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Multiplying balls in the spa
e of 
ontinuous fun
tions on [0, 1]by
Marek Balcerzak, Artur Wachowicz and

Władysław Wilczyński (�ód¹)Abstra
t. Let C denote the Bana
h spa
e of real-valued 
ontinuous fun
tions on
[0, 1]. Let Φ : C × C → C. If Φ ∈ {+, min, max} then Φ is an open mapping but themultipli
ation Φ = · is not open. For an open ball B(f, r) in C let B2(f, r) = B(f, r) ·
B(f, r). Then f2 ∈ Int B2(f, r) for all r > 0 if and only if either f ≥ 0 on [0, 1] or f ≤ 0on [0, 1]. Another result states that Int(B1 · B2) 6= ∅ for any two balls B1 and B2 in C.We also prove that if Φ ∈ {+, ·, min, max}, then the set Φ−1(E) is residual whenever E isresidual in C.1. Openness of some operations. Let B(x, r) denote the (open) ballwith 
entre f and radius r in a metri
 spa
e. By Int we denote the inte-rior. Let C = C[0, 1] stand for the Bana
h algebra of real-valued 
ontinu-ous fun
tions on [0, 1] with the norm ‖f‖ = supx∈[0,1] |f(x)|, f ∈ C. Let
Φ : C × C → C be one of the four operations: addition (+), multipli
ation
(·), minimum (min), and maximum (max). For two balls B1 = B(F, r) and
B2 = B(G, r) in C, it is natural to ask what is the image Φ(B1 ×B2). Now,let us simplify some notation. If Φ ∈ {+, ·,min,max} and E1, E2 ⊂ C, wedenote the respe
tive images by E1 +E2, E1 ·E2, min(E1, E2), max(E1, E2).The answer to our question for addition, minimum and maximum is simple.The 
ase of multipli
ation is nontrivial and more interesting.First we study the behaviour of the sum of two balls in an arbitrarynormed spa
e:Proposition 1. For an arbitrary normed spa
e X we have

B(x1, r1) +B(x2, r2) = B(x1 + x2, r1 + r2)where x1, x2 ∈ X and r1, r2 > 0.Proof. The in
lusion �⊂� is 
lear. For the reverse in
lusion, 
onsider z ∈
B(x1 + x2, r1 + r2) and put2000 Mathemati
s Subje
t Classi�
ation: 46J10, 46B25, 26A15, 54E52.Key words and phrases: Bana
h algebra, multipli
ation, 
ontinuous fun
tion, polygo-nal fun
tion, residual set. [203℄
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zi = xi +

ri
r1 + r2

(z − (x1 + x2)) for i = 1, 2.Then zi ∈ B(xi, ri) for i = 1, 2 and z = z1 + z2.Proposition 2. For every F,G ∈ C and r > 0 we have
min(B(F, r), B(G, r)) = B(min(F,G), r),

max(B(F, r), B(G, r)) = B(max(F,G), r).Proof. For instan
e, let us show the �rst equality. To demonstrate �⊂�,let h = min(f, g) where f ∈ B(F, r) and g ∈ B(G, r). Hen
e
F (x) − r < f(x) < F (x) + r and G(x) − r < g(x) < G(x) + rfor all x ∈ [0, 1]. Consequently, for all x ∈ [0, 1] we have

min(F,G)(x) − r < h(x) < min(F,G)(x) + r.Sin
e the above fun
tions are 
ontinuous on [0, 1], we have
sup

x∈[0,1]
|h(x) − min(F,G)(x)| < rand so, h ∈ B(min(F,G), r) as desired.For the reverse in
lusion, let h ∈ B(min(F,G), r). For ea
h x ∈ [0, 1] put

α(x) = h(x)−min(F,G)(x), f(x) = F (x) +α(x), g(x) = G(x) +α(x).Then ‖α‖ < r and 
onsequently, f ∈ B(F, r) and g ∈ B(G, r). Sin
e also
h = min(f, g), we have h ∈ min(B(F, r), B(G, r)).
Remark. Consider F (x) = x, G(x) = 1 − x for x ∈ [0, 1] and r1 =

1/4, r2 = 1/2. It is easy to 
he
k that neither min(B(F, r1), B(G, r2)) nor
max(B(F, r1), B(G, r2)) is a ball. Nevertheless, from Propositions 1 and 2 itfollows that every mapping Φ ∈ {+,min,max} is open. We will see that formultipli
ation, this is not true.For f ∈ C and r > 0 we write B2(f, r) = B(f, r) · B(f, r). In January2004, D. H. Fremlin (oral 
ommuni
ation) observed that for f(x) = x− 1/2,
x ∈ [0, 1], one has

f2 ∈ B2(f, 1/2) \ IntB2(f, 1/2).Hen
e multipli
ation is not an open mapping from C × C into C.We have the following 
hara
terization.Theorem 3. Let f ∈ C. Then f2 ∈ IntB2(f, r) for all r > 0 if and onlyif either f ≥ 0 on [0, 1] or f ≤ 0 on [0, 1].Proof. �⇒� (This part is inspired by Fremlin's example.) Suppose to the
ontrary that there are a, b ∈ [0, 1] su
h that f(a) < 0 and f(b) > 0. De�ne
r = min{|f(a)|, |f(b)|}. Let g ∈ B(f, r). Thus g(a) < 0 and g(b) > 0, and bythe Darboux property, g has a zero between a and b. Hen
e every fun
tion



Multiplying balls 205in B2(f, r) has a zero in [0, 1]. By assumption, f2 ∈ IntB2(f, r). Hen
e
f2 + ε ∈ B2(f, r) for a su�
iently small ε > 0. But f2 + ε > 0 on [0, 1],whi
h 
ontradi
ts our previous observation.�⇐� We may assume that f ≥ 0 on [0, 1] sin
e, if f ≤ 0 on [0, 1], we use
−f and noti
e that B2(f, r) = B2(−f, r). Fix r > 0 and put ε = r2/9. Wewill show that B(f2, ε) ⊂ B2(f, r). Let g ∈ B(f2, ε). Then(1) f2(x) − ε < g(x) < f2(x) + εfor ea
h x ∈ [0, 1]. We have g = g1g2 on [0, 1] where g1 =

√

|g|, g2 =
√

|g| sgn g. Obviously g1, g2 ∈ C. From (1) it follows that |g(x)| < f2(x) + εfor ea
h x ∈ [0, 1] and 
onsequently,(2) √

|g(x)| <
√

f2(x) + ε ≤ f(x) +
√
ε.On the other hand, using again (1), for all x ∈ [0, 1] we have |g(x)| +

2
√

|g(x)|ε+ ε ≥ g(x) + ε > f2(x). Hen
e (
√

|g(x)|+√
ε)2 > f2(x) and thus

√

|g(x)| > f(x) − √
ε. This together with (2) shows that g1 ∈ B(f,

√
ε) ⊂

B(f, r).To show that g2 ∈ B(f, r) it is enough to 
onsider the 
ase when g(x) < 0for a �xed x ∈ [0, 1]. Then by (1) we have f2(x)−ε < g(x) < 0. So f(x) <
√
εand 2f(x) < 2

√
ε = 2r/3 = r−√

ε. Hen
e −f(x)−√
ε > f(x)− r and from(2) we get

−
√

|g(x)| > −f(x) −√
ε > f(x) − r.Also obviously, −√

|g(x)| < f(x) + r. Thus g2 ∈ B(f, r).Corollary 4. The set {f ∈ C : (∀r > 0) f2 ∈ IntB2(f, r)} is 
losed.2. Weak openness of multipli
ation. Although multipli
ation from
C × C into C is not an open mapping, it always transforms ea
h opennonempty set onto a set with nonempty interior. Let us 
all this propertyweak openness. Namely, we have the following general result:Theorem 5. Int(B(F,R) ·B(G,R)) 6= ∅ for all F,G ∈ C and R > 0.Of 
ourse, it su�
es to assume that the 
entres F,G 
ome from a �xeddense set in C. It is 
onvenient to take a dense set of all polygonal fun
tionsin C. More pre
isely, we 
onsider the set P of all polygonal fun
tions f in Csu
h that f(0) 6= 0, f(1) 6= 0 and f−1({0}) does not 
ontain interior points.It is easy to 
he
k that P is also dense in C.Lemma 6. Let F,G ∈ P and r > 0. There are a partition 0 = x0 < x1 <
· · · < x2n = 1 of [0, 1] and fun
tions f, g ∈ P su
h that :

• ‖f − F‖ < r and ‖g −G‖ < r;
• f and g are a�ne on every interval Ii = [xi−1, xi] for i = 1, . . . , 2n;
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• f |Ik

= const = ak 6= 0 for ea
h odd k ∈ {1, . . . , 2n},
g|Ik

= const = ak 6= 0 for ea
h even k ∈ {1, . . . , 2n}.Proof. By the uniform 
ontinuity of F and G we 
hoose δ > 0 su
hthat |F (x) − F (x′)| < r and |G(x) − G(x′)| < r for any x, x′ ∈ [0, 1] with
|x− x′| < δ. Sin
e F,G ∈ P , we 
an pi
k a partition 0 = x0 < x1 < · · · <
x2n = 1 with diameter < δ/2 su
h that F (xi) 6= 0 and G(xi) 6= 0 for
i = 1, . . . , 2n. Put f(1) = F (1), g(0) = G(0), and f |Ik

= F (xk−1) if k ∈
{1, . . . , 2n} is odd, g|Ik

= G(xk−1) if k ∈ {1, . . . , 2n} is even. Then we extend
f and g to be 
ontinuous on [0, 1] and a�ne on every interval Ii. Finally, wede�ne

ak =

{

F (xk−1) if k ∈ {1, . . . , 2n} is odd,
G(xk−1) if k ∈ {1, . . . , 2n} is even.Lemma 7. Let f, g ∈ P and xi (i = 0, . . . , 2n) be as in Lemma 6. De�ne

µ = min{|f(xi)g(xi)| : i = 0, . . . , 2n},
γ = max{|f(xi)g(xi)| : i = 0, . . . , 2n}.Then for all ε ∈ (0, µ/2], ϕ ∈ B(fg, ε) and i ∈ {0, . . . , 2n} we have

µ/2 < |ϕ(xi)| < γ + µ/2.Proof. We have
|ϕ(xi)| ≥ |f(xi)g(xi)| − ‖ϕ− fg‖ > µ− ε ≥ µ/2,

|ϕ(xi)| ≤ |f(xi)g(xi)| + ‖ϕ− fg‖ < γ + ε ≤ γ + µ/2.From now on, for h ∈ C we write ‖h‖i = supx∈Ii
|h(x)|, i = 1, . . . , 2n.Lemma 8. Keeping all notations from Lemmas 6 and 7, one 
an �ndnumbers βi > 0 (i = 1, . . . , 2n) su
h that for ea
h ε ∈ (0, µ/2] and for every

ϕ ∈ B(fg, ε) there are fun
tions ζ, ψ ∈ C with ϕ = ζψ and ‖f − ζ‖i < βiε,
‖g − ψ‖i < βiε for i = 1, . . . , 2n.Proof. We will use indu
tion with respe
t to i ∈ {1, . . . , 2n}. Step bystep, we will de�ne βi and (for given ε and ϕ) we will de�ne ζ|Ii

and ψ|Ii
insu
h a way that ζ|Ii

= const = di if i is odd, and ψ|Ii
= const = di if i iseven.Let d1 = a1. De�ne ζ and ψ on I1 by ζ = const = d1 and ψ = (1/d1)ϕ.Thus ζψ = ϕ on I1. Additionally ‖f − ζ‖1 = 0 and

‖g − ψ‖1 =

∥

∥

∥

∥

g − 1

d1
ϕ

∥

∥

∥

∥

1

=
1

|d1|
‖d1g − ϕ‖1

=
1

|d1|
‖fg − ϕ‖1 ≤ 1

|d1|
‖fg − ϕ‖ < 1

|d1|
ε.Put β1 = 1/|d1| = 1/|a1|.



Multiplying balls 207We de�ne ζ and ψ on I2. We want ψ to be 
onstant on I2. Sin
e ψ shouldbe 
ontinuous at x1, we put
ψ(x) = ψ(x1) =

1

d1
ϕ(x1) for x ∈ I2.Thus d2 = (1/d1)ϕ(x1) = (1/a1)ϕ(x1). We will estimate |d2|. Pi
k a positiveinteger N su
h that 1/N ≤ µ/2 and N ≥ γ + µ/2. By Lemma 7 we have(3) 1

N |a1|
≤ |d2| ≤

N

|a1|
.To obtain ϕ = ζψ on I2, we must put ζ = (1/d2)ϕ on I2. We thus have

‖g − ψ‖2 = |a2 − d2| = |g(x1) − ψ(x1)| ≤ ‖g − ψ‖1 < β1εand
‖f − ζ‖2 =

1

|d2|
‖d2f − d2ζ‖2 =

1

|d2|
‖d2f − ϕ‖2

≤ 1

|d2|
(|d2 − a2| ‖f‖2 + ‖a2f − ϕ‖2)

≤ 1

|d2|
(|d2 − a2| ‖f‖2 + ‖gf − ϕ‖)

<
1

|d2|
(β1ε‖f‖ + ε) =

ε

|d2|
(β1‖f‖ + 1).Hen
e by (3) we obtain

‖f − ζ‖2 ≤ εN |a1|(β1‖f‖ + 1).It is enough to put β2 = max{β1, N |a1|(β1‖f‖ + 1)}.Now, we de�ne ζ and ψ on I3. We want ζ to be 
onstant on I3. Sin
e ζshould be 
ontinuous at x2, we put ζ(x) = ζ(x2) = (1/d2)ϕ(x2) for x ∈ I3.Thus d3 = (1/d2)ϕ(x2). By (3) and Lemma 7 we have(4) |a1|/N2 ≤ |d3| ≤ N2|a1|.To obtain ϕ = ζψ on I3, we must put ψ = (1/d3)ϕ on I3. We thus have
‖f − ζ‖3 = |a3 − d3| = |f(x2) − ζ(x2)| ≤ ‖f − ζ‖2 < β2εand

‖g − ψ‖3 =
1

|d3|
‖d3g − d3ψ‖3 =

1

|d3|
‖d3g − ϕ‖3

≤ 1

|d3|
(|d3 − a3| ‖g‖3 + ‖a3g − ϕ‖3)

≤ 1

|d3|
(|d3 − a3| ‖g‖ + ‖fg − ϕ‖)

<
1

|d3|
(β2ε‖g‖ + ε) =

ε

|d3|
(β2‖g‖ + 1).
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e by (4) we obtain
‖g − ψ‖3 ≤ εN2

|a1|
(β2‖g‖ + 1).It is enough to put β3 = max

{

β2, (N
2/|a1|)(β2‖g‖ + 1)

}.The next steps are analogous. If k ∈ {2, 3, . . . , 2n} we put dk = (1/dk−1)
· ϕ(xk−1) and thus we have

|a1|
Nk−1

≤ |dk| ≤ Nk−1|a1| if k is odd,
1

Nk−1|a1|
≤ |dk| ≤

Nk−1

|a1|
if k is even.Also we de�ne

βk =











max

{

βk−1,
Nk−1

|a1|
(βk−1‖g‖ + 1)

} if k is odd,
max{βk−1, N

k−1|a1|(βk−1‖f‖ + 1)} if k is even.Proof of Theorem 5. Put r = R/2 in Lemma 6. Thus B(f, r) ⊂ B(F,R)and B(g, r) ⊂ B(G,R). De�ne
ε = min

{

µ

2
,

r

max{β1, . . . , β2n}

}

where the numbers βi are 
hosen as in Lemma 8. It is enough to show that
B(fg, ε) ⊂ B(f, r) ·B(g, r).Indeed, let ϕ ∈ B(fg, ε). Use Lemma 8 to pi
k fun
tions ζ, ψ ∈ C with

ϕ = ζψ and ‖f − ζ‖i < βiε, ‖g − ψ‖i < βiε for i = 1, . . . , 2n. Hen
e
‖f − ζ‖ < εmax{β1, . . . , β2n} ≤ rand analogously, ‖g − ψ‖ < r.3. Some appli
ations. Let us �nish our paper with appli
ations ofPropositions 1, 2 and Theorem 5. Namely, we will show that if Φ ∈ {+, ·,min,

max}, then Φ−1(E) is residual in C ×C whenever E is residual in C. Re
allthat a residual set is the 
omplement of a set of the �rst 
ategory in atopologi
al spa
e. (See [O℄.)Proposition 9. Let X,Z be topologi
al Baire spa
es and let E ⊂ X bea residual set. If Φ : Z → X is a 
ontinuous mapping su
h that Φ(U) is ofthe se
ond 
ategory for every nonempty open set U ⊂ Z, then Φ−1(E) is aresidual set.Proof. Pi
k a dense Gδ set F ⊂ E. Let F =
⋂

∞

n=1En where En areopen and dense for every n. It follows that Φ−1(F ) =
⋂

∞

n=1 Φ
−1(En) and

Φ−1(F ) is of type Gδ. It su�
es to show that Φ−1(F ) is dense. Let U ⊂ Z



Multiplying balls 209be nonempty open. By the assumption, Φ(U) ∩ F 6= ∅. So pi
k z ∈ U with
Φ(z) ∈ F . Hen
e z ∈ U ∩ Φ−1(F ).Corollary 10. Let X be a 
omplete metri
 spa
e and let Φ : X ×X →
X be a 
ontinuous mapping su
h that Int(Φ(B1 ×B2)) 6= ∅ for any two balls
B1, B2 ⊂ X. Then Φ−1(E) is residual for every residual set E ⊂ X.Corollary 11. Let Φ : C × C → C where Φ ∈ {+, ·,min,max}. Then
Φ−1(E) is residual for every residual set E ⊂ C.If E ⊂ C is residual, a property possessed by all 
ontinuous fun
tions in Eis 
alled typi
al. Several typi
al properties of 
ontinuous fun
tions have beendes
ribed in [Br℄. In parti
ular, the famous Bana
h�Mazurkiewi
z theoremstates that a typi
al fun
tion in C is nondi�erentiable at every point. Notethat, for E 
onsisting of nowhere di�erentiable fun
tions in C, the assertionof Corollary 11 was obtained in [Wa1℄ by a di�erent argument.The results of this paper, ex
ept for Theorem 3 and Corollary 4, are
ontained in [Wa2℄. Here we provide a new shorter proof of Theorem 5.A
knowledgements. We would like to thank V. V. Chistyakov, D. H.Fremlin, Sz. Gª¡b and J. Ja
hymski for their valuable 
omments.
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