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Weak-type operators and the strong fundamental
lemma of real interpolation theory

by

N. KRUGLJAK (Lulea), Y. SAGHER (Boca Raton, FL)
and P. SHVARTSMAN (Haifa)

Abstract. We prove an interpolation theorem for weak-type operators. This is closely
related to interpolation between weak-type classes. Weak-type classes at the ends of in-
terpolation scales play a similar role to that played by BMO with respect to the L”
interpolation scale. We also clarify the roles of some of the parameters appearing in the
definition of the weak-type classes. The interpolation theorem follows from a K-functional
inequality for the operators, involving the Calderén operator. The inequality was inspired
by a K-J inequality approach developed by Jawerth and Milman. We show that the use
of the Calderén operator is necessary. We use a new version of the strong fundamen-
tal lemma of interpolation theory that does not require the interpolation couple to be
mutually closed.

1. Introduction. Weak-type classes were defined in [9], [10], and [11].
Interpolation theorems between these classes give stronger versions of clas-
sical interpolation theorems, and calculations of the K-functionals between
these classes give a systematic way of proving rearrangement-function in-
equalities for classical operators. These classes, when constructed at the
natural ends of interpolation scales, turn out to be interesting in their own
right, and imply useful generalizations of interpolation theorems. The def-
inition of the weak-type classes, Definition 1.2 below, is quite general, and
among other things yields an interpolation theorem, Theorem 1.3, that is
valid only for a subinterval of the interpolation scale.

In this paper we generalize the interpolation theorem. We define weak-
type operators between interpolation pairs of Banach groups, and prove an
interpolation theorem for these operators. Moreover we prove an inequality
between the K-functionals of T'a and of a, which implies the interpolation
theorem and is of independent interest. We also show that the interpolation
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theorem between weak-type classes is a special case of the new interpolation
theorem, and clarify the subinterval phenomenon in Theorem 1.3.

Let us recall some of the notions. Let A = (Ap, A1) be an interpolation
couple. Here A; are quasi-Banach groups, that is to say, there exist functions
I -lla : Ay — Ry so that afla; = 0 a =0, [la]L, = [|~alla, and | - L,
satisfies the quasi-triangle inequality:

la+blla; < cj(llalla; +110]l4;)-
Let
K(t,a; A) = inf{HaoHAO + tHa1||A1 tagta1 =a, a5 € Aj}.
DEFINITION 1.1. Let A = (Ag, A1) and B = (By, B1) be two interpola-
tion couples of quasi-Banach groups. An operator
T:AyNA; — By + By
is said to be K-subadditive if there is a constant M so that for all ag,a; €
ApN Ay and all £ > 0,
(1.1) K(t,T(ag + a1); B) < M(K(t,Tag; B) + K(t,Tay; B)).

It is easy to see that if By and B; are Banach lattices and for almost
every w,

(1.2) T (a0 + a1)(w)| < M(|Tag(w)| + [Tar(w)]),
then (1.1) holds.

We denote by ¢ the least concave majorant of a function ¢ : Ry — Ry

We let ¢ denote a generic constant which depends on parameters that
are fixed in the context. Also: if f and g are two non-negative functions and
there exists a ¢ > 0 so that ¢c™1f < g < cf, we write f « g.

We will also use the following notation: if g : Ry — Ry,

gr(t) = tg(1/t).
Recall that
(]—3) KT('7a;AO7A1) :K(‘aa; Al,A()).
If A= (Ag, A1), we will denote by A7 the interpolation couple (A1, Ag).

DEFINITION 1.2. Let A = (A, A1) be an interpolation couple. Let
g: Ry x (Ao + A1) — Ry
be such that
(1.4) G K( A).
For 0 <e<o0,0<7r<o0,and 1 <y < oo, we define

1
||a||WK[A§57'Yy"'79] = ig}g([g”('yt, a) —£"g"(t, a)]+/r)
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and
Wi[Aie, v, 1, 9] = {a € Ao+ Av : |lally, e g < )

Recall (see Theorem 3.6 in [9]) that (g)r = (gr)”. Moreover, (1.4) is

equivalent to
(97)" K (-, A1, Ag)
so that if Wi |[A;¢e,v,r,g] is defined, then so is Wi[AT;¢e,~,r, g7].

The large number of parameters in the definition of Wi is forced on us
by the formulas of interpolation theory. In most cases the K-functional can
be calculated only up to equivalence. For example Holmstedt’s Theorem,
which plays a central role in the theory, gives an expression which is equiv-
alent to a K-functional. Since the definition of W involves differences, we
cannot replace functions by other, equivalent ones, in the definition, without
changing the conclusions of the theorems. The parameters g and r solve this
problem.

The following interpolation theorem was proved in [9] for the case of
Banach groups.

THEOREM 1.3. Let A = (Ag, A1) and B = (By, By) be two interpolation
couples. Let
T:AyNA; — By + By

be a K-subadditive operator. Assume that g «~ K(-,-; B) and that for all
a€ AgNAy,

(15) HTa”WK[E;EO(yJ’g} S MOHGHAO
and
(16) HTG/HWK[ET;sl,'y,r,gT] S MlHaHAl

where 0 < r < 00, v > 1,0 < egg,e1 < v and gge1 < y. Then for all 6 so
that

(1.7) 10g;r g0 <O0<1-— 10g;;r €1
and 0 < g < oo, we have
(1.8) ITallz,, < CM3~*MYall 5,

where C is a constant that depends on the parameters defining Wg and
on @,q.

We will see below that Theorem 1.3 follows from a more general inter-
polation theorem. The new theorem also clarifies the restriction on € given
in (1.7).

Set

Oy =logt e, 01=1-logler, G(t,b)=1t /=)y /O:1=00) p)
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Write F' = é We will see that
(19) F(tab) - K(tab; Eﬁo,ooagﬁl,oo)

where Bgom is replaced by By when 6y = 0, and E@l’oo is replaced by B;
when 6; = 1. Observe that, by (1.3), (1.9) is equivalent to
Fr(t,b) «~ K(t,b; By, 00, Bag.0o)-
Define p Lo
Y ’ ao 91 — 00) 01 01 — 90

A simple calculation shows that condition (1.5) is equivalent to

(1.10) sup(t”°[G" (M, Ta) — G"(t, Ta)]{") < cMy|lal|a,
t>0

and condition (1.6) is equivalent to

(111) st [GF(M. Ta) - Gi(t.Ta))") < cMillal,.
t>

We shall prove that (1.10) implies
(1.12) sup(t70 (H(F")' (£, Ta)) /") < cMollal 4,
t>0

and similarly (1.11) yields

(1.13) sup(t7L(t(F7)'(t, Ta)) /") < eMial|a,
t>0

We shall then show that (1.12) and (1.13) imply that for some p,
(1.14) K(t, Ta; EQO’OO, Eel,oo) < CSp(K(~, a; ./‘_190’00, Agl’oo))(t)

where S, is a Calderén operator defined below (see (2.4)). Finally, we show
that (1.14) implies the interpolation result (1.8) (see Theorem 2.6).

Recall that F', and of course also Fr, is a positive concave function on
R4 and so is absolutely continuous. It may fail to have a derivative on a
countable set of points and since our inequalities are pointwise let us agree
that F’ and (Fr) stand for the right derivatives at these points.

Our approach is based on an application of a version of the strong fun-
damental lemma of interpolation theory to prove that the weak-type con-
ditions imply (1.14). This approach was initiated by Jawerth and Milman
in [4, pp. 49-50].

We will assume the standard results of interpolation theory as stated
in [1].

2. Weak-type operators. Conditions (1.12) and (1.13) motivate the
following definition.
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DEFINITION 2.1. Let A = (Ap, A1) and B = (By, By) be two inter-
polation couples of quasi-Banach groups. Let og,01 > 0 and r > 0. A
K-subadditive operator T' is said to be an A — B weak-type (0q,01;7)
operator if there exists a function

F:R+X(B0+Bl)—>R+

concave in the first argument so that K(-,-;B) < F and for some 0 <
My, M7 < oo and a € Ay N Aq,

(2.1) Sup(t°° (¢(F") (¢, Ta))!/") < Mylalla,
>

and

(2.2) sup(t”* (t(F3)'(t, Ta))"'") < M|al|a,.
>

The numbers My and My are called the norms of the operator.

REMARK 2.2. Observe that T'is an A — B weak-type (00, 01; ) operator
iff it is an AT — BT weak-type (o1, 00;7) operator.

Condition (2.2) can also be written

Fr(t,Ta)\"\ /"
(2.3) sup (t“’l (—t(%) > ) < My||a| 4, -

Weak-type operators, with 09 = 01 =0, F' = K, and r = 1, were introduced
in [8].

In practice we frequently get a function, G, so that K < G , and to see

that T is a weak-type (09, 01;7) operator we want to see if F':= G satisfies
(2.1) and (2.2). This could be hard since it involves precise calculations of

~

G and its derivative. We will see in Section 3 that it suffices to verify that
G satisfies conditions (1.10) and (1.11).
Let us recall the definition of Calderén operators.

DEFINITION 2.3. For p > 0, we define the Calderén operator acting on
non-negative functions on Ry by the formula

(2.4) S,f () = (?(min{l,é}f{s))p%)lm.

If p = 1 we have the usual Calderén operator. In this case we write S
rather than 5.
We will need the following
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LEMMA 2.4. Assume that T : Ag N A1 — By + By is a K-subadditive
operator (see (1.1)). Then, for all uj € Ag N Ay and all t > 0,

(2.5) K(t,T(zn:uJ);E) S2M(§:Ka(t,Tuj;E))1/a
=1

where

(2.6) !

“= 1+ logy M~

Proof. We consider each K (t,T-; B) as a seminorm on the group AgNA;
and apply the Aoki-Rolewicz Theorem (see e.g. [6]). m

The letter a from now on stands for the quantity in (2.6).
Our main goal is to prove the following theorem.

THEOREM 2.5. If T : A — B is a weak-type (00,01;7) operator with
norms My, M1, then for all 09,01 >0, a € AgN Ay and t > 0,

= - - M

(27) K(t,TCL; B) < CMOSmin{a r} [K<7 a; A90 005 A91 oo)] <_1 t)

’ ) ) MO
where

o

2.8 0= ———
3) b=

14+ 09
2.9 0Hh=—"—"—.
(29) ! 1409401

If 09 =0 we replace 14_190700 by Ao. If o1 =0 we replace /_191700 by A;.
If 09 > 0 and o1 > 0 we get a somewhat stronger result, with S, instead
of Smin{a,r} in (2.7).

In Theorem 3.5 we give an example of a weak-type (0q,01;7) operator.
Also, in the discussion which follows Theorem 3.5 we show that in some
cases (2.7) is sharp, that is, there exists a class of functions for which we
can replace the inequality in (2.7) by an equivalence.

Applying Hardy’s inequalities (and their extensions for quasi-monotone
functions to get the case 0 < ¢ < 1 below) to (2.7) we get the following
interpolation theorem:

THEOREM 2.6. If T : A — B is a weak-type (0q,01;7) operator with
norms My, My, where 09,01 > 0, then for 6y,01 given by (2.8) and (2.9),
and all a € AgNA;,0<n<1,0<qg< o0,

1—
HTQHBM S CMO nM{]"a“A(l_n)90+n91,q.

We return to Theorem 2.5. Renorming Ag and A, we can assume that
My = M; = 1. We will also write F(t) for F'(t,Ta).
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For the proof of the theorem we will need some preliminary lemmas. To

state the first lemma we need to define the following function.

DEFINITION 2.7. For z > 0 and 09,01 > 0 we define

T ifx <1andoy >0,
(14 [logz|) ifz<1ando; =0,
V(x,00,01) = .
1 if 1 <z and g9 > 0,
1+ |log z| if 1 <z and o9 =0.
Observe that

(2.10) U(z,00,01) = ¥Yp(x,01,00)

and that for ¢ > p > 0,

(2.11) Wl/q(w‘q,ao,dl) Swl/p(xp,do,dl).

LEMMA 2.8. Set
h(s,00,01) = s °° min{1, s’ 701},
For oy, 01 > 0,
(2.12) U(-,00,01) v~ Sh(-,00,01)(").
Proof. For 0 < x <1 and o1 > 0 we have

d
Sh(-,00,01)( Smln{ } Uomin{l,sl+00+‘71}—8
S
0
T 1 00
SSH‘” +x S 57t ds +x S s~ (1+00) ds
0 T s 1 5
NT = W(IL’ 00,0'1).
If0 <x <1and oy =0 then
1+o0q
Sh(-, 00, =z+zxlo + —— =
(200, 0)(2) =+ log |+ T2

wa(l+ |logm|) =¥(z,00,0).
It is easy to verify that S(fr) = (Sf)r and that
B (1, 00)(£) = h(-, 00,1) (1),
which together with (2.10) implies (2.12) also in the case z > 1. m

LEMMA 2.9. Let 0g,01 > 0. If T is an A — B weak-type (09,01;7)
operator with norms Mg = My = 1 then for any a € Ay N Ay and any

s,t > 0, we have

2.13 K(t,Ta;B) < @Y ((t/s)", 00, 01)s 7 J(s'T0to1 q: A).
(2.13)
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Proof. Let us consider the case t < s and o1 > 0. Then, by (2.3),

21y (FO) - (B - —S () dr <ol §=ar

t s
t
so that
F)\"  (F(s)\"
But (2.3) can also be written
(F7)'(s) , F'(s) -
a s’ tr g1 = HaHrz‘hS e
so that
F(s)\" 1 1 (F")(s)
I
By (2.1),

7171"008177"

1 1
~lalln, 7+ s

o
—
=
7N
=
&z
N————
<
IN

1 1 —r(1+
= llalll, s + — llall4,s T,

By (2.15) for t <'s,

2y

so that

IN

F(s)\"
(P2 ez < ellalls 70+ ally, )

F (1) < et 0l + 70 )
= c(t/s)"s™"(||al|ly, + llaly, 5" Tt
< e(t/s)'sT70J (s1TO0T a; A)
= cW((t/s)",00,01)s 0T (s"TOT a; A)

and since K < F' we proved (2.13) for ¢t < s and o1 > 0.
Let us consider the case t < s when o1 = 0. Estimate (2.14) now reads

(F9) ~ (P) < o, §= dr = s, 1o

t S
t

Estimate (2.16) now reads

F(s)\" _ 1 1 o
(E2) < Dhal, + 1 falfzs e
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so that
Fit)\" 1 1 _ s
(F12) = Fllelt, + Flalf, =705 + fal, tog 5
_ r 1 1 f r —r(l4o00)
c( llall’y, | L +log | +llafs,s :
Therefore
S
Fre) < et (ol 040 (14 10g ) 4l
1/r
< ct"sr(te0) g (sH"O <1 + log f) a; A_>
— t b ) *
We set
s 1/r(1400)
T=3S <1 + log ¥> .
Then 7 > s and so
1/r(1400)
-
T<s (1 + log ¥> ,

which implies

1 (1+ 1og%)1/7“(1+ao)
. :

T

<

Moreover s — s(1 + log(s/t))"/"(1+90) maps [t, c0) onto itself and is one-to-
one. Thus for all 7 > ¢,

1/r
F(t) < cts(H”O)J(sHUO (1 + log ;) , fl)
= cts_(H"O)J(THUO, a; A)

1/r
< ct<1 + log %) 7 (1F00) J (7100 4. A)

t T 1r —
=c— <1 + log ?> 7700 J (71100 g A)

-
t\" _
= c@l/r<<—> ,JO,O>T_‘70J(7'1+‘TO,a;A).
T
Since K < F' we proved
K(t,Ta; B) < cW'"((t/s)", 00,01)s 70 J(s'T70F1 q4: A)

for t < s and o1 > 0. ~ 3
Applying the last inequality to the couples AT and BT and recalling
that T is a weak-type (o1, 00;7) operator with respect to these couples, we
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have, for ¢t < s,
K(t,Ta; BT < W' "((t/s)", 01, 00)s L J(s'T00F01 q; AT)
so that
tK(1/t,Ta; B) < W' ((t/s)", 01, 00)s Tt s' oot j(s—(Ioota) o. 1)
and hence
K(1/t,Ta; B) < c(t/s) WY ((t/s)", 01, 00)s70J (s~ (1Fo0Fo1) 4. A).
Replacing 1/t by t and 1/s by s, and using (2.10), we have
K(t,Ta; B) < c(t/s)W'"((s/t)", 01, 00)s 70 J(s'T70F1 q4; A)
= WVT((t)s)", 00,01)s 70T (s1 T g A)
also for s < ¢, and (2.13) is proved. =
The following theorem is a variation on the Strong Fundamental Lemma
of real interpolation theory (see [2], [3], [5]). We assume more on the decom-

posed element, a € Ag N A; instead of a € Ag + A;. On the other hand, we
do not have to assume that A is a Gagliardo couple.

THEOREM 2.10. Let A = (Ag, A1) be an interpolation couple and let
a € AgN Ay. Then for any € > 0 there is a finite decomposition

n
a:uo—l—Zui—l—um
i=1
and numbers 0 < tg < €, too > 1/€ and ty,...,t, > 0 so that ug, u;, Uso €
Ag N Ay and for all 0 < t,q < o0,

" - 1/q
(min{1,¢/t;}J(ti, ui; A))? < cK(t,a; A),
ey (S ) ) )

J(t[),’u,o;A) < Cto”aHAlv J(t007uOO;A) < cHa”Ao’

Here ¢ is a constant which depends only on q,cq,c1 where cg,c1 are the
constants in the quasi-triangle inequalities for Ag and A;x.

In order not to interrupt the proof of the main theorem we postpone the
proof of Theorem 2.10 to Section 4.

In the proof of the next lemma we shall use the concept of quasi-conca-
vity.

Let us recall that a function ¢ : R, — R, is said to be quasi-concave if
both 1) /" and v(s)/s \,. For any function ¢ : R, — Ry, we denote by ¢V
its least quasi-concave majorant. It can be readily seen that

(2.18) ¢V (t) = igg{min(l,t/s)qb(s)}.
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Also, recall [2, p. 291] that
(2.19) o7 < ¢ <267,
LEMMA 2.11. Let X = (Xo, X1) be an interpolation couple. Assume that
g: Ry x (Xo+X1) = Ry
is such that § «~ K(-,-;X) and that 0 < 6y < 01 < 1. For t > 0 and

xr € Xo + Xi, define
G(t,x,0p,61) = t—90/(91—6’0)g(t1/(61—00)’x)

and F = G. Then
F(t,x,0p,01) « K(t,x;)_(go,oo,)_fgl,oo).
If 6y = 0 we replace )_(90,00 by Xo and if 01 = 1 we replace )_(91700 by X;.
Proof. From Holmstedt’s formula,
K (t,2; Xpy.000 Xy.00)

- sup  {s OK(s,z; X)}+t  sup {s " K(s,z;X)}
0<s<t!/(01-60) s>t1/(61-90)

« sup{min(1,¢/s)s 00/ (01=00) ¢ (41/(01=00) 5. X))
5>0

w sup{min(1, t/s)s 00/ (01=00) g (1/(01=00) z)1.
5>0

Since, by (2.19), gV « g, we have
K(t, xz; )_(90,007 )_(91,00)
 sup{min(L, t/S)S—GO/(Gl—90)gV(81/(91—90)’ z)}
s>0

w sup{min(1, ¢/s)s%/01=00) sup min{1, s/ @~ /) g(u, z)}
s>0 u>0

= sup g(u, 2) sup{min(1, ¢/s)s~%/O1=00) yin {1, g1/ (1=00) /11
u>0 s>0

= sup g(u, x)(min{sfﬁo/(ﬁf@o)’ 5(1*90)/(91*90)/u})v(t)
u>0

« sup g(u, x)(min{s_e‘)/wl_go), 5(1—90)/(91—90)/u})f‘(t).
u>0

But ¢1(s) = s~%/(01=00) ig a decreasing function and ¢y (s) = s' 00/ (01=00) /y,
is an increasing function so that

win{on,02}s) = {

pa(s) if0<s<ulr=f
p1(s) if s > ufr—0,
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Since ¢9 is a convex function and ¢; is a decreasing function,

(min{¢1, ¢2}) " (t) = u % min {1, ﬁ}.

Therefore
K(t, 25 X gy 00> X 0y.00) ~ supu”® min{1,/u =% g(u, z)
u>0
= sup s 00/ (1=00) ;min{1,1/s}g(s"/1700) g)
s>0

= (57O (1) )7 )
o (5700 (MO 1)) () = F(t,2,00,01).
When 6y = 0, Holmstedt’s formula implies
K(t,z; Xo, )_(91700) —~t sup {sfglK(s, ;X))

£1/(01-00) <5

w sup{min(1,¢/s) K (s/%, 2; X)}
s>0

« sup{min(1,t/s)g (s'/, z)}
s>0

and the calculation above implies
K (t,7; X0, X, .00) -~ g(s/9,2)7(t) = F(t,2,0,61).
Similarly
K (t,2; Xg.00, X1)  (g(s¥/ 1700 3)5700/A=00>(1) = F(t,2,60,1). u
The proof of the following lemma is elementary.

LEMMA 2.12. If p1 < p2 and f: Ry — Ry is a non-decreasing function
so that f(2t) « f(t) then
SPQf < Cspl f

We will now prove Theorem 2.5.
Proof of Theorem 2.5. Set p = min{«, r}. Recall also that

1
b= —20  and 6 = _t+oo
140940, 1409401
so that
90 1- 91
2.20 = d = .
( ) 0o - and oy -

Let a € AgN A; and t > 0 be given. Choose ¢ = ¢(t,a) > 0 so that for all
0 <tp<eandall to > 1/c we have
1/r
) lalla

1/r
(1 + ) to"®\alla, + too91t<1 -

< SpK(', a; Aeo,oov /_191,00)(75)'

log —t?;g*“’o

log —tg“(%
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Using Theorem 2.10 with € as above, we decompose a as

n
a:u0+2ui+um.
i=1
For any such decomposition we have, from Lemma 2.4,

n
K*(t;Ta; B) < 2M(K°‘(t, Tuo; B) + ZKO‘(L‘, Tu;; B) + K*(t, Tueo; E))
i=1
By Lemma 2.9,
K(t,Tui; B) < W7 ((t)s)", 00,01)s 70T (s'F00Ho1 ;; A).

Let us apply the last inequality to s = t?l_eo where ¢; is as in Theorem 2.10.
Then by (2.20), we have

_ t r _
(2.21) K(t,Tu;; B) < CWI/T<<t€1_90> ,0'0,01>ti90<](ti,u@';14).

i

Let us consider first K (t,Tug; B), so

t
t81—90

K(t,TUo;E) < Clpl/r<< > ,00,01>t600J(t0,uO;A).

From Theorem 2.10, J(to, uo; A) < ctollal|a,, and from the definition of ¥,
(2" 60,01) < emin{1, z}(1 + |log z])*/"

1/r )
1—
) 5],

< CSpK(', as Aﬂo,oov Aal,oo)(t)'

so that

K(t,Tup; B) < c<1 +

log —tg“(’o

Let us now consider K (¢, Tuoo; B), so

t\" -
) ,00,01>t5060J(too,u00; A).

61—0o
00

K(t,Tus; B) < cwl/T<<

From Theorem 2.10, J(tx0, Uoo; A) < c||al| 4, so that

1/r
) lall 4
< eSpK (-, a; Agy 00, Ay .00) (1)

To prove the theorem it will therefore suffice to show

K(t,Tus; B) < ctoo"lt(l +

log —t91—9o
oo

> K(t,Tui; B) < ¢SK (-, a5 Agy 00, Agy 00) (t).
=1
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By Lemma 2.8,
U(x,00,01) v~ Sh(-,00,01)(x)

where

h(s,00,01) = s~ 7 min{1, s't70+o1}.

By (2.11), since p < r,

tT’ tp
1/ ip( __ -~
(2.22) 14 T<t(91_90)T700701> <v p<t(91_00)p700701>
i i

so that
p/T tT tp
4 <75((91—9W700701) < CSh(',00701)<t(9190)p)
4 [
o0
tP d
—¢ S min 1’ v 8—0'0 min{1,81+00+01} _S
(61—00)p s
0 st;
Let u = sl/ptgl_eo. Then

" 0 e wPA+o0+01) Y du
pP/r (W, 00, U1> < P S min {1, —}up"o min {1, 71,} —.
tz( 1—00)r 5 uP t; U

By (2.21), and since p < a,

(zn: KO (t, Tug; E))p/a < znj KP(t, Tu;; B)
=1

=1

n T
t —pb) i
i=1 i

n o0
~ P p(l+o0+01) ) (4
chJp(ti,ui;A) S min{ ,_p}u—paomjn{lagu 2 }_u
u ;
i=1 !

0 u
o0 n
tP ylTooto1 “\P"\ du
=c S min {1, —}u_pao <Z<min {1, 7}J(ti,ui;A)> > —.
0 ur i=1 ti u
By Theorem 2.10,
n u1+0‘0+0‘1 _\7P —
Z<min{l,T}J(ti,ui;A)> < cKP(uttootor g. A)
i=1 '
so that
n o0
_\7/ tP oy d
K*(t,Tu;; B) e <c\min{ 1, — p[u K (ul o0t q; A)P kg
i=1 0 ur v
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By Lemma 2.11 with g = K(-,-; A),

[u=00/(01=00) ¢ (3,1/(01=60) - A)]7™(s) ~ K (5, a; Ay 00s Agy.00)-

Since
u OO K (ultootor g: A) = u_eo/(gl_GO)K(ul/(el_ao), a; A)

(see (2.20)), and since, of course, f < f , we have

" — \ P/ T tP - - du
( E Ka(t,Tui;B)) <ec S min< 1, — KP(u,a; Agy 00, A1 00) —
u u

=1 0

= SgK(v a; A@o,(xn /_191700)(75)'
If 0g,01 > 0 then ¥(x,00,01) = min{l, x} so that instead of (2.22) we

have
gl/r Lg o | = gl/e LU o
t(gligo)r) 0,01 t(ﬂl*@o)a’ 0,01
K

i
and continue the proof with « instead of p, proving the stronger
_ — _ My
K(t,Ta; B) < cMoSa|K (s, a; Agy 0o, Aoy 00)] ﬁt . m
0

If 09 = 0 and o1 = 0 we can prove another version of Theorem 2.5. The
new version is stronger than (2.7) for r > a.

THEOREM 2.13. If T : A — B is a weak-type (0,0;r) operator with
norms My, M1, then for any a € AgN A1, 0< B <r, and t >0,

. M _ _ M B/r
(2.23) K(t,Ta;B) < MoK\ =P/ (ﬁl t,a;A) |:55K(',a; A) <—1t)} .
0

Proof. The proof is similar to that of Theorem 2.5. We again assume
My = M; =1, and given a € AgN Ay and t > 0 we choose ¢ = &(t,a) > 0
so that for all 0 < ¢y < e and for all to, > 1/¢ we have

" 1/r " " 1/r
(1 ow ) tallabas+ 5= (1 o)l
0 oo oo

< K07t a3 A)[SpH (- a; A) (1))
We apply Theorem 2.10 with ¢ as above, getting u; and ¢; as in that
theorem. Repeating the argument of the proof of Theorem 2.5 we see that
it suffices to show that

(2.24) (f:KO‘(t,Tui;E)>l/a < KOt a; A)[SpK (-, a; A) (1))
=1
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By (2.13),
K (t, Tus; B) < a7 ((t/t:)",0,0)J (£, u;; A)
< emin{1, ¢/t }(1 + [log(¢/t:))Y" I (ti, us; A).
Let 0 < v < min{a,r}. Then

(i: K (t, Tug; B))WO& < zn:KW(t,Tui;B)
=1 i

< > Cmin{1, /6 (4 log(t/4)) M 1 s )
For any 0 < 8 < r we have -
min{1,/t; }(1 + [log(t/t;))Y/" J (t;, us; A)
= (min{1,/t:})° (1 + log(t/t:)|).J” (ti, us; A)M/"
 (min{1,/t;}J (t;, us; A)) P/
o ((min{1, £/t })° (1 + log(t/t:)°])J7 (i, us; A)M/"
x (min{1, ¢/t;}J (t, ui; A) P
In this case, by Holder’s inequality,

Zm (t, Tus; B <C(Zm1n{1 (t/t:)PY(1 + |log(t/t:)°)) ] ﬁ(ti,ui;fx))”’/r

=1
X (Z(min{l,t/ti}J(ti,ui;/_l))ﬁ_g)T;W.
By Lemma 2.8, -
min{1,¢}(1 + |logt|) « S(min{1,-})(¢)
so that
> min{1, (¢/t:)7}(1 + [log(t/t:)°])T7 (ti, us; A)
i=1
- Jﬁ tz,ul, S(min{1, })((t/tl)ﬁ)
=1

. 5 )
1§)m { (t> i}mln{l Ry (tl,u“A)i

. Z
1=

min{1, (t/s)ﬁ}(Z(min{l,s/ti}J(ti,ui;f_l))ﬁ) ds.

: S
=1

()

OL”ag
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By Theorem 2.10,

zn:(min{l, s/ti}J(ti,ui; A))P < cKP(s,a; A)
i=1

so that

> min{1, (/t:)7H(1 + [log(t/t:)?])J% (ts, us; A)
=1
<c S (min{1,t/s}K(s,a; A))
0

Again by Theorem 2.10,

ds -
A <= cS’gK(-, a; A)(t).

n
r—p3 _

_ r—3
> (min{1,t/t:} T (ti, us; )= < K77 (¢ a; A).
=1
Therefore

@25) (Ko Tus B))" < k0 1 D[S, (o D]
i=1

and (2.24) is proved. m

REMARK 2.14. A strong-type operator satisfies
_ M, _
(2.26) K(t,Ta;B) < CM[)K(ﬁ t,a; A)
0

so that the right-hand side of (2.23) represents an intermediate expression
between (2.26) and the weaker (2.7). For a fixed (3, the constant in (2.23)
remains bounded as r increases, and so (2.23) is a better inequality when
the (0, 0;r) weak-type holds for a larger r.

3. Another condition for weak-type operators. In [9] and [11]
weak-type classes were defined using differences rather than derivatives.
Weak-type operators are simply operators that are continuous on the corre-
sponding weak-type classes. Let us see the connection between the definition
using differences and the one using derivatives.

LEMMA 3.1. Assume that H : Ry — R is a concave function. Then for
r>0,v>0,A>1,

sup(t7(H"(At) — H'(£))) = jgg(t”WH’”)’(t))-
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Proof. Since H : R, — R, is concave, we have H , H' \_, and
H(Mt) < AH(t) and so

At At
H™(Xt) — H™(t) = \(H") (s)ds =r | H""'(s)H'(s) ds
> r(h— DEH™ Y (1) B (M) > % LT () H (M)

= A Y )
so that
sup(t" (1) — 7)) = sup (122 oy )
t>0 t>0
= O (Y () = S sup (Y (1),

The opposite inequality is trivial. m

LEMMA 3.2. Suppose that H : R, — R has a finite concave majorant
and satisfies for some A > 1,r >0, v,A >0 and all t > 0,

(3.1) H"(A\t) — H"(t) < At™7.
Then for all t > 0,

(3.2) H™(\t) — H"(t) < CAt™
where C' = C(\,v,7).

Proof. Consider first the case v > 0. Iterating (3.1) we obtain, for all
n>1and z > 0,

n—1
H™(\"z) < H'(z (Z)\ W’ﬂ)Ax Y < H'(z) + CAz™
k=0

C= i ATk,
k=0

where

Write A"z = u so that
(3.3)  H"(u) < H (AN ") + CAu A" < H'(A™"u) + CAu A,
By [7, Theorem 12.2] the least concave majorant of ¢ : Ri — Ry is given
by
¢ (t) = inf sup(o(u) + s(t —u))

s>0 u>0
so that
H (\t) = inf sup(H (u) + s(At — u)).

s>0 u>0
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Let us estimate sup,~o(H (u) + s(At — w)). It will be convenient to define

U(t) = (H"(t) + CAY A=),
For 0 < u <t

H(u) + s(At —u) < H(u) + s(\t —u) < H(t) + s(M — u)

< H(t) + s\t < U(t) + sAt.
For A"t < u < A", by (3.3) we obtain

H(u) < (H (A ™"u) + CAu XY < (HT(t) + CAN~ (D17 ymm) 1/

= (H"(t) + CNAt YT = U(1).

Thus
sup  (H(u) 4+ s(At —u)) < sup  (U(t) + s(At —u))
An—lt<cu<Ant An—lt<u<nt
= U(t) + s(At — A1) < U(t) + sAt.

Therefore
sup(H (u) + s(At — u))
u>0

= max ( sup (H(u) + s(At —w)),sup  sup  (H(u)+ s(\t — u)))

0<u<t n>1 An—lt<y<Ant

< U(t) + sht

so that
H(M) = inf sup(H (u) + s(M — u))
5>0 40

< inf (U(t) +sAt) = U(t) = (H' (1) + CX A )Y

and we have proved the lemma in the case v > 0.
If v = 0 condition (3.1) reads

(3.4) H"(\t) < H"(t) + A.
The proof that H also satisfies (3.4) when r <1 is easy. We have
H'(M) < H"(t) + A
and since for 7 < 1 the function ¢(s) = (A + s")V/" is concave so is
$oH = (H(t)+ A"
It is easy to check that (H(As)) ™ (t) = ﬁ(z\iﬁ) and so
H(\) < (H"(t) + AV
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We consider the case r > 1. Clearly if (3.4) holds for H it also holds for
its least non-decreasing majorant:
H”(t)= sup H(s).
0<s<t

Since also (H/)™ = bl , without loss of generality we assume that H itself
is non-decreasing.

Let us see next that if H is non-decreasing and satisfies (3.4) then so
does its least quasi-concave majorant, H" (see (2.18)). Iterating (3.4) we
have, for n > 1,

H"(\"t) < H"(t) + nA.

For \» 1t < s < A\t we have
H"(s) < H"(A\"t) < H"(t) + nA
so that for s > ¢,

(3.5) H"(s) < H"(t) + <1 + log), §>A.
Since
t
HY(t) = max{ sup H(s),sup — H(s)},
0<s<t s>t S
for H non-decreasing we have
t t
HY(t) = max {H(t), sup — H(s)} = sup — H(s).
s>t S s>t S

Therefore

At t
HY(\t) = sup — H(s) = sup — H(\s).

s> S s>t S

From (3.5),

1/r
HY(\t) = sup - H As) < sup — (HT <1 + log,, ?)A)

s>t S s>t S

<£> H"(t) +

Set

C =sup(z~ " (2 +logy 7))
z>1
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so that
HY (M) < (H"(t) + CA)Y" < ((H"(t))" + CA)Y".

~

Since
H<(HY)Y <(H)"=H

we have (HY)™ = H and so we can assume that H is quasi-concave

Since r > 1, by (3.4), for any = > 0,
A>H"(\z) — H"(z) > rH Y z)(H(\z) — H(x))

A

so that
HMx) < H(z)+ ———.
()‘ )— ( ) TE[T_I(JJ)

Tterating the last inequality gives
A& 1
+ H(z)

H(\'z) < = Z m
k=0

and since H is a non-decreasing function,
A n
H\N'z) < — ——— + H(x).
(V') < gt + H)

Thus, for A"~ 1t < s < \"t,
A 1 S
— 1+1logy = |+ H(t
r H’”—l(t)( +losx t> +H(Q)

so that for all s > 0,
A 1 s ~
— (141 1+ - H(t).
(1 +om (147)) + 0

H(s)g?

The function (of s) on the right-hand side is concave and so

H(s) < é i (1 + logy, (1 + ;)) +H().
Taking s = At we have
(H\) — H@)H ™ (t) < é (1+1logy(1+ \)).

Since H is quasi-concave, by (2.19), H
(H (M) = H()(H) (6 <27



194 N. Krugljak et al.

But, since f[()\t) < )\ﬁ(t),
()~ B O)(Y (M) < (22 2 (14 logy (14 ).
Finally,

r(H (Xt) — H()(H) " (\t)
20) TTA(1 + logy (1 + \))

H™ (M) — H"(t) <
<

proving (3.2). =

THEOREM 3.3. A K-subadditive operator T : A — B is a weak-type
(00,01;7) operator iff there exists a function
G:R+X (B0+Bl)—>R+
so that K(-,-; B) < G and for some 0 < My, My < oo and all a € AgN Ay,

(36) sup(t°°[G” (A, Ta) = G (¢, Ta) /") < Mplal|ay
>

and

(3.7) iug(t"l [GT-(\t, Ta) — G’“T(t,Ta)]If) < M||al| 4, -
>

Proof. If T is a weak-type (09, 01; ) operator then there exists a function
F2R+ X (B0+Bl)—>R+

concave in the first variable so that K(-,-;B) < F and satisfying (2.1)
and (2.2). From Lemma 3.1 it follows that F' satisfies (3.6) and (3.7).
Conversely, if G satisfies (3.6) and (3.7) then, by Lemma 3.2, so does

F:=G. Again from Lemma 3.1 it follows that F satisfies (2.1) and (2.2).
Of course, since K < G then also K < F and so we see that T is a weak-type
(00,01;7) operator. m

Let us see that we need the Calderén operator in the statement of The-
orem 2.5. Write

L>® = (L®°(Ry,ds), L2, (R4, ds)).
The following theorem is proved in [2, p. 298].
THEOREM 3.4. For all f € L™(Ry,ds) + L, (R, ds),
(3.5) Kt %) = 1117 (1),
Let f: Ry — R4, 09,01 > 0 and r > 0. We define
Tf(t) = Sp(u | f(u'T7F))(2).

THEOREM 3.5. T is a K-subadditive L® — L weak-type (09,01;7)
operator.
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Proof. 1t is easy to verify that T satisfies (1.2) so that T' is K-subadditive.
By (3.8),
K(t,Tf; L) = (Tf)"(1).
For any non-negative function g, S,g is a quasi-concave function so that
(3.9) K(t,Tf;L®) = (Tf)” «~ (Tf)V =TF.

By Theorem 3.3 if we prove (3.6) and (3.7) with G = T'f it will follow that
T is an L>® — L> weak-type (0¢,01;7) operator. Now
(

G"\LTf) =G (6 Tf) = (T (A) = (Tf)"(#)
= Sy (u™f (! FOFM) ) (M) — Sy (w0 f (ul T ()

Tl (2} (P

When s € (0,1),
min{1, (At/s)"} = min{1, (t/s)"} =1
so that
G"(\,Tf)—-G"(t,Tf)

T3] ()
T~ @)
[

< A" = D[Sl

57T e et

and we showed that (3.6) holds.
Let us verify (3.7). We have

Gy TH) - G T =Xt () (37) @y (7)

00 1\" 1\" ds
. rar . ogr - —oor 1+o0+01\|T
- §) <)\ t mln{l, <—)\ts> } t mln{l, <t5> })3 |f(s )| .

T d
= S (min{\"t",s™"} — min{¢", s_r})s_0°T|f(sl+”0+ol)|r —S
0

When s € (t71, 00),
min{\"t", s7"} = min{t", s "}
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so that

1/t
G\, Tf)—Gp(t,Tf) = S (min{A\"t", 57"} — t")s 70T | f (st o0ty %
0

1/t J
< S ()\rtr _ tr)sfaor‘f(sl+cro+0'1)‘r _8
S

0

1/t p

S

<= DIl § steerensTeor =
0

=l fllLe 7
and we showed that (3.7) holds. m

Let us see that if g is a quasi-concave function and

ft) = t1+cr(;0+al g(t1+aé+cf1 )
then for all 7 > 0 we have
K(t,Tf; L®) « Sp[K (-, f; L%y 00, L%, ,00)] (1)
Tronro; and 61 = 1::01’01. Clearly
g(s) = 3—90/(91—90)f<81/(91—90)) - S—aoJc(81+ao+al)_

where 0y =

By (3.8), K(t, f; L) = f (t). By Lemma 2.11,
K(t, 15 L%y 00, L%, 00) ~ (57 %/ 1700 p (51 O1=000)) = (1) = g (£) -~ g(1).
By (3.9),
K(t, Tf;L®) ~ Tf(t) = Sp(s~ 7 f(s"F70F))(t) = Srg(t)
so that
K(t,Tf; L) « Spg(t) < Sp(K(t, f5 L) 00, L%, ,00)) (1)-

Thus, when r < 1, we have equivalence in (2.7).

4. Proof of the strong fundamental lemma. We present a proof of
Theorem 2.10. The proof is a modification of those in [2], [3], and [5].

Proof of Theorem 2.10. For all s > 0 let ag(s) be such that
(4.1) lao(s)lla, + slla — ao(s)]|a, < 2K (s, a; A).

Therefore
llao(s)[la, < 2K (s,a; A) < 2sl|al| 4, -
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Also
sllao(s)|a, = slla — (@ —ao(s))]a, < cisllalla, + c1slla — ao(s)]] 4,
< cy8)|alla, + 2¢1K (s, a; A) < 3ers||all 4, -
We therefore have
(4.2) J(s,a0(s); A) = max{||ao(s)|| Ao, sllao(s)]| 4, } < 3ers|lalla, -
Since
lla—ao(s)]l4, < collallag+collao(s)]ay < collallay+2¢0K (s, a; A) < 3collall 4,
and
slla — ao(s)]|a, < 2K(s,a; A) < 2[lal|a,
we have
(4.3) J(s,a —ap(s); A) < 3collall a,-
Let 79 < € and up = ag(79). Then, by (4.2),

(4.4) J(70, uo; A) < 3ermollal| 4, -

Assume that ug,u1,...,u;—1 and 79,...,7_1 have been defined. To con-
struct u; and 7; we define

TZ'+ = sup{s: K(s,a;f_l) < 2K(7i-1,4; A)}’
K(s,a;4) _ K(Ti—lva?‘q)}

T, = Imax<s: >
v { S 2Ti—1

Since a € Ag N Ay, we have

hm K(S7a; A) S hm HaHAO

§—00 S §—00 S

=0

so that 7,7 < 0.
It might happen that 7,7 = oco. If 7,7 < o0, we set 7; = max{r;", 7, }.
By the continuity of K, if 7;" < co we have

(4.5) K(1",a; A) = 2K (1,1, a; A).

If ;5 = oo, we take any 7; > max{7;, ,1/e} and stop.
Define in both cases

u; = agp(1;) — ag(Ti-1).
Let us see that the sequence we defined is finite. For all i we have
(4.6) K (7, a; f_l) > K(TZT", a; f_l) =2K(1i_1, a; f_l)
so that
K(rt,a; A) > 2'K (10, a; A).
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But since a € Ay N Ay, we have K(-,a; A) < ||a||a, < oo and so 7;" = oo for

some ¢, that is, for all s > 7;_1,
(4.7) K(s,a; A) < 2K (i1, a; A).
We denote the last index by n, that is, 7,7 = co. We define

Uso = a — ag(Ty).

We have
o+ Y Ui + e = ag(10) + Y (ao(ri) = ao(7i-1)) + (a — ao(7a)) = a.
i=1 i=1

For i <n — 1, that is, when 7;” < oo, we have (4.6) and similarly

(4.8) K(7i1,a; A) < K(rii @ A) _ K(Ti’a;A_).

Tit1 - Tit1 27;
From (4.3) it follows that
(4.9) J(Tny tUoo; A) = J(Tn,a — ao(1y); A) < 3col|al] a,-

For the elements u;, 1 <i <n, by (4.1), we have the estimates

l[uill a9 = llao(7i) = ao(7i-1)[l4, < collao(7i)l[4o + collao(Ti-1) |l 40
< 2¢oK (7i,a; A) + 2¢0K (11, a; A)

and so
(4.10) lluil| 4y < dcoK (74, a; A).
Also

uill a, = llao(T:) — ao(Ti-1)lla, < cilla —ao(7i)||la, + cilla — ao(7i-1)|la,
< 201K(Ti,a;;1

) 201K(Ti_1,a; /_1)
+
Ti Ti—1
and so
K(ri_1,a; A
(4.11) uilla, < 4cy K(ri1,a4)

Ti—1
Let us see that for all ¢ > 0,

o 1/q
(S min(lulid, t2uilly,)) ™ < K (t,as A)
=1

where ¢ depends only on ¢, cp and ¢;. There are three cases:

1.t < 795
2. For some 0 < k <n —1 we have 7, <t < Tg11;
3.t>T1,.
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We consider the second case. We have two subcases: 711 = T]:_ 4 and
Thtl = 7',;_1.
If 71 = T,;FH then, by (4.5),

(4.12) K(thy1,0; A) = 2K (13, a; A) < 2K (t,a; A).
By (4.10) and (4.11),

n
Zmin(lluz-llio,tqlluz-llil)
=1
<O w17 > Ml

i<k+1 i>k+1

Ki(ti_1,a; A
< (4c¢p)? Z K9(1;,a; A) + (4cp) 79 Z M

. Ti—1
i<k+1 i>k+1 ¢

= (4c0)1KY(Tp11,a; A) + (4co)? ZK‘I(Ti, a; A)
K9(1;_1,a; A)
4eq )t —_— .
- (de1) Z T
i>k+1
By (4.6) and (4.8),

(413) > K%r,a; A) tqz T““A

i<k i>k
k _
q .
<> 2P (7, 03 A) + 10 Z gatk+1—) K1, 0 4) (T’ff’“’A)
i=0 =kt 1 Tk+1
K A
< ( (Tk, a; A) +t‘1—(7k+1’a )>
Tt
Ki(t,a; A _
< ( (t,a; A) +tq7(tqa )>§ch(t,a;A)

so that by (4.12),
Zmin(\luz'||?407tq||uz'||?4l) < cK(t,a; A)
i=1
where ¢ = ¢(g, co, ¢1). In the second subcase, 7411 = 7 |, and so, by (4.8),

K (1g,a; A) B K(Tk_ﬂ,a;f_l) B K(Tpi1,a; A) < K(t,a; A)
27k Tht1 Th+1 - t .
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We write

n
> min(fluglh,, ¢uilly,)

i=1

Ti—1,a; A
< (4c¢p)? ZKq Ty, @ A (4cq) qtqZ—Z ! )
i<k i>k

= (4c0)" Y K(7i, a; A) + (4e1) 1t K7y, a; 4)

q
i<k Tk
Kq(T‘flaa; ‘L_l)
e Y K d)
i>k+1 i—1
_ Ki(t,a; A
< (40) ) K9(7i, a3 A) + (8cy) 1t B0 4)
i<k b

Kq(n_l, a; /_1)
+ (e Y B0 D),
i>k+1 i—1

Repeating the calculation in (4.13) we have

n
S min(jlug %, 9]usl,) < (4co) qu@

VK (1, a5 A) + (8¢1) 1K (t, a; A)
1=1

+ (dep )9t Z 9a(k+1-1) —K (Tht1,0; A)
i=k+1 Tk+1
< cKi(t,a; A).
Consider the third case, 7, < t. By (4.7),

K (7, a; A) < 2K(1p-1,q; f_l) < 2K(t,a; Z),
and by (4.10),

me HUzHAO,tqHUzHAI <ZH“ZHA < (4co) ZKq (7, a; A)
=1

n—1
< (8¢0) K (t, a; A) + (4c0)? Y K(7i, a3 A)
i=1
< cK(t,a; A).
Finally, we consider the first case, t < 79. By (4.11),

. Ti—1,a; A
> minhul,, i) < tqz Jull, < (den) qtqZ Rz sl
=1

< cK (t,a; A).
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To get the claim of the theorem we take tg = 79, too = ™ and for 1 < i < mn,

b { il ag /llwilla, — if ws # 0,

We then have

min([[ugl| ag, ¢lwill a,) = min{ 1, ¢/} I (&, wi; A)

and, together with (4.4) and (4.9), we obtain (2.17). =
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