Matrix subspaces of L_{1}

by
Gideon Schechtman (Rehovot)

Abstract

If $E=\left\{e_{i}\right\}$ and $F=\left\{f_{i}\right\}$ are two 1-unconditional basic sequences in L_{1} with $E r$-concave and $F p$-convex, for some $1 \leq r<p \leq 2$, then the space of matrices $\left\{a_{i, j}\right\}$ with norm $\left\|\left\{a_{i, j}\right\}\right\|_{E(F)}=\left\|\sum_{k}\right\| \sum_{l} a_{k, l} f_{l}\left\|e_{k}\right\|$ embeds into L_{1}. This generalizes a recent result of Prochno and Schütt.

1. Introduction. Recall that a basis $E=\left\{e_{i}\right\}_{i=1}^{N}$ of a finite $(N<\infty)$ or infinite $(N=\infty)$ dimensional real or complex Banach space is said to be K-unconditional if $\left\|\sum_{i} a_{i} e_{i}\right\| \leq K\left\|\sum_{i} b_{i} e_{i}\right\|$ whenever $\left|a_{i}\right|=\left|b_{i}\right|$ for all i. Given a finite or an infinite 1-unconditional basis, $E=\left\{e_{i}\right\}_{i=1}^{N}$, and a sequence $\left\{X_{i}\right\}_{i=1}^{N}$ of Banach spaces, denote by $\left(\sum \bigoplus X_{i}\right)_{E}$ the space of sequences $x=\left(x_{1}, x_{2}, \ldots\right), x_{i} \in X_{i}$, for which the norm $\|x\|=\left\|\sum_{i}\right\| x_{i}\left\|e_{i}\right\|$ is finite.

If X has a 1-unconditional basis $F=\left\{f_{j}\right\}$ then $\left(\sum \bigoplus X\right)_{E}$ can be represented as a space of matrices $A=\left\{a_{i, j}\right\}$, denoted $E(F)$, with norm

$$
\|A\|_{E(F)}=\left\|\sum_{i}\right\| \sum_{j} a_{i, j} f_{j}\left\|e_{i}\right\|
$$

In [PS], Prochno and Schütt gave a sufficient condition for bases E and F of two Orlicz sequence spaces which ensures that $E(F)$ embeds into L_{1}. Here we generalize this result by giving a sufficient condition on two unconditional bases E, F which ensures that $E(F)$ embeds into L_{1}. As we shall see, this condition is also "almost" necessary.

Recall that an unconditional basis $\left\{e_{i}\right\}$ is said to be p-convex, resp. r-concave, with constant K provided that for all n and all x_{1}, \ldots, x_{n} in the span of $\left\{e_{i}\right\}$,

$$
\left\|\sum_{i=1}^{n}\left(\left|x_{i}\right|^{p}\right)^{1 / p}\right\| \leq K\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)^{1 / p}
$$

[^0]resp.
$$
\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{r}\right)^{1 / r} \leq K\left\|\sum_{i=1}^{n}\left(\left|x_{i}\right|^{r}\right)^{1 / r}\right\|
$$

Here, for $x=\sum x(j) e_{j}$ and a positive $\alpha,|x|^{\alpha}=\sum|x(j)|^{\alpha} e_{j}$.
In what follows, L_{p} will denote $L_{p}([0,1], \lambda), \lambda$ being the Lebesgue measure. As is known and quite easy to prove, any 1-unconditional basic sequence in $L_{p}, 1 \leq p \leq 2$ (resp. $\left.2 \leq p<\infty\right)$, is p-convex (resp. p-concave) with constant depending only on p. It is also worthwhile to remind the reader that any K-unconditional basic sequence in L_{p} is equivalent, with a constant depending only on K, to a 1-unconditional basic sequence in L_{p}. Indeed, if $\left\{x_{i}\right\}_{i=1}^{\infty}$ is a K-unconditional basic sequence in L_{p} and $\left\{r_{i}\right\}_{i=1}^{\infty}$ is the Rademacher sequence then clearly the sequence $\left\{x_{i}(s) r_{i}(t)\right\}_{i=1}^{\infty}$ in $L_{p}\left([0,1]^{2}\right)$ (which is isometric to L_{p}) is equivalent to $\left\{x_{i}\right\}_{i=1}^{\infty}$, with a constant depending only on K. This sequence is clearly also 1-unconditional.

It is due to Maurey [Ma] (see also [Wo, III.H.10]) that, for every $1 \leq$ $r<p \leq 2$, the span of every p-convex 1 -unconditional basic sequence in L_{1} embeds into L_{p} and also embeds into L_{r} after a change of density; that is, there exists a probability measure μ on $[0,1]$ so that this span is isomorphic (with constants depending on r, p and the p-convexity constant only) to a subspace of $L_{r}([0,1], \mu)$ on which the $L_{r}(\mu)$ and the $L_{1}(\mu)$ norms are equivalent.

We also recall the fact, used in PS$]$ and due to Bretagnolle and DacunhaCastelle BD , that if M is an Orlicz function then the Orlicz space ℓ_{M} embeds into $L_{p}, 1 \leq p \leq 2$, if and only if $M(t) / t^{p}$ is equivalent to an increasing function and $M(t) / t^{2}$ is equivalent to a decreasing function. This happens if and only if the natural basis of ℓ_{M} is p-convex and 2 -concave.

Theorem 2.1 below states in particular that if E and F are two 1unconditional basic sequences in L_{1} with $E r$-concave and $F p$-convex for some $1 \leq r<p \leq 2$ then $E(F)$ embeds into L_{1}. When specializing to Orlicz spaces, this implies the main result of $[\mathrm{PS}]$.

2. The main result

Theorem 2.1. Let $E=\left\{e_{i}\right\}$ be a 1-unconditional basic sequence in L_{1} with $\left\{e_{i}\right\} r$-concave with constant K_{1}, and let X be a subspace of $L_{1}([0,1], \mu)$ for some probability measure μ satisfying $\|x\|_{L_{r}([0,1], \mu)} \leq K_{2}\|x\|_{L_{1}([0,1], \mu)}$ for some constant K_{2} and all $x \in X$. Then $\left(\sum \bigoplus X\right)_{E}$ embeds into L_{1} with a constant depending on K_{1}, K_{2} and r only.

Consequently, if $E=\left\{e_{i}\right\}$ and $F=\left\{f_{i}\right\}$ are two 1-unconditional basic sequences in L_{1} with E-concave with constant K_{1} and F p-convex with constant K_{2}, for some $1 \leq r<p \leq 2$, then the space of matrices $A=\left\{a_{k, l}\right\}$
with norm

$$
\|A\|_{E(F)}=\left\|\sum_{k}\right\| \sum_{l} a_{k, l} f_{l}\left\|e_{k}\right\|
$$

embeds into L_{1} with a constant depending only on r, p, K_{1} and K_{2}.
Proof. The p-convexity of $\left\{f_{i}\right\}$ implies that after a change of density the L_{1} and L_{r} norms are equivalent on the span of $\left\{f_{i}\right\}$ (see Ma). That is, there exists a probability measure μ on $[0,1]$ and a constant K_{3}, depending only on r, p and K_{2}, such that $\left\|\sum a_{j} \tilde{f}_{j}\right\|_{L_{r}([0,1], \mu)} \leq K_{3}\left\|\sum a_{j} \tilde{f}_{j}\right\|_{L_{1}([0,1], \mu)}$ for some sequence $\left\{\tilde{f}_{j}\right\}$ 1-equivalent, in the relevant L_{1} norm, to $\left\{f_{j}\right\}$, and for all coefficients $\left\{a_{i}\right\}$. Therefore, the second part of the theorem follows from the first part.

To prove the first part, in $L_{1}([0,1] \times[0,1], \lambda \times \mu)$ consider the tensor product of the span of $\left\{e_{i}\right\}$ and of X, that is, the space of all functions of the form $\sum_{i} e_{i} \otimes x_{i}, x_{i} \in X$ for all i, where $e_{i} \otimes x_{i}(s, t)=e_{i}(s) x_{i}(t)$. Then, by the 1 -unconditionality of $\left\{e_{i}\right\}$ and the triangle inequality,

$$
\begin{aligned}
\left\|\sum_{i} e_{i} \otimes x_{i}\right\|_{1} & =\int\left\|\sum_{i}\left|x_{i}(t)\right| e_{i}\right\|_{L_{1}([0,1], \lambda)} d \mu(t) \\
& \geq\left\|\sum_{i}\left(\int\left|x_{i}(t)\right| d \mu(t)\right) e_{i}\right\|_{L_{1}([0,1], \lambda)}=\left\|\sum_{i}\right\| x_{i}\left\|e_{i}\right\|
\end{aligned}
$$

On the other hand, by the 1-unconditionality and the r-concavity with constant K_{1} of $\left\{e_{i}\right\}$ (used in integral instead of summation form),

$$
\begin{aligned}
\left\|\sum_{i} e_{i} \otimes x_{i}\right\|_{1} & =\iint\left|\sum_{i}\right| x_{i}(t)\left|e_{i}(s)\right| d \lambda(s) d \mu(t) \\
& \leq\left(\int\left(\int\left|\sum_{i}\right| x_{i}(t)\left|e_{i}(s)\right| d \lambda(s)\right)^{r} d \mu(t)\right)^{1 / r} \\
& =\left(\int\left\|\sum_{i}\left|x_{i}(t)\right| e_{i}\right\|_{L_{1}([0,1], \lambda)}^{r} d \mu(t)\right)^{1 / r} \\
& \leq K_{1}\left\|\sum_{i}\left(\int\left|x_{i}(t)\right|^{r} d \mu(t)\right)^{1 / r} e_{i}\right\|_{L_{1}([0,1], \lambda)} \\
& \leq K_{1} K_{2}\left\|\sum_{i} \int\left|x_{i}(t)\right| d \mu(t) e_{i}\right\|_{L_{1}([0,1], \lambda)}=K_{1} K_{2}\left\|\sum_{i}\right\| x_{i}\left\|e_{i}\right\|
\end{aligned}
$$

As is explained in the introduction, the main result of PS follows as corollary.

Corollary 2.2. If M and N are Orlicz functions such that $M(t) / t^{r}$ is equivalent to a decreasing function, $N(t) / t^{p}$ is equivalent to an increasing function and $N(t) / t^{2}$ is equivalent to a decreasing function, then $\ell_{M}\left(\ell_{N}\right)$ embeds into L_{1}.

REmARK. The role of L_{1} in Theorem 2.1 can easily be replaced with L_{s} for any $1 \leq s \leq r$.

Remark. If the bases E and F are infinite, say, and the smallest r such that E is r-concave is larger than the largest p such that F is p-convex, then $E(F)$ does not embed into L_{1}. This follows from the fact that in this case it is known that the ℓ_{r}^{n} uniformly embed as blocks of E, and the ℓ_{p}^{n} uniformly embed as blocks of F, for some $r>p$, while it is known that in this case the spaces $\ell_{r}^{n}\left(\ell_{p}^{n}\right)$ do not uniformly embed into L_{1}.

This still leaves open the case $r=p$, which is not covered in Theorem 2.1 .

- If E and F are two 1-unconditional basic sequences in L_{1} with E r-concave and F r-convex, does $E(F)$ embed into L_{1} ?
In the case that E is an Orlicz space the problem above has a positive solution. We only sketch it. By the factorization theorem of Maurey mentioned above ([W0, III.H.10] is a good place to read it), and a simple compactness argument (to pass from the finite to the infinite case), it is enough to consider the case that F is the ℓ_{r} unit vector basis. If the basis of ℓ_{M} is r-concave, then the $2 / r$-convexification of ℓ_{M} (which is the space with norm $\left\|\left\{\left|a_{i}\right|^{2 / r}\right\}\right\|_{\ell_{M}}^{r / 2}$) embeds into $L_{2 / r}$. This is again an Orlicz space, say, $\ell_{\tilde{M}}$. Now, tensoring with the Rademacher sequence (or a standard Gaussian sequence) we find that $\ell_{\tilde{M}}\left(\ell_{2}\right)$ embeds into $L_{2 / r}$. We now want to $2 / r$ concavify back, staying in L_{1}, so as to ensure that $\ell_{M}\left(\ell_{r}\right)$ embeds into L_{1}. This is known to be possible (and is buried somewhere in MS): If $\left\{x_{i}\right\}$ is a 1-unconditional basic sequence in $L_{s}, 1<s \leq 2$, then its s-concavification (which is the space with norm $\left\|\left\{\left|a_{i}\right|^{1 / s}\right\}\right\|_{\ell_{M}}^{s}$) embeds into L_{1}. Indeed, let $\left\{f_{i}\right\}$ be a sequence of independent $2 / s$ symmetric stable random variables normalized in L_{1} and consider the span of the sequence $\left\{f_{i} \otimes\left|x_{i}\right|^{s}\right\}$ in L_{1}.

Acknowledgements. This research was supported in part by the Israel Science Foundation.

References

[BD] J. Bretagnolle et D. Dacunha-Castelle, Application de l'étude de certaines formes linéaires aléatoires au plongement d'espaces de Banach dans des espaces L^{p}, Ann. Sci. École Norm. Sup. (4) 2 (1969), 437-480.
[Ma] B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces L^{p}, Astérisque 11 (1974).
[MS] B. Maurey and G. Schechtman, Some remarks on symmetric basic sequences in L_{1}, Compos. Math. 38 (1979), 67-76.
[PS] J. Prochno and C. Schütt, Combinatorial inequalities and subspaces of L_{1}, Studia Math. 211 (2012), 21-39.
[Wo] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Stud. Adv. Math. 25, Cambridge Univ. Press, Cambridge, 1991.

Gideon Schechtman
Department of Mathematics
Weizmann Institute of Science
Rehovot, Israel
E-mail: gideon@weizmann.ac.il

[^0]: 2010 Mathematics Subject Classification: 46E30, 46B45, 46B15.
 Key words and phrases: subspaces of L_{1}, unconditional basis, r-concavity, p-convexity.

