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Joint subnormality of n-tuples and
Cy-semigroups of composition operators on L2-spaces

by

ProTr BUDZYNSKI and JAN STOCHEL (Krakow)

Abstract. Joint subnormality of a family of composition operators on L?-space is
characterized by means of positive definiteness of appropriate Radon—Nikodym deriva-
tives. Next, simplified positive definiteness conditions guaranteeing joint subnormality of a
Co-semigroup of composition operators are supplied. Finally, the Radon—Nikodym deriva-
tives associated to a jointly subnormal Cy-semigroup of composition operators are shown
to be the Laplace transforms of probability measures (modulo a Cp-group of scalars)
constituting a measurable family.

1. Introduction. The theory of subnormal operators is a vital part of
Operator Theory (cf. [6]). The notion of a subnormal operator was introduced
by Halmos in [12]. Roughly speaking, a subnormal operator is a restriction
of a normal one to its invariant subspace. Halmos himself gave in [12] a
two-condition criterion for subnormality of a single (bounded) operator. It
was successively simplified by Bram (cf. [4]), Embry (cf. [10]) and Lambert
(cf. [16]). In [15] It6 solved the problem of extending a family of commuting
operators acting in a Hilbert space H to a family of commuting normal
operators acting in a possibly larger Hilbert space K. In particular, Itd proved
that any Cy-semigroup of subnormal operators has an extension which is a
Co-semigroup of normal operators. This in turn enabled Nussbaum (cf. [23])
to show that the infinitesimal generator of a Cp-semigroup of subnormal
operators is a subnormal operator (in general unbounded). A multioperator
counterpart of the Embry—Lambert characterization of subnormality was
proved by Lubin in [20].

The foundations of the theory of composition operators in abstract L>-
spaces are well developed. In particular, the questions of boundedness, nor-
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mality, quasinormality, subnormality, hyponormality etc. of such operators
are entirely solved (cf. [9, 22, 27, 14, 8, 18, 19, 5]; see also [21, 25, 7] for
special classes of composition operators). The present paper offers criteria,
written in terms of Radon-Nikodym derivatives, for joint subnormality of
n-tuples as well as Cp-semigroups of composition operators on L?-spaces
(see Theorem 3.4, Lemma 4.4 and Corollary 4.6). This generalizes in vari-
ous ways Lambert’s characterization of subnormality of a single composition
operator (cf. [18]). For a particular class of composition operators induced
by square matrices, joint subnormality is completely characterized by alge-
braic properties of symbols (cf. Theorem 3.6). It is shown that for every real
t > 0, the Radon—Nikodym derivative hl? attached to a jointly subnormal
Co-semigroup of composition operators {Cy, }u>0 can be modified so as to
coincide (modulo a Cy-group of scalars) with the Laplace transforms calcu-
lated at t of a measurable family of probability Borel measures, the family
being independent of ¢ (cf. Theorem 4.5). The paper concludes with an ex-
ample of a Cy-semigroup of composition operators {Cy, }+>0 which is not
jointly subnormal, though the operator Cy, is subnormal. This shows that
the criteria for joint subnormality contained in Lemma 4.4 are optimal in a
sense.

A subsequent paper will be devoted to a general study of joint subnor-
mality of Cy-groups of composition operators.

2. Preliminaries. Denote by Z, the set of all nonnegative integers, by
N the set of all positive integers and by R the set of all nonnegative real
numbers. If @ is a subset of C containing 0, then Q(Zi) stands for the set of
all functions \: Z" — @ for which the set A=1(Q \ {0}) is finite.

We say that an n-sequence {ta}a621 of real numbers is a Stieltjes moment
n-sequence if there exists a positive Borel measure p on R} such that

(2.1) to = S s*du(s), «weZl;
R}

such a p is called a representing measure for {to}aczn. If (2.1) holds and
the closed support of y is contained in a closed subset F' of R}, then we say
that {ta}aczn is a Stieltjes moment n-sequence on F. Let us recall a use-
ful characterization of Stieltjes moment n-sequences on compact sets. Below
ej = (0j1,...,0jn) for j =1,...,n, where 5 ; stands for the Kronecker sym-
bol (for simplicity, we suppress the dependence of e; on n in the notation).

THEOREM 2.1 ([26, Theorem 3]). Assume that an n-sequence {ta}aczn
C R satisfies the following three conditions:

(1) Ya ez tarsAM@A(B) 2 0 for all A € CHH),
i nt AMa)A >0 orall\ € CZY) gnd j=1,....n
( ) Za7ﬁeZ+ Ot-l—ﬁ-l-e] ( ) (/8) f J ) 5 1y
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(iii) there exists an n-tuple (r1,...,my) of nonnegative real numbers such
that

2 .
t2o¢+2e]- < Tjt2a, a € Zi, j=1,....n.

Then {ta}a621 is a Stieltjes moment n-sequence on a compact subset of R'}.
Moreover, a representing measure p for {ta}ani 18 unique and its closed
support is contained in the rectangle [0,71] X --- x [0,ry]. If [0, R1] x --- X
[0, Ry,] is the least rectangle containing the closed support of p, then

It follows from Theorem 2.1 that a Stieltjes moment n-sequence which
has a representing measure with compact support is determinate, i.e. the
representing measure is unique (within the class of all Borel measures not
necessarily compactly supported, cf. [11]).

A bounded (linear) operator S on a (complex) Hilbert space H is called
subnormal if there exists a Hilbert space K O H (isometric embedding)
and a bounded normal operator N on K such that S C N, i.e. Sh = Nh
for all h € H. We say that a family {S,: w € 2} of bounded operators
on H is jointly subnormal if there exists a Hilbert space K O H and a
family {N,: w € 2} of commuting bounded normal operators on K such
that S, C N, for all w € 2. It is clear that a jointly subnormal family
{Su: w € 2} is commutative.

THEOREM 2.2 ([15]). A family {S,: w € 2} of bounded operators on a
Hilbert space H is jointly subnormal if and only if for every finite subset {2
of 2 the family {S.: w € '} is jointly subnormal.

Let us recall the Embry—Lambert—Lubin criterion for joint subnormality
(cf. [20]): an n-tuple S = (S1,...,Sy,) of commuting bounded operators on
a Hilbert space H is jointly subnormal if and only if

(22) S IS FPA@AB) =0, AeC), fen,
a,BELY
where §¢ = S{'' ... S0~ for a = (ov,..., ) € 2.

3. Families of composition operators. Let (X, X, ) be a o-finite
measure space. Consider a Y-measurable transformation ¢ : X — X such
that the measure p o ¢! is absolutely continuous with respect to p. Then
the operator Cy: L?(u) 2 D(Cy) — L*(u) given by

D(Cy) ={f e L*(n): fope L*(n)}, Cuf=fog for feD(Cy),
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is well-defined and linear. We call it the composition operator induced by ¢.
We also say that ¢ is the symbol of Cy. For every n € Z, we set

d,u o ((bn)fl
du ’
Notice that hg =1 a.e. [u]. Recall that Cy is a bounded operator on L? (1)

if and only if hf € L*>®(p). If : X — X is a Y-measurable transformation
such that the mapping L?(u) > f — f o1 € L?(p) is well-defined, then the
measure g ot~ ! is absolutely continuous with respect to p and

(3.2) ICull = l1RY 1137,
where ||h11p|]<>O stands for the L°°(u)-norm of hif. The interested reader is

referred to [9] and [22] for further information on composition operators.
Consider now an n-tuple ¢ = (¢1,...,¢,) of X-measurable transforma-

(3.1) he =

tions of X. For av = (a1,...,a,) € Z7}, we define the measure ,uf on X
by

u(o) = u((@") 1 (0), e,
where ¢ 1= ¢J* o --- 0 ¢, It is a matter of routine to show that if the
measures /i O (Z)J._l, 1 < j < n, are absolutely continuous with respect to f,

then so is ,ug for every o € Z}. As a consequence, we may write the Radon—
Nikodyn derivatives

dpd
hg) = E, [ RS Zﬁ,
and consider the composition operators Cy; in L*(p) for j =1,...,n. If no

confusion can arise, we write u, and h, instead of u&b and hfi5 , respectively.
We now investigate under what conditions the equality Cy = Cy, holds.

LEMMA 3.1. Assume that ¢ and ¢ are X -measurable transformations of
X inducing bounded composition operators Cy and Cy on L2 ().

() 76 = ae. 4] (), then Cy = Cy.
(ii) If Cy = Cy, then po (¢")™1 = po (¥™)~! and he = hY ae. [1] for
every n € Z.
(ili) Cy # Cy if and only if there exist sets Y, Z € X such that Y NZ = ()
and p(¢~ (V) N671(2)) > 0.

Proof. (i) is obvious.
(ii) If o € ¥ and p(o) < oo, then the characteristic function y, of o is
in L?(u) and, by the measure transport theorem ([13, Theorem C, p. 163]),

(*) Note that in general the set {x € X: ¢(z) # 9(z)} may not belong to X (see
Example 3.2). Hence ¢ = ¢ a.e. [u] is understood to mean that there exists a set Y € ¥
of full y-measure such that ¢(z) = ¢(z) forall z € Y.
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we have

§ 8 dit = Con ol = €112 = 112 = [ Cmxoll? = | 15

o g
Since p 1s o-finite, we get RS = AY ae. (1], which implies p o (¢")~1 =
po(pm)~

(iii) To prove the “if” part of (iii), set E = ¢~ 1(Y) Ny ~1(Z). Since the
measure p is o-finite, there exists a X-measurable function f: X — R4
such that f(x) > 0 for every z € Y, f(x) = 0 for every z € X \ Y and
§x [f(2)]?du(z) < oo. Combining this with the inclusions ¢(E) C Y and
Y(E) C Z C X \Y, we see that f(¢(x)) > 0 and f(¢(x)) = 0 for every
x € E. Since u(E) > 0, we get Cyf # Cy f.

Suppose now that Cy f # Cy f for some f € L?(u). Since simple functions
belonging to L?(u) are dense in L?(u) and the operators Cy, and Cy are
continuous, we deduce that there exists a simple function h € L?(u) such
that Cyh # Cyh. Then the set F' := {x € X: h(¢(z)) # h(y(x))} isin ¥
and p(F) > 0. Since h is a simple function, it is of the form h = Y"}'_; axxy;,
where n € N, {a; }7_, is a sequence of distinct complex numbers and {Y;}}_,
is a Y-measurable partition of X. Clearly, {¢~1(Y3) N "%b_l(Yl)}Z,lzl is a M-

measurable partition of X and (?)

F= U ¢~ (Vo) Ny (YY),
kl=1
k£l
Since u(F) > 0, we conclude that there exist k,l € {1,...,n} such that
k # 1 and p(¢~1(Yr) Ny~1(Y])) > 0. This completes the proof n

Note that if the sets Y and Z are as in (iii) of Lemma 3.1, then u(Y) > 0
and u(Z) > 0 (use the fact that o ¢t < pand porp™! < p).

EXAMPLE 3.2. It is not true in general that the equality Cy = Cy implies
¢ = 1 a.e. [p]. This can be illustrated by various examples built on o-algebras
generated by finite (or infinite) partitions of a nonempty set X. Here is a
sample of what is possible in this matter. Consider the set X = {1,2,3,4,5},
the o-algebra (= algebra) X' generated by the partition {1,2},{3},{4,5}
of X, and a finite positive measure p on X such that p({1,2}) > 0, u({3})
> 0 and p({4,5}) > 0. Let ¢ and 1 be the transformations of X given by
6(1) = 4, 6(2) = 5, 6(3) = 5, $(1) = 5, B(2) = 5, ¥(3) = 4 and B(k) =
Y(k) = k for k = 4,5. Then ¢ and 1) are Y-measurable transformations of
X such that Cy and Cy are well-defined on L?*(u) and C, = Cy, though
the equality ¢ = 1 a.e. [u] does not hold; in this particular case the set
{z € X: ¢(x) # ¢(x)} does not belong to X.

(?) Note that Cgh # Cyh implies n > 2.
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COROLLARY 3.3. Let X be a topological Hausdorff space, X be a o-
algebra of all Borel subsets of X and pu be a o-finite positive Borel measure
on X which is inner regular (3) with respect to compact sets. Assume that
¢ and 1 are continuous transformations of X inducing bounded composi-
tion operators Cy and Cy on L*(n). Then Cy = Cy if and only if ¢ = ¢
a.e. [pu]. Moreover, if n(U) > 0 for every nonempty open subset U of X, then

Cy = Cy if and only if ¢ = 1.

Proof. We only have to show that Cy = Cy implies ¢ = v a.e. [u]
(the “moreover” part is a direct consequence of this implication). Suppose,
contrary to our claim, that u(Xp) > 0, where Xo = {z € X: ¢(x) # ¢(z)}
(as X is Hausdorff, the set X \ Xy is closed). Take = € Xj. Since X is
Hausdorff, there exist open neighbourhoods Y, and Z, of ¢(z) and ¢(x)
respectively such that Y, N Z, = (). Then E, := ¢~ }(Y;) Ny ~1(Z,) is an
open neighbourhood of z and E, C Xy. This implies that X = UxeXO E.
In view of Lemma 3.1(iii), it is enough to show that there exists zo € Xp
such that p(Eg,) > 0. Suppose, contrary to our claim, that u(E,) = 0 for
every x € Xy. If K is a compact subset of X, then there exists a finite subset
{z1,...,2n} of X such that K C |J;_; Eq,. This implies that p(K) = 0. It
follows from the inner regularity of u that u(Xo) = 0, a contradiction. This
completes the proof. =

Jointly subnormal n-tuples of composition operators can be characterized
as follows (see [18] for a single operator case).

THEOREM 3.4. An n-tuple (Cy,,...,Cy,) of commuting bounded com-
position operators on L*(u) is jointly subnormal if and only if one of the
following three equivalent conditions holds:

(i) for p-almost every x € X,

> hars(@A@A(B) =0 for all X e CPD),
a,,@EZi

(ii) for p-almost every x € X, {ha(z)}taczn is a Stieltjes moment n-
sequence,
(iii) for p-almost every x € X, {ha(2)}aczr is a Stieltjes moment n-
sequence on the compact set [0,(Cyp,[|?] x -+ x [0,]|Cg, |-
Proof. Set ¢ = (¢1,...,¢,) and C¢y = (Cy,,...,Cy,). Applying the
commutativity of Cy and the measure transport theorem, we get

(33)  CGAI” = NCge fI? =\ Phadp,  f € L*(n), o € Z7.

(3) We do not assume that y is finite on compact subsets of X.



Joint subnormality of composition operators on L?-spaces 173

Suppose that Cg is jointly subnormal. By (2.2) and (3.3), we have

(34) 0< D NCSTIFIPA@NB) = {IfPgadp, A e CED, f e L (),
a,BELY

where gy = Za,BeZS; haisA(@)A(B). Since f is an arbitrary member of L2 (1)
and y is o-finite, we deduce that gy > 0 a.e. [y] for all A € C%%). Hence
(3.5) (X \ gy (Ry) =0, AeC@h),

Let @ be any countable dense subset of C containing 0. Set

=[] g9 '®Ry).

re@“H)
It follows from (3.5) that
(3.6) WX\ 7) =
Since @ is dense in C and g>\( )>0forall z € 7 and A € Q%) we see that
(3.7) D hass(@)Ma)A(B) > zer, e CE,

a,BELT

Repeating the above reasoning with f o ¢; in place of f, we get
p(X\1)=0, j=1,...,n,

B8 3™ haspie, @AN@AB) 20, zer AeC®), j=1,...n,
oa,ﬁeZ:t

where 7; = AeQED) g;i (R4) with g = Za,ﬁEZi hatgre; A(@)A(B). More-
over, by (3 3) the following inequality holds for all f € L?*(u), o € Z" and
Jj=1,.
2a+2
) 1717 h2a+2e] du =11 < 1, IM1CE 12 = 10, 1* §1f 1P hoa di.

By o-finiteness of p this implies that for p-almost every x € X,
(3.9) hga_;,_gej (a;) < ||C¢j H4h2a(l’), [ AS Zﬁ, j = 1, o,n
Combining (3.6)—(3.9), we conclude that for p-almost every z € X, the
n-sequence {ha(z)}aczn satisfies the assumptions of Theorem 2.1. Hence
condition (iii) holds.

Implications (iii)=-(ii) and (ii)=(i) are clear.

If (i) holds, then we can go back from (3.6) and (3.7) to (3.4). Applying

the Embry—Lambert—Lubin criterion completes the proof.

Consider now a positive Borel measure p on R* of the form dy = odv,,,
where p : R* — [0,00) is a Borel function and v,, is the s-dimensional
Lebesgue measure. It is left to the reader to check that u is o-finite and
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inner regular with respect to compact sets. Assume that v,,(0~1({0})) = 0.
Suppose that ¢ = (41, ..., ¢y,) is an n-tuple of invertible linear transforma-
tions of R* such that the composition operators Cy,,...,Cy, are bounded
on L?(odv,.). Write ¢® = ¢{* -+ ¢ for a = (v, ..., ) € Z™.

COROLLARY 3.5. Let o and ¢ be as above. The n-tuple (Cg,,...,Cy,)
18 jointly subnormal if and only if one of the following three equivalent con-
ditions holds:

1° the transformations ¢1,...,¢, commute and for v,-almost every x
imn R*,

S o(¢ D @)A@AB) =0 for all A€ CE),

a,ﬁGZi
2° the transformations ¢1, ..., ¢, commute and for v,-almost every x
in R, {o(¢™*(2)) }aczn is a Stieltjes moment n-sequence,
3° the transformations ¢1,...,¢, commute and for v,.-almost every x

inR”, {o(¢™%(z))}aeczn is a Stieltjes moment n-sequence on the com-
pact set [0, [|Co, [I7] x - x [0, [|C,[|]-

Moreover, if (Cg,,...,Cy,) is jointly subnormal and o # () is an open subset
of R* such that ¢ is positive and continuous on (*) o and ¢j(0) = o for all
j=1,...,n, then 1°-3° hold with “for v,.-almost every x € R*” replaced by
“for every x € o”.

Proof. By the assumption on p, the measures p and v,, are mutually
absolutely continuous. Clearly, v,, does not vanish on nonempty open subsets
of R” and so neither does . Since p is inner regular with respect to compact
sets, we deduce from Corollary 3.3 that the operators Cy,,...,Cy, commute
if and only if the transformations ¢1, ..., ¢, commute.

It is a matter of routine to verify that

oo™
(3.10) ho = oldet o7
where |det ¢| = (|det ¢1], ..., |det ¢y,|). This enables us to show that condi-
tions 1°-3° correspond to conditions (i)—(iii) of Theorem 3.4 respectively.
For the proof of the “moreover” part, notice that in view of (3.10) all
the Radon—Nikodym derivatives hy, a € Z'} , are continuous on ¢. This, the
mutual absolute continuity of i1 and v,,, and the fact that v,, does not vanish
on nonempty open subsets of R* imply that the inequalities in (3.7)-(3.9)
are valid for all x € 0. Hence the same argument as in the proof of Theorem
3.4 yields the conclusion. =

ae. [u], a € Z7,

(*) This part of the conclusion of Corollary 3.5 is patterned upon Proposition 2.4
of [25]. We take this opportunity to mention that the density function r appearing in
Proposition 2.4 of [25] has to be assumed to be positive on the set o.
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We conclude this section with a generalization of [25, Theorem 2.5] to the
case of families of composition operators. Let || - || be a norm on R* induced
by an inner product. Denote by R, the class of all functions ¢: R* — [0, 00)
of the form

o
o(x) = am|z|®™, xeR”,
m=0

where a,, are nonnegative real numbers and aj > 0 for some k& > 1. A density
function ¢ € R, is said to be of polynomial type if there exists k > 2 such
that a,, = 0 for all m > k. We refer the reader to |25, Proposition 2.2| for
a criterion which guarantees the boundedness of the composition operator
Cy on L?(pdv,.) (resp. on L?((1/0)dv..)), where ¢ is an invertible linear
transformation of R”*.

THEOREM 3.6. Let || - || be a norm on R* induced by an inner prod-
uct, ¢ be a member of R and A be a nonempty family of invertible linear
transformations of R* inducing bounded composition operators {Cy: ¢ € A}
on L?(odv,.) (resp. on L*((1/0)dv..)). Then the family {Cy: ¢ € A} (resp.
{C5: & € A}) is jointly subnormal if and only if A consists of commuting
normal operators in (R*/[| ).

Proof. 1f {Cy: ¢ € A} is jointly subnormal, then by Corollary 3.5,  is
commutative, and by Theorem 2.5 of [25] each ¢ € 2 is normal in (R*, || - ||).

In view of Theorem 2.2, the proof of the converse reduces to the case
of A finite, say A = {¢1,...,0n}. Set ¢ = (¢1,...,0y). Since ¢1,..., P,

are normal and commuting, so are their inverses. This in turn implies that
o1t ont, (e (0p 1) commute. Hence for all x € R* and all
A e CcE),

N 2
> e @) IPA@AB) = | 3o M) @) = 0.

o, BEL A€z

Using the Schur theorem [2, Theorem 3.1.12], we obtain

S @) PA@AB) 2 0, @ e R, AeCE mezy,
oa,ﬁeZ:t

which yields

Z o@D (@)A@A(B) =0, ze€R” \eCED.

a,ﬁEZi

Thus Corollary 3.5 implies that the n-tuple (Cy,,...,Cy,) is jointly subnor-
mal. The case of {C7: ¢ € A} is similar. =
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4. (Cp-semigroups of composition operators. The following char-
acterization of joint subnormality of Cp-semigroups is due to Itd (see [15,
Theorem 1 and the proof of Lemma 5]).

THEOREM 4.1. Let a be a positive real number. A Cy-semigroup {S(t) }+>0
of bounded linear operators on a Hilbert space H is jointly subnormal if and
only if the operator S(a/n) is subnormal for every integer n > 1.

It is worth noting that Theorem 4.1 is no longer true if “every integer
n > 17 is replaced by “some integer n > 1”. A counterexample in two-
dimensional Hilbert space has been given by R. Mathias (cf. [1]); see also
Example 5.4 below for the case of Cy-semigroups of composition operators.
Suppose that
(4.1) (X, X, u) is a o-finite measure space with u # 0 (equivalently: L?(p)
# {0}) and ¢ = {¢+}+>0 is a family of X-measurable transformations
of X indexed by nonnegative real numbers such that every ¢; induces
a bounded composition operator Cy, on L%(u) and {Cy,}i>0 is a
Cy-semigroup.

Define
d —1
(4.2) [ U EL TR

Since C, = C7 (I is the identity transformation of X) and Cyp = CF, =
Cs,., we infer from (3.1) and Lemma 3.1(ii) that hg’ =1 a.e. [p] and

(4.3) het = h® ae. [y forallt e R, and n € Z,.

REMARK 4.2. Obviously, for each ¢ > 0 the function hfb can be redefined
on a set of measure zero (depending on t) without affecting the validity

of (4.2). This may improve the properties of the function ¢ — hf’(m) (cf.
Theorem 4.5).

LEMMA 4.3. If (4.1) holds, then the Cy-semigroup {Cy, }i>0 is jointly
subnormal if and only if one of the following three equivalent conditions holds:

(i) for p-almost every x € X,
Y B @AMIAR) 2 0 for all A€ C*) and k €N,

m,neZy
(i) for p-almost every x € X and every k € N, {hf/k(at)}neer is a

Stieltjes moment sequence,
(iii) for p-almost every x € X and every k € N, {h:f/k(x)}nezJr is a

Stieltjes moment sequence on [0, “C¢1/k”2]'
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Proof. Apply Theorem 4.1, equality (4.3) and Lambert’s criterion for
subnormality of composition operators (cf. [18]; see also Theorem 3.4)
to C¢1/k' ]

By Lambert’s criterion, the operator Cy, is subnormal if and only if for
p-almost every z € X, there exists a (unique) positive Borel measure 9, on
R with compact support such that

o0
(4.4) hot () = S s"dv(s), n€Zy.

0
Notice that for p-almost every z € X, the closed support of ¥¢ is contained
in [0, [|Cy,|I?]. Substituting n = 0 into (4.4), we deduce that for p-almost
every z € X, 9!, is a probability measure. Moreover, since for y-almost every
z € X and all n € Z;, h°(z) = 1, we see that for such z’s the closed
support of 90 equals {1}.

For ¢t € Ry, we define the function &: Ry — Ry by

&(s)=s', seR, (with0’=1).
LEMMA 4.4. If (4.1) holds, then the following conditions are equivalent:

(i) {Cg, >0 is jointly subnormal,
(ii) Cg, is subnormal and for p-almost every x € X,

(4.5) hf;/k(x) = S % dvl(s) for all n € Zy and k € N,
0

(iii) for p-almost every x € X there exists a positive Borel measure 51
on Ry such that

(4.6) hf/k(x) = S s"5 d0,(s)  for alln € Zy and k € N.
0

Moreover, if {Cg,}i>0 is jointly subnormal, then

(iv) for u-almost every x € X, 0 = 9,,
(v) for every t > 0 and p-almost every v € X, 9. ({0}) = 0,
(vi) for everyt >0 and p-almost every v € X, ¥t = 9L o &1/t

(vii) for everyt >0 and p-almost every x € X, h?(m) = s" diL(s).

Proof. (i)=(ii). It follows from (4.3), (4.4) and the measure transport
theorem that for p-almost every z € X and all n € Z; and k € N,
(o.9] o o
J 5" dil(s) = hi2 (@) = gy " (@) = § b7 d0l/¥(s) = § " d0)/% o €1 (o),
0 0 0
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hence 9. = ﬁglg/k 0&y/k, and consequently ﬁ;;/k = 91 o0& By (4.3) this implies
that for p-almost every x € X and all n € Z4 and k € N,

o0 o o
= by (@) = | 5" dolR(s) = | 5" ok o (s

h® = |
0 0 0
(

This means that for p-almost every 2 € X, the equality in (vii) is valid for
all rational numbers ¢t > 0.

Now we show that (vii) holds in full generality. Let ¢ be a positive real
number. Then there exists a sequence {t;}52, of positive rational numbers
such that t; — ¢ as j — oo. Since for u-almost every x € X, the probability
measure 9. is compactly supported, we infer from Lebesgue’s dominated
convergence theorem that

[e.e] [e.e]

(4.7) S std¥l(s) = lim S stidvl(s)
0 70
= lim h¢( ) for p-almost all z € X.
j—00

Employing (4.3), (3.2) and the continuity of {Cy }s>0, we see that there
exists a constant M > 0 such that for u-almost every x € X,

Pt .
(W (@) = 1" (@)] < |ICy, P < M, j>1.
Lebesgue’s dominated convergence theorem applied to (4.7) now yields

(48)  h'@)dp(z) = 11Co (cr)II” = lim [y, O

T

lim {1} (@) du(a)
j—o0
(43)

J—00

lim S h¢ S OSOS dol(s) du(zx)
70

for every measurable subset 7 of X of finite measure (., is the characteristic
function of 7). Since p is o-finite, (4.8) implies that for p-almost every x € X
o0
4.3
nP() 2 ng () = | 5t avk(s),
0
which proves (vii). Hence for every real ¢ > 0 and p-almost every x € X,

(4.9) ogos ot (s) ) poe () D p9 (1) g " 4L (s)
0 0

= S s" dv o&iy(s), n€Zs.
0
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Since for p-almost every x € X, the Stieltjes moment sequence defined by
the left hand side of (4.9) is determinate, we get (vi). Substituting k£ = 1
into (4.5) and (4.6), and using determinacy again, we obtain (iv).

In view of (vi), to prove (v) it suffices to show that

(4.10) 9L({0}) =0 for p-almost every z € X.
As in the proof of (4.7) and (4.8), we see that for py-almost every = € X,

9L((0, 00)) = Jim | 519 avl(s) = Jim n hY) (@),

0
and hence for every measurable subset 7 of X of finite measure,

) = Jim, [Ca,, ()17 = Jim [ (0) d(a) = JOR(0,00) o),
As a consequence, ¥1((0,00)) = 1 for p-almost every z € X. Since for
p-almost every z € X, 9L is a probability measure, we get (4.10).

(ii)=(iii). Evident.

(iii)=-(i). Verify condition (i) of Lemma 4.3. m

The Laplace transform £(¢): Ry — R of a finite positive Borel measure
¢ on Ry is defined by

o0
L)) = | e d¢(s), t=>0.
0
The function L£(() is always continuous (see [28| for the foundations of the
theory of the Laplace transform). Below B(.J) stands for the o-algebra of all
Borel subsets of a Borel set J C R. The ring of all complex polynomials in
formal indeterminate Z is denoted by C[Z].

We now show that if {Cy, };>0 is a jointly subnormal Cp-semigroup of
composition operators on L?(p), then the functions hf can be modified so
as to satisfy the equality hf’(w) = &ML (P(x,-))(t) for all z € X and t € R,
where = — P(z,-) is a Y-measurable family of probability Borel measures
on Ry and 9 is a real number.

THEOREM 4.5. If (4.1) holds and the Cy-semigroup {Cy, }1>0 is jointly
subnormal, then there exists a function P: X x B(R4) — [0,1] such that:

1° for every x € X, P(x,-) is a probability measure,

2° for every o € B(Ry), P(-,0) is X'-measurable,

3° for every t € Ry, the function X > x — L(P(x,-))(t) € Ry is X-
measurable,

4° for p-almost every x € X and all t € Ry, hfs(x) = eML(P(x,-))(t),
where (°) § :=2log||Cy, |-

(®) Since L?(1) # {0}, Proposition 1 of [23] implies that § €R and e =||Cy, ||? for t>0.



180 P. Budzynski and J. Stochel

Moreover, for p-almost every x € X,

(411) P(r,0) = 04w (o)), o€ BR,),

where w is a function from (0,€°] to [0,00) defined by w(s) = & — logs for
€ (0,¢].

Proof. Set J = [0, €%]. It follows from Lemma 4.4(v),(vii) that there exists
aset Xo € X of full y-measure such that for every = € X, 9} is a probability
measure, ¥1({0}) = 0, the closed support of ¥} is contained in J and

h;b(x) = S sTdol(s), j€Zi, xe X
J

This implies that for every polynomial p = zkzo c;Z9 € ClZ),

(4.12) [ p(s) dvi(s chh"’ ), ze Xo.

J
Take a continuous function f: J — C. By the Weierstrass theorem, there
exists a sequence {p,}>°; C C[Z] which converges to f uniformly on J. This
leads to

Sfdﬁglg = lim Spn dﬂglc, z € Xo,
n—oo
J J
which, together with (4.12), guarantees that the function Xo 5 2 — {, f di}
€ C is Y-measurable. Denote by 2 the class of all Borel sets ¢ C J such
that the function Xy 3 z — ¥.(0c) € Ry is X-measurable. It is clear that
2 is a monotone class which contains () and J. We claim that [0,a) € 2
for every a € J such that a > 0. Indeed, we can find a sequence {f,,}7°; of
continuous functions on J pointwise converging to X[g,q) as n — oo, and such
that 0 < f, <1 for all n > 1. Then, by Lebesgue’s dominated convergence
theorem, we have
93(0,a)) = lim | f,dv}, =€ X,
n—oo
which proves our claim. Since the class 2 is closed under the operation of
taking set-theoretic proper difference and finite disjoint unions, we see that
the algebra 2y generated by the class {[0,a): a € J, a > 0} is contained
in . Applying the monotone class theorem (cf. [3, Theorem 3.4]), we con-
clude that 21 = %B(J). Since the measure p is nonzero, there is no loss of
generality in assuming that Xy = X. Hence ¥} is a probability measure and
IL(R, \ (0,e]) = 0 for every x € X; moreover, for every o € B(J), the
function X > z — 9¥(0) € R is Y-measurable. It is now easily seen that
the function P: X x B(R;) — [0,1] defined by (4.11) satisfies 1° and 2°.
By a standard measure theory argument, it follows that for every Borel
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function f: Ry — Ry, the function X 3 z — {° f(s) P(x,ds) € [0,00] is

Y-measurable. This implies 3°. Since 9L (R, \(0,€°]) = 0 for all z € X, we get

(4.13) S stdyl(s) = S et s gyl (s) = % S e " dyl ow ™ (u)
0 (0,€9] [0,00)

LV Ste (P(a, ))(1), =€ X, teR,.

Set E?(w) = L (P(x,-))(t) for x € X and t € R,. By 3°, the function Ef’
is X-measurable for every ¢t € R.. It follows from (4.13) and Lemma 4.4(vii)
that hfs = h;b a.e. [p] for every t € Ry. Replacing hfs by hf’, we get 4° (cf.
Remark 4.2). This completes the proof. m

COROLLARY 4.6. If (4.1) holds and § := 2log ||Cy, ||, then the following
conditions are equivalent:

(i) {Cy,}i>0 is jointly subnormal,

(i1) for p-almost every x € X there exists a finite positive Borel measure

Ce on Ry such that for all t € Ry, h(x) = ePL(¢)(t).

Moreover, if (ii) holds, then
(4.14) Ce=v 0w ™ for p-almost every x € X,
where w s as in Theorem 4.5.

Proof. (i)=(ii). Apply Theorem 4.5.

(ii)=(i). Verify condition (i) of Lemma 4.3.

Assume that (ii) holds. Then by Lemma 4.4(v) and equalities (4.3) and
(4.4), we see that for u-almost every z € X,

[ umavl(w) = ne@) @ | w (s . (s)
(0.e9] 0
= S u"dyow(u), ne€Z;.

(0,¢°]

Since the above Stieltjes moment sequence is determinate, we get 9. = (,ow
for pu-almost every z € X, which completes the proof. =

Note that if (ii) of Corollary 4.6 holds and P: X x B(R;) — [0,1] is as
in Theorem 4.5, then by (4.11) and (4.14), we have

(z = P(x,-) and £L((;) =L(P(z,-)) for y-almost every z € X.

5. An example. We begin by discussing a particular class of Cy-semi-
groups of composition operators induced by linear transformations of R*.

PROPOSITION 5.1. Let p be a positive Borel measure on R* which is
finite on each compact subset of R\ {0} and pu({0}) = 0. Suppose that A
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1s a linear transformation of R* such that for every t € Ry, the composition
operator Cuia is bounded on L*(i), and

(5.1) sup ||Ceea|l < o0
0<t<tp

for some to > 0. Then {Cea }1>0 is a Co-semigroup.

Proof. Take a sequence {t,}°°; of positive real numbers converging to 0.
Fix real numbers 0 < m < M < oo. Let f: R* — C be a continuous
function vanishing off the set Ay, ar = {x € R*:m < |z|| < M} (|| - || is
the Euclidean norm on R*). Take € > 0. Since f is uniformly continuous,
there exists § > 0 such that |f(z) — f(y)| < € for all z,y € R* such that
|z —y|| <. As the group {e*4};cg is uniformly continuous, there exists an
integer ng > 1 such that [[e**»4| < 2 and ||et*4 —I|| < §/2M for all n > ng.
This implies that for all n > ng,

lefnAz|| > L|z||  for all z € R*,
et Az|| < m for all x € R* such that [|z|| < m/2,
|etnAx — 2| <6  for all x € R* such that ||z| < 2M.

Thus, we have

) - (o)l < {
and consequently

Cenaf =17 = §  1f("2) = f(2)]? dp(e) < (A2 o)

Apy2,2Mm

3 lf T € A 29M
2R > g,
0 otherwise,

for all n > ng. Summarizing, we have proved that lim; .oy Cpeaf = f for
every continuous function f: R* — C with compact support contained in
R*\ {0}. Since p is finite on each compact subset of R*\ {0} and ©({0}) = 0,
the set of all such functions is dense in L?(y) (use [24, Theorems 2.18 and
3.14]). This together with (5.1) implies that lim; o+ Ciaf = f for every
f € L?(p), which means that {C,:a}i>0 is a Cp-semigroup. m

COROLLARY 5.2. Let ||-|| be a norm on R* induced by an inner product,
o be a member of R|.| and p be any of the measures odv,, or (1/0)dv,,.
Suppose that A is a linear transformation of R* such that for every t € Ry,
the composition operator C,ia is bounded on L?*(u). Then {C.ia}i>0 is a
Cy-semigroup.

Proof. Tt follows from [25, Lemma 2.1 and Proposition 2.2] and the con-
tinuity of the function R > ¢ + det e™*4 € C\ {0} that (5.1) holds for every
to > 0. Applying Proposition 5.1 completes the proof. m
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REMARK 5.3. It is a matter of routine to verify that Corollary 3.5, The-
orem 3.6, Proposition 5.1 and Corollary 5.2 remain valid for C-linear trans-
formations of C* (see also Section 3 of [25]).

We now show that the implication (ii)=-(i) of Lemma 4.4 is no longer
true if the hypothesis (4.5) is dropped.

EXAMPLE 5.4. Denote by | - |2 the Euclidean norm on C?, i.e. |z|3 =
[21]? + |22|? for © = (21,22) € C* Let ¢ € Ry, be a density function on
C? of polynomial type and let du = odvy. Following R. Mathias (cf. [1]),
we define the nonsingular 2 x 2 complex matrix A =« [6 _11] Consider the

semigroup {¢}¢+>o of transformations of C? given by ¢ = e!4. According to
a complex version of [25, Proposition 2.2|, the composition operator Cy, is
bounded on L?(p) for every t € R, . Hence, by a complex version of Corollary
5.2, {C4, }+>0 is a Co-semigroup. Since ¢; is normal in (C?,|-|2) and ¢; is not
normal in (C2, |- |2) for some ¢ > 0, we infer from a complex version of [25,
Theorem 2.5] that Cy, is subnormal and {Cy, }+>0 is not jointly subnormal.
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