Matrix subspaces of L_1

by

GIDEON SCHECHTMAN (Rehovot)

Abstract. If $E = \{e_i\}$ and $F = \{f_i\}$ are two 1-unconditional basic sequences in L_1 with E r-concave and F p-convex, for some $1 \le r , then the space of matrices <math>\{a_{i,j}\}$ with norm $\|\{a_{i,j}\}\|_{E(F)} = \|\sum_k \|\sum_l a_{k,l}f_l\|e_k\|$ embeds into L_1 . This generalizes a recent result of Prochno and Schütt.

1. Introduction. Recall that a basis $E = \{e_i\}_{i=1}^N$ of a finite $(N < \infty)$ or infinite $(N = \infty)$ dimensional real or complex Banach space is said to be *K*-unconditional if $\|\sum_i a_i e_i\| \le K \|\sum_i b_i e_i\|$ whenever $|a_i| = |b_i|$ for all *i*. Given a finite or an infinite 1-unconditional basis, $E = \{e_i\}_{i=1}^N$, and a sequence $\{X_i\}_{i=1}^N$ of Banach spaces, denote by $(\sum \bigoplus X_i)_E$ the space of sequences $x = (x_1, x_2, \ldots), x_i \in X_i$, for which the norm $\|x\| = \|\sum_i \|x_i\| e_i\|$ is finite.

If X has a 1-unconditional basis $F = \{f_j\}$ then $(\sum \bigoplus X)_E$ can be represented as a space of matrices $A = \{a_{i,j}\}$, denoted E(F), with norm

$$||A||_{E(F)} = \left\|\sum_{i} \left\|\sum_{j} a_{i,j} f_{j}\right\| e_{i}\right\|.$$

In [PS], Prochno and Schütt gave a sufficient condition for bases E and F of two Orlicz sequence spaces which ensures that E(F) embeds into L_1 . Here we generalize this result by giving a sufficient condition on two unconditional bases E, F which ensures that E(F) embeds into L_1 . As we shall see, this condition is also "almost" necessary.

Recall that an unconditional basis $\{e_i\}$ is said to be *p*-convex, resp. *r*-concave, with constant K provided that for all n and all x_1, \ldots, x_n in the span of $\{e_i\}$,

$$\left\|\sum_{i=1}^{n} (|x_i|^p)^{1/p}\right\| \le K \Big(\sum_{i=1}^{n} \|x_i\|^p\Big)^{1/p},$$

2010 Mathematics Subject Classification: 46E30, 46B45, 46B15.

Key words and phrases: subspaces of L_1 , unconditional basis, r-concavity, p-convexity.

resp.

$$\left(\sum_{i=1}^{n} \|x_i\|^r\right)^{1/r} \le K \left\|\sum_{i=1}^{n} (|x_i|^r)^{1/r}\right\|.$$

Here, for $x = \sum x(j)e_j$ and a positive α , $|x|^{\alpha} = \sum |x(j)|^{\alpha}e_j$.

In what follows, L_p will denote $L_p([0, 1], \lambda)$, λ being the Lebesgue measure. As is known and quite easy to prove, any 1-unconditional basic sequence in L_p , $1 \le p \le 2$ (resp. $2 \le p < \infty$), is *p*-convex (resp. *p*-concave) with constant depending only on *p*. It is also worthwhile to remind the reader that any *K*-unconditional basic sequence in L_p is equivalent, with a constant depending only on *K*, to a 1-unconditional basic sequence in L_p and $\{r_i\}_{i=1}^{\infty}$ is the Rademacher sequence then clearly the sequence $\{x_i(s)r_i(t)\}_{i=1}^{\infty}$ in $L_p([0,1]^2)$ (which is isometric to L_p) is equivalent to $\{x_i\}_{i=1}^{\infty}$, with a constant depending only on *K*. This sequence is clearly also 1-unconditional.

It is due to Maurey [Ma] (see also [Wo, III.H.10]) that, for every $1 \leq r , the span of every$ *p* $-convex 1-unconditional basic sequence in <math>L_1$ embeds into L_p and also embeds into L_r after a change of density; that is, there exists a probability measure μ on [0, 1] so that this span is isomorphic (with constants depending on r, p and the *p*-convexity constant only) to a subspace of $L_r([0, 1], \mu)$ on which the $L_r(\mu)$ and the $L_1(\mu)$ norms are equivalent.

We also recall the fact, used in [PS] and due to Bretagnolle and Dacunha-Castelle [BD], that if M is an Orlicz function then the Orlicz space ℓ_M embeds into L_p , $1 \leq p \leq 2$, if and only if $M(t)/t^p$ is equivalent to an increasing function and $M(t)/t^2$ is equivalent to a decreasing function. This happens if and only if the natural basis of ℓ_M is *p*-convex and 2-concave.

Theorem 2.1 below states in particular that if E and F are two 1unconditional basic sequences in L_1 with E r-concave and F p-convex for some $1 \le r then <math>E(F)$ embeds into L_1 . When specializing to Orlicz spaces, this implies the main result of [PS].

2. The main result

THEOREM 2.1. Let $E = \{e_i\}$ be a 1-unconditional basic sequence in L_1 with $\{e_i\}$ r-concave with constant K_1 , and let X be a subspace of $L_1([0,1],\mu)$ for some probability measure μ satisfying $||x||_{L_r([0,1],\mu)} \leq K_2 ||x||_{L_1([0,1],\mu)}$ for some constant K_2 and all $x \in X$. Then $(\sum \bigoplus X)_E$ embeds into L_1 with a constant depending on K_1 , K_2 and r only.

Consequently, if $E = \{e_i\}$ and $F = \{f_i\}$ are two 1-unconditional basic sequences in L_1 with E r-concave with constant K_1 and F p-convex with constant K_2 , for some $1 \le r , then the space of matrices <math>A = \{a_{k,l}\}$ with norm

$$||A||_{E(F)} = \left\|\sum_{k} \left\|\sum_{l} a_{k,l} f_{l}\right\| e_{k}\right\|$$

embeds into L_1 with a constant depending only on r, p, K_1 and K_2 .

Proof. The *p*-convexity of $\{f_i\}$ implies that after a change of density the L_1 and L_r norms are equivalent on the span of $\{f_i\}$ (see [Ma]). That is, there exists a probability measure μ on [0, 1] and a constant K_3 , depending only on r, p and K_2 , such that $\|\sum a_j \tilde{f}_j\|_{L_r([0,1],\mu)} \leq K_3\|\sum a_j \tilde{f}_j\|_{L_1([0,1],\mu)}$ for some sequence $\{\tilde{f}_j\}$ 1-equivalent, in the relevant L_1 norm, to $\{f_j\}$, and for all coefficients $\{a_i\}$. Therefore, the second part of the theorem follows from the first part.

To prove the first part, in $L_1([0,1] \times [0,1], \lambda \times \mu)$ consider the tensor product of the span of $\{e_i\}$ and of X, that is, the space of all functions of the form $\sum_i e_i \otimes x_i, x_i \in X$ for all *i*, where $e_i \otimes x_i(s,t) = e_i(s)x_i(t)$. Then, by the 1-unconditionality of $\{e_i\}$ and the triangle inequality,

$$\begin{split} \left\| \sum_{i} e_{i} \otimes x_{i} \right\|_{1} &= \int \left\| \sum_{i} |x_{i}(t)| e_{i} \right\|_{L_{1}([0,1],\lambda)} d\mu(t) \\ &\geq \left\| \sum_{i} \left(\int |x_{i}(t)| d\mu(t) \right) e_{i} \right\|_{L_{1}([0,1],\lambda)} = \left\| \sum_{i} \|x_{i}\| e_{i} \right\|. \end{split}$$

On the other hand, by the 1-unconditionality and the *r*-concavity with constant K_1 of $\{e_i\}$ (used in integral instead of summation form),

$$\begin{split} \left\| \sum_{i} e_{i} \otimes x_{i} \right\|_{1} = \int \int \left| \sum_{i} |x_{i}(t)| e_{i}(s) \right| d\lambda(s) d\mu(t) \\ &\leq \left(\int \left(\int \left| \sum_{i} |x_{i}(t)| e_{i}(s) \right| d\lambda(s) \right)^{r} d\mu(t) \right)^{1/r} \\ &= \left(\int \left\| \sum_{i} |x_{i}(t)| e_{i} \right\|_{L_{1}([0,1],\lambda)}^{r} d\mu(t) \right)^{1/r} \\ &\leq K_{1} \left\| \sum_{i} \left(\int |x_{i}(t)|^{r} d\mu(t) \right)^{1/r} e_{i} \right\|_{L_{1}([0,1],\lambda)} \\ &\leq K_{1}K_{2} \left\| \sum_{i} \int |x_{i}(t)| d\mu(t) e_{i} \right\|_{L_{1}([0,1],\lambda)} = K_{1}K_{2} \left\| \sum_{i} \|x_{i}\| e_{i} \right\|. \end{split}$$

As is explained in the introduction, the main result of [PS] follows as corollary.

COROLLARY 2.2. If M and N are Orlicz functions such that $M(t)/t^r$ is equivalent to a decreasing function, $N(t)/t^p$ is equivalent to an increasing function and $N(t)/t^2$ is equivalent to a decreasing function, then $\ell_M(\ell_N)$ embeds into L_1 . REMARK. The role of L_1 in Theorem 2.1 can easily be replaced with L_s for any $1 \le s \le r$.

REMARK. If the bases E and F are infinite, say, and the smallest r such that E is r-concave is larger than the largest p such that F is p-convex, then E(F) does not embed into L_1 . This follows from the fact that in this case it is known that the ℓ_r^n uniformly embed as blocks of E, and the ℓ_p^n uniformly embed as blocks of F, for some r > p, while it is known that in this case the spaces $\ell_r^n(\ell_p^n)$ do not uniformly embed into L_1 .

This still leaves open the case r = p, which is not covered in Theorem 2.1:

• If E and F are two 1-unconditional basic sequences in L_1 with E r-concave and F r-convex, does E(F) embed into L_1 ?

In the case that E is an Orlicz space the problem above has a positive solution. We only sketch it. By the factorization theorem of Maurey mentioned above ([Wo, III.H.10] is a good place to read it), and a simple compactness argument (to pass from the finite to the infinite case), it is enough to consider the case that F is the ℓ_r unit vector basis. If the basis of ℓ_M is r-concave, then the 2/r-convexification of ℓ_M (which is the space with norm $\|\{|a_i|^{2/r}\}\|_{\ell_M}^{r/2}$) embeds into $L_{2/r}$. This is again an Orlicz space, say, $\ell_{\tilde{M}}$. Now, tensoring with the Rademacher sequence (or a standard Gaussian sequence) we find that $\ell_{\tilde{M}}(\ell_2)$ embeds into $L_{2/r}$. We now want to 2/r concavify back, staying in L_1 , so as to ensure that $\ell_M(\ell_r)$ embeds into L_1 . This is known to be possible (and is buried somewhere in [MS]): If $\{x_i\}$ is a 1-unconditional basic sequence in L_s , $1 < s \leq 2$, then its s-concavification (which is the space with norm $\|\{|a_i|^{1/s}\}\|_{\ell_M}^s$) embeds into L_1 . Indeed, let $\{f_i\}$ be a sequence of independent 2/s symmetric stable random variables normalized in L_1 and consider the span of the sequence $\{f_i \otimes |x_i|^s\}$ in L_1 .

Acknowledgements. This research was supported in part by the Israel Science Foundation.

References

- [BD] J. Bretagnolle et D. Dacunha-Castelle, Application de l'étude de certaines formes linéaires aléatoires au plongement d'espaces de Banach dans des espaces L^p, Ann. Sci. École Norm. Sup. (4) 2 (1969), 437–480.
- [Ma] B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces L^p, Astérisque 11 (1974).
- [MS] B. Maurey and G. Schechtman, Some remarks on symmetric basic sequences in L₁, Compos. Math. 38 (1979), 67–76.
- [PS] J. Prochno and C. Schütt, Combinatorial inequalities and subspaces of L₁, Studia Math. 211 (2012), 21–39.

Matrix subspaces of L_1

[Wo] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Stud. Adv. Math. 25, Cambridge Univ. Press, Cambridge, 1991.

Gideon Schechtman Department of Mathematics Weizmann Institute of Science Rehovot, Israel E-mail: gideon@weizmann.ac.il

Received March 27, 2013

(7767)