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Diametral dimension of some pseudoconvex
multiscale spaces
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Abstract. Stemming from the study of signals via wavelet coefficients, the spaces
Sν are complete metrizable and separable topological vector spaces, parametrized by a
function ν, whose elements are sequences indexed by a binary tree. Several papers were
devoted to their basic topology; recently it was also shown that depending on ν, Sν may be
locally convex, locally p-convex for some p > 0, or not at all, but under a minor condition
these spaces are always pseudoconvex. We deal with some more sophisticated properties:
their diametral dimensions show that they are Schwartz but not nuclear spaces. Moreover,
Ligaud’s example of a Schwartz pseudoconvex non-p-convex space is actually a particular
case of Sν .

1. Introduction. The theory of signal processing poses numerous chal-
lenges to functional analysis. Natural spaces for signals or images often have
peculiar properties which in turn play a role in the performance of signal
processing algorithms.

Since the introduction of wavelets in the 80’s, the representation of a sig-
nal by means of its wavelet coefficients has been a widely used tool. From a
functional analysis viewpoint, a property of signals which has an expression
in terms of wavelet coefficients independent of the chosen wavelet basis can
be intrinsically studied using sequence spaces. For instance, the pointwise
Hölder exponents of a function can be characterized by means of its wavelet
coefficients under a mild global regularity hypothesis. Pointwise regularity
properties, for instance multifractality, ultimately depend only on the distri-
bution of the wavelet coefficients.

A key feature of wavelets is that the coefficients are inherently indexed
in a hierarchical (multiscale) way, most often on a binary tree. Adapted se-
quence spaces should mirror this organization. For instance the Besov norms
(Definition 2) have an equivalent expression in terms of wavelet coefficients
that clearly uses the multiscale structure. Nevertheless, the Besov framework
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was not sufficiently precise to handle all the accurate information contained
in the distribution of the wavelet coefficients. In this context, spaces of type
Sν were introduced by Jaffard [8] and studied in previous papers by Dispa,
Jaffard and the present authors [1, 3]. These sequence spaces are new, stem
from practical problems in multifractal analysis and have non-trivial topolog-
ical properties. In this paper we wish to answer previously open questions,
including those of J. Wengenroth and A. Pełczyński about nuclearity and
diametral dimensions of these spaces.

1.1. Sν spaces. Let us briefly summarize the definitions and main prop-
erties established in our previous articles. We consider sequences of com-
plex numbers indexed by the set Λ :=

⋃
j∈N0
{j} × {0, . . . , 2j − 1} where

N0 := {0}∪N. These can for instance be sequences of wavelet coefficients of
periodic distributions defined on T := R/Z, in an appropriate wavelet basis.

Definition 1. The asymptotic profile of a sequence x ∈ CΛ is the func-
tion νx defined on R by

(1) νx(α) := lim
ε→0+

lim sup
j→∞

log(#{k : |xj,k| ≥ 2−(α+ε)j})
log(2j)

The role of the asymptotic profile of wavelet coefficients in multifractal
analysis emerged in [2, 4] following the so-called large deviations multifractal
formalisms [6, 13, 17].

It is easily seen that νx is always a non-decreasing right-continuous func-
tion with values in {−∞} ∪ [0, 1]. Conversely, given an arbitrary function ν
enjoying these properties, not identically equal to −∞ (we then say that ν
is an admissible profile), we define

(2) Sν := {x : νx(α) ≤ ν(α) ∀α ∈ R}.

Roughly speaking, a sequence x belongs to Sν if (asymptotically) at each
scale j the number of k such that |xj,k| ≥ 2−αj is less than 2ν(α)j . It is
a complex linear space which can be endowed with a unique metrizable
topology that makes it a complete, separable topological vector space and
that is stronger than the product topology (of coordinatewise convergence
for sequences). We shall explain in §2.1 and §4 how this topology can be
described.

In this context, many questions of functional analysis appear, the most
elementary of which is local convexity. We established in [1] that Sν is locally
p0-convex (and not better) if p0 > 0, where p0 is the “minimal slope” of ν,
more precisely

(3) p0 := min(1, inf
0≤ν(α)<1

∂+ν(α)),
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where we have used the right-inf derivative notation

(4) ∂+ν(α) := lim inf
h→0+

ν(α+ h)− ν(α)
h

.

The case p0 = 1 corresponds to a locally convex space, therefore a Fréchet
space. However, with applications to multifractal analysis in mind, there
is no reason to focus on this particular case, because ν is closely related
(see [2, 7, 8]) to a spectrum of singularities for which the minimal slope p0

could very well be strictly smaller than 1; on the contrary, we have a new
motivation to be interested in p-convex spaces.

1.2. Outline of the results. We start in §2 with the description of
the Sν topology and its relationship to Besov (p-)norms. In §3 we recall the
definitions of nuclearity and diametral dimensions, how they are related and
what happens when the spaces are only locally p-convex instead of locally
convex. The main result is the computation of the diametral dimension of
Sν in Theorem 1. As a corollary, we shall see that Sν is in fact a Schwartz
space, but not nuclear (it was already proved in [3] that all bounded sets in
Sν are relatively compact, so it is a Montel space, Fréchet–Montel in the case
p0 = 1). The last §4 deals with the case p0 = 0, i.e. local pseudoconvexity; on
this occasion we revisit Ligaud’s example of a Schwartz pseudoconvex space.

2. Sν topology

2.1. Sum of Besov spaces. Let us assume for the moment that p0 > 0.
In that case, the topology of Sν can be described by a set of p0-norms fitting
the sum of two Besov spaces. Originally the topology was defined in [3]
using distances that cover the case p0 = 0 as well, but p0-norms are easier
to manipulate and hence we prefer to start from them. A description using
p-norms, adapted to the case p0 = 0, of this topology will be presented in §4.

Let us first recall the definition of Besov quasinorms.

Definition 2. For s ∈ R, 0 < p <∞, the bsp,∞ Besov quasinorm (norm
if p ≥ 1) of a sequence x is given by

‖x‖bsp,∞ := sup
j∈N0

2sj
(
2−j

2j−1∑
k=0

|xj,k|p
)1/p

and if p =∞,
‖x‖bs∞,∞ := sup

j∈N0

sup
0≤k<2j

2sj |xj,k|.

For α, s ∈ R, we define the p0-norm on the sum space bsp0,∞ + bα∞,∞ by

‖y‖α,s := inf{‖y′‖bα∞,∞ + ‖y′′‖bsp0,∞ : y′ + y′′ = y}.
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For coherence of notation we also include the case s =∞ and write

‖y‖α,∞ := ‖y‖bα∞,∞ .

Let ν be an admissible profile and Sν be defined as in the introduction
by (2). Two important parameters are

αmin := inf{α : ν(α) ≥ 0} and αmax := inf{α : ν(α) = 1},
both necessarily finite if p0 > 0. Now let

U := {(A, ε) : A := {α1 ≤ · · · ≤ αL} ⊂ (−∞, αmax), ε > 0}.
Any (A, ε) ∈ U determines the p0-norm

(5) |||x|||A,ε := sup
1≤l≤L

‖x‖αl−ε,αl−ε+(1−ν(αl))/p0 .

Then we set

(6) U := {BA,ε(r) : (A, ε) ∈ U, r > 0}
where BA,ε(r) := {x : |||x|||A,ε ≤ r}. The fact that U is a 0-basis of Sν follows
directly from [1, Theorem 2] and the following comparisons: on one hand we
clearly have

‖y‖α−ε,s ≤ ‖y‖α,s,
and on the other hand,

‖y‖α,α−ε+(1−ν(α))/p0
≤ ‖y‖α′−ε′,α′−ε′+(1−ν(α′))/p0

if α′ > α is such that ν(α′) ≤ ν(α) + εp0 and ε′ = α′ − α.
The special multiscale structure of these norms also implies the following.

Lemma 2.1. For any A and ε > ε′ > 0,

(i) if j < j0 implies xj,k = 0, then |||x|||A,ε ≤ 2(ε′−ε)j0 |||x|||A,ε′ ;
(ii) if j > j0 implies xj,k = 0, then |||x|||A,ε ≥ 2(ε′−ε)j0 |||x|||A,ε′ .
Proof. The inequalities are easily checked on the bα−ε∞,∞ and bs−εp,∞ norms,

hence on the norms ‖ · ‖α−ε,s−ε, and the lemma is proved.

2.2. Approaching ν. A convenient way to visualize the norms involved
(but not to write proofs!) is to associate to a sequence space X ⊂ CΛ its
parameter set Π(X), which is the set of points (α, β), α ∈ R and β ∈ [0, 1],
such that the “typical sequence” having at each scale j a number b2βjc of
coefficients equal to 2−αj (and the rest equal to 0) belongs to X. For instance
Π(Sν) is just the hypograph of ν (that is, the set {(α, β) : 0 ≤ β ≤ ν(α)}),
whereas

Π(bsp,∞) = {(α, β) : 0 ≤ β ≤ min(1 + (α− s)p, 1)}
for any 0 < p <∞, and

Π(bs∞,∞) = {(α, β) : α ≥ s}.
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Clearly Π(bsp0,∞ + bα∞,∞) = Π(bsp0,∞) ∪ Π(bα∞,∞) and Π(X ∩ X ′) =
Π(X)∩Π(X ′), so for any (A, ε) ∈ U, the parameter set of the space normed
by |||·|||A,ε, which is an intersection of sum spaces, is the hypograph of the
function ϕA,ε defined by

(7) ϕA,ε(α) := min(1, p0(α− αl + ε) + ν(αl))

when αl−1 ≤ α+ ε < αl, understanding that α0 := −∞ (see Figure 1). The
fact that the intersection of all these (when (A, ε) ranges over U) equals the
hypograph of ν mirrors the fact that U is a 0-basis of Sν (note that ϕA,ε ≥ ν
when ε > 0).

αl α̃l

ε

αmin

ϕA,ε

αmaxαL

λ

α10

1

α

β

αl − ε

sl
op

e
=

p 0

ν

ϕA,−ε

αl+1α̃l+1

ν(α̃l+1)

ν(αl+1)

ν(α̃l)

ν(αl)

αl+1 − ε

ν(αl+1)− p0(αl+1 − αl)

Fig. 1. The construction of ϕA,ε in Lemma 2.2 (step l = 5)

The following lemma shows that the functions ϕA,ε can approach ν arbi-
trarily closely from the left (this will be needed in §3.3).

Lemma 2.2. For any λ > 0, there exists (A, ε) ∈ U such that for all
α ∈ R,

ϕA,ε(α) ≤ ν(α+ λ).
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Proof. With ε := λ/2 we make the following iterative construction: start-
ing with α̃1 := αmin, let

α̃l+1 := sup{α : ν(α)− ν(α̃l) < p0(α− (α̃l − ε))}

and we stop, after at most (p0ε)−1 steps, when reaching an α̃L ≥ αmax

(actually α̃L = αmax or +∞), which we replace by α̃L := αmax. Finally, for
1 ≤ l ≤ L let αl := α̃l − ε and A := {α1, . . . , αL}.

Let us show that ϕA,ε(α) ≤ ν(α + λ) for all α. Since λ = 2ε, this
amounts to showing that ϕA,−ε(α) := ϕA,ε(α − 2ε) ≤ ν(α). The left-hand
side function is increasing, right-continuous, piecewise linear with slope p0

and its graph is the union of segments successively joined by the verticals
[(α̃l, ν(αl)), (α̃l, ν(αl+1)− p0(αl+1−αl))] for 1 ≤ l ≤ L− 1, then the vertical
[(α̃L, ν(αL)), (α̃L, 1)], and finishing with the half-line [(α̃L, 1), (∞, 1)) (the
graph of ϕA,−ε is the dashed line in Figure 1). Note that for 1 ≤ l ≤ L− 1,

ν(αl+1) = ν(α̃l+1 − ε) ≤ lim
α→α̃−l+1

ν(α)− p0λ = ν(α̃l) + p0(α̃l+1 − α̃l)

by construction of α̃l+1 from α̃l. Hence ν(αl+1) − p0(αl+1 − αl) ≤ ν(α̃l),
which suffices to prove the inequality for all α.

3. Nuclearity and diametral dimensions

3.1. On nuclearity for p-convex spaces. Let us temporarily come
back to more general topological considerations. Nuclearity for (Hausdorff)
locally convex spaces is classically defined in terms of nuclear operators be-
tween normed spaces. Recall, from [9] or [16], that an operator S : E → F
is nuclear if there exist sequences um and ym bounded respectively in E′

and F , and a summable sequence of complex numbers λm such that for any
x ∈ E,

(8) S(x) =
∑
m

λmum(x)ym.

A locally convex space E is called nuclear if, for any absolutely convex
0-neighborhood U , there exists an absolutely convex 0-neighborhood V ab-
sorbed by U such that the canonical map E(V ) → E(U) is nuclear (us-
ing the standard notation E(U) := E/{x : ∀ρ > 0, x ∈ ρU} normed by
‖x‖U := inf{ρ > 0 : x ∈ ρU}).

If we are to establish (positive or negative) nuclearity properties for the
family of spaces Sν , we should first try to extend this notion to locally
p-convex spaces. A somewhat naïve approach consists in keeping the same
definition for E(U), using absolutely p-convex neighborhoods U and replacing
norms by p-norms. But then a nuclear operator in the previous sense would
not necessarily be continuous, so this notion has to be changed as well.
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Definition 3. An operator between p-normed spaces E and F is said to
be p-nuclear (1) if there exist sequences um and ym bounded respectively in
E′ and F , and a sequence of complex numbers λm satisfying

∑
m|λm|p <∞

such that (8) holds for any x ∈ E.
A locally p-convex space X is called p-nuclear if, for any absolutely p-

convex 0-neighborhood U , there exists a 0-neighborhood V absorbed by U
such that the canonical map E(V ) → E(U) is p-nuclear.

Remember that locally convex implies locally p-convex, whereas p-nuclear
is stronger than nuclear. In fact, we have an equivalence which closes this
aspect of the question.

Proposition 3.1. For any 0 < p ≤ 1, the following are equivalent:

(i) E is locally p-convex and p-nuclear;
(ii) E is locally convex and nuclear.

Proof. (i)⇒(ii): For any 0-neighborhood U there exists V as above, and
for any x ∈ V we have

‖x‖pU =
∥∥∥∑
m

λmum(x)ym
∥∥∥p
U
≤ C1

∑
m

|λm|p|um(x)|p ≤ C2 sup
m
|um(x)|p,

so U contains a convex 0-neighborhood determined by the set of seminorms
|um(x)|. This proves that the space is locally convex.

(ii)⇒(i): We have to show that we can replace the nuclear operators
in the classical definition of nuclearity by the seemingly stronger require-
ment that the canonical maps are p-nuclear. For this we will say, using the
terminology of Pietsch [16], that a map φ ∈ L(E,F ) is of type lp if the
sequence of its approximation numbers αr(φ) satisfies

∑
r αr(φ)p < ∞. If

E is nuclear then for any 0-neighborhood U =: U0 and n ≥ 2/p there are
U0 ⊃ · · · ⊃ U2n =: V such that each map φi : E(Ui) → E(Ui−1) is nuclear.
Then by [16, 8.4.5] for all 1 ≤ i ≤ n, φ2i ◦ φ2i−1 is of type l2, hence, apply-
ing [16, 8.2.7], φ := φ2n ◦ · · · ◦ φ1 : E(V ) → E(U) is of type lp. By [16, 8.4.2],
φ is then p-nuclear.

In contrast, the definition of a Schwartz space (where the maps E(V ) →
E(U) are required to be precompact instead of nuclear) remains valid without
any change in the locally p-convex case (or even pseudoconvex, see §4.1).

3.2. Diametral dimension. The notion of diametral dimension can be
traced back to Pełczyński [15], using the n-dimensional diameters originally
introduced by Kolmogorov [10].

(1) Not to be confused with the definition of [9, 19.7], which is different and applies
only to normed spaces.
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Definition 4. Let U be a circled 0-basis of a topological linear space E.
The diametral dimension of E is the space

∆(E) := {ξ : ∀U ∈ U , ∃V ∈ U , V ⊂ U, δn(V,U)ξn → 0}

where

δn(V,U) := inf{δ > 0 : there is a subspace L of E, of dimension ≤ n,
such that V ⊂ δU + L}.

Clearly ∆(E) does not depend on the choice of the 0-basis U . Its size
shows how “close” E is to being finite-dimensional. For instance, Schwartz
spaces can be characterized via this notion. Indeed, Jarchow’s proof [9,
10.6.7] for locally convex spaces can be adapted to the locally p-convex case
to show:

Proposition 3.2. For a locally p-convex space E, the following are
equivalent:

(i) E is Schwartz;
(ii) l∞ ⊂ ∆(E);
(iii) c0 ( ∆(E).

In the same spirit, the connection with nuclearity was suggested by
Gel’fand and proved by Mityagin [14].

Theorem (Mityagin). For a locally convex space E, the following are
equivalent:

(i) E is nuclear;
(ii) there exists ρ > 0 such that n 7→ nρ ∈ ∆(E);
(iii) for all ρ > 0, n 7→ nρ ∈ ∆(E).

In view of this theorem, (ii) could be (and was in [11, 12, 18, 19]) taken
as the definition of a nuclear space, making sense for locally p-convex spaces
as well. But then Ligaud [12] proved something similar to Proposition 3.1:
any locally p-convex space that is nuclear in this sense is necessarily locally
convex.

So it seems that, although the definitions seem to be quite separated,
nuclearity is indissociable from local convexity. The diametral dimensions,
however, are pertinent in any convexity situation.

3.3. Diametral dimension of Sν. Back to our favorite multiscale se-
quence spaces. Taking for U and V the balls associated to the p0-norms that
were defined in (5), we can compute exactly the diameters δn(V,U) for some
values of n.
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Lemma 3.3. If 0 < ε′ < ε and r, r′ > 0, U := BA,ε(r) and V :=
BA,ε′(r′), then for j0 ∈ N0 and n := 2j0 − 1,

δn(V,U) =
r′

r
2(ε′−ε)j0 .

The decrease of δn(V,U) with respect to n immediately implies that for
all n ∈ N0,

(9)
r′

r
(n+ 1)ε

′−ε ≤ δn(V,U) ≤ r′

r

(
n+ 1

2

)ε′−ε
.

Proof of Lemma 3.3. Up to some scaling, we can suppose r = r′ = 1. For
short we shall write ‖x‖U := |||x|||A,ε, ‖x‖V := |||x|||A,ε′ and θ := 2(ε′−ε)j0 .

First, let L be the n-dimensional space of sequences x such that j ≥ j0 ⇒
xj,k = 0. We claim that V ⊂ θU + L. Indeed, any x ∈ V is the sum x′ + x′′

where x′′ ∈ L and the coefficients of x′ at scales j < j0 are all zero. By
Lemma 2.1(i), ‖x′‖U ≤ θ, thus x′ ∈ θU . We have proved that δn(V,U) ≤ θ.

Now for the converse inequality: If it were not true, then there would
exist θ′ > 0 such that δn(V,U) < θ′ < θ and a subspace L of dimension n
such that V ⊂ θ′U + L. Let Pn+1 be the natural projection onto the first
n+1 = 2j0 components, i.e. {(j, k) : 0 ≤ j < j0, 0 ≤ k < 2j}∪{(j0, 0)}. The
range P ∗ of this linear operator is finite-dimensional and strictly contains
L∗ := Pn+1L. It follows that there is x∗ ∈ P ∗ \ L∗ such that

(10) r0 := inf
y∈L∗

‖x∗ − y‖V > 0.

Since 1 < θ/θ′, there is y∗ ∈ L∗ such that

r0θ/θ
′ > ‖x∗ − y∗‖V =: s > 0.

We have 1
s (x
∗ − y∗) ∈ P ∗ ∩ V , hence we can write

1
s

(x∗ − y∗) = θ′X ′ +X ′′ = θ′x′ + x′′

with x′′ := Pn+1X
′′ ∈ L∗ and x′ := Pn+1X

′ ∈ U ∩ P ∗. Since x′ ∈ P ∗, by
Lemma 2.1(ii) we have

‖x′‖V ≤ θ
−1‖x′‖U ,

hence

‖x∗ − y∗ − sx′′‖V = sθ′‖x′‖V < r0θ‖x′‖V ≤ r0‖x
′‖U ≤ r0,

which contradicts the definition (10) of r0 since y∗ + sx′′ ∈ L∗.

Our main result is the following.

Theorem 1. The diametral dimension ∆(Sν) is the space of all slowly
increasing sequences ξ, i.e. such that for all λ > 0, n−λξn is bounded.



36 J.-M. Aubry and F. Bastin

Proof. Let ξ be a sequence increasing slower than any power of n and let
U ∈ U . That is to say, U =: BA,ε(r) and we choose V := BA,ε/3(r). Then
the right-hand side of (9) shows that ξnδn(V,U)→ 0, hence ξ ∈ ∆(Sν).

Conversely, suppose that ξ ∈ ∆(Sν) and let λ > 0 be fixed. We pick
(A, ε) as in Lemma 2.2 and let U := BA,ε(1). Our hypothesis says that there
exists V = BA′,ε′(r′) ∈ U such that ξnδn(V,U) → 0. The fact that V ∈ U
implies that ϕA′,ε′(α) ≥ ν(α) for all α, hence

ϕA′,λ+ε′(α) = ϕA′,ε′(α+ λ) ≥ ν(α+ λ) ≥ ϕA,ε(α).

It follows that U ′ := BA′,λ+ε′(1) contains U , so using this time the left-hand
side of (9), we obtain

r′(n+ 1)−λ ≤ δn(V,U ′) ≤ δn(V,U)

and ξnn−λ → 0.

Corollary 3.4. The spaces Sν are Schwartz, but not nuclear.

Remark. All spaces Sν have the same diametral dimension, but they
are not isomorphic if for instance their convexity indices are different.

4. The case p0 = 0

4.1. Pseudoconvexity. We no longer assume p0 > 0. Then the Sν
topology cannot anymore be described by a set of p-seminorms for a single
value of p, as in §2.1. To see how a p-seminorms-based topology can still
be used, let us first recall the original definition of the Sν topology using
not norms but distances. Define, for α ∈ R and β ∈ {−∞} ∪ [0,+∞),
dα,β(x, y) := dα,β(x− y) where

dα,β(x) := inf{C ≥ 0 : ∀j, #{|xj,k| ≥ C2−αj} ≤ C2βj}
(agreeing that 2jβ := 0 when β = −∞) and the ancillary metric space

E(α, β) := {x ∈ CΛ : dα,β(x) <∞}.
Then it can be shown that for any sequence αn dense in (αmin−1/2,∞) and
any sequence εm ↘ 0 we have

(11) Sν =
⋂
n,m

E(αn, ν(αn) + εm).

We also recall that by a result of [3] using the closed graph theorem,
a complete metrizable topology on Sν that is stronger than the product
topology is necessarily unique, so we can safely talk of “the” Sν topology.

The following definition is rather standard.

Definition 5. A topological linear space is said to be locally pseudocon-
vex if there exists a family of r-seminorms (0 < r ≤ 1) defining the topology
of the space.



Pseudoconvex multiscale spaces 37

Indeed, as our next result shows, this is the case for Sν if a minor extra
condition is satisfied. We recall that we defined

αmin := inf{α : ν(α) ≥ 0}.

Theorem 2. Assume that αmin > −∞. Then Sν is a metrizable pseu-
doconvex space.

Proof. We shall build a system of pm,n-seminorms defining the Sν topol-
ogy and such that pm,n → 0 with m → ∞ (uniformly in n). Once again let
(αn) and (εm) be suitable sequences as in (11). The seminorms are defined
on the sum spaces

‖x‖bm,n := inf{‖x′‖bsm,npm,n,∞
+ ‖x′′‖bαn∞,∞ : x = x′ + x′′}

or

‖x‖bm,n := ‖x‖bαn∞,∞
if sm,n =∞, with

pm,n :=
εm

2(αn − αmin + 1)
and sm,n := αn +

1− ν(αn)− εm
pm,n

Let us assume for the moment that:

Lemma 4.1. Each pm,n-norm ‖ · ‖bm,n is continuous on Sν .

On the other hand, it is immediate to see that ‖x‖bm,n < ∞ implies
νx(α) ≤ ν(αn)+εm for any α < αn, hence

⋂
m,n bm,n = Sν and the projective

limit topology τ1 on the intersection is stronger than the Sν topology τ2.
Thus the diagonal is closed in (

⋂
m,n bm,n, τ1)×(Sν , τ2). Both (

⋂
m,n bm,n, τ1)

and (Sν , τ2) are complete metrizable spaces so we can use the closed graph
theorem to show that the topologies are in fact equivalent.

Proof of Lemma 4.1. Fix m,n ∈ N. Note that Sν = Sν ∩ bαmin−1
∞,∞ and

that this space has a topology stronger than the one defined by the distance

δm,n(x) := max(dαn,ν(αn)+εm/2(x), ‖x‖bαmin−1
∞,∞

).

It suffices to show that δm,n(x)→ 0 implies ‖x‖bm,n → 0.
Fix x and let C > δm,n(x). On one hand, this means that there are, at

any scale j, fewer than C2(ν(αn)+εm/2)j coefficients with |xj,k| ≥ C2−αnj . We
put those coefficients into x′ and the rest into x′′, so that x = x′ + x′′. On
the other hand, the coefficients of x′ are all ≤ C2−(αmin−1)j .
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If we compute the bsm,npm,n,∞ Besov norm of x′ we obtain (writing for short
s := sm,n and p := pm,n)

‖x′‖bsp,∞ ≤ sup
j∈N0

2(s−1/p)j(C2(ν(αn)+εm/2)j)1/pC2−(αmin−1)j

≤ sup
j∈N0

C(p+1)/p2(αn−(ν(αn)+εm)/p)j2
ν(αn)+εm/2

p
j2−(αmin−1)j

≤ sup
j∈N0

C(p+1)/p2(αn−αmin+1−εm/2p)j ≤ C(p+1)/p.

As for x′′, we see directly that

‖x′′‖bαn∞,∞ ≤ C,

so finally ‖x‖bm,n ≤ δm,n(x)
(p+1)/p + δm,n(x) and the continuity is proved.

Is the condition αmin > −∞ necessary for pseudoconvexity? Well, almost.
There is one very particular situation for which αmin = −∞ and Sν is still
locally convex: when ν(α) = 1 for all α ∈ R. In that case Sν is simply the
space CΛ of all sequences, endowed with the product topology. But it is an
exception. Indeed, we shall prove the following result.

Proposition 4.2. If αmin = −∞ and Sν 6= CΛ then Sν is not locally
pseudoconvex.

Before starting the proof, we first introduce some construction and no-
tation. For each α ∈ R and β ∈ {−∞} ∪ [0, 1], let Mα,β denote the set of
sequences that have, at one particular scale j, not more than 2βj non-zero
coefficients, which are (in modulus) less than or equal to 2−αj ; and all coeffi-
cients at all other scales are zero. Now let p > 0 and let ‖ · ‖p be an arbitrary
continuous p-seminorm on Sν . We associate to it the function

(12) µ : α 7→ sup{β ∈ {−∞} ∪ [0, 1] : sup{‖x‖p : x ∈Mα,β} <∞}.

Notice that for any α > αmin the set Mα,0 is bounded in Sν , hence

(13) sup{‖x‖p : x ∈Mα,0} <∞.

We shall also prove later that µ has minimal slope p, more precisely:

Lemma 4.3. If ‖ · ‖p is a continuous p-seminorm on Sν , then for all
α ∈ R and all δ ≥ 0 we have µ(α+ δ) ≥ min(µ(α) + pδ, 1).

Proof of Proposition 4.2. If Sν 6= CΛ, then there is α1 ∈ R such that
ν(α1) < 1. Since ν is right-continuous, we can certainly choose ε > 0 and
δ > 0 such that ν(α1 + δ) + 2ε < 1. If we believe that Sν is locally pseudo-
convex, then there should exist some continuous p-seminorm ‖ · ‖p on Sν

such that for all j,

(14) ‖x‖p ≤ 1 ⇒ #{x : |xj,k| ≥ 2−(α1+δ)j} ≤ 2(ν(α1+δ)+ε)j .
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Let us consider the function µ defined in (12), associated with this seminorm
‖ · ‖p. We claim that µ(α1) < 1. Indeed, if not, then for every β < 1 we have

sup{‖x‖p : x ∈Mα1,β} <∞.
In particular, since ν(α1+δ)+2ε < 1, there exists R <∞ such that ‖x‖p ≤ R
for each x ∈ Mα1,ν(α1+δ)+2ε. Take a large scale j such that R2−δj ≤ 1 and
define xj,k := 2−α1j for b2(ν(α1+δ)+2ε)jc values of k, and zero elsewhere.
By construction we have x ∈ Mα1,ν(α1+δ)+2ε, thus ‖R−1x‖p ≤ 1, which
contradicts (14).

Now, as a consequence of Lemma 4.3, for any δ ≥ 0 we have µ(α1− δ) ≤
µ(α1) − pδ. In particular, there exists α0 > αmin such that µ(α0) < 0, in
other words sup{‖x‖p : x ∈ Mα0,0} = ∞, which contradicts (13). So the
p-seminorm ‖ · ‖p cannot be continuous on Sν .

Proof of Lemma 4.3. Notice that µ is non-decreasing and we can assume
that −∞ < µ(α) < 1− pδ, otherwise the result is trivial.

First we assume that µ(α) > 0 and take 0 < β < µ(α). We want to prove
that there exists C < ∞ depending only on α, β, δ such that ‖x‖p ≤ C for
each x ∈Mα+δ,β+pδ. Let us pick such an x for which the non-zero scale is j0.
We can assume that pδj0 > 1 and βj0 > 1 since ‖x‖p is bounded on the
subset of Mα+δ,β+pδ for which j0 ≤ max((pδ)−1, β−1).

Let
N := b2(β+pδ)j0c, M := d2pδj0e, L := bN/Mc.

We construct M + 1 sequences yi based on x as follows: first multiply x
by 2δj0 , then at scale j0 split the (not more than N) non-zero coefficients
2δj0xj0,k into M +1 disjoint blocks, each of them having not more than L ≤
2βj0 coefficients with modulus |yij0,k| ≤ 2−αj0 . The result of this construction
is that each yi belongs to Mα,β , hence supi ‖yi‖p ≤ C (because β < µ(α))
and finally

‖x‖pp =
∥∥∥∑

i

2−δj0yi
∥∥∥p
p
≤
∑
i

2−δpj0‖yi‖pp

≤ Cp(M + 1)2−δpj0 ≤ 2Cp.

In the case µ(α) = 0 we proceed as previously but with β = 0. The
construction is very similar: take N as before and L = 1. The N sequences
yi now have at most one non-zero coefficient |yij0,k| ≤ 2−αj0 . So each yi

belongs to Mα,0, hence by (13), supi ‖yi‖p ≤ C and finally

‖x‖pp =
∥∥∥∑

i

2−δj0yi
∥∥∥p
p
≤
∑
i

2−δpj0‖yi‖pp

≤ CpN2−δpj0 ≤ Cp.
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4.2. An example by Ligaud. With a few modifications to the proof to
accommodate the case p0 = 0, it can be seen that Theorem 1 remains valid
as long as αmin > −∞. Proposition 3.2 also works; so Sν is still a Schwartz
space, even when it is only locally pseudoconvex. This gives us the occasion
to revisit an example of Ligaud: in [12], he gives an explicit (but tricky and
somewhat artificial) construction of a metrizable topological vector space
which is a locally pseudoconvex non-p-convex Schwartz space. Actually, his
example is a particular case of Sν .

Ligaud starts with a decreasing sequence 1 ≥ pn → 0+ and another
sequence εn > 0, which we shall assume for convenience to be summable.
Then he ingeniously constructs a decreasing sequence of spaces En such
that (for n ≥ 2) the following diagram commutes (horizontal “=” meaning
isomorphism):

En lpnxin xun
En+1 lpn+1

where in is the inclusion, lpn the standard pn-normed space of sequences
indexed by N, and

un : (ξl)l∈N 7→ (ξl/lεn)l∈N.

We remark that each un, therefore each in, is compact, whence the Schwartz
property holds for the projective limit E :=

⋂
En, which is indeed pseudo-

convex but not p-convex.
If we now define sn := −

∑∞
l=n εl and the Besov space ln := b

sn+1/pn
pn,pn ,

then we have an isomorphism ϕn from lpn to ln which is explicitly given by

ϕn : (ξl)l∈N 7→
(
xj,k :=

ξ2j+k
(2j + k)sn

)
(j,k)∈Λ

.

It is an isomorphism because

‖ξ‖lpn ≤ ‖ϕn(ξ)‖ln =
(∑
j,k

2jsnpn
∣∣∣∣ ξ2j+k
(2j + k)sn

∣∣∣∣pn)1/pn

≤ 2−sn‖ξ‖lpn .

Furthermore, if in represents the inclusion ln+1 ↪→ ln, the following diagram
also commutes:

lpn lnxun xin

lpn+1 ln+1

So we have for the projective limit

E '
⋂
n≥2

ln =
⋂
n≥2

bsn+1/pn
pn,∞ = Sν
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with ν(α) := −∞ if α < 0 and ν(α) = 0 if α ≥ 0. The first equality above
holds because of standard Besov injections, the second one stems from the
link between Sν and Besov spaces (see [3]).
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