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Multiplying balls in the space of continuous functions on [0, 1]
by

MAREK BALCERZAK, ARTUR WACHOWICZ and
WeADYSEAW WILCZYNSKI (Lodz)

Abstract. Let C denote the Banach space of real-valued continuous functions on
[0,1]. Let &: C x C — C. If & € {+,min, max} then & is an open mapping but the
multiplication ¢ = - is not open. For an open ball B(f,r) in C let B*(f,r) = B(f,r) -
B(f,r). Then f? € Int B*(f,r) for all r > 0 if and only if either f > 0 on [0,1] or f <0
on [0,1]. Another result states that Int(B; - B2) # () for any two balls B; and B in C.
We also prove that if & € {+, -, min, max}, then the set $~'(E) is residual whenever E is
residual in C.

1. Openness of some operations. Let B(z,r) denote the (open) ball
with centre f and radius 7 in a metric space. By Int we denote the inte-
rior. Let C' = (0, 1] stand for the Banach algebra of real-valued continu-
ous functions on [0, 1] with the norm [|f| = sup,¢jo.1)|f(2)], f € C. Let
¢: C x C — C be one of the four operations: addition (+), multiplication
(+), minimum (min), and maximum (max). For two balls By = B(F,r) and
By = B(G,r) in C, it is natural to ask what is the image @(B; x By). Now,
let us simplify some notation. If & € {+,-, min, max} and Eq, E2 C C, we
denote the respective images by Fy + Ea, E1 - Eo, min(E1, E2), max(E7, Es).
The answer to our question for addition, minimum and maximum is simple.
The case of multiplication is nontrivial and more interesting.

First we study the behaviour of the sum of two balls in an arbitrary
normed space:

PROPOSITION 1. For an arbitrary normed space X we have
B(z1,71) + B(xg,72) = B(x1 + 29,71 + 72)
where x1,x9 € X and r1,79 > 0.
Proof. The inclusion “C” is clear. For the reverse inclusion, consider z €

B(x1 + x2,71 + r2) and put
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2 = x; + (z—(acl—i—xQ)) fori=1,2.

1+ 72
Then z; € B(w;,r;) fori=1,2and z = 21 + 2z2. =

PROPOSITION 2. For every F,G € C and r > 0 we have

min(B(F,r), B(G,r)) = B(min(F,G),r),
max(B(F,r), B(G,r)) = B(max(F,G),r).

Proof. For instance, let us show the first equality. To demonstrate “C”,
let h = min(f, g) where f € B(F,r) and g € B(G,r). Hence

Fz)—r< f(x) < F(x)+r and G(z)—r<g(z)<G(z)+r
for all x € [0, 1]. Consequently, for all z € [0, 1] we have
min(F, G)(z) —r < h(z) < min(F, G)(x) + 7.
Since the above functions are continuous on [0, 1], we have
sup |h(xz) — min(F,G)(x)| <r
z€[0,1]
and so, h € B(min(F,G),r) as desired.

For the reverse inclusion, let h € B(min(F, G),r). For each x € [0, 1] put
a(r) = h(z) —min(F,G)(z), f(z)=F(z)+a(z), g(z)=G(@)+alz).
Then |a| < r and consequently, f € B(F,r) and g € B(G,r). Since also
h = min(f, g), we have h € min(B(F,r), B(G,r)). m

REMARK. Consider F(z) = z, G(x) = 1 —z for z € [0,1] and m =
1/4, ro = 1/2. Tt is easy to check that neither min(B(F,r1), B(G,r2)) nor
max(B(F,r1), B(G,r2)) is a ball. Nevertheless, from Propositions 1 and 2 it

follows that every mapping @ € {+, min, max} is open. We will see that for
multiplication, this is not true.

For f € C and r > 0 we write B2(f,7) = B(f,r) - B(f,r). In January
2004, D. H. Fremlin (oral communication) observed that for f(z) =z —1/2,
x € [0,1], one has

f2e B2(f,1/2) \ Int B%(f,1/2).

Hence multiplication is not an open mapping from C x C' into C.
We have the following characterization.

THEOREM 3. Let f € C. Then f? € Int B2(f,r) for all v > 0 if and only
if either f >0 on [0,1] or f <0 on [0, 1].

Proof. “=" (This part is inspired by Fremlin’s example.) Suppose to the
contrary that there are a,b € [0, 1] such that f(a) < 0 and f(b) > 0. Define
r = min{|f(a)|,|f(b)|}. Let g € B(f,r). Thus g(a) < 0 and g(b) > 0, and by
the Darboux property, g has a zero between a and b. Hence every function
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in B2(f,r) has a zero in [0,1]. By assumption, f? € Int B%(f,r). Hence
f? +¢e € B%(f,r) for a sufficiently small ¢ > 0. But f2+¢ > 0 on [0, 1]
which contradicts our previous observation.

“«<” We may assume that f > 0 on [0, 1] since, if f <0 on [0, 1], we use
—f and notice that B2(f,r) = B?(—f,r). Fix r > 0 and put € = r2/9. We
will show that B(f2,¢) C B?(f,r). Let g € B(f?,¢). Then

(1) FAa) —e < gla) < f2z) +¢
for each = € [0,1]. We have g = g1g2 on [0,1] where g1 = +/|g|, g2 =

\/lg|sen g. Obviously g1, g2 € C. From (1) it follows that |g(z)| < f?(z) +¢
for each x € [0,1] and consequently,

(2) Vigl@)l < V2 (@) +e < flz) + Ve
On the other hand, using again (1), for all z € [0,1] we have |g(z)| +

2¢/1g(z)|e+e > g(z) +e > f2(z). Hence (\/|g(z)] + +/2)? > f2(z) and thus

lg(x)] > f(x) — \/e. This together with (2) shows that g; € B(f,/¢) C
B(f.r).

To show that gy € B(f,r) it is enough to consider the case when g(z) < 0

for a fixed € [0, 1]. Then by (1) we have f%(z)—e < g(x) < 0. So f(z) < v/

and 2f(x) < 2y/e =2r/3 =r—/e. Hence — f(x) — /e > f(x) —r and from

(2) we get
—0g(@)| > —f(x) — Ve > f(z) —r
Also obviously, —+/|g(x)| < f(z) +r. Thus g2 € B(f,7). =

COROLLARY 4. The set {f € C: (Vr > 0) f? € Int B2(f,r)} is closed.

Y

2. Weak openness of multiplication. Although multiplication from
C x C into C is not an open mapping, it always transforms each open
nonempty set onto a set with nonempty interior. Let us call this property
weak openness. Namely, we have the following general result:

THEOREM 5. Int(B(F,R) - B(G,R)) # 0 for all F,G € C and R > 0.

Of course, it suffices to assume that the centres F, G come from a fixed
dense set in C'. It is convenient to take a dense set of all polygonal functions
in C'. More precisely, we consider the set P of all polygonal functions f in C
such that f(0) # 0, f(1) # 0 and f~1({0}) does not contain interior points.
It is easy to check that P is also dense in C.

LEMMA 6. Let F,G € P and r > 0. There are a partition 0 = xg < 1 <
- < x9n, =1 0of [0,1] and functions f,g € P such that:

o |f=Fll<randl|g—G| <r;
e f and g are affine on every interval I; = [x;—1,x;] fori=1,...,2n;
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o f|r, =const =ap #0 for each odd k € {1,...,2n},
glr, = const = ay, # 0 for each even k € {1,...,2n}.

Proof. By the uniform continuity of F' and G we choose 6 > 0 such
that |F(z) — F(2')| < r and |G(z) — G(2')| < r for any z,2’ € [0,1] with
|z — 2’| < 4. Since F,G € P, we can pick a partition 0 = 29 < 21 < -+ <
To, = 1 with diameter < §/2 such that F(z;) # 0 and G(x;) # 0 for
i=1,...,2n. Put f(1) = F(1), g(0) = G(0), and f|;, = F(xx_1) if k €
{1,...,2n}isodd, g|1, = G(xk—1) if k € {1,...,2n} is even. Then we extend
f and g to be continuous on [0, 1] and affine on every interval I;. Finally, we

define
{F(xk_l) if ke {l,...,2n} is odd,
ap =

G(zi—1) ifke{l,...,2n} is even. =
LEMMA 7. Let f,g€ P and z; (i =0,...,2n) be as in Lemma 6. Define

p = min{|f(x;)g(x;)| : i =0,...,2n},
v = max{|f(z;)g(z;)| : i =0,...,2n}.
Then for all e € (0,1/2], ¢ € B(fg,e) and i € {0,...,2n} we have

/2 <lp(xi)| <v+p/2
Proof. We have
lp(zi)| > [f(zi)g(@i)| — o — fall > p—e > p/2,
lp(zi)| < [f(zi)g(x)| + o — foll <v+e<y+p/2. m

From now on, for h € C we write ||h]|; = sup,¢;, |h(z)], i =1,...,2n.

LEMMA 8. Keeping all notations from Lemmas 6 and 7, one can find
numbers 3; >0 (i = 1,...,2n) such that for each € € (0, u/2] and for every
v € B(fg,¢e) there are functions ,v € C with p = (¢ and ||f — (||; < Big,
llg —¥|l: < Bie fori=1,...,2n.

Proof. We will use induction with respect to i € {1,...,2n}. Step by
step, we will define (; and (for given € and ¢) we will define (|, and 9|z, in
such a way that (|;, = const = d; if i is odd, and v|;, = const = d; if 7 is
even.

Let d; = aj. Define ¢ and ¢ on I; by ( = const = dy and ¢ = (1/dy)e.
Thus (v = ¢ on I;. Additionally || f — (||; = 0 and

1

1
_ — _ = — Ndvg —
lg — | Hg 7. ¢ 7 , ldig — |1

1

1fg— ol < 1fg— ol < 2.
Id | |d | ||

Put By = 1/]di| = 1/]asl.
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We define ¢ and 1 on Is. We want 1 to be constant on I5. Since ¥ should
be continuous at x1, we put

Y(z) =YP(z1) = dilgo(xl) for z € Is.

Thus dy = (1/d1)e(x1) = (1/a1)p(x1). We will estimate |da|. Pick a positive
integer N such that 1/N < u/2 and N > v+ u/2. By Lemma 7 we have
N
< |d2| < —.
a1

3
To obtain ¢ = (% on Iz, we must put ¢ = (1/d2)¢ on I5. We thus have
lg = ¥ll2 = lag — da| = [g(z1) — Y (z1)| < llg — ¥lls < Pre

and

1f = Cllz = = ldaf — daCll2 = T ldaf — ¢l[2

L
|da]
1
!d |
1
!d |

Id |
(Ida — az[ [ fll2 + llazf — ¢ll2)

(Id2 —az| | fll2 + llgf —¢ll)

(Brell fll + &) = == (Bull £l + 1)

L &
!d2! |da

Hence by (3) we obtain

If = Cll2 < eNlax[(Bull fII + 1)

It is enough to put [y = max{Si, N|a1|(G1||f|| + 1)}

Now, we define ¢ and % on Is. We want ( to be constant on I3. Since (
should be continuous at xy, we put ((z) = ((x2) = (1/d2)p(x2) for x € I5.
Thus ds = (1/d2)p(z2). By (3) and Lemma 7 we have

(4) |a1|/N? < |d3| < N?aa].
To obtain ¢ = (¢ on I3, we must put ¢ = (1/d3)y on I3. We thus have
If = Clls = las — ds| = | f(w2) — C(@2)[ < [[f — Cll2 < Bae

and

lg —lz = |d3g — d3v||3 = |d3g — ¢|3

| |
!d! Idl

1

,d , (Ids — aslllglls + llasg — #|l3)

’d | (Ids — as| gl + 1fg — )

< —(ﬁzﬁHgH +¢e) = — (Bllgll +1).
|d3]

&
|ds|
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Hence by (4) we obtain
2
o=l < S (Ballll + 1)
It is enough to put f3 = max {32, (N?/|a1])(B2|lg]l + 1)}.

The next steps are analogous. If k € {2,3,...,2n} we put dy = (1/dj_1)
- o(x_1) and thus we have

]\’f?‘ < |dg ’<Nk 1|CL1| if k is odd,
1 Nk—l ) .
N Tay| < |dy| < Tl if k is even.
Also we define
Nk_l . .
B, = maX{ﬁk YTl (Bre—1llgll + 1)} if k is odd,

max{f_1, N* a1 |(Bea [ £l + 1)} if k is even. m

Proof of Theorem 5. Put r = R/2 in Lemma 6. Thus B(f,r) C B(F,R)
and B(g,r) C B(G, R). Define

E = mln{lu, " }
2" max{f1, ..., O}

where the numbers (3; are chosen as in Lemma 8. It is enough to show that

B(fg,e) € B(f,r)- B(g,7)-
Indeed, let ¢ € B(fg,e). Use Lemma 8 to pick functions ¢,y € C with
@ = (Y and || f —C|li < Bie, lg — ¥li < Bie for i =1,...,2n. Hence

Hf - CH < Em&X{ﬂl,.. . 7/8271} <r

and analogously, ||g — ]| < 7. =

3. Some applications. Let us finish our paper with applications of
Propositions 1, 2 and Theorem 5. Namely, we will show that if ® € {+, -, min,
max}, then @~ 1(E) is residual in C' x C whenever E is residual in C. Recall
that a residual set is the complement of a set of the first category in a
topological space. (See [O].)

PROPOSITION 9. Let X, Z be topological Baire spaces and let E C X be
a residual set. If & : Z — X is a continuous mapping such that @(U) is of
the second category for every nonempty open set U C Z, then &~ 1(E) is a
residual set.

Proof. Pick a dense G5 set I' C E. Let F' = (2, E, where E,, are
open and dense for every n. It follows that &~ 1(F) = N2, &7 1(E,) and
&~ 1(F) is of type Gs. It suffices to show that ~!(F) is dense. Let U C Z
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be nonempty open. By the assumption, (U) N F # (. So pick z € U with
®(z) € F. Hence z € UNP H(F). m

COROLLARY 10. Let X be a complete metric space and let ® : X x X —
X be a continuous mapping such that Int(®(By x Bs)) # 0 for any two balls
B1,By C X. Then &~ Y(E) is residual for every residual set E C X.

COROLLARY 11. Let & : C x C — C where & € {+, -, min, max}. Then
@~ 1(E) is residual for every residual set E C C.

If E C Cisresidual, a property possessed by all continuous functions in £
is called typical. Several typical properties of continuous functions have been
described in [Br|. In particular, the famous Banach-Mazurkiewicz theorem
states that a typical function in C' is nondifferentiable at every point. Note
that, for E consisting of nowhere differentiable functions in C', the assertion
of Corollary 11 was obtained in [Wal] by a different argument.

The results of this paper, except for Theorem 3 and Corollary 4, are
contained in [Wa2|. Here we provide a new shorter proof of Theorem 5.
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