable and complete, then X is called a Fréchet space.
In this case ΓX can be taken countable. The identity operator on a lcHs X
is denoted by I. Of course, for T ∈ L(X) we define KerT := T−1({0}).
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By Xσ we denote X equipped with its weak topology σ(X,X ′), where X ′
is the topological dual space ofX, andX ′σ denotesX ′ equipped with its weak-
star topology σ(X ′, X). For T ∈ L(X), its dual operator T ′ : X ′ → X ′ is
defined by 〈x, T ′x′〉 = 〈Tx, x′〉 for all x ∈ X, x′ ∈ X ′. Note that T ′ ∈ L(X ′σ)
(see [19, p. 134]).

Recall that a Fréchet space X with a basis of decreasing, absolutely
convex 0-neighbourhoods {Un}∞n=1 is Schwartz if

(2.1) ∀n ∈ N ∃m > n ∀ε > 0 ∃Fε ⊆ X finite: Um ⊆ Fε + εUn,

or equivalently, if

(2.2) ∀n∈N ∃m>n ∀ε>0 ∃Lε ⊆ X relatively compact: Um ⊆ Lε + εUn

(see [15, p. 276]). Therefore, a Fréchet space X is Schwartz if and only if X
can be written as a projective limit via continuous linear linking operators
Sn : Xn+1 → Xn, for n ∈ N, with each Xn a Banach space, such that for
every n ∈ N there exists m > n with (Sm−1 ◦ · · · ◦Sn) : Xm → Xn a compact
operator. Further details about Schwartz lcHs can be found in [15], [16], [23].

The following characterization of Fréchet–Schwartz spaces, due to Bonet,
Lindström and Valdivia [9], is a version of the Josefson–Nissenzweig theorem
for Fréchet spaces (see also [8], [21]).

Theorem 2.1. A Fréchet space X is Schwartz if and only if, for each
sequence {x′k}∞k=1 ⊆ X ′ which satisfies limk→∞ x

′
k = 0 in X ′σ, there exists

n ∈ N such that (supx∈Un
|〈x, x′k〉|)∞k=1 ∈ c0.

A Schauder decomposition of a Fréchet space X is a sequence {Pj}∞j=1 ⊆
L(X) of operators in X satisfying the following properties:

(S1) PiPj = Pmin{i,j} for all i, j ∈ N,
(S2) τs-limj→∞ Pj = I, and
(S3) Pi 6= Pj if i 6= j

(see [11], [17]). According to (S1) each Pj , for j ∈ N, is a projection. Con-
dition (S2) implies that {Pj}∞j=1 is an equicontinuous subset of L(X). If the
range Pj(X) is a finite-dimensional space for each j ∈ N, then {Pj}∞j=1 is
said to be a finite-dimensional Schauder decomposition of X.

By setting Q1 := P1 and Qn := Pn − Pn−1 for n ≥ 2 we arrive at a se-
quence of pairwise orthogonal projections (i.e., QnQm = 0 if n 6= m). More-
over, (S2) implies that

∑∞
n=1Qn = I, with the series converging in Ls(X),

and (S3) ensures that Qn 6= 0 for each n ∈ N. If the series
∑∞

n=1Qn = I
is unconditionally convergent in Ls(X), then {Pj}∞j=1 is called an uncondi-
tional Schauder decomposition of X. The dual projections {P ′j}∞j=1 ⊆ L(X ′σ)
always form a Schauder decomposition of X ′σ (see [17, p. 378]).
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Inspired by the work of Benndorf [5], Díaz [12] introduced the following
notion: a Schauder decomposition {Pj}∞j=1 satisfies property (S) if

(2.3) ∀n ∈ N ∃m > n: lim
j→∞

sup{qn((I − Pj)x) : qm(x) ≤ 1} = 0,

with {qn}∞n=1 a fundamental, increasing sequence of continuous seminorms
on X.

Let X be a Fréchet space. A sequence {ei}∞i=1 ⊆ X is called a basis for
X if for every x ∈ X there is a unique sequence (αi)

∞
i=1 of scalars such that

x =
∑∞

i=1 αixi. By setting 〈x, e′i〉 := αi we obtain a linear form e′i : X → C,
necessarily continuous, which is called the nth coefficient functional asso-
ciated to {ei}∞i=1. The functionals e′i, i ∈ N, are uniquely determined by
{ei}∞i=1, and {(ei, e′i)}∞i=1 is a biorthogonal sequence (i.e. 〈ei, e′j〉 = δij for
i, j ∈ N). The sequence {e′i}∞i=1 ⊆ X ′ is called the dual basis of {ei}∞i=1.

If {ei}∞i=1 ⊆ X is a basis for a Fréchet space X, then the projections
P (j) ∈ L(X), for j ∈ N, defined by

(2.4) P (j)x :=

j∑
i=1

〈x, e′i〉ei, x ∈ X,

form a finite-dimensional Schauder decomposition of X (with P (j)(X) =

span{ei}ji=1 for j ∈ N).
We conclude this section with a fact which is surely known. Since we

could not find a reference, a proof is included.

Lemma 2.2. Let E be a finite-dimensional lcHs and U be a closed, abso-
lutely convex 0-neighbourhood in E. Then there exist a subspace F of E with
F ⊆ U and a bounded (hence, relatively compact) subset B ⊆ E such that
U ⊆ F +B.

Proof. Define F :=
⋂
α>0 αU . It is routine to verify that F is the largest

subspace of E which is contained in U . Of course, it may happen that
F = {0}, e.g. if U is bounded. Since E is finite-dimensional and F is the
largest subspace of E lying in U , we can write E = F ⊕G with G a subspace
of X such that B := (2U)∩G does not contain any non-zero subspace of E.

We claim that B is bounded (hence, relatively compact). Indeed, as B is a
closed, absolutely convex 0-neighbourhood of the finite-dimensional space G,
we may (and will) assume that E is normed via a norm ‖·‖. Suppose that B is
unbounded in E. Then there is a sequence {wj}∞j=1 in B such that 1 < ‖wj‖
for all j, with {‖wj‖}∞j=1 increasing to ∞ as j → ∞. Set uj := wj/‖wj‖
for j ∈ N. Since B is absolutely convex, uj ∈ B for each j ∈ N. As the
unit sphere of G is compact, there exists u ∈ G, with ‖u‖ = 1, which is the
limit of some subsequence of {uj}j=1. Denote this subsequence in the same
way. Suppose, for the moment, that λu ∈ B whenever λ > 1. Since B is
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absolutely convex, it would follow that the linear span of {u} (a non-trivial
subspace) is contained in B; a contradiction. So, fix λ > 1. Select j0 ∈ N
such that λ < ‖wj‖ for all j > j0. Thus, λuj = (λ/‖wj‖)wj ∈ B for each
j > j0. On the other hand, λuj → λu as j → ∞. Therefore λu belongs to
the closed set B. This proves the claim.

It remains to show that U ⊆ F + B. Let x ∈ U . Then x = f + g with
f ∈ F and g ∈ G, and so g = x − f ∈ U − U ⊆ 2U . Hence, g ∈ B, which
shows that x ∈ F +B.

3. Rapid convergence of operators on Fréchet–Schwartz spaces.
Throughout this section, X is a Fréchet space with a fundamental, increasing
sequence ΓX = {qn}∞n=1 of seminorms. For each n ∈ N, set Un := {x ∈ X :
qn(x) ≤ 1}.

A sequence of operators {Sk}∞k=1 ⊆ L(X) is said to be rapidly convergent
to S ∈ L(X) if

(3.1) ∀n ∈ N ∃m > n: lim
k→∞

sup
x∈Um

qn((Sk − S)x) = 0.

In such a case we write Sk
(R)−−→ S in L(X) as k →∞ or (R)-limk→∞ Sk = S.

It is routine to verify that Sk
(R)−−→ S in L(X) as k →∞ if and only if

(3.2) ∀n ∈ N ∃m > n ∃α = (αk)k ∈ c0 ∀x ∈ X: qn((Sk−S)x) ≤ αkqm(x).

Clearly, Sk
(R)−−→ S as k →∞ if and only if (Sk − S)

(R)−−→ 0 as k →∞.

Remark 3.1. If {Sk}∞k=1 ⊆ L(X) satisfies Sk
(R)−−→ S for k → ∞, then

it is routine to check that necessarily τb-limk→∞ Sk = S. Therefore, also
τs-limk→∞ Sk = S. In particular, the limit of a rapidly convergent sequence
in L(X) is unique.

Rapidly convergent sequences of operators are easy to exhibit.

Example 3.2. Let X be a Fréchet space which is the product of a se-
quence of Fréchet spaces, i.e., X =

∏∞
i=1Xi with each Xi a Fréchet space.

For each i ∈ N, let ΓXi = {q
(i)
n }∞n=1 be a fundamental increasing sequence of

seminorms for Xi. Then the sequence of seminorms given by

pn(x) :=
n∑
i=1

q(i)n (xi), x = (xi)i ∈ X,

for each n ∈ N, defines the lc-topology of X.
Consider the sequence of operators {P (k)}∞k=1 ⊆ L(X), where

P (k)x := (x1, . . . , xk, 0, 0, . . .), x = (xi)i ∈ X,
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i.e., P (k) is the projection of X onto
∏k
i=1Xi. Then (R)-limk→∞ P

(k) = I.
Indeed, for any fixed n ∈ N, we have pn((I − P (k))x) = 0 for all x ∈ X and
k > n.

We proceed to analyze the relationship between the rapid convergence of
sequences of operators on a Fréchet space X and the fact that X is Schwartz.

Proposition 3.3. Let X be a Fréchet–Schwartz space. If {Sk}∞k=1 ⊆
L(X) satisfies τs-limk→∞ Sk = S for some S ∈ L(X), then also

(R)- lim
k→∞

Sk = S.

Proof. It suffices to consider the case when S = 0. Since {Sk}∞k=1 con-
verges to 0 in Ls(X) and X is Fréchet, {Sk}∞k=1 is equicontinuous in L(X).
Let n ∈ N. Then there exists r(n) > n such that

(3.3) Sk(Ur(n)) ⊆ Un, k ∈ N.
As X is Schwartz, (2.1) implies that there exists m > r(n) satisfying

(3.4) ∀ε > 0 ∃x1, . . . , xp(ε) ∈ X: Um ⊆
p(ε)⋃
i=1

(
xi +

ε

2
Ur(n)

)
.

To prove that (R)-limk→∞ Sk = 0 we need to show that

(3.5) lim
k→∞

sup
x∈Um

qn(Skx) = 0.

To verify (3.5), let ε > 0 and choose x1, . . . , xp(ε) ∈ X according to (3.4).
For each i = 1, . . . , p(ε) we have Skxi → 0 in X as k → ∞. Hence, there
exists k0 ∈ N such that

(3.6) Skxi ∈
ε

2
Un, k ≥ k0, i = 1, . . . , p(ε).

Let x ∈ Um. By (3.4) there exists some j ∈ {1, . . . , p(ε)} such that x is in
xj + (ε/2)Ur(n). So, for every k ≥ k0 we deduce, via (3.3) and (3.6), that

Skx ∈ Skxj +
ε

2
Sk(Ur(n)) ⊆

ε

2
Un +

ε

2
Un = εUn.

That is, supx∈Um
qn(Skx) ≤ ε for all k ≥ k0. This verifies (3.5) and completes

the proof.

An immediate application is the following result.

Corollary 3.4. A Fréchet space X 6= {0} is Schwartz if and only if
every τs-convergent sequence in L(X) is also rapidly convergent in L(X).

Proof. The necessity of the condition is clear from Proposition 3.3.
For the sufficiency, assume that the stated condition holds. Fix a se-

quence {x′k}∞k=1 ⊆ X ′ satisfying limk→∞ x
′
k = 0 in X ′σ. Select any a in

X \ {0} and choose n ∈ N such that qn(a) > 0. Define now a sequence
{Sk}∞k=1 ⊆ L(X) by setting Skx := 〈x, x′k〉a for x ∈ X and k ∈ N.
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Clearly, τs-limk→∞ Sk = 0. By assumption also (R)-limk→∞ Sk = 0, and
hence, via (3.1), there is m > n such that (supx∈Um

qn(Skx))k ∈ c0. But
supx∈Um

qn(Skx) = qn(a) supx∈Um
|〈x, x′k〉|, for each k ∈ N, with qn(a) 6= 0,

from which it follows that (supx∈Um
|〈x, x′k〉|)k ∈ c0. So, X is Schwartz by

Theorem 2.1.

Note that a Schauder decomposition {Pj}∞j=1 of X satisfies property (S)
if and only if Pj

(R)−−→ I in L(X) for j →∞ (see (2.3) and (3.1)).
The following result is essentially Lemma 1 of [5].

Proposition 3.5. Let X be a Fréchet–Schwartz space and {Pj}∞j=1 ⊆
L(X) be any Schauder decomposition of X. Then each closed subspace Pj(X)
of X is Schwartz, j ∈ N, and (R)-limj→∞ Pj = I.

Proof. Every closed subspace of a Fréchet–Schwartz space is also a Fré-
chet–Schwartz space [15, §15, Proposition 6]. So, Pj(X) is a Fréchet–Schwartz
space, for each j ∈ N. Moreover, by (S2) we have Pj → I in Ls(X) as j →∞,
and so Proposition 3.3 implies that (R)-limj→∞ Pj = I.

The converse of Proposition 3.5 holds for certain kinds of Schauder de-
compositions (cf. the next result), but not in general (see Example 5.1).

Proposition 3.6. Let X be a Fréchet space and {Pj}∞j=1 ⊆ L(X) be a
finite-dimensional Schauder decomposition. If (R)-limj→∞ Pj = I, then X
is Schwartz.

Proof. Since {Pj}∞j=1 is equicontinuous, we can select a basis {Un}∞n=1 of
decreasing, absolutely convex 0-neighbourhoods of X such that Pj(Un) ⊆ Un
for each j, n ∈ N. To show that X is Schwartz, by (2.2) it suffices to verify
that

(3.7) ∀n∈N ∃m>n ∀ε > 0 ∃Lε ⊆ X relatively compact: Um ⊆ Lε + εUn.

So, fix n ∈ N. Since Pj
(R)−−→ I for j → ∞, by (3.1) there exists m > n such

that limj→∞ supx∈Um
qn((I−Pj)x) = 0. Hence, given any ε > 0, there exists

j0 ∈ N such that supx∈Um
qn((I − Pj0)x) < ε/2. It follows that

(3.8) x− Pj0x = (I − Pj0)x ∈
ε

2
Un, x ∈ Um.

Applying Lemma 2.2 with E := Pj0(X) and U := Um ∩ E we can conclude
that there exists a finite-dimensional subspace F of Pj0(X) contained in Um
and a relatively compact subset B of Pj0(X) such that

(3.9) Um ∩ Pj0(X) ⊆ F +B.

Since F ⊆ Um and F is a subspace, we have (2/ε)F = F ⊆ Um, i.e.,
F ⊆ (ε/2)Um, and so (3.9) yields Um ∩ Pj0(X) ⊆ (ε/2)Um + B. Hence,
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for each x ∈ Um it follows from the previous inclusion, from the inclusion
Pj0(Um) ⊆ Um ⊆ Un and from (3.8) that

x = (x− Pj0x) + Pj0x ∈
ε

2
Un + Pj0(Um)

⊆ ε

2
Un + (Um ∩ Pj0(X)) ⊆ ε

2
Un +

ε

2
Um +B ⊆ B + εUn.

This establishes (3.7) with Lε := B and completes the proof.

The following is an immediate consequence of Propositions 3.5 and 3.6.

Corollary 3.7. Let X be a Fréchet space with basis {ei}∞i=1 and let P (j)

be the projection defined via (2.4) for each j ∈ N. Then X is Schwartz if and
only if (R)-limj→∞ P

(j) = I.

4. Power bounded operators on Fréchet–Schwartz spaces. Let
X be a lcHs and T ∈ L(X), in which case we define T[0] := I and

(4.1) T[k] :=
1

k

k∑
m=1

Tm, k ∈ N.

The operator T[k] is the kth Cesàro mean of T . Observe that

(4.2) (I − T )T[k] = T[k](I − T ) =
1

k
(T − T k+1), k ∈ N,

and

(4.3)
1

k
· T k = T[k] −

k − 1

k
T[k−1], k ∈ N.

Suppose that T[k] → P in Ls(X) as k → ∞. According to (4.3) we find
that τs-limk→∞ k

−1T k = 0. Moreover, if X is a Fréchet space, then P is a
projection satisfying TP = PT = T with KerP = (I − T )(X) and P (X) =
Ker(I − T ). In addition,

(4.4) X = Ker(I − T )⊕ (I − T )(X)

(see [1, Theorem 2.4], [27, Chap. VIII, §3, p. 213]). Recall that T ∈ L(X)
is power bounded if the sequence {Tn}∞n=1 is equicontinuous in L(X), and
that T ∈ L(X) is mean ergodic (resp. uniformly mean ergodic) if the se-
quence of Cesàro means {T[k]}∞k=1 is convergent in Ls(X) (resp. in Lb(X));
see [1], [20] for more details. Finally, for X a Fréchet space, an operator
T ∈ L(X) is said to be rapidly mean ergodic, briefly (R)-mean ergodic, if
the sequence {T[k]}∞k=1 is rapidly convergent in L(X). Rapid mean ergodicity
always implies uniform mean ergodicity; see Remark 3.1.

Our purpose now is to investigate the connection between the power
boundedness of an operator on a Fréchet–Schwartz space and the rapid con-
vergence of its Cesàro means.
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Proposition 4.1. Let X be a Fréchet–Schwartz space. If T ∈ L(X) is
power bounded, then T is rapidly mean ergodic.

Proof. Since X is Montel [23, Remark 24.24] and T is power bounded,
we can apply [1, Theorem 2.4 and Proposition 2.8] to conclude that there
is a projection P ∈ L(X) such that T[k] → P in Lb(X) for k → ∞. By
Proposition 3.3 it follows that (R)-limk→∞ T[k] = P .

Remark 4.2. Let X be a Fréchet space with a basis. If X is not Montel,
then there exists a power bounded operator T ∈ L(X) such that {T[k]}∞k=1
does not converge in Lb(X) [1, Theorem 1.3]. Hence, {T[k]}∞k=1 cannot be
rapidly convergent (see Remark 3.1).

The next result follows from a deep theorem of Bellenot [4, Theorem 3.2].

Proposition 4.3. Let X be a Fréchet space which is a closed subspace of
a Fréchet space with an unconditional basis. If X is not Schwartz, then there
exist a closed subspace Y of X with an unconditional basis (say, {ei,j}∞i,j=1

⊆ Y ), an increasing, fundamental sequence of seminorms {‖ · ‖k}∞k=1 in X,
and positive numbers {bk,i : k ≤ i, i ∈ N} satisfying 1 < bk,i‖ei,j‖k < 2 for
each k ≤ i and j ∈ N. Moreover, Y is not Schwartz.

Proof. We refer to [4, Theorem 3.2(II) and Corollary 3.4], together with
the following comments.

In the notation of Definition 3.1 of [4], we use the partition {Ai}∞i=1 of
N given there (with each Ai infinite) to write N× N =

⋃∞
i=1Ai for the rep-

resentation Ai = {(i, j) : j ∈ N}, for i ∈ N. The obliquely normalized basic
sequence {xn}∞n=1 in [4, Definition 3.1] can then be written as {ei,j}∞i,j=1.
Since the basic sequence {xn}∞n=1 is unconditional (cf. [4, Corollary 3.4]),
the reordering {ei,j}∞i,j=1 of {xn}∞n=1 is permissible.

That Y is not Schwartz is noted immediately prior to Theorem 3.2
in [4].

Let X be a Fréchet space with an unconditional basis {ei}∞i=1 and corre-
sponding dual basis {e′i}∞i=1. For each finite subset F ⊆ N, define PF : x 7→
PFx :=

∑
i∈F 〈x, e′i〉ei for x ∈ X, and for each j ∈ N set P (j) := P{1,...,j}.

Clearly, PF ∈ L(X) is a finite-rank projection on X. Moreover, since the
basis {ei}∞i=1 is unconditional, the family of operators {PF : F ⊆ N finite} is
a bounded subset of Ls(X), and hence is equicontinuous (as X is a Fréchet
space). Furthermore, by [16, Theorem 14.6.1] the set {PFx : F ⊆ N finite}
is precompact in X for each x ∈ X.

Let {‖ · ‖k}∞k=1 be a fundamental increasing sequence of continuous semi-
norms for X. For fixed k ∈ N, set

(4.5) qk(x) := sup{‖PFx‖k : F ⊆ N finite}, x ∈ X.
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The supremum is finite because {PFx : F ⊆ N finite} ∈ B(X) for each
x ∈ X. Clearly, qk is a seminorm on X. Since x = limj→∞ P

(j)x for all
x ∈ X, it follows that ‖x‖k = limj→∞ ‖P (j)x‖k ≤ qk(x) for all x ∈ X. On
the other hand, as {PF : F ⊆ N finite} is equicontinuous, there exist l(k) > k
and Ck > 0 such that

‖PFx‖k ≤ Ck‖x‖l(k), x ∈ X, F ⊆ N finite,

and hence qk(x) ≤ Ck‖x‖l(k) for x ∈ X. Since k ∈ N is arbitrary, we deduce
that {qk}∞k=1 is also a fundamental increasing sequence of seminorms in X.
In particular, for all i, k ∈ N, qk(ei) = ‖ei‖k because PF ei = 0 if i 6∈ F and
PF ei = ei if i ∈ F .

Lemma 4.4. Let Y be a Fréchet space with an unconditional basis {ei}∞i=1

and corresponding dual basis {e′i}∞i=1. Let {λi}∞i=1 be a sequence of numbers
satisfying |λi| ≤ 1 for i ∈ N. Then the diagonal operator Tλ : Y → Y given
by

(4.6) Tλx :=

∞∑
i=1

λi〈x, e′i〉ei, x ∈ Y,

belongs to L(Y ) and is power bounded. Moreover, τs-limn→∞ (Tλ)
n = 0 when-

ever |λi| < 1 for all i ∈ N.

Proof. Let {‖·‖k}∞k=1 be a fundamental increasing sequence of seminorms
on Y . By the comments immediately prior to the lemma (keeping the same
notation), the seminorms {qk}∞k=1 given by (4.5) also form a fundamental
increasing sequence of seminorms on Y . Clearly,

(4.7) qk(PFx) ≤ qk(x), x ∈ X, k ∈ N, F ⊆ N finite.

For x ∈ Y , the series
∑∞

i=1〈x, e′i〉ei converges unconditionally to x in Y . So,
by [22, §4, Theorem], the series

∑∞
i=1 µi〈x, e′i〉ei converges in Y for all µ =

(µi)i ∈ `∞. Accordingly, the operator Tλ : Y → Y specified by (4.6) is well
defined and linear. Moreover, as Tλx = limj→∞

∑j
i=1 λi〈x, e′i〉ei for x ∈ Y ,

we can apply the Banach–Steinhaus theorem to conclude that Tλ ∈ L(Y ).
Fix n ∈ N. Clearly, |λni | ≤ 1 for all i ∈ N. Hence, given j, k ∈ N, we can

apply the inequality (I) on p. 115 of [22] to deduce, for each x ∈ Y , via (4.7),
that

qk

( j∑
i=1

λni 〈x, e′i〉ei
)
≤ 4 sup

F⊆{1,...,j}
qk

(∑
i∈F
〈x, e′i〉ei

)
(4.8)

= 4 sup
F⊆{1,...,j}

qk(PFx) ≤ 4qk(x).

Since (Tλ)
nx = limj→∞

∑j
i=1 λ

n
i 〈x, e′i〉ei for all x ∈ Y , it follows from (4.8)
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that, for every k ∈ N,

qk((Tλ)
nx) = lim

j→∞
qk

( j∑
i=1

λni 〈x, e′i〉ei
)
≤ 4qk(x), x ∈ Y.

By the arbitrariness of n ∈ N, it follows that Tλ is power bounded.
Finally, assume that |λi| < 1 for each i ∈ N. This ensures that (Tλ)nei =

λni ei → 0 in Y for n→∞. Since {(Tλ)n}∞n=1 is equicontinuous and span{ei :
i ∈ N} is dense in Y , it follows that (Tλ)

nx → 0 in Y as n → ∞ for each
x ∈ Y .

Proposition 4.5. Let Y be a Fréchet space with a fundamental increas-
ing sequence of seminorms {‖ · ‖k}∞k=1 and an unconditional basis {ei,j}∞i,j=1

such that there exist positive numbers {bk,i : k ≤ i, i ∈ N} satisfying 1 <
bk,i‖ei,j‖k < 2 for each k ≤ i and j ∈ N. Then there exists a power bounded
operator T ∈ L(Y ) such that τs-limn→∞ T

n = 0 but T is not rapidly mean
ergodic.

Proof. By assumption the basis {ei,j}∞i,j=1 is unconditional. In the nota-
tion of the discussion prior to Lemma 4.4, via (4.5) we see that {qk}∞k=1 is also
a fundamental, increasing sequence of seminorms for Y , and qk(ei,j) = ‖ei,j‖k
for each k ∈ N and (i, j) ∈ N× N.

Set λ := (λij)i,j∈N with λij := 1 − 2−j for i, j ∈ N. By Lemma 4.4 the
diagonal operator T ∈ L(Y ) given by

Tx :=

∞∑
i,j=1

λij〈x, e′i,j〉ei,j , x ∈ Y,

is power bounded and τs-limn→∞ T
n = 0. It remains to show that the se-

quence {T[m]}∞m=1 is not rapidly convergent to 0. For this, it suffices to show
that the sequence {supx∈Uk

q1(T[m]x)}∞m=1 fails to converge to 0 for each
k ∈ N. So, fix k ∈ N. Then, for every m, j ∈ N, we have

T[m]ek,j =
1

m

m∑
l=1

T l(ek,j) =

(
1

m

m∑
l=1

(λkj)
l

)
ek,j =

(
1

m
λkj

1− (λkj)
m

1− λkj

)
ek,j .

For m = 2s and j = s, with s ∈ N, it follows that

T[2s]ek,s =

(
1

2s
(1− 2−s)

1− (1− 2−s)2
s

2−s

)
ek,s(4.9)

= (1− 2−s)[1− (1− 2−s)2
s
]ek,s, s ∈ N.

Since qk(ek,s/‖ek,s‖k) = 1, the element zk,s := ek,s/‖ek,s‖k is in Uk. More-
over, the sequence {1− (1−2−s)2

s}∞s=1 converges to (1− e−1) as s→∞ and
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so, via (4.9), we obtain, for all s large enough,

q1(T[2s]zk,s) = (1− 2−s)[1− (1− 2−s)2
s
]q1(zk,s)(4.10)

≥ 1

4

(
1− 1

e

)
q1(ek,s)

‖ek,s‖k
=

1

4

(
1− 1

e

)
‖ek,s‖1
‖ek,s‖k

.

But ‖ek,s‖1 > 1/b1,k and ‖ek,s‖k < 2/bk,k for all s ∈ N. So, from (4.10) it
follows that, for all s ∈ N large enough,

q1(T[2s]zk,s) ≥
1

4

(
1− 1

e

)
bk,k
2b1,k

.

Accordingly, {supx∈Uk
q1(T[m]x)}∞m=1 cannot converge to 0.

We can now establish one of the main results of this note.

Theorem 4.6. Let X be a Fréchet space which is a closed subspace of a
Fréchet space with an unconditional basis. Then X is Schwartz if and only
if every closed subspace Y of X has the property that every power bounded
operator on Y is rapidly mean ergodic.

Proof. Suppose that X is Schwartz and Y is any closed subspace of X.
Then Y is also Schwartz. Hence, every power bounded operator in L(Y ) is
rapidly mean ergodic (see Proposition 4.1).

Conversely, assume that X is not Schwartz. By Proposition 4.3 there
exists a closed subspace Y of X with an unconditional basis {ei,j}∞i,j=1 sat-
isfying the assumptions of Proposition 4.5. So there exists a power bounded
operator T ∈ L(Y ) which is not rapidly mean ergodic.

Remark 4.7. In [3] Bellenot exhibited Fréchet–Montel spaces which can-
not be closed subspaces of any Fréchet space with an unconditional basis.
Moreover, he proved that every Fréchet–Schwartz space is a closed subspace
of some Fréchet–Schwartz space with an unconditional basis.

5. Power bounded operators on Schwartz Köthe echelon spaces.
The aim of this section is to present a refinement of Theorem 4.6 when X
is a Köthe echelon space λp(A), for p ∈ [1,∞) ∪ {0}. All members of this
important and classical class of Fréchet spaces have an unconditional basis.

A sequence A = (an)n of functions an : I → [0,∞), with I a non-void
set, is called a Köthe matrix on I if 0 ≤ an(i) ≤ an+1(i) for all i ∈ I and
n ∈ N, and if for each i ∈ I there is n ∈ N such that an(i) > 0. To each
p ∈ [1,∞) we associate the linear space

(5.1) λp(A, I) :=
{
x ∈ CI : q(p)n (x) :=

(∑
i∈I
|an(i)xi|p

)1/p
<∞, ∀n ∈ N

}
.
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We will also need the linear space

(5.2) λ∞(A, I) :=
{
x ∈ CI : q(∞)

n (x) := sup
i∈I

an(i)|xi| <∞, ∀n ∈ N
}

and its closed subspace (equipped with the relative topology)

λ0(A, I) :=
{
x ∈ CI : lim

i
an(i)xi = 0, ∀n ∈ N

}
.

The seminorms generating the topology of λ0(A, I) are, of course, the re-
strictions q(0)n of q(∞)

n to λ0(A, I), for n ∈ N.
Elements x ∈ CI are denoted by x = (xi)i. The spaces λp(A, I) for

p ∈ [1,∞] are called Köthe echelon spaces (of order p); they are all Fréchet
spaces (separable if I is countable and p 6=∞, and reflexive if p 6∈ {0, 1,∞})
relative to the increasing sequence of seminorms q(p)1 ≤ q

(p)
2 ≤ · · · . In case

I = N or I = N× N, we simply write λp(A). In this case λp(A), for p 6=∞,
has an unconditional basis. For the theory of such spaces we refer to [6], [7],
[18], [23].

We begin with an example showing that in Proposition 3.6 it is not
possible to remove the finite-dimensionality of the Schauder decomposition
{Pj}∞j=1, even if one replaces this condition with the requirement that each
closed subspace Pj(X), for j ∈ N, is nuclear.

Example 5.1. Consider the Köthe matrix A = (an)n on N × N with
entries

(5.3) an(i, j) =

{
(nj)n if i < n,
ni if i ≥ n.

Then the Köthe echelon space λ1(A) is Fréchet–Montel but not Fréchet–
Schwartz; see [23, Example 27.21, p. 338]. For each k ∈ N, let Pk ∈ L(λ1(A))
be given by Pk(xij)i,j := (yij)i,j where yij := xij if i ≤ k and yij := 0 if
i > k, i.e., Pk is the projection of λ1(A) onto its first k rows. Then {Pk}∞k=1
is a Schauder decomposition of λ1(A), certainly not finite-dimensional.

We claim that Pk(λ1(A)) ⊆ λ1(A) is a nuclear Fréchet space for each
k ∈ N. To establish this it suffices to show that each sectional subspace

Qs(λ1(A)) := {x ∈ λ1(A) : xij = 0 if i 6= s}, s ∈ N,

is nuclear, because of the finite direct sum Pk(λ1(A)) =
⊕k

s=1Qs(λ1(A))
(see [23, Proposition 28.7]).

So, fix s ∈ N. If n > s, then an(s, j) = (nj)n for each j ∈ N, and hence

(5.4)
∞∑
j=1

an(s, j)

an+2(s, j)
=
∞∑
j=1

nn

(n+ 2)n+2

jn

jn+2
=

nn

(n+ 2)n+2

∞∑
j=1

1

j2
<∞.

Recalling that our Köthe matrix A = (an)n is on N × N (rather than on N
as in [23]), it follows from the Grothendieck–Pietsch criterion [23, Propo-
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sition 28.16] and from (5.4) that Qs(λ1(A)) is indeed nuclear. As already
noted, the nuclearity of Pk(λ1(A)), for k ∈ N, follows.

It remains to prove that Pk
(R)−−→ I in L(λ1(A)) as k → ∞. To see this,

recall that the nth seminorm qn := q
(1)
n of λ1(A), for n ∈ N, is given by

qn(x) :=
∑∞

i,j=1 an(i, j)|xij | for x ∈ λ1(A) (see (5.1)). Fix any n ∈ N and set
m := 2n. Then, for any k ≥ m, via (5.3) we have

qn((I − Pk)x) =
∑
i≥k+1

∞∑
j=1

an(i, j)|xij | =
∑
i≥k+1

∞∑
j=1

ni|xij |(5.5)

=
∑
i≥k+1

2−i
∞∑
j=1

(2n)i|xij | ≤
( ∑
i≥k+1

2−i
)
qm(x),

because i ≥ k ≥ 2n yields
∞∑
j=1

(2n)i|xij | =
∞∑
j=1

a2n(i, j)|xij | ≤
∞∑

i,j=1

a2n(i, j)|xij | = qm(x).

It is then clear from (5.5) that

sup
x∈Um

qn((I − Pk)x) ≤
∑
i≥k+1

2−i = 2−k, k ≥ m,

which implies that limk→∞ supx∈Um
qn((I − Pk)x) = 0. Since n is arbitrary

and (2−k)k∈N ∈ c0, by (3.2) we conlcude that Pk
(R)−−→ I in L(λ1(A)) as

k →∞.

Our purpose is to characterize those Köthe echelon spaces which are
Schwartz, in terms of the behaviour of the Cesàro means of power bounded
operators defined on them. This is obtained in Theorem 5.6 below, a re-
sult which improves Theorem 4.6 for the case of Köthe echelon spaces. For
characterizing the property of being Schwartz, Theorem 4.6 also provides
a version of analogous results characterizing Montel and reflexive Fréchet
spaces (see [1, Proposition 5.1 and Theorem 5.4]).

We first require the following result, which is implicit in [26, pp. 223–224].
We include a proof for the sake of completeness.

Lemma 5.2. Let A = (an)n∈N be a Köthe matrix on N which satisfies the
following two conditions:

(M) For each n ∈ N and each infinite subset H ⊆ N there exists
m > n such that infi∈H an(i)/am(i) = 0.

(not-S) There exists n0 ∈ N such that a1/am 6∈ c0 for every m > n0.

Then there exist an infinite family {Ii}∞i=1 of pairwise disjoint, infinite sub-
sets of N, with each Ii represented as Ii = {(i, j) : j ∈ N}, and an increasing
sequence {mj}∞j=1 ⊆ N beginning with m1 = 2 satisfying:
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(1) For each i > 2 there exists εi > 0 such that a1(i, j) > εiami(i, j) for
all (i, j) ∈ Ii with j ∈ N.

(2) For each i ∈ N we have limj→∞ ami(i, j)/ami+1(i, j) = 0.

Proof. Choose n0 according to (not-S). Deleting finitely many n’s if nec-
essary, we may assume that n0 = 1 and that an > 0 on N for all n ∈ N. Since
a1/a2 6∈ c0, there exist ε1 > 0 and an increasing sequence J1 = {l1s}∞s=1 ⊆ N
such that a1(l1s)/a2(l1s) > ε1 for all s ∈ N. By condition (M) there exist
m2 > m1 := 2 and an infinite subset I1 of J1, which can be represented
as I1 = {(1, j) : j ∈ N}, such that limj→∞ a2(1, j)/am2(1, j) = 0. Since
0 < a1 ≤ a2 on N, we have 0 < a1/am2 ≤ a2/am2 on N, and hence also
limj→∞ a1(1, j)/am2(1, j) = 0. By (not-S), also a1/am2 6∈ c0. So, there ex-
ist ε2 > 0 and an increasing sequence J2 = {l2s}∞s=1 ⊆ N \ I1 such that
a1(l

2
s)/am2(l

2
s) > ε2 for all s ∈ N. Then, by condition (M) there exist

m3 > m2 and an infinite subset I2 of J2, which can be represented as
I2 = {(2, j) : j ∈ N}, such that limj→∞ am2(2, j)/am3(2, j) = 0. Note that
0 < a1/am3 ≤ a1/am2 on I1 (as am2 ≤ am3) and 0 < a1/am3 ≤ am2/am3

on I2 (as a1 ≤ am2). Since I1 ∩ I2 = ∅, with a1/am2 → 0 on I1 and
am2/am3 → 0 on I2, it follows that limk→∞, k∈(I1∪I2) a1(k)/am3(k) = 0.
Again by (not-S), also a1/am3 6∈ c0. So, there exist ε3 > 0 and an increasing
sequence J3 = {l3s}∞s=1 ⊆ N \ (I1 ∪ I2) such that a1(l3s)/am3(l

3
s) > ε3 for all

s ∈ N. Then, by condition (M) there exist m4 > m3 and an infinite sub-
set I3 of J3, which can be represented as I3 = {(3, j) : j ∈ N}, such that
limj→∞ am3(3, j)/am4(3, j) = 0. The result follows by induction.

Let us return to the spaces λp(A) with p ∈ [1,∞) ∪ {0}.

Corollary 5.3. Let A = (an)n∈N be a Köthe matrix on N. If the Köthe
echelon space λp(A), with p ∈ [1,∞)∪{0}, is Montel but not Schwartz, then
there exists a sectional subspace λp(A, I) of λp(A), with I = {(i, j) : i, j ∈ N},
having the following two properties:

(1) For each i ≥ 2 there exists εi > 0 such that a1(i, j) > εiai(i, j) for
all j ∈ N.

(2) For each i ∈ N we have limj→∞ ai(i, j)/ai+1(i, j) = 0.

Moreover, λp(A, I) is Montel.

Proof. Since λp(A) is Montel but not Schwartz, the Köthe matrix A
satisfies the conditions (M) (by [23, Theorem 27.9]) and (not-S) (by [23,
Proposition 27.10]) given in Lemma 5.2. So, by Lemma 5.2 there exist an
infinite family {Ii}∞i=1 of pairwise disjoint infinite subsets of N, where Ii
can be represented as Ii = {(i, j) : j ∈ N}, and an increasing sequence
{mj}∞j=1 ⊆ N beginning with m1 = 2 such that both conditions (1) and (2)
of Lemma 5.2 are satisfied.
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Set I :=
⋃∞
i=1 Ii = {(i, j) : i, j ∈ N} and pass to the subsequence

{amj}∞j=1 of {an}∞n=1. Then the sectional subspace λp(A, I) of λp(A) sat-
isfies conditions (1) and (2) of the corollary.

Lemma 5.4. Let p ∈ [1,∞) ∪ {0} and A = (an)n∈N be a Köthe matrix
on N× N such that the Köthe echelon space λp(A) is Montel. If A satisfies

(5.6) ∀n ≥ 2 ∃εn > 0 ∀j ∈ N: a1(n, j) ≥ εnan(n, j),
then there exists a power bounded operator T ∈ L(λp(A)) satisfying
τb-limn→∞ T

n = 0 but {T[k]}∞k=1 is not rapidly convergent to 0.

Proof. Set λj := 1 − 2−j for j ∈ N, and define Tx := (λjxij)i,j for
x = (xij)i,j ∈ λp(A). Then T : x 7→ Tx belongs to L(λp(A)) and is power
bounded. Indeed, given n ∈ N, we see that q(p)m (Tnx) ≤ q

(p)
m (x) for each

m ∈ N and x ∈ λp(A), as 0 < (λj)
n < 1 for all j ∈ N (see (5.1) and (5.2)).

So, {Tn}∞n=1 is equicontinuous.
For any i, j ∈ N, set ei,j := (δhiδkj)h,k, where δrs = 0 if r 6= s and δrs = 1

if r = s. Then, for each n ∈ N and (i, j) ∈ N×N, we have Tnei,j = (λj)
nei,j .

In particular, limn→∞ T
nei,j = 0 in λp(A) for all i, j ∈ N. Since {Tn}∞n=1

is equicontinuous and span{ei,j : i, j ∈ N} is dense in λp(A), it follows that
τs-limn→∞ T

n = 0. Since λp(A) is Montel, we also have τb-limn→∞ T
n = 0.

Accordingly, also the arithmetic means {T[k]}∞k=1 of {Tn}∞n=1 converge to 0
in Lb(λp(A)), i.e., T is uniformly mean ergodic with limit projection P = 0.

It remains to prove that {T[k]}∞k=1 is not rapidly convergent to 0 in
L(λp(A)). For this it suffices to show that {supx∈Um

q
(p)
1 (T[k]x)}∞k=1 fails to

converge to 0 for each m ≥ 2, where Um := {x ∈ λp(A) : q(p)m (x) ≤ 1}.
So, fix any m ∈ N with m ≥ 2. For all j, k ∈ N, we have

(5.7) T[k]em,j =
1

k

k∑
l=1

T l(em,j) =

(
1

k

k∑
l=1

λlj

)
em,j =

(
1

k
λj

1− λkj
1− λj

)
em,j .

If we take k := 2s and j := s for each s ∈ N, then from (5.7) it follows that

T[2s]em,s =

[
1

2s
(1− 2−s)

1− (1− 2−s)2
s

2−s

]
em,s(5.8)

= (1− 2−s)[1− (1− 2−s)2
s
]em,s.

Note that q(p)m (em,s/am(m, s)) = 1, and so zm,s := em,s/am(m, s) ∈ Um for
every s ∈ N. Since the sequence {[1− (1− 2−s)2

s
]}∞s=1 converges to 1− e−1

for s→∞, it follows via (5.8) and (5.6) that, for all s ∈ N large enough,

q
(p)
1 (T[2s]zm,s) =

1

am(m, s)
(1− 2−s)[1− (1− 2−s)2

s
]q

(p)
1 (em,s)

≥ 1

4
(1− e−1) a1(m, s)

am(m, s)
≥ 1

4
(1− e−1)εm.
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This shows that {supx∈Um
q
(p)
1 (T[k]x)}∞k=1 cannot converge to 0. Since m ≥ 2

is arbitrary, the proof is complete.

Remark 5.5. Corollary 5.3 ensures that there do exist Köthe matrices A
which satisfy the assumptions required in Lemma 5.4. For explicit examples,
see [18, Ch. 31, §5], [23, Example 27.21].

Theorem 5.6. Let p ∈ [1,∞)∪{0} and A = (an)n∈N be a Köthe matrix
on N. Then the Köthe echelon space λp(A) is Schwartz if and only if every
power bounded operator on λp(A) is rapidly mean ergodic.

Proof. If λp(A) is Schwartz, then the desired conclusion follows from
Proposition 4.1.

Conversely, suppose that λp(A) is not Schwartz.

Case (I): λp(A) is not Montel. Then it follows from [1, Propositions 2.9
and 2.13] that there exists a power bounded operator T ∈ L(λp(A)) which
is not uniformly mean ergodic and hence, by Remark 3.1, not rapidly mean
ergodic either.

Case (II): λp(A) is Montel. Then, by Corollary 5.3, there exists a sec-
tional subspace λp(A, I) of λp(A), with I = N×N, satisfying condition (5.6).
So, by Lemma 5.4 there exists T ∈ L(λp(A, I)) which is power bounded, sat-
isfies τb-limn→∞ T

n = 0, but is not rapidly mean ergodic.
Since λp(A, I) is a sectional (hence complemented) subspace of λp(A),

using the operator T it is routine to construct S ∈ Lb(λp(A)) which is power
bounded but not rapidly mean ergodic.

We conclude with some comments regarding the spaces λ∞(A). First,
the canonical unit vectors {ei}∞i=1 form an unconditional basis of λ∞(A)
if and only if λ∞(A) is Montel if and only if λ∞(A) = λ0(A) (see [11,
Proposition 2.3]). Moreover, there exist Köthe matrices A such that λ∞(A)
is Montel but not Schwartz [23, Example 27.21]. In this case, the projections
{P (j)}∞j=1 defined via (2.4) form a finite-dimensional unconditional Schauder
decomposition of λ∞(A) with τb-limj→∞ P

(j) = I (as λ∞(A) is Montel),
but {P (j)}∞j=1 is not rapidly convergent to I in L(λ∞(A)); see Corollary
3.7. It is also known that there exist Köthe matrices A such that λ∞(A) is
not Montel, non-normable and satisfies the density condition [11, pp. 90–
91]. Then {ei}∞i=1 fails to be an unconditional basis of λ∞(A). Nevertheless,
for such A, the space λ∞(A) admits a non-trivial unconditional Schauder
decomposition [11, Proposition 4.4].

Even though {ei}∞i=1 may not be a basis for λ∞(A), in general, we can
always define a linear functional e′i : λ∞(A)→ C via

〈x, e′i〉 := xi, x = (xj)j ∈ λ∞(A),
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for each i ∈ N. For a fixed n ∈ N and each i ∈ N,

|〈x, e′i〉| ≤

{
q
(∞)
n (x) if an(i) = 0, x ∈ λ∞(A),
(an(i))

−1q
(∞)
n (x) if an(i) > 0, x ∈ λ∞(A),

from which it is clear that e′i is continuous. Moreover, the finite-rank pro-
jections {P (j)}∞j=1 ⊆ L(λ∞(A)) as given by (2.4) are then well defined and
satisfy both (S1) and (S3) in the definition of a Schauder decomposition.

In relation to the next result, see also [23, Proposition 27.10].

Proposition 5.7. The Köthe echelon space λ∞(A) is Schwartz if and
only if (R)-limj→∞ P

(j) = I.

Proof. If λ∞(A) is Schwartz, then it is also Montel. By the comments
prior to the proposition we have λ∞(A) = λ0(A) with {ei}∞i=1 an uncondi-
tional basis. In particular, {P (j)}∞j=1 is then a Schauder decomposition of
λ∞(A), and so (R)-limj→∞ P

(j) = I in L(λ∞(A)) (see Proposition 3.5).
Conversely, suppose that (R)-limj→∞ P

(j) = I in L(λ∞(A)). By Re-
mark 3.1 also τs-limj→∞ P

(j) = I, and so {P (j)}∞j=1 is a (finite-dimensional)
Schauder decomposition of λ∞(A). Then Proposition 3.6 implies that λ∞(A)
is Schwartz.

We conclude with the following analogue of Theorem 5.6.

Proposition 5.8. The Köthe echelon space λ∞(A) is Schwartz if and
only if every power bounded operator on λ∞(A) is rapidly mean ergodic.

Proof. If λ∞(A) is Schwartz, the desired conclusion follows from Propo-
sition 4.1.

Conversely, suppose that λ∞(A) is not Schwartz.

Case (I): λ∞(A) is not Montel. By the equivalence (1)⇔(6) in [23,
Theorem 27.9] with p = ∞, there is an infinite set J ⊆ N, a constant
K > 0 and n ∈ N such that am(i) ≤ Kan(i) for all i ∈ J and m ≥ n.
Since the sequence {ak}∞k=1 is increasing (pointwise on N), we also have
an(i) ≤ am(i) for all i ∈ J and m ≥ n. So, the complemented sectional sub-
space λ∞(A, J) is isomorphic to `∞(an|J) ' `∞. The operator S ∈ L(`∞)
defined by Sx := (x2, x3, . . .) for x = (xi)i ∈ `∞ is power bounded but not
uniformly mean ergodic. By Remark 3.1, S is not rapidly mean ergodic. Us-
ing S it is routine to construct T ∈ L(λ∞(A)) which is power bounded but
not rapidly mean ergodic.

Case (II): λ∞(A) is Montel. Then λ∞(A) = λ0(A) with λ0(A) Mon-
tel. By Case (II) in the proof of Theorem 5.6 (with p = 0) there exists a
power bounded operator in L(λ0(A)) = L(λ∞(A)) which is not rapidly mean
ergodic.
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