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Joint subnormality of n-tuples and
C0-semigroups of 
omposition operators on L2-spa
esbyPiotr Budzy«ski and Jan Sto
hel (Kraków)

Abstra
t. Joint subnormality of a family of 
omposition operators on L2-spa
e is
hara
terized by means of positive de�niteness of appropriate Radon�Nikodym deriva-tives. Next, simpli�ed positive de�niteness 
onditions guaranteeing joint subnormality of a
C0-semigroup of 
omposition operators are supplied. Finally, the Radon�Nikodym deriva-tives asso
iated to a jointly subnormal C0-semigroup of 
omposition operators are shownto be the Lapla
e transforms of probability measures (modulo a C0-group of s
alars)
onstituting a measurable family.1. Introdu
tion. The theory of subnormal operators is a vital part ofOperator Theory (
f. [6℄). The notion of a subnormal operator was introdu
edby Halmos in [12℄. Roughly speaking, a subnormal operator is a restri
tionof a normal one to its invariant subspa
e. Halmos himself gave in [12℄ atwo-
ondition 
riterion for subnormality of a single (bounded) operator. Itwas su

essively simpli�ed by Bram (
f. [4℄), Embry (
f. [10℄) and Lambert(
f. [16℄). In [15℄ It� solved the problem of extending a family of 
ommutingoperators a
ting in a Hilbert spa
e H to a family of 
ommuting normaloperators a
ting in a possibly larger Hilbert spa
e K. In parti
ular, It� provedthat any C0-semigroup of subnormal operators has an extension whi
h is a
C0-semigroup of normal operators. This in turn enabled Nussbaum (
f. [23℄)to show that the in�nitesimal generator of a C0-semigroup of subnormaloperators is a subnormal operator (in general unbounded). A multioperator
ounterpart of the Embry�Lambert 
hara
terization of subnormality wasproved by Lubin in [20℄.The foundations of the theory of 
omposition operators in abstra
t L2-spa
es are well developed. In parti
ular, the questions of boundedness, nor-2000 Mathemati
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helmality, quasinormality, subnormality, hyponormality et
. of su
h operatorsare entirely solved (
f. [9, 22, 27, 14, 8, 18, 19, 5℄; see also [21, 25, 7℄ forspe
ial 
lasses of 
omposition operators). The present paper o�ers 
riteria,written in terms of Radon�Nikodym derivatives, for joint subnormality of
n-tuples as well as C0-semigroups of 
omposition operators on L2-spa
es(see Theorem 3.4, Lemma 4.4 and Corollary 4.6). This generalizes in vari-ous ways Lambert's 
hara
terization of subnormality of a single 
ompositionoperator (
f. [18℄). For a parti
ular 
lass of 
omposition operators indu
edby square matri
es, joint subnormality is 
ompletely 
hara
terized by alge-brai
 properties of symbols (
f. Theorem 3.6). It is shown that for every real
t ≥ 0, the Radon�Nikodym derivative hφ

t atta
hed to a jointly subnormal
C0-semigroup of 
omposition operators {Cφu}u≥0 
an be modi�ed so as to
oin
ide (modulo a C0-group of s
alars) with the Lapla
e transforms 
al
u-lated at t of a measurable family of probability Borel measures, the familybeing independent of t (
f. Theorem 4.5). The paper 
on
ludes with an ex-ample of a C0-semigroup of 
omposition operators {Cφt}t≥0 whi
h is notjointly subnormal, though the operator Cφ1 is subnormal. This shows thatthe 
riteria for joint subnormality 
ontained in Lemma 4.4 are optimal in asense.A subsequent paper will be devoted to a general study of joint subnor-mality of C0-groups of 
omposition operators.2. Preliminaries. Denote by Z+ the set of all nonnegative integers, by
N the set of all positive integers and by R+ the set of all nonnegative realnumbers. If Q is a subset of C 
ontaining 0, then Q(Zn+) stands for the set ofall fun
tions λ : Z

n
+ → Q for whi
h the set λ−1(Q \ {0}) is �nite.We say that an n-sequen
e {tα}α∈Z

n
+
of real numbers is a Stieltjes moment

n-sequen
e if there exists a positive Borel measure µ on R
n
+ su
h that

tα =
\

Rn+

sα dµ(s), α ∈ Z
n
+;(2.1)

su
h a µ is 
alled a representing measure for {tα}α∈Z
n
+
. If (2.1) holds andthe 
losed support of µ is 
ontained in a 
losed subset F of R

n
+, then we saythat {tα}α∈Z

n
+
is a Stieltjes moment n-sequen
e on F . Let us re
all a use-ful 
hara
terization of Stieltjes moment n-sequen
es on 
ompa
t sets. Below

ej = (δj,1, . . . , δj,n) for j = 1, . . . , n, where δk,l stands for the Krone
ker sym-bol (for simpli
ity, we suppress the dependen
e of ej on n in the notation).Theorem 2.1 ([26, Theorem 3℄). Assume that an n-sequen
e {tα}α∈Z
n
+

⊆ R satis�es the following three 
onditions:(i) ∑
α,β∈Zn+

tα+βλ(α)λ(β) ≥ 0 for all λ ∈ C
(Zn+),(ii) ∑

α,β∈Z
n
+
tα+β+ejλ(α)λ(β) ≥ 0 for all λ ∈ C

(Zn+) and j = 1, . . . , n,
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es 169(iii) there exists an n-tuple (r1, . . . , rn) of nonnegative real numbers su
hthat
t2α+2ej ≤ r2j t2α, α ∈ Z

n
+, j = 1, . . . , n.Then {tα}α∈Z

n
+
is a Stieltjes moment n-sequen
e on a 
ompa
t subset of R

n
+.Moreover , a representing measure µ for {tα}α∈Z

n
+

is unique and its 
losedsupport is 
ontained in the re
tangle [0, r1] × · · · × [0, rn]. If [0, R1] × · · · ×
[0, Rn] is the least re
tangle 
ontaining the 
losed support of µ, then

Rj = lim
n→∞

t
1/2n
2nej

, j = 1, . . . , n.It follows from Theorem 2.1 that a Stieltjes moment n-sequen
e whi
hhas a representing measure with 
ompa
t support is determinate, i.e. therepresenting measure is unique (within the 
lass of all Borel measures notne
essarily 
ompa
tly supported, 
f. [11℄).A bounded (linear) operator S on a (
omplex) Hilbert spa
e H is 
alledsubnormal if there exists a Hilbert spa
e K ⊇ H (isometri
 embedding)and a bounded normal operator N on K su
h that S ⊆ N , i.e. Sh = Nhfor all h ∈ H. We say that a family {Sω : ω ∈ Ω} of bounded operatorson H is jointly subnormal if there exists a Hilbert spa
e K ⊇ H and afamily {Nω : ω ∈ Ω} of 
ommuting bounded normal operators on K su
hthat Sω ⊆ Nω for all ω ∈ Ω. It is 
lear that a jointly subnormal family
{Sω : ω ∈ Ω} is 
ommutative.Theorem 2.2 ([15℄). A family {Sω : ω ∈ Ω} of bounded operators on aHilbert spa
e H is jointly subnormal if and only if for every �nite subset Ω′of Ω the family {Sω : ω ∈ Ω′} is jointly subnormal.Let us re
all the Embry�Lambert�Lubin 
riterion for joint subnormality(
f. [20℄): an n-tuple S = (S1, . . . , Sn) of 
ommuting bounded operators ona Hilbert spa
e H is jointly subnormal if and only if(2.2) ∑

α,β∈Zn+

‖Sα+βf‖2λ(α)λ(β) ≥ 0, λ ∈ C
(Zn+), f ∈ H,

where Sα = Sα1
1 · · ·Sαnn for α = (α1, . . . , αn) ∈ Z

n
+.3. Families of 
omposition operators. Let (X,Σ, µ) be a σ-�nitemeasure spa
e. Consider a Σ-measurable transformation φ : X → X su
hthat the measure µ ◦ φ−1 is absolutely 
ontinuous with respe
t to µ. Thenthe operator Cφ : L2(µ) ⊇ D(Cφ) → L2(µ) given by

D(Cφ) = {f ∈ L2(µ) : f ◦ φ ∈ L2(µ)}, Cφf = f ◦ φ for f ∈ D(Cφ),
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helis well-de�ned and linear. We 
all it the 
omposition operator indu
ed by φ.We also say that φ is the symbol of Cφ. For every n ∈ Z+, we set(3.1) hφn =
dµ ◦ (φn)−1

dµ
.Noti
e that hφ0 = 1 a.e. [µ]. Re
all that Cφ is a bounded operator on L2(µ)if and only if hφ1 ∈ L∞(µ). If ψ : X → X is a Σ-measurable transformationsu
h that the mapping L2(µ) ∋ f 7→ f ◦ ψ ∈ L2(µ) is well-de�ned, then themeasure µ ◦ ψ−1 is absolutely 
ontinuous with respe
t to µ and

‖Cψ‖ = ‖hψ1 ‖
1/2
∞ ,(3.2)where ‖hψ1 ‖∞ stands for the L∞(µ)-norm of hψ1 . The interested reader isreferred to [9℄ and [22℄ for further information on 
omposition operators.Consider now an n-tuple φ = (φ1, . . . , φn) of Σ-measurable transforma-tions of X. For α = (α1, . . . , αn) ∈ Z

n
+, we de�ne the measure µφ

α on Xby
µφ
α(σ) = µ((φα)−1(σ)), σ ∈ Σ,where φα := φα1

1 ◦ · · · ◦ φαnn . It is a matter of routine to show that if themeasures µ ◦ φ−1
j , 1 ≤ j ≤ n, are absolutely 
ontinuous with respe
t to µ,then so is µφ

α for every α ∈ Z
n
+. As a 
onsequen
e, we may write the Radon�Nikodyn derivatives

hφ
α =

dµφ
α

dµ
, α ∈ Z

n
+,and 
onsider the 
omposition operators Cφj in L2(µ) for j = 1, . . . , n. If no
onfusion 
an arise, we write µα and hα instead of µφ

α and hφ
α , respe
tively.We now investigate under what 
onditions the equality Cφ = Cψ holds.Lemma 3.1. Assume that φ and ψ are Σ-measurable transformations of

X indu
ing bounded 
omposition operators Cφ and Cψ on L2(µ).(i) If φ = ψ a.e. [µ] (1), then Cφ = Cψ.(ii) If Cφ = Cψ, then µ ◦ (φn)−1 = µ ◦ (ψn)−1 and hφn = hψn a.e. [µ] forevery n ∈ Z+.(iii) Cφ 6= Cψ if and only if there exist sets Y, Z ∈ Σ su
h that Y ∩Z = ∅and µ(φ−1(Y ) ∩ ψ−1(Z)) > 0.Proof. (i) is obvious.(ii) If σ ∈ Σ and µ(σ) < ∞, then the 
hara
teristi
 fun
tion χσ of σ isin L2(µ) and, by the measure transport theorem ([13, Theorem C, p. 163℄),
(1) Note that in general the set {x ∈ X : φ(x) 6= ψ(x)} may not belong to Σ (seeExample 3.2). Hen
e φ = ψ a.e. [µ] is understood to mean that there exists a set Y ∈ Σof full µ-measure su
h that φ(x) = ψ(x) for all x ∈ Y .



Joint subnormality of 
omposition operators on L2-spa
es 171we have\
σ

hφn dµ = ‖Cφnχσ‖
2 = ‖Cnφχσ‖

2 = ‖Cnψχσ‖
2 = ‖Cψnχσ‖

2 =
\
σ

hψn dµ.Sin
e µ is σ-�nite, we get hφn = hψn a.e. [µ], whi
h implies µ ◦ (φn)−1 =
µ ◦ (ψn)−1.(iii) To prove the �if� part of (iii), set E = φ−1(Y ) ∩ ψ−1(Z). Sin
e themeasure µ is σ-�nite, there exists a Σ-measurable fun
tion f : X → R+su
h that f(x) > 0 for every x ∈ Y , f(x) = 0 for every x ∈ X \ Y andT
X |f(x)|2 dµ(x) < ∞. Combining this with the in
lusions φ(E) ⊆ Y and
ψ(E) ⊆ Z ⊆ X \ Y , we see that f(φ(x)) > 0 and f(ψ(x)) = 0 for every
x ∈ E. Sin
e µ(E) > 0, we get Cφf 6= Cψf .Suppose now that Cφf 6= Cψf for some f ∈ L2(µ). Sin
e simple fun
tionsbelonging to L2(µ) are dense in L2(µ) and the operators Cφ and Cψ are
ontinuous, we dedu
e that there exists a simple fun
tion h ∈ L2(µ) su
hthat Cφh 6= Cψh. Then the set F := {x ∈ X : h(φ(x)) 6= h(ψ(x))} is in Σand µ(F ) > 0. Sin
e h is a simple fun
tion, it is of the form h =

∑n
k=1 αkχYk ,where n ∈ N, {αk}nk=1 is a sequen
e of distin
t 
omplex numbers and {Yk}

n
k=1is a Σ-measurable partition of X. Clearly, {φ−1(Yk) ∩ ψ

−1(Yl)}
n
k,l=1 is a Σ-measurable partition of X and (2)

F =
n⋃

k,l=1
k 6=l

φ−1(Yk) ∩ ψ
−1(Yl).

Sin
e µ(F ) > 0, we 
on
lude that there exist k, l ∈ {1, . . . , n} su
h that
k 6= l and µ(φ−1(Yk) ∩ ψ

−1(Yl)) > 0. This 
ompletes the proof.Note that if the sets Y and Z are as in (iii) of Lemma 3.1, then µ(Y ) > 0and µ(Z) > 0 (use the fa
t that µ ◦ φ−1 ≪ µ and µ ◦ ψ−1 ≪ µ).Example 3.2. It is not true in general that the equality Cφ = Cψ implies
φ = ψ a.e. [µ]. This 
an be illustrated by various examples built on σ-algebrasgenerated by �nite (or in�nite) partitions of a nonempty set X. Here is asample of what is possible in this matter. Consider the set X = {1, 2, 3, 4, 5},the σ-algebra (= algebra) Σ generated by the partition {1, 2}, {3}, {4, 5}of X, and a �nite positive measure µ on Σ su
h that µ({1, 2}) > 0, µ({3})
> 0 and µ({4, 5}) > 0. Let φ and ψ be the transformations of X given by
φ(1) = 4, φ(2) = 5, φ(3) = 5, ψ(1) = 5, ψ(2) = 5, ψ(3) = 4 and φ(k) =
ψ(k) = k for k = 4, 5. Then φ and ψ are Σ-measurable transformations of
X su
h that Cφ and Cψ are well-de�ned on L2(µ) and Cφ = Cψ, thoughthe equality φ = ψ a.e. [µ] does not hold; in this parti
ular 
ase the set
{x ∈ X : φ(x) 6= ψ(x)} does not belong to Σ.

(2) Note that Cφh 6= Cψh implies n ≥ 2.
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helCorollary 3.3. Let X be a topologi
al Hausdor� spa
e, Σ be a σ-algebra of all Borel subsets of X and µ be a σ-�nite positive Borel measureon X whi
h is inner regular (3) with respe
t to 
ompa
t sets. Assume that
φ and ψ are 
ontinuous transformations of X indu
ing bounded 
omposi-tion operators Cφ and Cψ on L2(µ). Then Cφ = Cψ if and only if φ = ψa.e. [µ]. Moreover , if µ(U) > 0 for every nonempty open subset U of X, then
Cφ = Cψ if and only if φ = ψ.Proof. We only have to show that Cφ = Cψ implies φ = ψ a.e. [µ](the �moreover� part is a dire
t 
onsequen
e of this impli
ation). Suppose,
ontrary to our 
laim, that µ(X0) > 0, where X0 = {x ∈ X : φ(x) 6= ψ(x)}(as X is Hausdor�, the set X \ X0 is 
losed). Take x ∈ X0. Sin
e X isHausdor�, there exist open neighbourhoods Yx and Zx of φ(x) and ψ(x)respe
tively su
h that Yx ∩ Zx = ∅. Then Ex := φ−1(Yx) ∩ ψ

−1(Zx) is anopen neighbourhood of x and Ex ⊆ X0. This implies that X0 =
⋃
x∈X0

Ex.In view of Lemma 3.1(iii), it is enough to show that there exists x0 ∈ X0su
h that µ(Ex0) > 0. Suppose, 
ontrary to our 
laim, that µ(Ex) = 0 forevery x ∈ X0. If K is a 
ompa
t subset of X0, then there exists a �nite subset
{x1, . . . , xn} of X0 su
h that K ⊆

⋃n
k=1Exk . This implies that µ(K) = 0. Itfollows from the inner regularity of µ that µ(X0) = 0, a 
ontradi
tion. This
ompletes the proof.Jointly subnormal n-tuples of 
omposition operators 
an be 
hara
terizedas follows (see [18℄ for a single operator 
ase).Theorem 3.4. An n-tuple (Cφ1 , . . . , Cφn) of 
ommuting bounded 
om-position operators on L2(µ) is jointly subnormal if and only if one of thefollowing three equivalent 
onditions holds:(i) for µ-almost every x ∈ X,

∑

α,β∈Z
n
+

hα+β(x)λ(α)λ(β) ≥ 0 for all λ ∈ C
(Zn+),

(ii) for µ-almost every x ∈ X, {hα(x)}α∈Z
n
+

is a Stieltjes moment n-sequen
e,(iii) for µ-almost every x ∈ X, {hα(x)}α∈Z
n
+

is a Stieltjes moment n-sequen
e on the 
ompa
t set [0, ‖Cφ1‖
2] × · · · × [0, ‖Cφn‖

2].Proof. Set φ = (φ1, . . . , φn) and Cφ = (Cφ1 , . . . , Cφn). Applying the
ommutativity of Cφ and the measure transport theorem, we get(3.3) ‖Cαφf‖
2 = ‖Cφαf‖

2 =
\
|f |2hα dµ, f ∈ L2(µ), α ∈ Z

n
+.

(3) We do not assume that µ is �nite on 
ompa
t subsets of X.
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es 173Suppose that Cφ is jointly subnormal. By (2.2) and (3.3), we have(3.4) 0 ≤
∑

α,β∈Z
n
+

‖Cα+β
φ f‖2λ(α)λ(β) =

\
|f |2gλdµ, λ ∈ C

(Zn+), f ∈ L2(µ),

where gλ =
∑

α,β∈Z
n
+
hα+βλ(α)λ(β). Sin
e f is an arbitrary member of L2(µ)and µ is σ-�nite, we dedu
e that gλ ≥ 0 a.e. [µ] for all λ ∈ C

(Zn+). Hen
e(3.5) µ(X \ g−1
λ (R+)) = 0, λ ∈ C

(Zn+).Let Q be any 
ountable dense subset of C 
ontaining 0. Set
τ =

⋂

λ∈Q
(Zn+)

g−1
λ (R+).

It follows from (3.5) that
µ(X \ τ) = 0.(3.6)Sin
e Q is dense in C and gλ(x) ≥ 0 for all x ∈ τ and λ ∈ Q(Zn+), we see that(3.7) ∑

α,β∈Z
n
+

hα+β(x)λ(α)λ(β) ≥ 0, x ∈ τ, λ ∈ C
(Zn+).

Repeating the above reasoning with f ◦ φj in pla
e of f , we get
(3.8) µ(X \ τj) = 0, j = 1, . . . , n,

∑

α,β∈Z
n
+

hα+β+ej (x)λ(α)λ(β) ≥ 0, x ∈ τj , λ ∈ C
(Zn+), j = 1, . . . , n,

where τj =
⋂
λ∈Q

(Zn+) g
−1
j,λ(R+) with gj,λ =

∑
α,β∈Zn+

hα+β+ejλ(α)λ(β). More-over, by (3.3), the following inequality holds for all f ∈ L2(µ), α ∈ Z
n
+ and

j = 1, . . . , n:\
|f |2h2α+2ej dµ = ‖C

2α+2ej
φ f‖2 ≤ ‖Cφj‖

4‖C2α
φ f‖2 = ‖Cφj‖

4
\
|f |2h2α dµ.By σ-�niteness of µ this implies that for µ-almost every x ∈ X,

h2α+2ej(x) ≤ ‖Cφj‖
4h2α(x), α ∈ Z

n
+, j = 1, . . . , n.(3.9)Combining (3.6)�(3.9), we 
on
lude that for µ-almost every x ∈ X, the

n-sequen
e {hα(x)}α∈Z
n
+
satis�es the assumptions of Theorem 2.1. Hen
e
ondition (iii) holds.Impli
ations (iii)⇒(ii) and (ii)⇒(i) are 
lear.If (i) holds, then we 
an go ba
k from (3.6) and (3.7) to (3.4). Applyingthe Embry�Lambert�Lubin 
riterion 
ompletes the proof.Consider now a positive Borel measure µ on R

κ of the form dµ = ̺dνκ,where ̺ : R
κ → [0,∞) is a Borel fun
tion and νκ is the κ-dimensionalLebesgue measure. It is left to the reader to 
he
k that µ is σ-�nite and
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helinner regular with respe
t to 
ompa
t sets. Assume that νκ(̺−1({0})) = 0.Suppose that φ = (φ1, . . . , φn) is an n-tuple of invertible linear transforma-tions of R
κ su
h that the 
omposition operators Cφ1 , . . . , Cφn are boundedon L2(̺dνκ). Write φα = φα1

1 · · ·φαnn for α = (α1, . . . , αn) ∈ Z
n.Corollary 3.5. Let ̺ and φ be as above. The n-tuple (Cφ1 , . . . , Cφn)is jointly subnormal if and only if one of the following three equivalent 
on-ditions holds:

1o the transformations φ1, . . . , φn 
ommute and for νκ-almost every xin R
κ,

∑

α,β∈Zn+

̺(φ−(α+β)(x))λ(α)λ(β) ≥ 0 for all λ ∈ C
(Zn+),

2o the transformations φ1, . . . , φn 
ommute and for νκ-almost every xin R
κ, {̺(φ−α(x))}α∈Z

n
+
is a Stieltjes moment n-sequen
e,

3o the transformations φ1, . . . , φn 
ommute and for νκ-almost every xin R
κ, {̺(φ−α(x))}α∈Z

n
+
is a Stieltjes moment n-sequen
e on the 
om-pa
t set [0, ‖Cφ1‖

2] × · · · × [0, ‖Cφn‖
2].Moreover , if (Cφ1 , . . . , Cφn) is jointly subnormal and σ 6= ∅ is an open subsetof R

κ su
h that ̺ is positive and 
ontinuous on (4) σ and φj(σ) = σ for all
j = 1, . . . , n, then 1o�3o hold with �for νκ-almost every x ∈ Rκ� repla
ed by�for every x ∈ σ�.Proof. By the assumption on ̺, the measures µ and νκ are mutuallyabsolutely 
ontinuous. Clearly, νκ does not vanish on nonempty open subsetsof Rκ and so neither does µ. Sin
e µ is inner regular with respe
t to 
ompa
tsets, we dedu
e from Corollary 3.3 that the operators Cφ1 , . . . , Cφn 
ommuteif and only if the transformations φ1, . . . , φn 
ommute.It is a matter of routine to verify that(3.10) hα =

̺ ◦ φ−α

̺|detφ|α
a.e. [µ], α ∈ Z

n
+,where |detφ| = (|detφ1|, . . . , |detφn|). This enables us to show that 
ondi-tions 1o�3o 
orrespond to 
onditions (i)�(iii) of Theorem 3.4 respe
tively.For the proof of the �moreover� part, noti
e that in view of (3.10) allthe Radon�Nikodym derivatives hα, α ∈ Z

n
+, are 
ontinuous on σ. This, themutual absolute 
ontinuity of µ and νκ, and the fa
t that νκ does not vanishon nonempty open subsets of R

κ imply that the inequalities in (3.7)�(3.9)are valid for all x ∈ σ. Hen
e the same argument as in the proof of Theorem3.4 yields the 
on
lusion.
(4) This part of the 
on
lusion of Corollary 3.5 is patterned upon Proposition 2.4of [25℄. We take this opportunity to mention that the density fun
tion r appearing inProposition 2.4 of [25℄ has to be assumed to be positive on the set σ.



Joint subnormality of 
omposition operators on L2-spa
es 175We 
on
lude this se
tion with a generalization of [25, Theorem 2.5℄ to the
ase of families of 
omposition operators. Let ‖ · ‖ be a norm on R
κ indu
edby an inner produ
t. Denote byR‖·‖ the 
lass of all fun
tions ̺ : R

κ → [0,∞)of the form
̺(x) =

∞∑

m=0

am‖x‖
2m, x ∈ R

κ,where am are nonnegative real numbers and ak > 0 for some k ≥ 1. A densityfun
tion ̺ ∈ R‖·‖ is said to be of polynomial type if there exists k ≥ 2 su
hthat am = 0 for all m ≥ k. We refer the reader to [25, Proposition 2.2℄ fora 
riterion whi
h guarantees the boundedness of the 
omposition operator
Cφ on L2(̺dνκ) (resp. on L2((1/̺)dνκ)), where φ is an invertible lineartransformation of R

κ.Theorem 3.6. Let ‖ · ‖ be a norm on Rκ indu
ed by an inner prod-u
t , ̺ be a member of R‖·‖ and A be a nonempty family of invertible lineartransformations of R
κ indu
ing bounded 
omposition operators {Cφ : φ ∈ A}on L2(̺dνκ) (resp. on L2((1/̺)dνκ)). Then the family {Cφ : φ ∈ A} (resp.

{C∗
φ : φ ∈ A}) is jointly subnormal if and only if A 
onsists of 
ommutingnormal operators in (Rκ, ‖ · ‖).Proof. If {Cφ : φ ∈ A} is jointly subnormal, then by Corollary 3.5, A is
ommutative, and by Theorem 2.5 of [25℄ ea
h φ ∈ A is normal in (Rκ, ‖ · ‖).In view of Theorem 2.2, the proof of the 
onverse redu
es to the 
aseof A �nite, say A = {φ1, . . . , φn}. Set φ = (φ1, . . . , φn). Sin
e φ1, . . . , φnare normal and 
ommuting, so are their inverses. This in turn implies that

φ−1
1 , . . . , φ−1

n , (φ−1
1 )∗, . . . , (φ−1

n )∗ 
ommute. Hen
e for all x ∈ R
κ and all

λ ∈ C
(Zn+),
∑

α,β∈Zn+

‖φ−(α+β)(x)‖2λ(α)λ(β) =
∥∥∥

∑

α∈Z
n
+

λ(α)(φ−α)∗φ−α(x)
∥∥∥

2
≥ 0.

Using the S
hur theorem [2, Theorem 3.1.12℄, we obtain
∑

α,β∈Z
n
+

‖φ−(α+β)(x)‖2mλ(α)λ(β) ≥ 0, x ∈ R
κ, λ ∈ C

(Zn+), m ∈ Z+,

whi
h yields
∑

α,β∈Z
n
+

̺(φ−(α+β)(x))λ(α)λ(β) ≥ 0, x ∈ R
κ, λ ∈ C

(Zn+).

Thus Corollary 3.5 implies that the n-tuple (Cφ1 , . . . , Cφn) is jointly subnor-mal. The 
ase of {C∗
φ : φ ∈ A} is similar.
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hel4. C0-semigroups of 
omposition operators. The following 
har-a
terization of joint subnormality of C0-semigroups is due to It� (see [15,Theorem 1 and the proof of Lemma 5℄).Theorem 4.1. Let a be a positive real number. A C0-semigroup {S(t)}t≥0of bounded linear operators on a Hilbert spa
e H is jointly subnormal if andonly if the operator S(a/n) is subnormal for every integer n ≥ 1.It is worth noting that Theorem 4.1 is no longer true if �every integer
n ≥ 1� is repla
ed by �some integer n ≥ 1�. A 
ounterexample in two-dimensional Hilbert spa
e has been given by R. Mathias (
f. [1℄); see alsoExample 5.4 below for the 
ase of C0-semigroups of 
omposition operators.Suppose that(4.1) (X,Σ, µ) is a σ-�nite measure spa
e with µ 6= 0 (equivalently: L2(µ)

6= {0}) and φ = {φt}t≥0 is a family of Σ-measurable transformationsofX indexed by nonnegative real numbers su
h that every φt indu
esa bounded 
omposition operator Cφt on L2(µ) and {Cφt}t≥0 is a
C0-semigroup.De�ne

hφ
t =

dµ ◦ φ−1
t

dµ
, t ∈ R+.(4.2)Sin
e Cφ0 = CI (I is the identity transformation of X) and Cφnt = Cnφt =

Cφnt , we infer from (3.1) and Lemma 3.1(ii) that hφ
0 = 1 a.e. [µ] and

hφtn = hφ
nt a.e. [µ] for all t ∈ R+ and n ∈ Z+.(4.3)Remark 4.2. Obviously, for ea
h t ≥ 0 the fun
tion hφ

t 
an be rede�nedon a set of measure zero (depending on t) without a�e
ting the validityof (4.2). This may improve the properties of the fun
tion t 7→ hφ
t (x) (
f.Theorem 4.5).Lemma 4.3. If (4.1) holds, then the C0-semigroup {Cφt}t≥0 is jointlysubnormal if and only if one of the following three equivalent 
onditions holds:(i) for µ-almost every x ∈ X,

∑

m,n∈Z+

hφ

(m+n)/k(x)λ(m)λ(n) ≥ 0 for all λ ∈ C
(Z+) and k ∈ N,

(ii) for µ-almost every x ∈ X and every k ∈ N, {hφ

n/k(x)}n∈Z+ is aStieltjes moment sequen
e,(iii) for µ-almost every x ∈ X and every k ∈ N, {hφ

n/k(x)}n∈Z+ is aStieltjes moment sequen
e on [0, ‖Cφ1/k
‖2].
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es 177Proof. Apply Theorem 4.1, equality (4.3) and Lambert's 
riterion forsubnormality of 
omposition operators (
f. [18℄; see also Theorem 3.4)to Cφ1/k
.By Lambert's 
riterion, the operator Cφt is subnormal if and only if for

µ-almost every x ∈ X, there exists a (unique) positive Borel measure ϑtx on
R+ with 
ompa
t support su
h that

hφtn (x) =

∞\
0

sn dϑtx(s), n ∈ Z+.(4.4)Noti
e that for µ-almost every x ∈ X, the 
losed support of ϑtx is 
ontainedin [0, ‖Cφt‖
2]. Substituting n = 0 into (4.4), we dedu
e that for µ-almostevery x ∈ X, ϑtx is a probability measure. Moreover, sin
e for µ-almost every

x ∈ X and all n ∈ Z+, hφ0
n (x) = 1, we see that for su
h x's the 
losedsupport of ϑ0

x equals {1}.For t ∈ R+, we de�ne the fun
tion ξt : R+ → R+ by
ξt(s) = st, s ∈ R+ (with 00 = 1).Lemma 4.4. If (4.1) holds, then the following 
onditions are equivalent :(i) {Cφt}t≥0 is jointly subnormal ,(ii) Cφ1 is subnormal and for µ-almost every x ∈ X,

hφ

n/k(x) =

∞\
0

sn/k dϑ1
x(s) for all n ∈ Z+ and k ∈ N,(4.5)

(iii) for µ-almost every x ∈ X there exists a positive Borel measure ϑ̃xon R+ su
h that
hφ

n/k(x) =

∞\
0

sn/k dϑ̃x(s) for all n ∈ Z+ and k ∈ N.(4.6)Moreover , if {Cφt}t≥0 is jointly subnormal , then(iv) for µ-almost every x ∈ X, ϑ1
x = ϑ̃x,(v) for every t > 0 and µ-almost every x ∈ X, ϑtx({0}) = 0,(vi) for every t > 0 and µ-almost every x ∈ X, ϑtx = ϑ1

x ◦ ξ1/t,(vii) for every t ≥ 0 and µ-almost every x ∈ X, hφ
t (x) =

T∞
0 st dϑ1

x(s).Proof. (i)⇒(ii). It follows from (4.3), (4.4) and the measure transporttheorem that for µ-almost every x ∈ X and all n ∈ Z+ and k ∈ N,
∞\
0

sn dϑ1
x(s) = hφ1

n (x) = h
φ1/k

kn (x) =

∞\
0

skn dϑ1/k
x (s) =

∞\
0

sn dϑ1/k
x ◦ ξ1/k(s),
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helhen
e ϑ1
x = ϑ

1/k
x ◦ξ1/k, and 
onsequently ϑ1/k

x = ϑ1
x ◦ξk. By (4.3) this impliesthat for µ-almost every x ∈ X and all n ∈ Z+ and k ∈ N,

hφ

n/k(x) = h
φ1/k
n (x) =

∞\
0

sn dϑ1/k
x (s) =

∞\
0

sn dϑ1
x ◦ ξk(s) =

∞\
0

sn/k dϑ1
x(s).This means that for µ-almost every x ∈ X, the equality in (vii) is valid forall rational numbers t ≥ 0.Now we show that (vii) holds in full generality. Let t be a positive realnumber. Then there exists a sequen
e {tj}∞j=1 of positive rational numberssu
h that tj → t as j → ∞. Sin
e for µ-almost every x ∈ X, the probabilitymeasure ϑ1

x is 
ompa
tly supported, we infer from Lebesgue's dominated
onvergen
e theorem that
∞\
0

stdϑ1
x(s) = lim

j→∞

∞\
0

stjdϑ1
x(s)(4.7)

= lim
j→∞

hφ
tj

(x) for µ-almost all x ∈ X.Employing (4.3), (3.2) and the 
ontinuity of {Cφs}s≥0, we see that thereexists a 
onstant M > 0 su
h that for µ-almost every x ∈ X,
|hφ
tj

(x)| = |h
φtj
1 (x)| ≤ ‖Cφtj ‖

2 ≤M, j ≥ 1.Lebesgue's dominated 
onvergen
e theorem applied to (4.7) now yields\
τ

hφt1 (x) dµ(x) = ‖Cφt(χτ )‖
2 = lim

j→∞
‖Cφtj (χτ )‖

2(4.8)
= lim

j→∞

\
τ

h
φtj
1 (x) dµ(x)(4.3)

= lim
j→∞

\
τ

hφ
tj

(x) dµ(x)
(4.7)
=
\
τ

∞\
0

st dϑ1
x(s) dµ(x)for every measurable subset τ of X of �nite measure (χτ is the 
hara
teristi
fun
tion of τ). Sin
e µ is σ-�nite, (4.8) implies that for µ-almost every x ∈ X,

hφ
t (x)

(4.3)
= hφt1 (x) =

∞\
0

st dϑ1
x(s),whi
h proves (vii). Hen
e for every real t > 0 and µ-almost every x ∈ X,

∞\
0

sn dϑtx(s)
(4.4)
= hφtn (x)

(4.3)
= hφ

nt(x)
(vii)
=

∞\
0

snt dϑ1
x(s)(4.9)

=

∞\
0

sn dϑ1
x ◦ ξ1/t(s), n ∈ Z+.
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es 179Sin
e for µ-almost every x ∈ X, the Stieltjes moment sequen
e de�ned bythe left hand side of (4.9) is determinate, we get (vi). Substituting k = 1into (4.5) and (4.6), and using determina
y again, we obtain (iv).In view of (vi), to prove (v) it su�
es to show that
ϑ1
x({0}) = 0 for µ-almost every x ∈ X.(4.10)As in the proof of (4.7) and (4.8), we see that for µ-almost every x ∈ X,

ϑ1
x((0,∞)) = lim

j→∞

∞\
0

s1/j dϑ1
x(s) = lim

j→∞
hφ

1/j(x),and hen
e for every measurable subset τ of X of �nite measure,
µ(τ) = lim

j→∞
‖Cφ1/j

(χτ )‖
2 = lim

j→∞

\
τ

hφ

1/j(x) dµ(x) =
\
τ

ϑ1
x((0,∞)) dµ(x).As a 
onsequen
e, ϑ1

x((0,∞)) = 1 for µ-almost every x ∈ X. Sin
e for
µ-almost every x ∈ X, ϑ1

x is a probability measure, we get (4.10).(ii)⇒(iii). Evident.(iii)⇒(i). Verify 
ondition (i) of Lemma 4.3.The Lapla
e transform L(ζ) : R+ → R+ of a �nite positive Borel measure
ζ on R+ is de�ned by

L(ζ)(t) =

∞\
0

e−ts dζ(s), t ≥ 0.The fun
tion L(ζ) is always 
ontinuous (see [28℄ for the foundations of thetheory of the Lapla
e transform). Below B(J) stands for the σ-algebra of allBorel subsets of a Borel set J ⊆ R. The ring of all 
omplex polynomials informal indeterminate Z is denoted by C[Z].We now show that if {Cφt}t≥0 is a jointly subnormal C0-semigroup of
omposition operators on L2(µ), then the fun
tions hφ
t 
an be modi�ed soas to satisfy the equality hφ

t (x) = eδtL(P (x, ·))(t) for all x ∈ X and t ∈ R+,where x 7→ P (x, ·) is a Σ-measurable family of probability Borel measureson R+ and δ is a real number.Theorem 4.5. If (4.1) holds and the C0-semigroup {Cφt}t≥0 is jointlysubnormal , then there exists a fun
tion P : X × B(R+) → [0, 1] su
h that :
1o for every x ∈ X, P (x, ·) is a probability measure,
2o for every σ ∈ B(R+), P (·, σ) is Σ-measurable,
3o for every t ∈ R+, the fun
tion X ∋ x 7→ L(P (x, ·))(t) ∈ R+ is Σ-measurable,
4o for µ-almost every x ∈ X and all t ∈ R+, hφ

t (x) = eδtL(P (x, ·))(t),where (5) δ := 2 log ‖Cφ1‖.
(5) Sin
e L2(µ) 6={0}, Proposition 1 of [23℄ implies that δ∈R and eδt=‖Cφt

‖2 for t≥0.
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helMoreover , for µ-almost every x ∈ X,
P (x, σ) = ϑ1

x(ω
−1(σ)), σ ∈ B(R+),(4.11)where ω is a fun
tion from (0, eδ] to [0,∞) de�ned by ω(s) = δ − log s for

s ∈ (0, eδ].Proof. Set J = [0, eδ]. It follows from Lemma 4.4(v),(vii) that there existsa set X0 ∈ Σ of full µ-measure su
h that for every x ∈ X0, ϑ1
x is a probabilitymeasure, ϑ1

x({0}) = 0, the 
losed support of ϑ1
x is 
ontained in J and

hφ
j (x) =

\
J

sj dϑ1
x(s), j ∈ Z+, x ∈ X0.This implies that for every polynomial p =

∑k
j=0 cjZ

j ∈ C[Z],\
J

p(s) dϑ1
x(s) =

k∑

j=0

cjh
φ
j (x), x ∈ X0.(4.12)Take a 
ontinuous fun
tion f : J → C. By the Weierstrass theorem, thereexists a sequen
e {pn}∞n=1 ⊆ C[Z] whi
h 
onverges to f uniformly on J . Thisleads to \

J

f dϑ1
x = lim

n→∞

\
J

pn dϑ
1
x, x ∈ X0,whi
h, together with (4.12), guarantees that the fun
tion X0 ∋ x 7→

T
J f dϑ

1
x

∈ C is Σ-measurable. Denote by A the 
lass of all Borel sets σ ⊆ J su
hthat the fun
tion X0 ∋ x 7→ ϑ1
x(σ) ∈ R+ is Σ-measurable. It is 
lear that

A is a monotone 
lass whi
h 
ontains ∅ and J . We 
laim that [0, a) ∈ Afor every a ∈ J su
h that a > 0. Indeed, we 
an �nd a sequen
e {fn}
∞
n=1 of
ontinuous fun
tions on J pointwise 
onverging to χ[0,a) as n→ ∞, and su
hthat 0 ≤ fn ≤ 1 for all n ≥ 1. Then, by Lebesgue's dominated 
onvergen
etheorem, we have

ϑ1
x([0, a)) = lim

n→∞

\
J

fn dϑ
1
x, x ∈ X0,whi
h proves our 
laim. Sin
e the 
lass A is 
losed under the operation oftaking set-theoreti
 proper di�eren
e and �nite disjoint unions, we see thatthe algebra A0 generated by the 
lass {[0, a) : a ∈ J, a > 0} is 
ontainedin A. Applying the monotone 
lass theorem (
f. [3, Theorem 3.4℄), we 
on-
lude that A = B(J). Sin
e the measure µ is nonzero, there is no loss ofgenerality in assuming that X0 = X. Hen
e ϑ1
x is a probability measure and

ϑ1
x(R+ \ (0, eδ]) = 0 for every x ∈ X; moreover, for every σ ∈ B(J), thefun
tion X ∋ x 7→ ϑ1

x(σ) ∈ R is Σ-measurable. It is now easily seen thatthe fun
tion P : X × B(R+) → [0, 1] de�ned by (4.11) satis�es 1o and 2o.By a standard measure theory argument, it follows that for every Borel
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es 181fun
tion f : R+ → R+, the fun
tion X ∋ x 7→
T∞
0 f(s)P (x, ds) ∈ [0,∞] is

Σ-measurable. This implies 3o. Sin
e ϑ1
x(R+\(0, e

δ]) = 0 for all x ∈ X, we get
∞\
0

st dϑ1
x(s) =

\
(0,eδ]

et log s dϑ1
x(s) = eδt

\
[0,∞)

e−tu dϑ1
x ◦ ω

−1(u)(4.13) (4.11)
= eδtL(P (x, ·))(t), x ∈ X, t ∈ R+.Set h̃φ

t (x) = eδtL(P (x, ·))(t) for x ∈ X and t ∈ R+. By 3o, the fun
tion h̃φ
tis Σ-measurable for every t ∈ R+. It follows from (4.13) and Lemma 4.4(vii)that h̃φ

t = hφ
t a.e. [µ] for every t ∈ R+. Repla
ing hφ

t by h̃φ
t , we get 4o (
f.Remark 4.2). This 
ompletes the proof.Corollary 4.6. If (4.1) holds and δ := 2 log ‖Cφ1‖, then the following
onditions are equivalent :(i) {Cφt}t≥0 is jointly subnormal ,(ii) for µ-almost every x ∈ X there exists a �nite positive Borel measure

ζx on R+ su
h that for all t ∈ R+, hφ
t (x) = eδtL(ζx)(t).Moreover , if (ii) holds, then

ζx = ϑ1
x ◦ ω

−1 for µ-almost every x ∈ X,(4.14)where ω is as in Theorem 4.5.Proof. (i)⇒(ii). Apply Theorem 4.5.(ii)⇒(i). Verify 
ondition (i) of Lemma 4.3.Assume that (ii) holds. Then by Lemma 4.4(v) and equalities (4.3) and(4.4), we see that for µ-almost every x ∈ X,\
(0,eδ]

un dϑ1
x(u) = hφ

n (x)
(ii)
=

∞\
0

ω−1(s)n dζx(s)

=
\

(0,eδ]

un dζx ◦ ω(u), n ∈ Z+.Sin
e the above Stieltjes moment sequen
e is determinate, we get ϑ1
x = ζx◦ωfor µ-almost every x ∈ X, whi
h 
ompletes the proof.Note that if (ii) of Corollary 4.6 holds and P : X × B(R+) → [0, 1] is asin Theorem 4.5, then by (4.11) and (4.14), we have

ζx = P (x, ·) and L(ζx) = L(P (x, ·)) for µ-almost every x ∈ X.5. An example. We begin by dis
ussing a parti
ular 
lass of C0-semi-groups of 
omposition operators indu
ed by linear transformations of R
κ.Proposition 5.1. Let µ be a positive Borel measure on R

κ whi
h is�nite on ea
h 
ompa
t subset of R
κ \ {0} and µ({0}) = 0. Suppose that A
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helis a linear transformation of R
κ su
h that for every t ∈ R+, the 
ompositionoperator CetA is bounded on L2(µ), and
sup

0≤t≤t0

‖CetA‖ <∞(5.1)for some t0 > 0. Then {CetA}t≥0 is a C0-semigroup.Proof. Take a sequen
e {tn}∞n=1 of positive real numbers 
onverging to 0.Fix real numbers 0 < m < M < ∞. Let f : R
κ → C be a 
ontinuousfun
tion vanishing o� the set ∆m,M := {x ∈ R

κ : m ≤ ‖x‖ ≤ M} (‖ · ‖ isthe Eu
lidean norm on R
κ). Take ε > 0. Sin
e f is uniformly 
ontinuous,there exists δ > 0 su
h that |f(x) − f(y)| ≤ ε for all x, y ∈ R

κ su
h that
‖x− y‖ ≤ δ. As the group {etA}t∈R is uniformly 
ontinuous, there exists aninteger n0 ≥ 1 su
h that ‖e±tnA‖ ≤ 2 and ‖etnA− I‖ ≤ δ/2M for all n ≥ n0.This implies that for all n ≥ n0,

‖etnAx‖ ≥ 1
2‖x‖ for all x ∈ R

κ,
‖etnAx‖ < m for all x ∈ R

κ su
h that ‖x‖ < m/2,
‖etnAx− x‖ ≤ δ for all x ∈ R

κ su
h that ‖x‖ ≤ 2M .Thus, we have
|f(etnAx) − f(x)| ≤

{
ε if x ∈ ∆m/2,2M ,
0 otherwise, n ≥ n0,and 
onsequently

‖CetnAf − f‖2 =
\

∆m/2,2M

|f(etnAx) − f(x)|2 dµ(x) ≤ ε2µ(∆m/2,2M)

for all n ≥ n0. Summarizing, we have proved that limt→0+CetAf = f forevery 
ontinuous fun
tion f : R
κ → C with 
ompa
t support 
ontained in

R
κ\{0}. Sin
e µ is �nite on ea
h 
ompa
t subset of R

κ\{0} and µ({0}) = 0,the set of all su
h fun
tions is dense in L2(µ) (use [24, Theorems 2.18 and3.14℄). This together with (5.1) implies that limt→0+ CetAf = f for every
f ∈ L2(µ), whi
h means that {CetA}t≥0 is a C0-semigroup.Corollary 5.2. Let ‖·‖ be a norm on R

κ indu
ed by an inner produ
t ,
̺ be a member of R‖·‖ and µ be any of the measures ̺dνκ or (1/̺)dνκ.Suppose that A is a linear transformation of R

κ su
h that for every t ∈ R+,the 
omposition operator CetA is bounded on L2(µ). Then {CetA}t≥0 is a
C0-semigroup.Proof. It follows from [25, Lemma 2.1 and Proposition 2.2℄ and the 
on-tinuity of the fun
tion R ∋ t 7→ det e−tA ∈ C \ {0} that (5.1) holds for every
t0 > 0. Applying Proposition 5.1 
ompletes the proof.
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omposition operators on L2-spa
es 183Remark 5.3. It is a matter of routine to verify that Corollary 3.5, The-orem 3.6, Proposition 5.1 and Corollary 5.2 remain valid for C-linear trans-formations of C
κ (see also Se
tion 3 of [25℄).We now show that the impli
ation (ii)⇒(i) of Lemma 4.4 is no longertrue if the hypothesis (4.5) is dropped.Example 5.4. Denote by | · |2 the Eu
lidean norm on C

2, i.e. |x|22 =
|x1|

2 + |x2|
2 for x = (x1, x2) ∈ C

2. Let ̺ ∈ R|·|2 be a density fun
tion on
C

2 of polynomial type and let dµ = ̺ dν4. Following R. Mathias (
f. [1℄),we de�ne the nonsingular 2 × 2 
omplex matrix A = π
[
i 1
0 −i

]. Consider thesemigroup {φt}t≥0 of transformations of C
2 given by φt = etA. A

ording toa 
omplex version of [25, Proposition 2.2℄, the 
omposition operator Cφt isbounded on L2(µ) for every t ∈ R+. Hen
e, by a 
omplex version of Corollary5.2, {Cφt}t≥0 is a C0-semigroup. Sin
e φ1 is normal in (C2, | · |2) and φt is notnormal in (C2, | · |2) for some t > 0, we infer from a 
omplex version of [25,Theorem 2.5℄ that Cφ1 is subnormal and {Cφt}t≥0 is not jointly subnormal.
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