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Weak-type operators and the strong fundamental

lemma of real interpolation theory

by

N. Krugljak (Lule̊a), Y. Sagher (Boca Raton, FL)
and P. Shvartsman (Haifa)

Abstract. We prove an interpolation theorem for weak-type operators. This is closely
related to interpolation between weak-type classes. Weak-type classes at the ends of in-
terpolation scales play a similar role to that played by BMO with respect to the L

p

interpolation scale. We also clarify the roles of some of the parameters appearing in the
definition of the weak-type classes. The interpolation theorem follows from a K-functional
inequality for the operators, involving the Calderón operator. The inequality was inspired
by a K-J inequality approach developed by Jawerth and Milman. We show that the use
of the Calderón operator is necessary. We use a new version of the strong fundamen-
tal lemma of interpolation theory that does not require the interpolation couple to be
mutually closed.

1. Introduction. Weak-type classes were defined in [9], [10], and [11].
Interpolation theorems between these classes give stronger versions of clas-
sical interpolation theorems, and calculations of the K-functionals between
these classes give a systematic way of proving rearrangement-function in-
equalities for classical operators. These classes, when constructed at the
natural ends of interpolation scales, turn out to be interesting in their own
right, and imply useful generalizations of interpolation theorems. The def-
inition of the weak-type classes, Definition 1.2 below, is quite general, and
among other things yields an interpolation theorem, Theorem 1.3, that is
valid only for a subinterval of the interpolation scale.

In this paper we generalize the interpolation theorem. We define weak-
type operators between interpolation pairs of Banach groups, and prove an
interpolation theorem for these operators. Moreover we prove an inequality
between the K-functionals of Ta and of a, which implies the interpolation
theorem and is of independent interest. We also show that the interpolation
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theorem between weak-type classes is a special case of the new interpolation
theorem, and clarify the subinterval phenomenon in Theorem 1.3.

Let us recall some of the notions. Let A = (A0, A1) be an interpolation
couple. Here Aj are quasi-Banach groups, that is to say, there exist functions
‖ · ‖Aj : Aj → R+ so that ‖a‖Aj = 0 ⇔ a = 0, ‖a‖Aj = ‖−a‖Aj and ‖ · ‖Aj

satisfies the quasi-triangle inequality:

‖a+ b‖Aj ≤ cj(‖a‖Aj + ‖b‖Aj ).

Let
K(t, a;A) = inf{‖a0‖A0 + t‖a1‖A1 : a0 + a1 = a, aj ∈ Aj}.

Definition 1.1. Let A = (A0, A1) and B = (B0, B1) be two interpola-
tion couples of quasi-Banach groups. An operator

T : A0 ∩A1 → B0 +B1

is said to be K-subadditive if there is a constant M so that for all a0, a1 ∈
A0 ∩A1 and all t > 0,

(1.1) K(t, T (a0 + a1);B) ≤M(K(t, Ta0;B) +K(t, Ta1;B)).

It is easy to see that if B0 and B1 are Banach lattices and for almost
every ω,

(1.2) |T (a0 + a1)(ω)| ≤M(|Ta0(ω)| + |Ta1(ω)|),

then (1.1) holds.

We denote by φ
a

the least concave majorant of a function φ : R+ → R+.
We let c denote a generic constant which depends on parameters that

are fixed in the context. Also: if f and g are two non-negative functions and
there exists a c > 0 so that c−1f ≤ g ≤ cf , we write f ∽ g.

We will also use the following notation: if g : R+ → R+,

gT (t) = tg(1/t).

Recall that

(1.3) KT (·, a;A0, A1) = K(·, a;A1, A0).

If A = (A0, A1), we will denote by AT the interpolation couple (A1, A0).

Definition 1.2. Let A = (A0, A1) be an interpolation couple. Let

g : R+ × (A0 +A1) → R+

be such that

(1.4) g
a

∽ K(·, · ;A).

For 0 ≤ ε <∞, 0 < r <∞, and 1 < γ <∞, we define

‖a‖WK [A;ε,γ,r,g] = sup
t>0

([gr(γt, a) − εrgr(t, a)]
1/r
+ )
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and
WK [A; ε, γ, r, g] = {a ∈ A0 +A1 : ‖a‖WK [A;ε,γ,r,g] <∞}.

Recall (see Theorem 3.6 in [9]) that (g
a
)T = (gT )⌢. Moreover, (1.4) is

equivalent to
(gT )⌢

∽ K(·, ·;A1, A0)

so that if WK [A; ε, γ, r, g] is defined, then so is WK [AT ; ε, γ, r, gT ].
The large number of parameters in the definition of WK is forced on us

by the formulas of interpolation theory. In most cases the K-functional can
be calculated only up to equivalence. For example Holmstedt’s Theorem,
which plays a central role in the theory, gives an expression which is equiv-
alent to a K-functional. Since the definition of WK involves differences, we
cannot replace functions by other, equivalent ones, in the definition, without
changing the conclusions of the theorems. The parameters g and r solve this
problem.

The following interpolation theorem was proved in [9] for the case of
Banach groups.

Theorem 1.3. Let A = (A0, A1) and B = (B0, B1) be two interpolation

couples. Let

T : A0 ∩A1 → B0 +B1

be a K-subadditive operator. Assume that g
a

∽ K(·, · ;B) and that for all

a ∈ A0 ∩A1,

(1.5) ‖Ta‖WK [B;ε0,γ,r,g] ≤M0‖a‖A0

and

(1.6) ‖Ta‖WK [BT ;ε1,γ,r,gT ] ≤M1‖a‖A1

where 0 < r < ∞, γ > 1, 0 ≤ ε0, ε1 < γ and ε0ε1 < γ. Then for all θ so

that

(1.7) log+
γ ε0 < θ < 1 − log+

γ ε1

and 0 < q ≤ ∞, we have

(1.8) ‖Ta‖Bθ,q
≤ CM1−θ

0 Mθ
1 ‖a‖Aθ,q

where C is a constant that depends on the parameters defining WK and

on θ, q.

We will see below that Theorem 1.3 follows from a more general inter-
polation theorem. The new theorem also clarifies the restriction on θ given
in (1.7).

Set

θ0 = log+
γ ε0, θ1 = 1 − log+

γ ε1, G(t, b) = t−θ0/(θ1−θ0)g(t1/(θ1−θ0), b).
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Write F = G
a

. We will see that

(1.9) F (t, b) ∽ K(t, b;Bθ0,∞, Bθ1,∞)

where Bθ0,∞ is replaced by B0 when θ0 = 0, and Bθ1,∞ is replaced by B1

when θ1 = 1. Observe that, by (1.3), (1.9) is equivalent to

FT (t, b) ∽ K(t, b;Bθ1,∞, Bθ0,∞).

Define

λ = γθ1−θ0 , σ0 =
θ0

θ1 − θ0
, σ1 =

1 − θ1
θ1 − θ0

.

A simple calculation shows that condition (1.5) is equivalent to

(1.10) sup
t>0

(tσ0[Gr(λt, Ta) −Gr(t, Ta)]
1/r
+ ) ≤ cM0‖a‖A0

and condition (1.6) is equivalent to

(1.11) sup
t>0

(tσ1 [Gr
T (λt, Ta) −Gr

T (t, Ta)]
1/r
+ ) ≤ cM1‖a‖A1 .

We shall prove that (1.10) implies

(1.12) sup
t>0

(tσ0(t(F r)′(t, Ta))1/r) ≤ cM0‖a‖A0

and similarly (1.11) yields

(1.13) sup
t>0

(tσ1(t(F r
T )′(t, Ta))1/r) ≤ cM1‖a‖A1 .

We shall then show that (1.12) and (1.13) imply that for some p,

(1.14) K(t, Ta;Bθ0,∞, Bθ1,∞) ≤ cSp(K(·, a;Aθ0,∞, Aθ1,∞))(t)

where Sp is a Calderón operator defined below (see (2.4)). Finally, we show
that (1.14) implies the interpolation result (1.8) (see Theorem 2.6).

Recall that F , and of course also FT , is a positive concave function on
R+ and so is absolutely continuous. It may fail to have a derivative on a
countable set of points and since our inequalities are pointwise let us agree
that F ′ and (FT )′ stand for the right derivatives at these points.

Our approach is based on an application of a version of the strong fun-
damental lemma of interpolation theory to prove that the weak-type con-
ditions imply (1.14). This approach was initiated by Jawerth and Milman
in [4, pp. 49–50].

We will assume the standard results of interpolation theory as stated
in [1].

2. Weak-type operators. Conditions (1.12) and (1.13) motivate the
following definition.
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Definition 2.1. Let A = (A0, A1) and B = (B0, B1) be two inter-
polation couples of quasi-Banach groups. Let σ0, σ1 ≥ 0 and r > 0. A
K-subadditive operator T is said to be an A → B weak-type (σ0, σ1; r)
operator if there exists a function

F : R+ × (B0 +B1) → R+

concave in the first argument so that K(·, · ;B) ≤ F and for some 0 <
M0,M1 <∞ and a ∈ A0 ∩A1,

(2.1) sup
t>0

(tσ0(t(F r)′(t, Ta))1/r) ≤M0‖a‖A0

and

(2.2) sup
t>0

(tσ1(t(F r
T )′(t, Ta))1/r) ≤M1‖a‖A1 .

The numbers M0 and M1 are called the norms of the operator.

Remark 2.2. Observe that T is an A→ B weak-type (σ0, σ1; r) operator
iff it is an AT → BT weak-type (σ1, σ0; r) operator.

Condition (2.2) can also be written

(2.3) sup
t>0

(

t−σ1

(

−t

(

F r(t, Ta)

tr

)′)1/r)

≤M1‖a‖A1 .

Weak-type operators, with σ0 = σ1 = 0, F = K, and r = 1, were introduced
in [8].

In practice we frequently get a function, G, so that K ≤ G
a

, and to see

that T is a weak-type (σ0, σ1; r) operator we want to see if F := G
a

satisfies
(2.1) and (2.2). This could be hard since it involves precise calculations of

G
a

and its derivative. We will see in Section 3 that it suffices to verify that
G satisfies conditions (1.10) and (1.11).

Let us recall the definition of Calderón operators.

Definition 2.3. For p > 0, we define the Calderón operator acting on
non-negative functions on R+ by the formula

(2.4) Spf(t) =

(∞\
0

(

min

{

1,
t

s

}

f(s)

)p ds

s

)1/p

.

If p = 1 we have the usual Calderón operator. In this case we write S
rather than S1.

We will need the following
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Lemma 2.4. Assume that T : A0 ∩ A1 → B0 + B1 is a K-subadditive

operator (see (1.1)). Then, for all uj ∈ A0 ∩A1 and all t > 0,

(2.5) K
(

t, T
(

n
∑

j=1

uj

)

;B
)

≤ 2M
(

n
∑

j=1

Kα(t, Tuj ;B)
)1/α

where

(2.6) α =
1

1 + log2M
.

Proof. We consider each K(t, T · ;B) as a seminorm on the group A0∩A1

and apply the Aoki–Rolewicz Theorem (see e.g. [6]).

The letter α from now on stands for the quantity in (2.6).
Our main goal is to prove the following theorem.

Theorem 2.5. If T : A → B is a weak-type (σ0, σ1; r) operator with

norms M0,M1, then for all σ0, σ1 ≥ 0, a ∈ A0 ∩A1 and t > 0,

(2.7) K(t, Ta;B) ≤ cM0Smin{α,r}[K(·, a;Aθ0,∞, Aθ1,∞)]

(

M1

M0
t

)

where

θ0 =
σ0

1 + σ0 + σ1
,(2.8)

θ1 =
1 + σ0

1 + σ0 + σ1
.(2.9)

If σ0 = 0 we replace Aθ0,∞ by A0. If σ1 = 0 we replace Aθ1,∞ by A1.

If σ0 > 0 and σ1 > 0 we get a somewhat stronger result , with Sα instead

of Smin{α,r} in (2.7).

In Theorem 3.5 we give an example of a weak-type (σ0, σ1; r) operator.
Also, in the discussion which follows Theorem 3.5 we show that in some
cases (2.7) is sharp, that is, there exists a class of functions for which we
can replace the inequality in (2.7) by an equivalence.

Applying Hardy’s inequalities (and their extensions for quasi-monotone
functions to get the case 0 < q < 1 below) to (2.7) we get the following
interpolation theorem:

Theorem 2.6. If T : A → B is a weak-type (σ0, σ1; r) operator with

norms M0,M1, where σ0, σ1 ≥ 0, then for θ0, θ1 given by (2.8) and (2.9),
and all a ∈ A0 ∩A1, 0 < η < 1, 0 < q ≤ ∞,

‖Ta‖Bη,q
≤ cM1−η

0 Mη
1 ‖a‖A(1−η)θ0+ηθ1,q

.

We return to Theorem 2.5. Renorming A0 and A1, we can assume that
M0 = M1 = 1. We will also write F (t) for F (t, Ta).
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For the proof of the theorem we will need some preliminary lemmas. To
state the first lemma we need to define the following function.

Definition 2.7. For x > 0 and σ0, σ1 ≥ 0 we define

Ψ(x, σ0, σ1) =



















x if x ≤ 1 and σ1 > 0,

x(1 + |log x|) if x ≤ 1 and σ1 = 0,

1 if 1 < x and σ0 > 0,

1 + |logx| if 1 < x and σ0 = 0.

Observe that

(2.10) Ψ(x, σ0, σ1) = ΨT (x, σ1, σ0)

and that for q ≥ p > 0,

(2.11) Ψ1/q(xq, σ0, σ1) ≤ Ψ1/p(xp, σ0, σ1).

Lemma 2.8. Set

h(s, σ0, σ1) = s−σ0 min{1, s1+σ0+σ1}.

For σ0, σ1 ≥ 0,

(2.12) Ψ(·, σ0, σ1) ∽ Sh(·, σ0, σ1)(·).

Proof. For 0 < x ≤ 1 and σ1 > 0 we have

Sh(·, σ0, σ1)(x) =

∞\
0

min

{

1,
x

s

}

s−σ0 min{1, s1+σ0+σ1}
ds

s

=

x\
0

s1+σ1
ds

s
+ x

1\
x

sσ1
ds

s
+ x

∞\
1

s−(1+σ0) ds

s

∽ x = Ψ(x, σ0, σ1).

If 0 < x ≤ 1 and σ1 = 0 then

Sh(·, σ0, 0)(x) = x+ x log
1

x
+

1 + σ1

1 + σ0 + σ1
x

∽ x(1 + |log x|) = Ψ(x, σ0, 0).

It is easy to verify that S(fT ) = (Sf)T and that

hT (·, σ1, σ0)(t) = h(·, σ0, σ1)(t),

which together with (2.10) implies (2.12) also in the case x > 1.

Lemma 2.9. Let σ0, σ1 ≥ 0. If T is an A → B weak-type (σ0, σ1; r)
operator with norms M0 = M1 = 1 then for any a ∈ A0 ∩ A1 and any

s, t > 0, we have

(2.13) K(t, Ta;B) ≤ cΨ1/r((t/s)r, σ0, σ1)s
−σ0J(s1+σ0+σ1 , a;A).
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Proof. Let us consider the case t ≤ s and σ1 > 0. Then, by (2.3),

(

F (t)

t

)r

−

(

F (s)

s

)r

=−

s\
t

(

F r(τ)

τ r

)′

dτ ≤‖a‖r
A1

s\
t

τ−1+rσ1 dτ(2.14)

so that

(2.15)

(

F (t)

t

)r

−

(

F (s)

s

)r

≤ c‖a‖r
A1
srσ1 .

But (2.3) can also be written

−
(F r)′(s)

sr
+ r

F r(s)

sr+1
≤ ‖a‖r

A1
s−1+rσ1

so that
(

F (s)

s

)r

≤
1

r
‖a‖r

A1
srσ1 +

1

r

(F r)′(s)

sr−1
.

By (2.1),
(

F (s)

s

)r

≤
1

r
‖a‖r

A1
srσ1 +

1

r
‖a‖r

A0
s−1−rσ0s1−r(2.16)

=
1

r
‖a‖r

A1
srσ1 +

1

r
‖a‖r

A0
s−r(1+σ0).

By (2.15) for t ≤ s,
(

F (t)

t

)r

≤

(

F (s)

s

)r

+ c‖a‖r
A1
srσ1 ≤ c(‖a‖r

A0
s−r(1+σ0) + ‖a‖r

A1
srσ1)

so that

F r(t) ≤ ctrs−r(1+σ0)(‖a‖r
A0

+ ‖a‖r
A1
sr(1+σ0+σ1))

= c(t/s)rs−rσ0(‖a‖r
A0

+ ‖a‖r
A1
sr(1+σ0+σ1))

≤ c(t/s)rs−rσ0Jr(s1+σ0+σ1 , a;A)

= cΨ((t/s)r, σ0, σ1)s
−rσ0Jr(s1+σ0+σ1 , a;A)

and since K ≤ F we proved (2.13) for t ≤ s and σ1 > 0.
Let us consider the case t ≤ s when σ1 = 0. Estimate (2.14) now reads

(

F (t)

t

)r

−

(

F (s)

s

)r

≤ ‖a‖r
A1

s\
t

τ−1 dτ = ‖a‖r
A1

log
s

t
.

Estimate (2.16) now reads
(

F (s)

s

)r

≤
1

r
‖a‖r

A1
+

1

r
‖a‖r

A0
s−r(1+σ0)
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so that
(

F (t)

t

)r

≤
1

r
‖a‖r

A1
+

1

r
‖a‖r

A0
s−r(1+σ0) + ‖a‖r

A1
log

s

t

= c

(

‖a‖r
A1

(

1 + log
s

t

)

+ ‖a‖r
A0
s−r(1+σ0)

)

.

Therefore

F r(t) ≤ ctrs−r(1+σ0)

(

‖a‖r
A1
sr(1+σ0)

(

1 + log
s

t

)

+ ‖a‖r
A0

)

≤ ctrs−r(1+σ0)Jr

(

s1+σ0

(

1 + log
s

t

)1/r

, a;A

)

.

We set

τ = s

(

1 + log
s

t

)1/r(1+σ0)

.

Then τ ≥ s and so

τ ≤ s

(

1 + log
τ

t

)1/r(1+σ0)

,

which implies

1

s
≤

(1 + log τ
t )

1/r(1+σ0)

τ
.

Moreover s 7→ s(1 + log(s/t))1/r(1+σ0) maps [t,∞) onto itself and is one-to-
one. Thus for all τ ≥ t,

F (t) ≤ cts−(1+σ0)J

(

s1+σ0

(

1 + log
s

t

)1/r

, a;A

)

= cts−(1+σ0)J(τ1+σ0, a;A)

≤ ct

(

1 + log
τ

t

)1/r

τ−(1+σ0)J(τ1+σ0 , a;A)

= c
t

τ

(

1 + log
τ

t

)1/r

τ−σ0J(τ1+σ0, a;A)

= cΨ1/r

((

t

τ

)r

, σ0, 0

)

τ−σ0J(τ1+σ0 , a;A).

Since K ≤ F we proved

K(t, Ta;B) ≤ cΨ1/r((t/s)r, σ0, σ1)s
−σ0J(s1+σ0+σ1 , a;A)

for t ≤ s and σ1 ≥ 0.
Applying the last inequality to the couples AT and BT and recalling

that T is a weak-type (σ1, σ0; r) operator with respect to these couples, we
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have, for t ≤ s,

K(t, Ta;BT ) ≤ cΨ1/r((t/s)r, σ1, σ0)s
−σ1J(s1+σ0+σ1 , a;AT )

so that

tK(1/t, Ta;B) ≤ cΨ1/r((t/s)r, σ1, σ0)s
−σ1s1+σ0+σ1J(s−(1+σ0+σ1), a;A)

and hence

K(1/t, Ta;B) ≤ c(t/s)−1Ψ1/r((t/s)r, σ1, σ0)s
σ0J(s−(1+σ0+σ1), a;A).

Replacing 1/t by t and 1/s by s, and using (2.10), we have

K(t, Ta;B) ≤ c(t/s)Ψ1/r((s/t)r, σ1, σ0)s
−σ0J(s1+σ0+σ1 , a;A)

= cΨ1/r((t/s)r, σ0, σ1)s
−σ0J(s1+σ0+σ1 , a;A)

also for s ≤ t, and (2.13) is proved.

The following theorem is a variation on the Strong Fundamental Lemma
of real interpolation theory (see [2], [3], [5]). We assume more on the decom-
posed element, a ∈ A0 ∩A1 instead of a ∈ A0 +A1. On the other hand, we
do not have to assume that A is a Gagliardo couple.

Theorem 2.10. Let A = (A0, A1) be an interpolation couple and let

a ∈ A0 ∩A1. Then for any ε > 0 there is a finite decomposition

a = u0 +
n

∑

i=1

ui + u∞

and numbers 0 < t0 < ε, t∞ > 1/ε and t1, . . . , tn > 0 so that u0, ui, u∞ ∈
A0 ∩A1 and for all 0 < t, q <∞,

(2.17)

(

n
∑

i=1

(min{1, t/ti}J(ti, ui;A))q
)1/q

≤ cK(t, a;A),

J(t0, u0;A) ≤ ct0‖a‖A1 , J(t∞, u∞;A) ≤ c‖a‖A0 .

Here c is a constant which depends only on q, c0, c1 where c0, c1 are the

constants in the quasi-triangle inequalities for A0 and A1.

In order not to interrupt the proof of the main theorem we postpone the
proof of Theorem 2.10 to Section 4.

In the proof of the next lemma we shall use the concept of quasi-conca-
vity.

Let us recall that a function ψ : R+ → R+ is said to be quasi-concave if
both ψ ր and ψ(s)/s ց. For any function φ : R+ → R+, we denote by φ▽

its least quasi-concave majorant. It can be readily seen that

(2.18) φ▽(t) = sup
s>0

{min(1, t/s)φ(s)}.
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Also, recall [2, p. 291] that

(2.19) φ▽ ≤ φ
a

≤ 2φ▽.

Lemma 2.11. Let X = (X0, X1) be an interpolation couple. Assume that

g : R+ × (X0 +X1) → R+

is such that g
a

∽ K(·, · ;X) and that 0 ≤ θ0 < θ1 ≤ 1. For t > 0 and

x ∈ X0 +X1, define

G(t, x, θ0, θ1) = t−θ0/(θ1−θ0)g(t1/(θ1−θ0), x)

and F = G
a

. Then

F (t, x, θ0, θ1) ∽ K(t, x;Xθ0,∞,Xθ1,∞).

If θ0 = 0 we replace Xθ0,∞ by X0 and if θ1 = 1 we replace Xθ1,∞ by X1.

Proof. From Holmstedt’s formula,

K(t, x;Xθ0,∞,Xθ1,∞)

∽ sup
0<s≤t1/(θ1−θ0)

{s−θ0K(s, x;X)} + t sup
s≥t1/(θ1−θ0)

{s−θ1K(s, x;X)}

∽ sup
s>0

{min(1, t/s)s−θ0/(θ1−θ0)K(s1/(θ1−θ0), x;X)}

∽ sup
s>0

{min(1, t/s)s−θ0/(θ1−θ0)g
a

(s1/(θ1−θ0), x)}.

Since, by (2.19), g▽
∽ g

a
, we have

K(t, x;Xθ0,∞,Xθ1,∞)

∽ sup
s>0

{min(1, t/s)s−θ0/(θ1−θ0)g▽(s1/(θ1−θ0), x)}

∽ sup
s>0

{min(1, t/s)s−θ0/(θ1−θ0) sup
u>0

min{1, s1/(θ1−θ0)/u}g(u, x)}

= sup
u>0

g(u, x) sup
s>0

{min(1, t/s)s−θ0/(θ1−θ0) min{1, s1/(θ1−θ0)/u}}

= sup
u>0

g(u, x)(min{s−θ0/(θ1−θ0), s(1−θ0)/(θ1−θ0)/u})▽(t)

∽ sup
u>0

g(u, x)(min{s−θ0/(θ1−θ0), s(1−θ0)/(θ1−θ0)/u})⌢(t).

But φ1(s) = s−θ0/(θ1−θ0) is a decreasing function and φ2(s) = s1−θ0/(θ1−θ0)/u
is an increasing function so that

min{φ1, φ2}(s) =

{

φ2(s) if 0 < s < uθ1−θ0 ,

φ1(s) if s ≥ uθ1−θ0 .
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Since φ2 is a convex function and φ1 is a decreasing function,

(min{φ1, φ2})
⌢(t) = u−θ0 min

{

1,
t

uθ1−θ0

}

.

Therefore

K(t, x;Xθ0,∞,Xθ1,∞) ∽ sup
u>0

u−θ0 min{1, t/uθ1−θ0}g(u, x)

= sup
s>0

s−θ0/(θ1−θ0) min{1, t/s}g(s1/(θ1−θ0), x)

= (s−θ0/(θ1−θ0)g(s1/(θ1−θ0), x))▽(t)

∽ (s−θ0/(θ1−θ0)g(s1/(θ1−θ0), x))⌢(t) = F (t, x, θ0, θ1).

When θ0 = 0, Holmstedt’s formula implies

K(t, x;X0,Xθ1,∞) ∽ t sup
t1/(θ1−θ0)≤s

{s−θ1K(s, x;X)}

∽ sup
s>0

{min(1, t/s)K(s1/θ1 , x;X)}

∽ sup
s>0

{min(1, t/s)g
a

(s1/θ1, x)}

and the calculation above implies

K(t, x;X0, Xθ1,∞) ∽ g(s1/θ1, x)⌢(t) = F (t, x, 0, θ1).

Similarly

K(t, x;Xθ0,∞, X1) ∽ (g(s1/(1−θ0), x)s−θ0/(1−θ0))⌢(t) = F (t, x, θ0, 1).

The proof of the following lemma is elementary.

Lemma 2.12. If p1 < p2 and f : R+ → R+ is a non-decreasing function

so that f(2t) ∽ f(t) then
Sp2f ≤ cSp1f.

We will now prove Theorem 2.5.

Proof of Theorem 2.5. Set p = min{α, r}. Recall also that

θ0 =
σ0

1 + σ0 + σ1
and θ1 =

1 + σ0

1 + σ0 + σ1

so that

σ0 =
θ0

θ1 − θ0
and σ1 =

1 − θ1
θ1 − θ0

.(2.20)

Let a ∈ A0 ∩ A1 and t > 0 be given. Choose ε = ε(t, a) > 0 so that for all
0 < t0 < ε and all t∞ > 1/ε we have

(

1 +

∣

∣

∣

∣

log
t

tθ1−θ0
0

∣

∣

∣

∣

)1/r

t1−θ0
0 ‖a‖A1 + t−θ1

∞ t

(

1 +

∣

∣

∣

∣

log
t

tθ1−θ0
∞

∣

∣

∣

∣

)1/r

‖a‖A0

≤ SpK(·, a;Aθ0,∞, Aθ1,∞)(t).
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Using Theorem 2.10 with ε as above, we decompose a as

a = u0 +
n

∑

i=1

ui + u∞.

For any such decomposition we have, from Lemma 2.4,

Kα(t;Ta;B) ≤ 2M
(

Kα(t, Tu0;B) +
n

∑

i=1

Kα(t, Tui;B) +Kα(t, Tu∞;B)
)

.

By Lemma 2.9,

K(t, Tui;B) ≤ cΨ1/r((t/s)r, σ0, σ1)s
−σ0J(s1+σ0+σ1 , ui;A).

Let us apply the last inequality to s = tθ1−θ0
i where ti is as in Theorem 2.10.

Then by (2.20), we have

(2.21) K(t, Tui;B) ≤ cΨ1/r

((

t

tθ1−θ0
i

)r

, σ0, σ1

)

t−θ0
i J(ti, ui;A).

Let us consider first K(t, Tu0;B), so

K(t, Tu0;B) ≤ cΨ1/r

((

t

tθ1−θ0
0

)r

, σ0, σ1

)

t−θ0
0 J(t0, u0;A).

From Theorem 2.10, J(t0, u0;A) ≤ ct0‖a‖A1 , and from the definition of Ψ ,

Ψ1/r(xr, σ0, σ1) ≤ cmin{1, x}(1 + |log x|)1/r

so that

K(t, Tu0;B) ≤ c

(

1 +

∣

∣

∣

∣

log
t

tθ1−θ0
0

∣

∣

∣

∣

)1/r

t1−θ0
0 ‖a‖A1

≤ cSpK(·, a;Aθ0,∞, Aθ1,∞)(t).

Let us now consider K(t, Tu∞;B), so

K(t, Tu∞;B) ≤ cΨ1/r

((

t

tθ1−θ0
∞

)r

, σ0, σ1

)

t−θ0
∞ J(t∞, u∞;A).

From Theorem 2.10, J(t∞, u∞;A) ≤ c‖a‖A0 so that

K(t, Tu∞;B) ≤ ct−θ1
∞ t

(

1 +

∣

∣

∣

∣

log
t

tθ1−θ0
∞

∣

∣

∣

∣

)1/r

‖a‖A0

≤ cSpK(·, a;Aθ0,∞, Aθ1,∞)(t).

To prove the theorem it will therefore suffice to show
n

∑

i=1

Kα(t, Tui;B) ≤ cSα
pK(·, a;Aθ0,∞, Aθ1,∞)(t).
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By Lemma 2.8,

Ψ(x, σ0, σ1) ∽ Sh(·, σ0, σ1)(x)

where

h(s, σ0, σ1) = s−σ0 min{1, s1+σ0+σ1}.

By (2.11), since p ≤ r,

(2.22) Ψ1/r

(

tr

t
(θ1−θ0)r
i

, σ0, σ1

)

≤ Ψ1/p

(

tp

t
(θ1−θ0)p
i

, σ0, σ1

)

so that

Ψp/r

(

tr

t
(θ1−θ0)r
i

, σ0, σ1

)

≤ cSh(·, σ0, σ1)

(

tp

t
(θ1−θ0)p
i

)

= c

∞\
0

min

{

1,
tp

st
(θ1−θ0)p
i

}

s−σ0 min{1, s1+σ0+σ1}
ds

s
.

Let u = s1/ptθ1−θ0
i . Then

Ψp/r

(

tr

t
(θ1−θ0)r
i

, σ0, σ1

)

≤ ctpθ0
i

∞\
0

min

{

1,
tp

up

}

u−pσ0 min

{

1,
up(1+σ0+σ1)

tpi

}

du

u
.

By (2.21), and since p ≤ α,

(

n
∑

i=1

Kα(t, Tui;B)
)p/α

≤

n
∑

i=1

Kp(t, Tui;B)

≤ c
n

∑

i=1

Ψp/r

((

t

tθ1−θ0
i

)r

, σ0, σ1

)

t−pθ0

i Jp(ti, ui;A)

≤ c
n

∑

i=1

Jp(ti, ui;A)

∞\
0

min

{

1,
tp

up

}

u−pσ0 min

{

1,
up(1+σ0+σ1)

tpi

}

du

u

= c

∞\
0

min

{

1,
tp

up

}

u−pσ0

( n
∑

i=1

(

min

{

1,
u1+σ0+σ1

ti

}

J(ti, ui;A)

)p) du

u
.

By Theorem 2.10,

n
∑

i=1

(

min

{

1,
u1+σ0+σ1

ti

}

J(ti, ui;A)

)p

≤ cKp(u1+σ0+σ1 , a;A)

so that
(

n
∑

i=1

Kα(t, Tui;B)
)p/α

≤ c

∞\
0

min

{

1,
tp

up

}

[u−σ0K(u1+σ0+σ1 , a;A)]p
du

u
.
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By Lemma 2.11 with g = K(·, · ;A),

[u−θ0/(θ1−θ0)K(u1/(θ1−θ0), a;A)]⌢(s) ∽ K(s, a;Aθ0,∞, Aθ1,∞).

Since

u−σ0K(u1+σ0+σ1 , a;A) = u−θ0/(θ1−θ0)K(u1/(θ1−θ0), a;A)

(see (2.20)), and since, of course, f ≤ f
a

, we have

(

n
∑

i=1

Kα(t, Tui;B)
)p/α

≤ c

∞\
0

min

{

1,
tp

up

}

Kp(u, a;Aθ0,∞, Aθ1,∞)
du

u

= Sp
pK(·, a;Aθ0,∞, Aθ1,∞)(t).

If σ0, σ1 > 0 then Ψ(x, σ0, σ1) = min{1, x} so that instead of (2.22) we
have

Ψ1/r

(

tr

t
(θ1−θ0)r
i

, σ0, σ1

)

= Ψ1/α

(

tα

t
(θ1−θ0)α
i

, σ0, σ1

)

and continue the proof with α instead of p, proving the stronger

K(t, Ta;B) ≤ cM0Sα[K(s, a;Aθ0,∞, Aθ1,∞)]

(

M1

M0
t

)

.

If σ0 = 0 and σ1 = 0 we can prove another version of Theorem 2.5. The
new version is stronger than (2.7) for r > α.

Theorem 2.13. If T : A → B is a weak-type (0, 0; r) operator with

norms M0,M1, then for any a ∈ A0 ∩A1, 0 < β < r, and t > 0,

(2.23) K(t, Ta;B) ≤ cM0K
1−β/r

(

M1

M0
t, a;A

)[

SβK(·, a;A)

(

M1

M0
t

)]β/r

.

Proof. The proof is similar to that of Theorem 2.5. We again assume
M0 = M1 = 1, and given a ∈ A0 ∩ A1 and t > 0 we choose ε = ε(t, a) > 0
so that for all 0 < t0 < ε and for all t∞ > 1/ε we have

(

1 +

∣

∣

∣

∣

log
t

t0

∣

∣

∣

∣

)1/r

t0‖a‖A1 +
t

t∞

(

1 +

∣

∣

∣

∣

log
t

t∞

∣

∣

∣

∣

)1/r

‖a‖A1

≤ K1−β/r(t, a;A)[SβK(·, a;A)(t)]β/r.

We apply Theorem 2.10 with ε as above, getting ui and ti as in that
theorem. Repeating the argument of the proof of Theorem 2.5 we see that
it suffices to show that

(2.24)
(

n
∑

i=1

Kα(t, Tui;B)
)1/α

≤ cK1−β/r(t, a;A)[SβK(·, a;A)(t)]β/r.
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By (2.13),

K(t, Tui;B) ≤ cΨ1/r((t/ti)
r, 0, 0)J(ti, ui;A)

≤ cmin{1, t/ti}(1 + |log(t/ti)|)
1/rJ(ti, ui;A).

Let 0 < γ < min{α, r}. Then

(

n
∑

i=1

Kα(t, Tui;B)
)γ/α

≤
n

∑

i=1

Kγ(t, Tui;B)

≤ c
n

∑

i=1

(min{1, t/ti}(1+ |log(t/ti)|)
1/rJ(ti, ui;A))γ .

For any 0 < β < r we have

min{1, t/ti}(1 + |log(t/ti)|)
1/rJ(ti, ui;A)

= (min{1, t/ti})
β(1 + |log(t/ti)|)J

β(ti, ui;A))1/r

× (min{1, t/ti}J(ti, ui;A))1−β/r

∽ ((min{1, t/ti})
β(1 + |log(t/ti)

β|)Jβ(ti, ui;A))1/r

× (min{1, t/ti}J(ti, ui;A))1−β/r.

In this case, by Hölder’s inequality,
n

∑

i=1

Kγ(t, Tui;B) ≤ c
(

n
∑

i=1

min{1, (t/ti)
β}(1 + |log(t/ti)

β|)Jβ(ti, ui;A)
)γ/r

×
(

n
∑

i=1

(min{1, t/ti}J(ti, ui;A))
γ r−β

r−γ

)
r−γ

r
.

By Lemma 2.8,

min{1, t}(1 + |log t|) ∽ S(min{1, ·})(t)

so that
n

∑

i=1

min{1, (t/ti)
β}(1 + |log(t/ti)

β|)Jβ(ti, ui;A)

∽

n
∑

i=1

Jβ(ti, ui;A)S(min{1, ·})((t/ti)
β)

∽

n
∑

i=1

∞\
0

min

{

1,

(

t

ti

)β 1

s

}

min{1, s}Jβ(ti, ui;A)
ds

s

∽

∞\
0

min{1, (t/s)β}
(

n
∑

i=1

(min{1, s/ti}J(ti, ui;A))β
) ds

s
.
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By Theorem 2.10,

n
∑

i=1

(min{1, s/ti}J(ti, ui;A))β ≤ cKβ(s, a;A)

so that
n

∑

i=1

min{1, (t/ti)
β}(1 + |log(t/ti)

β|)Jβ(ti, ui;A)

≤ c

∞\
0

(min{1, t/s}K(s, a;A))β ds

s
= cSβ

βK(·, a;A)(t).

Again by Theorem 2.10,

n
∑

i=1

(min{1, t/ti}J(ti, ui;A))
γ r−β

r−γ ≤ cK
γ r−β

r−γ (t, a;A).

Therefore

(2.25)
(

n
∑

i=1

Kα(t, Tui;B)
)γ/α

≤ cK(1−β/r)γ(t, a;A)[SβK(·, a;A)(t)]γβ/r

and (2.24) is proved.

Remark 2.14. A strong-type operator satisfies

(2.26) K(t, Ta;B) ≤ cM0K

(

M1

M0
t, a;A

)

so that the right-hand side of (2.23) represents an intermediate expression
between (2.26) and the weaker (2.7). For a fixed β, the constant in (2.23)
remains bounded as r increases, and so (2.23) is a better inequality when
the (0, 0; r) weak-type holds for a larger r.

3. Another condition for weak-type operators. In [9] and [11]
weak-type classes were defined using differences rather than derivatives.
Weak-type operators are simply operators that are continuous on the corre-
sponding weak-type classes. Let us see the connection between the definition
using differences and the one using derivatives.

Lemma 3.1. Assume that H : R+ → R+ is a concave function. Then for

r > 0, γ ≥ 0, λ > 1,

sup
t>0

(tγ(Hr(λt) −Hr(t))) ∽ sup
t>0

(tγ+1(Hr)′(t)).
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Proof. Since H : R+ → R+ is concave, we have H ր, H ′ ց, and
H(λt) ≤ λH(t) and so

Hr(λt) −Hr(t) =

λt\
t

(Hr)′(s) ds = r

λt\
t

Hr−1(s)H ′(s) ds

≥ r(λ− 1)tHr−1(t)H ′(λt) ≥
r(λ− 1)

λr−1
tHr−1(λt)H ′(λt)

=
λ− 1

λr
(λt)(Hr)′(λt)

so that

sup
t>0

(tγ(Hr(λt) −Hr(t))) ≥ sup
t>0

(

tγ
λ− 1

λr
(λt)(Hr)′(λt)

)

=
λ− 1

λr+γ
sup
t>0

((λt)γ+1(Hr)′(λt)) =
λ− 1

λr+γ
sup
t>0

(tγ+1(Hr)′(t)).

The opposite inequality is trivial.

Lemma 3.2. Suppose that H : R+ → R+ has a finite concave majorant

and satisfies for some λ > 1, r > 0, γ,A ≥ 0 and all t > 0,

(3.1) Hr(λt) −Hr(t) ≤ At−γ .

Then for all t > 0,

(3.2) H
a r(λt) −H

a r(t) ≤ CAt−γ

where C = C(λ, γ, r).

Proof. Consider first the case γ > 0. Iterating (3.1) we obtain, for all
n ≥ 1 and x > 0,

Hr(λnx) ≤ Hr(x) +
(

n−1
∑

k=0

λ−γk
)

Ax−γ ≤ Hr(x) + CAx−γ

where

C =
∞

∑

k=0

λ−γk.

Write λnx = u so that

(3.3) Hr(u) ≤ Hr(λ−nu) + CAu−γλ−nγ ≤ H
a r(λ−nu) + CAu−γλnγ .

By [7, Theorem 12.2] the least concave majorant of φ : R+ → R+ is given
by

φ
a

(t) = inf
s>0

sup
u>0

(φ(u) + s(t− u))

so that

H
a

(λt) = inf
s>0

sup
u>0

(H(u) + s(λt− u)).
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Let us estimate supu>0(H(u) + s(λt− u)). It will be convenient to define

U(t) = (H
a r(t) + CλγAt−γ)1/r.

For 0 < u ≤ t,

H(u) + s(λt− u) ≤ H
a

(u) + s(λt− u) ≤ H
a

(t) + s(λt− u)

≤ H
a

(t) + sλt ≤ U(t) + sλt.

For λn−1t < u ≤ λnt, by (3.3) we obtain

H(u) ≤ (H
a r(λ−nu) + CAu−γλnγ)1/r ≤ (H

a r(t) + CAλ−(n−1)γt−γλnγ)1/r

= (H
a r(t) + CλγAt−γ)1/r = U(t).

Thus

sup
λn−1t<u≤λnt

(H(u) + s(λt− u)) ≤ sup
λn−1t<u≤λnt

(U(t) + s(λt− u))

= U(t) + s(λt− λn−1t) ≤ U(t) + sλt.
Therefore

sup
u>0

(H(u) + s(λt− u))

= max
(

sup
0<u≤t

(H(u) + s(λt− u)), sup
n≥1

sup
λn−1t<u≤λnt

(H(u) + s(λt− u))
)

≤ U(t) + sλt

so that

H
a

(λt) = inf
s>0

sup
u>0

(H(u) + s(λt− u))

≤ inf
s>0

(U(t) + sλt) = U(t) = (H
a r(t) + CλγAt−γ)1/r

and we have proved the lemma in the case γ > 0.
If γ = 0 condition (3.1) reads

(3.4) Hr(λt) ≤ Hr(t) +A.

The proof that H
a

also satisfies (3.4) when r ≤ 1 is easy. We have

Hr(λt) ≤ H
a r(t) +A

and since for r ≤ 1 the function φ(s) = (A+ sr)1/r is concave so is

φ ◦H
a

= (H
a r(t) +A)1/r.

It is easy to check that (H(λs))⌢(t) = H
a

(λt) and so

H
a

(λt) ≤ (H
a r(t) +A)1/r.
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We consider the case r > 1. Clearly if (3.4) holds for H it also holds for
its least non-decreasing majorant:

Hր(t) = sup
0<s≤t

H(s).

Since also (Hր)⌢ = H
a

, without loss of generality we assume that H itself
is non-decreasing.

Let us see next that if H is non-decreasing and satisfies (3.4) then so
does its least quasi-concave majorant, H▽ (see (2.18)). Iterating (3.4) we
have, for n ≥ 1,

Hr(λnt) ≤ Hr(t) + nA.

For λn−1t ≤ s ≤ λnt we have

Hr(s) ≤ Hr(λnt) ≤ Hr(t) + nA

so that for s ≥ t,

(3.5) Hr(s) ≤ Hr(t) +

(

1 + logλ
s

t

)

A.

Since

H▽(t) = max

{

sup
0<s≤t

H(s), sup
s≥t

t

s
H(s)

}

,

for H non-decreasing we have

H▽(t) = max

{

H(t), sup
s≥t

t

s
H(s)

}

= sup
s≥t

t

s
H(s).

Therefore

H▽(λt) = sup
s≥λt

λt

s
H(s) = sup

s≥t

t

s
H(λs).

From (3.5),

H▽(λt) = sup
s≥t

t

s
H(λs) ≤ sup

s≥t

t

s

(

Hr(t) +

(

1 + logλ
λs

t

)

A

)1/r

= sup
s≥t

((

t

s

)r

Hr(t) +

(

t

s

)r(

2 + logλ

s

t

)

A

)1/r

≤ sup
s≥t

(

Hr(t) +

(

t

s

)r(

2 + logλ

s

t

)

A

)1/r

= (Hr(t) + sup
x≥1

(x−r(2 + logλ x)A))1/r.

Set

C = sup
x≥1

(x−r(2 + logλ x))
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so that

H▽(λt) ≤ (Hr(t) + CA)1/r ≤ ((H▽(t))r + CA)1/r.

Since

H
a

≤ (H▽)⌢ ≤ (H
a

)⌢ = H
a

we have (H▽)⌢ = H
a

and so we can assume that H is quasi-concave.
Since r > 1, by (3.4), for any x > 0,

A ≥ Hr(λx) −Hr(x) ≥ rHr−1(x)(H(λx) −H(x))

so that

H(λx) ≤ H(x) +
A

rHr−1(x)
.

Iterating the last inequality gives

H(λnx) ≤
A

r

n−1
∑

k=0

1

Hr−1(λkx)
+H(x)

and since H is a non-decreasing function,

H(λnx) ≤
A

r

n

Hr−1(x)
+H(x).

Thus, for λn−1t ≤ s ≤ λnt,

H(s) ≤ H(λnt) ≤
A

r

n

Hr−1(t)
+H(t) ≤

A

r

1

Hr−1(t)

(

1 + logλ
s

t

)

+H(t)

≤
A

r

1

Hr−1(t)

(

1 + logλ

s

t

)

+H
a

(t)

so that for all s > 0,

H(s) ≤
A

r

1

Hr−1(t)

(

1 + logλ

(

1 +
s

t

))

+H
a

(t).

The function (of s) on the right-hand side is concave and so

H
a

(s) ≤
A

r

1

Hr−1(t)

(

1 + logλ

(

1 +
s

t

))

+H
a

(t).

Taking s = λt we have

(H
a

(λt) −H
a

(t))Hr−1(t) ≤
A

r
(1 + logλ(1 + λ)).

Since H is quasi-concave, by (2.19), H ≤ H
a

≤ 2H and so

(H
a

(λt) −H
a

(t))(H
a

)r−1(t) ≤ 2r−1 A

r
(1 + logλ(1 + λ)).
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But, since H
a

(λt) ≤ λH
a

(t),

(H
a

(λt) −H
a

(t))(H
a

)r−1(λt) ≤ (2λ)r−1 A

r
(1 + logλ(1 + λ)).

Finally,

H
a r(λt) −H

a r(t) ≤ r(H
a

(λt) −H
a

(t))(H
a

)r−1(λt)

≤ (2λ)r−1A(1 + logλ(1 + λ))

proving (3.2).

Theorem 3.3. A K-subadditive operator T : A → B is a weak-type

(σ0, σ1; r) operator iff there exists a function

G : R+ × (B0 +B1) → R+

so that K(·, · ;B) ≤ G and for some 0 < M0,M1 <∞ and all a ∈ A0 ∩A1,

(3.6) sup
t>0

(tσ0 [Gr(λt, Ta) −Gr(t, Ta)]
1/r
+ ) ≤M0‖a‖A0

and

(3.7) sup
t>0

(tσ1[Gr
T (λt, Ta) −Gr

T (t, Ta)]
1/r
+ ) ≤M1‖a‖A1 .

Proof. If T is a weak-type (σ0, σ1; r) operator then there exists a function

F : R+ × (B0 +B1) → R+

concave in the first variable so that K(·, · ;B) ≤ F and satisfying (2.1)
and (2.2). From Lemma 3.1 it follows that F satisfies (3.6) and (3.7).

Conversely, if G satisfies (3.6) and (3.7) then, by Lemma 3.2, so does

F := G
a

. Again from Lemma 3.1 it follows that F satisfies (2.1) and (2.2).
Of course, since K ≤ G then also K ≤ F and so we see that T is a weak-type
(σ0, σ1; r) operator.

Let us see that we need the Calderón operator in the statement of The-
orem 2.5. Write

L∞ := (L∞(R+, ds), L
∞
s−1(R+, ds)).

The following theorem is proved in [2, p. 298].

Theorem 3.4. For all f ∈ L∞(R+, ds) + L∞
s−1(R+, ds),

(3.8) K(t, f ;L∞) = |f |⌢(t).

Let f : R+ → R+, σ0, σ1 ≥ 0 and r > 0. We define

Tf(t) = Sr(u
−σ0 |f(u1+σ0+σ1)|)(t).

Theorem 3.5. T is a K-subadditive L∞ → L∞ weak-type (σ0, σ1; r)
operator.
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Proof. It is easy to verify that T satisfies (1.2) so that T isK-subadditive.
By (3.8),

K(t, Tf ;L∞) = (Tf)⌢(t).

For any non-negative function g, Srg is a quasi-concave function so that

(3.9) K(t, Tf ;L∞) = (Tf)⌢
∽ (Tf)▽ = Tf.

By Theorem 3.3 if we prove (3.6) and (3.7) with G = Tf it will follow that
T is an L∞ → L∞ weak-type (σ0, σ1; r) operator. Now

Gr(λt, Tf) −Gr(t, Tf) = (Tf)r(λt) − (Tf)r(t)

= Sr
r (u−σ0 |f(u1+σ0+σ1)|)(λt) − Sr

r (u−σ0 |f(u1+σ0+σ1)|)(t)

=

∞\
0

(

min

{

1,

(

λt

s

)r}

− min

{

1,

(

t

s

)r})

s−σ0r|f(s1+σ0+σ1)|r
ds

s
.

When s ∈ (0, t),

min{1, (λt/s)r} = min{1, (t/s)r} = 1

so that

Gr(λt, Tf) −Gr(t, Tf)

=

∞\
t

(

min

{

1,

(

λt

s

)r}

−

(

t

s

)r)

s−σ0r|f(s1+σ0+σ1)|r
ds

s

≤

∞\
t

((

λt

s

)r

−

(

t

s

)r)

s−σ0r|f(s1+σ0+σ1)|r
ds

s

≤ (λr − 1)tr‖f‖r
L∞

∞\
t

s−rs−σ0r ds

s
= c‖f‖r

L∞t−σ0r

and we showed that (3.6) holds.
Let us verify (3.7). We have

Gr
T (λt, Tf) −Gr

T (t, Tf) = λrtr(Tf)r

(

1

λt

)

− tr(Tf)r

(

1

t

)

=

∞\
0

(

λrtr min

{

1,

(

1

λts

)r}

− tr min

{

1,

(

1

ts

)r})

s−σ0r|f(s1+σ0+σ1)|r
ds

s

=

∞\
0

(min{λrtr, s−r} − min{tr, s−r})s−σ0r|f(s1+σ0+σ1)|r
ds

s
.

When s ∈ (t−1,∞),

min{λrtr, s−r} = min{tr, s−r}
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so that

Gr
T (λt, Tf) −Gr

T (t, Tf) =

1/t\
0

(min{λrtr, s−r} − tr)s−σ0r|f(s1+σ0+σ1)|r
ds

s

≤

1/t\
0

(λrtr − tr)s−σ0r|f(s1+σ0+σ1)|r
ds

s

≤ (λr − 1)tr‖f‖r
L∞

s−1

1/t\
0

s(1+σ0+σ1)rs−σ0r ds

s

= c‖f‖r
L∞

s−1
t−rσ1

and we showed that (3.7) holds.

Let us see that if g is a quasi-concave function and

f(t) = t
σ0

1+σ0+σ1 g(t
1

1+σ0+σ1 )

then for all r > 0 we have

K(t, Tf ;L∞) ∽ Sr[K(·, f ;L∞
θ0,∞, L∞

θ1,∞)](t)

where θ0 = σ0
1+σ0+σ1

and θ1 = 1+σ0
1+σ0+σ1

. Clearly

g(s) = s−θ0/(θ1−θ0)f(s1/(θ1−θ0)) = s−σ0f(s1+σ0+σ1).

By (3.8), K(t, f ;L∞) = f
a

(t). By Lemma 2.11,

K(t, f ;L∞
θ0,∞, L∞

θ1,∞) ∽ (s−θ0/(θ1−θ0)f(s1/(θ1−θ0)))⌢(t) = g
a

(t) ∽ g(t).

By (3.9),

K(t, Tf ;L∞) ∽ Tf(t) = Sr(s
−σ0f(s1+σ0+σ1))(t) = Srg(t)

so that

K(t, Tf ;L∞) ∽ Srg(t) ∽ Sr(K(t, f ;L∞
θ0,∞, L∞

θ1,∞))(t).

Thus, when r ≤ 1, we have equivalence in (2.7).

4. Proof of the strong fundamental lemma. We present a proof of
Theorem 2.10. The proof is a modification of those in [2], [3], and [5].

Proof of Theorem 2.10. For all s > 0 let a0(s) be such that

(4.1) ‖a0(s)‖A0 + s‖a− a0(s)‖A1 ≤ 2K(s, a;A).

Therefore

‖a0(s)‖A0 ≤ 2K(s, a;A) ≤ 2s‖a‖A1 .
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Also

s‖a0(s)‖A1 = s‖a− (a− a0(s))‖A1 ≤ c1s‖a‖A1 + c1s‖a− a0(s)‖A1

≤ c1s‖a‖A1 + 2c1K(s, a;A) ≤ 3c1s‖a‖A1 .

We therefore have

(4.2) J(s, a0(s);A) = max{‖a0(s)‖A0 , s‖a0(s)‖A1} ≤ 3c1s‖a‖A1 .

Since

‖a−a0(s)‖A0 ≤ c0‖a‖A0+c0‖a0(s)‖A0 ≤ c0‖a‖A0+2c0K(s, a;A) ≤ 3c0‖a‖A0

and

s‖a− a0(s)‖A1 ≤ 2K(s, a;A) ≤ 2‖a‖A0

we have

(4.3) J(s, a− a0(s);A) ≤ 3c0‖a‖A0 .

Let τ0 < ε and u0 = a0(τ0). Then, by (4.2),

(4.4) J(τ0, u0;A) ≤ 3c1τ0‖a‖A1 .

Assume that u0, u1, . . . , ui−1 and τ0, . . . , τi−1 have been defined. To con-
struct ui and τi we define

τ+
i = sup{s : K(s, a;A) ≤ 2K(τi−1, a;A)},

τ−i = max

{

s :
K(s, a;A)

s
≥
K(τi−1, a;A)

2τi−1

}

Since a ∈ A0 ∩A1, we have

lim
s→∞

K(s, a;A)

s
≤ lim

s→∞

‖a‖A0

s
= 0

so that τ−i <∞.

It might happen that τ+
i = ∞. If τ+

i <∞, we set τi = max{τ+
i , τ

−
i }.

By the continuity of K, if τ+
i <∞ we have

(4.5) K(τ+
i , a;A) = 2K(τi−1, a;A).

If τ+
i = ∞, we take any τi > max{τ−i , 1/ε} and stop.

Define in both cases

ui = a0(τi) − a0(τi−1).

Let us see that the sequence we defined is finite. For all i we have

(4.6) K(τi, a;A) ≥ K(τ+
i , a;A) = 2K(τi−1, a;A)

so that

K(τ+
i , a;A) ≥ 2iK(τ0, a;A).
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But since a ∈ A0 ∩A1, we have K(·, a;A) ≤ ‖a‖A0 <∞ and so τ+
i = ∞ for

some i, that is, for all s > τi−1,

(4.7) K(s, a;A) ≤ 2K(τi−1, a;A).

We denote the last index by n, that is, τ+
n = ∞. We define

u∞ = a− a0(τn).

We have

u0 +

n
∑

i=1

ui + u∞ = a0(τ0) +

n
∑

i=1

(a0(τi) − a0(τi−1)) + (a− a0(τn)) = a.

For i ≤ n− 1, that is, when τ+
i <∞, we have (4.6) and similarly

(4.8)
K(τi+1, a;A)

τi+1
≤
K(τ−i+1, a;A)

τ−i+1

=
K(τi, a;A)

2τi
.

From (4.3) it follows that

(4.9) J(τn, u∞;A) = J(τn, a− a0(τn);A) ≤ 3c0‖a‖A0 .

For the elements ui, 1 ≤ i ≤ n, by (4.1), we have the estimates

‖ui‖A0 = ‖a0(τi) − a0(τi−1)‖A0 ≤ c0‖a0(τi)‖A0 + c0‖a0(τi−1)‖A0

≤ 2c0K(τi, a;A) + 2c0K(τi−1, a;A)

and so

(4.10) ‖ui‖A0 ≤ 4c0K(τi, a;A).

Also

‖ui‖A1 = ‖a0(τi) − a0(τi−1)‖A1 ≤ c1‖a− a0(τi)‖A1 + c1‖a− a0(τi−1)‖A1

≤
2c1K(τi, a;A)

τi
+

2c1K(τi−1, a;A)

τi−1

and so

(4.11) ‖ui‖A1 ≤ 4c1
K(τi−1, a;A)

τi−1
.

Let us see that for all t > 0,

(

n
∑

i=1

min(‖ui‖
q
A0
, tq‖ui‖

q
A1

)
)1/q

≤ cK(t, a;A)

where c depends only on q, c0 and c1. There are three cases:

1. t < τ0;
2. For some 0 ≤ k ≤ n− 1 we have τk ≤ t < τk+1;
3. t > τn.
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We consider the second case. We have two subcases: τk+1 = τ+
k+1 and

τk+1 = τ−k+1.

If τk+1 = τ+
k+1 then, by (4.5),

(4.12) K(τk+1, a;A) = 2K(τk, a;A) ≤ 2K(t, a;A).

By (4.10) and (4.11),

n
∑

i=1

min(‖ui‖
q
A0
, tq‖ui‖

q
A1

)

≤
∑

i≤k+1

‖ui‖
q
A0

+ tq
∑

i>k+1

‖ui‖
q
A1

≤ (4c0)
q

∑

i≤k+1

Kq(τi, a;A) + (4c1)
qtq

∑

i>k+1

Kq(τi−1, a;A)

τ q
i−1

= (4c0)
qKq(τk+1, a;A) + (4c0)

q
∑

i≤k

Kq(τi, a;A)

+ (4c1)
qtq

∑

i>k+1

Kq(τi−1, a;A)

τ q
i−1

.

By (4.6) and (4.8),

(4.13)
∑

i≤k

Kq(τi, a;A) + tq
∑

i>k

Kq(τi, a;A)

τ q
i

≤
k

∑

i=0

2q(i−k)Kq(τk, a;A) + tq
n

∑

i=k+1

2q(k+1−i) K
q(τk+1, a;A)

τ q
k+1

≤ c

(

Kq(τk, a;A) + tq
Kq(τk+1, a;A)

τ q
k+1

)

≤ c

(

Kq(t, a;A) + tq
Kq(t, a;A)

tq

)

≤ cKq(t, a;A)

so that by (4.12),

n
∑

i=1

min(‖ui‖
q
A0
, tq‖ui‖

q
A1

) ≤ cKq(t, a;A)

where c = c(q, c0, c1). In the second subcase, τk+1 = τ−k+1, and so, by (4.8),

K(τk, a;A)

2τk
=
K(τ−k+1, a;A)

τ−k+1

=
K(τk+1, a;A)

τk+1
≤
K(t, a;A)

t
.
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We write
n

∑

i=1

min(‖ui‖
q
A0
, tq‖ui‖

q
A1

)

≤ (4c0)
q
∑

i≤k

Kq(τi, a;A) + (4c1)
qtq

∑

i>k

Kq(τi−1, a;A)

τ q
i−1

= (4c0)
q
∑

i≤k

Kq(τi, a;A) + (4c1)
qtq

Kq(τk, a;A)

τ q
k

+ (4c1)
qtq

∑

i>k+1

Kq(τi−1, a;A)

τ q
i−1

≤ (4c0)
q
∑

i≤k

Kq(τi, a;A) + (8c1)
qtq

Kq(t, a;A)

tq

+ (4c1)
qtq

∑

i>k+1

Kq(τi−1, a;A)

τ q
i−1

.

Repeating the calculation in (4.13) we have

n
∑

i=1

min(‖ui‖
q
A0
, tq‖ui‖

q
A1

)≤ (4c0)
q

k
∑

i=0

2q(i−k)Kq(τk, a;A)+(8c1)
qKq(t, a;A)

+ (4c1)
qtq

n
∑

i=k+1

2q(k+1−i) K
q(τk+1, a;A)

τ q
k+1

≤ cKq(t, a;A).

Consider the third case, τn < t. By (4.7),

K(τn, a;A) ≤ 2K(τn−1, a;A) ≤ 2K(t, a;A),

and by (4.10),
n

∑

i=1

min(‖ui‖
q
A0
, tq‖ui‖

q
A1

) ≤
n

∑

i=1

‖ui‖
q
A0

≤ (4c0)
q

n
∑

i=1

Kq(τi, a;A)

≤ (8c0)
qKq(t, a;A) + (4c0)

q
n−1
∑

i=1

Kq(τi, a;A)

≤ cKq(t, a;A).

Finally, we consider the first case, t < τ0. By (4.11),

n
∑

i=1

min(‖ui‖
q
A0
, tq‖ui‖

q
A1

) ≤ tq
n

∑

i=1

‖ui‖
q
A1

≤ (4c1)
qtq

n
∑

i=1

Kq(τi−1, a;A)

τ q
i−1

≤ cKq(t, a;A).
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To get the claim of the theorem we take t0 = τ0, t∞ = τn and for 1 ≤ i ≤ n,

ti =

{

‖ui‖A0/‖ui‖A1 if ui 6= 0,

1 if ui = 0.

We then have

min(‖ui‖A0 , t‖ui‖A1) = min{1, t/ti}J(ti, ui;A)

and, together with (4.4) and (4.9), we obtain (2.17).
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[1] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, 1976.
[2] Yu. A. Brudnyi and N. Ya. Krugljak, Interpolation Functors and Interpolation

Spaces, North-Holland, Amsterdam, 1991.
[3] M. Cwikel, K-divisibility of the K-functional and Calderón couples, Ark. Mat. 22

(1984), 39–62.
[4] B. Jawerth and M. Milman, Extrapolation theory with applications, Mem. Amer.

Math. Soc. 89 (1991), no. 440.
[5] P. Nilsson, Reiteration theorems for real interpolation and approximation spaces,

Ann. Mat. Pura Appl. (4) 132 (1982), 291–330.
[6] J. Peetre and G. Sparr, Interpolation of normed Abelian groups, ibid. (4) 92 (1972),

217–262.
[7] R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, 1970.
[8] Y. Sagher, A new interpolation theorem, in: Lecture Notes in Math. 908, Springer,

1982, 189–198.
[9] Y. Sagher and P. Shvartsman, An interpolation theorem with perturbed continuity,

J. Funct. Anal. 188 ( 2002) , 75–110.
[10] —, —, The approximation functional and interpolation with perturbed continuity,

J. Approx. Theory 110 (2001) , 236–260.
[11] —, —, Rearrangement-function inequalities and interpolation theory, ibid. 119

(2002), 214–251.

Department of Mathematics
Lule̊a University of Technology
SE-971 87 Lule̊a, Sweden
E-mail: natan@sm.luth.se

Department of Mathematics
Technion–Israel Institute of Technology
32000 Haifa, Israel
E-mail: pshv@tx.technion.ac.il

Department of Mathematical Sciences
Florida Atlantic University

Boca Raton, FL 33431-0991, U.S.A.
E-mail: sagher@fau.edu

Received December 15, 2003

Revised version April 12, 2005 (5335)


