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Matrix subspaces of L1

by

Gideon Schechtman (Rehovot)

Abstract. If E = {ei} and F = {fi} are two 1-unconditional basic sequences in L1

with E r-concave and F p-convex, for some 1 ≤ r < p ≤ 2, then the space of matrices
{ai,j} with norm ‖{ai,j}‖E(F ) =

∥∥∑
k ‖
∑

l ak,lfl‖ek
∥∥ embeds into L1. This generalizes a

recent result of Prochno and Schütt.

1. Introduction. Recall that a basis E = {ei}Ni=1 of a finite (N < ∞)
or infinite (N = ∞) dimensional real or complex Banach space is said to
be K-unconditional if ‖

∑
i aiei‖ ≤ K‖

∑
i biei‖ whenever |ai| = |bi| for

all i. Given a finite or an infinite 1-unconditional basis, E = {ei}Ni=1, and
a sequence {Xi}Ni=1 of Banach spaces, denote by (

∑⊕
Xi)E the space of

sequences x = (x1, x2, . . . ), xi ∈ Xi, for which the norm ‖x‖ =
∥∥∑

i ‖xi‖ei
∥∥

is finite.

If X has a 1-unconditional basis F = {fj} then (
∑⊕

X)E can be rep-
resented as a space of matrices A = {ai,j}, denoted E(F ), with norm

‖A‖E(F ) =

∥∥∥∥∑
i

∥∥∥∑
j

ai,jfj

∥∥∥ei∥∥∥∥.
In [PS], Prochno and Schütt gave a sufficient condition for bases E and F of
two Orlicz sequence spaces which ensures that E(F ) embeds into L1. Here
we generalize this result by giving a sufficient condition on two unconditional
bases E, F which ensures that E(F ) embeds into L1. As we shall see, this
condition is also “almost” necessary.

Recall that an unconditional basis {ei} is said to be p-convex, resp.
r-concave, with constant K provided that for all n and all x1, . . . , xn in
the span of {ei}, ∥∥∥ n∑

i=1

(|xi|p)1/p
∥∥∥ ≤ K( n∑

i=1

‖xi‖p
)1/p

,
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resp. ( n∑
i=1

‖xi‖r
)1/r

≤ K
∥∥∥ n∑
i=1

(|xi|r)1/r
∥∥∥.

Here, for x =
∑
x(j)ej and a positive α, |x|α =

∑
|x(j)|αej .

In what follows, Lp will denote Lp([0, 1], λ), λ being the Lebesgue mea-
sure. As is known and quite easy to prove, any 1-unconditional basic se-
quence in Lp, 1 ≤ p ≤ 2 (resp. 2 ≤ p < ∞), is p-convex (resp. p-concave)
with constant depending only on p. It is also worthwhile to remind the
reader that any K-unconditional basic sequence in Lp is equivalent, with a
constant depending only on K, to a 1-unconditional basic sequence in Lp. In-
deed, if {xi}∞i=1 is a K-unconditional basic sequence in Lp and {ri}∞i=1 is the
Rademacher sequence then clearly the sequence {xi(s)ri(t)}∞i=1 in Lp([0, 1]2)
(which is isometric to Lp) is equivalent to {xi}∞i=1, with a constant depending
only on K. This sequence is clearly also 1-unconditional.

It is due to Maurey [Ma] (see also [Wo, III.H.10]) that, for every 1 ≤
r < p ≤ 2, the span of every p-convex 1-unconditional basic sequence in L1

embeds into Lp and also embeds into Lr after a change of density; that is,
there exists a probability measure µ on [0, 1] so that this span is isomorphic
(with constants depending on r, p and the p-convexity constant only) to
a subspace of Lr([0, 1], µ) on which the Lr(µ) and the L1(µ) norms are
equivalent.

We also recall the fact, used in [PS] and due to Bretagnolle and Dacunha-
Castelle [BD], that if M is an Orlicz function then the Orlicz space `M
embeds into Lp, 1 ≤ p ≤ 2, if and only if M(t)/tp is equivalent to an
increasing function and M(t)/t2 is equivalent to a decreasing function. This
happens if and only if the natural basis of `M is p-convex and 2-concave.

Theorem 2.1 below states in particular that if E and F are two 1-
unconditional basic sequences in L1 with E r-concave and F p-convex for
some 1 ≤ r < p ≤ 2 then E(F ) embeds into L1. When specializing to Orlicz
spaces, this implies the main result of [PS].

2. The main result

Theorem 2.1. Let E = {ei} be a 1-unconditional basic sequence in L1

with {ei} r-concave with constant K1, and let X be a subspace of L1([0, 1], µ)
for some probability measure µ satisfying ‖x‖Lr([0,1],µ) ≤ K2‖x‖L1([0,1],µ) for
some constant K2 and all x ∈ X. Then (

∑⊕
X)E embeds into L1 with a

constant depending on K1, K2 and r only.

Consequently, if E = {ei} and F = {fi} are two 1-unconditional basic
sequences in L1 with E r-concave with constant K1 and F p-convex with
constant K2, for some 1 ≤ r < p ≤ 2, then the space of matrices A = {ak,l}
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with norm

‖A‖E(F ) =

∥∥∥∥∑
k

∥∥∥∑
l

ak,lfl

∥∥∥ek∥∥∥∥
embeds into L1 with a constant depending only on r, p, K1 and K2.

Proof. The p-convexity of {fi} implies that after a change of density the
L1 and Lr norms are equivalent on the span of {fi} (see [Ma]). That is,
there exists a probability measure µ on [0, 1] and a constant K3, depending

only on r, p and K2, such that ‖
∑
aj f̃j‖Lr([0,1],µ) ≤ K3‖

∑
aj f̃j‖L1([0,1],µ)

for some sequence {f̃j} 1-equivalent, in the relevant L1 norm, to {fj}, and
for all coefficients {ai}. Therefore, the second part of the theorem follows
from the first part.

To prove the first part, in L1([0, 1] × [0, 1], λ × µ) consider the tensor
product of the span of {ei} and of X, that is, the space of all functions of
the form

∑
i ei ⊗ xi, xi ∈ X for all i, where ei ⊗ xi(s, t) = ei(s)xi(t). Then,

by the 1-unconditionality of {ei} and the triangle inequality,∥∥∥∑
i

ei ⊗ xi
∥∥∥
1

=
� ∥∥∥∑

i

|xi(t)|ei
∥∥∥
L1([0,1],λ)

dµ(t)

≥
∥∥∥∑

i

(�
|xi(t)| dµ(t)

)
ei

∥∥∥
L1([0,1],λ)

=
∥∥∥∑

i

‖xi‖ei
∥∥∥.

On the other hand, by the 1-unconditionality and the r-concavity with con-
stant K1 of {ei} (used in integral instead of summation form),∥∥∥∑

i

ei ⊗ xi
∥∥∥
1
=
� � ∣∣∣∑

i

|xi(t)|ei(s)
∣∣∣ dλ(s) dµ(t)

≤
( �( � ∣∣∣∑

i

|xi(t)|ei(s)
∣∣∣ dλ(s)

)r
dµ(t)

)1/r
=
( � ∥∥∥∑

i

|xi(t)|ei
∥∥∥r
L1([0,1],λ)

dµ(t)
)1/r

≤K1

∥∥∥∑
i

( �
|xi(t)|r dµ(t)

)1/r
ei

∥∥∥
L1([0,1],λ)

≤K1K2

∥∥∥∑
i

�
|xi(t)| dµ(t)ei

∥∥∥
L1([0,1],λ)

=K1K2

∥∥∥∑
i

‖xi‖ei
∥∥∥.

As is explained in the introduction, the main result of [PS] follows as
corollary.

Corollary 2.2. If M and N are Orlicz functions such that M(t)/tr is
equivalent to a decreasing function, N(t)/tp is equivalent to an increasing
function and N(t)/t2 is equivalent to a decreasing function, then `M (`N )
embeds into L1.
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Remark. The role of L1 in Theorem 2.1 can easily be replaced with Ls
for any 1 ≤ s ≤ r.

Remark. If the bases E and F are infinite, say, and the smallest r such
that E is r-concave is larger than the largest p such that F is p-convex, then
E(F ) does not embed into L1. This follows from the fact that in this case it
is known that the `nr uniformly embed as blocks of E, and the `np uniformly
embed as blocks of F , for some r > p, while it is known that in this case
the spaces `nr (`np ) do not uniformly embed into L1.

This still leaves open the case r = p, which is not covered in Theorem
2.1:

• If E and F are two 1-unconditional basic sequences in L1 with E
r-concave and F r-convex, does E(F ) embed into L1?

In the case that E is an Orlicz space the problem above has a positive solu-
tion. We only sketch it. By the factorization theorem of Maurey mentioned
above ([Wo, III.H.10] is a good place to read it), and a simple compact-
ness argument (to pass from the finite to the infinite case), it is enough
to consider the case that F is the `r unit vector basis. If the basis of `M
is r-concave, then the 2/r-convexification of `M (which is the space with

norm ‖{|ai|2/r}‖r/2`M
) embeds into L2/r. This is again an Orlicz space, say,

`M̃ . Now, tensoring with the Rademacher sequence (or a standard Gaus-
sian sequence) we find that `M̃ (`2) embeds into L2/r. We now want to 2/r
concavify back, staying in L1, so as to ensure that `M (`r) embeds into L1.
This is known to be possible (and is buried somewhere in [MS]): If {xi} is a
1-unconditional basic sequence in Ls, 1 < s ≤ 2, then its s-concavification
(which is the space with norm ‖{|ai|1/s}‖s`M ) embeds into L1. Indeed, let
{fi} be a sequence of independent 2/s symmetric stable random variables
normalized in L1 and consider the span of the sequence {fi ⊗ |xi|s} in L1.
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