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On new spectral multiplicities for ergodic maps

by

Alexandre I. Danilenko (Kharkov)

Abstract. It is shown that each subset of positive integers that contains 2 is realizable
as the set of essential values of the multiplicity function for the Koopman operator of some
weakly mixing transformation.

0. Introduction. Let (X,B, µ) be a standard non-atomic probability
space. Given a µ-preserving (invertible) transformation T , we denote by UT
the corresponding Koopman operator in L2(X,µ), UT f := f ◦ T . Let M(T )
stand for the set of essential values of the spectral multiplicity function
for the restriction of UT to the subspace of 0-mean functions, L2

0(X,µ) :=
L2(X,µ) 	 C. We call a subset M of positive integers realizable if there is
an ergodic transformation T such that M =M(T ). In the present paper we
investigate a long-standing open problem in the spectral theory of dynamical
systems that can be stated as follows:

• What subsets of {1, 2, . . . } are realizable?

It is expected that all subsets are realizable. It has already been shown that
all subsets containing 1 are realizable [KL] (reproved with a different argu-
ment in [Ag2]). See also earlier works [Os], [R1], [R2], [G–L] on the subject.
We note that the spectral multiplicities from those papers are realized on
transformations that are compact group extensions of rank-one maps.

Less is known about realizability of subsets without 1. Is {n} realizable
for n > 1? This problem of Rokhlin was first solved for n = 2 in [Ag1]
and [Ry1]. The transformations considered in those papers are Cartesian
squares of rank-one maps. Other realizable sets came with n-fold Cartesian
products and their natural factors: {n, n(n−1), . . . , n!} in [Ag1], {2, 3, . . . , n}
in [Ag4], etc. It is worth noting that those works on Cartesian products
were influenced by the paper [Ka] which circulated since mid-eighties as an
unpublished manuscript. As was shown in [Ry2], [Ry3] and [Ag4], those sets
without 1 are also realizable in the class of mixing transformations.
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For an arbitrary n, the Rokhlin problem on homogeneous spectrum was
first solved in [Ag3] in a non-constructive way. An explicit solution appeared
in [Da2]. A method of auxiliary non-Abelian group actions was in use in
those two papers. The explicit construction from [Da2] combined with the
techniques of compact group extensions was used to show that for each n > 1
and a subset M ⊂ N, the set n · (M ∪ {1}) is realizable [Da2].

Let G be a countable Abelian group, H a subgroup of G and v : G→ G
a group automorphism. We set

L(G,H, v) := {#({vi(h) | i ∈ Z} ∩H) | h ∈ H \ {0}}.
It was shown in a recent paper [KaL] that {2} ∪ L(G,H, v) is realizable
whenever v is periodic. In particular, all subsets {2} ∪ n · (M ∪ {1}), where
n > 1 and M is a finite subset of N, are realizable. That answers a question
from [Ry3] (see also [Da3, Section 5]). However, [KaL] does not contribute
to realization of infinite subsets because periodicity of v bounds L(G,H, v)
to be finite. Moreover, it remains unclear whether every finite subset of N
equals L(G,H, v) for some triplet (G,H, v) with v periodic (1).

The purpose of the present paper is to prove the following theorem which
extends the main result of [KaL] to all subsets containing 2.

Main Theorem. Let E be an arbitrary subset of positive integers. Then
there is a weakly mixing transformation S such that M(S) = E ∪ {2}.

Our method further develops the approach of [KaL]. It is based upon
the solution of the Rokhlin problem for n = 2 [Ag1], [Ry1] and “symme-
tries” of some special compact group extensions. We make use of the (C,F )-
construction (see the survey [Da3]) as a convenient tool to build dynamical
systems and their extensions that have a prescribed “list” of weak limits for
powers of Koopman operators restricted to some “components”, i.e. invari-
ant subspaces. This implies that two components are either unitarily equiv-
alent or spectrally disjoint. It remains to count the number of components
in every unitary equivalence class. Notice that Katok and Lemańczyk [KaL]
study so-called double (non-Abelian) compact K ov (Z/nZ)-extensions of
rank-one maps. Every such extension can be considered as a K-extension of
a Z/nZ-extension; that is what “double” means here. A benefit of a double
extension is that an important cohomology equation on the K-valued cocycle
(see (2-1) below) holds automatically. In this paper we consider only single
Abelian K-extensions. The equation (2-1) is satisfied due to a special choice
of the cocycle. An advantage of our approach is that the automorphism v
entering into the equation need not be periodic. This leads to realizability
of infinite subsets.

(1) The affirmative answer is given in my recent work “New spectral multiplicities for
mixing transformations”, arXiv:0908.1640.
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1. Algebraic lemma. The following algebraic statement is a key in-
gredient in the proof of the Main Theorem.

Algebraic Lemma. Given any subset E ⊂ N, there exist a countable
Abelian group G, a subgroup H ⊂ G and an automorphism v : G→ G such
that E = L(G,H, v). Moreover, the following properties are satisfied:

(i) the subgroup G := {a ∈ Ĝ | a ◦ vma = a for some ma > 0} is locally
finite, countable and dense in Ĝ,

(ii) if g1, g2 ∈ G and vi(g1) 6= g2 for all i ∈ Z then there is a ∈ G such
that

∑ma−1
i=0 a(vi(g1)) 6=

∑ma−1
i=0 a(vi(g2)),

(iii) #{m−1
a

∑ma−1
i=0 a(vi(g)) | a ∈ G} =∞ for each g 6= 0.

Proof. Since the case E = {1} is trivial, we assume that E 6= {1}. Let
n1, n2, . . . be a sequence of integers such that E = {n1, n2, . . . , } and n1 6= 1.
It is important that the sequence is infinite even if E is finite (repetitions
are allowed). We now set G :=

⊕+∞
−∞ Z/2Z. Let v stand for the shift on G,

i.e. if g = (gi)i∈Z then (v(g))i := gi+1. To define H we will first construct a
sequence of finite subsets Ai ⊂ Z such that #Ai →∞ and

(1-1) 2 maxAi < minAi+1

for all i = 1, 2, . . . . We then let A :=
⊔∞
i=1Ai and set

H :={(gi)∞i=1∈G | gi = 0 if i /∈A and gj = gk whenever j, k∈Ai for some i}.
The subsets Ai are defined via an inductive procedure. In Step k we define
the subsets of cardinality k.

Step 1. A1 = 1, A2 := {3}, . . . , An1 := {3n1−1}.
Step k + 1. Suppose that after Step k we have already defined subsets

A1, . . . , Alk . We call a subset B ⊂
⊔lk
i=1Ai (k + 1)-basic if #B = k + 1 and

if Ai ∩ B 6= ∅ for some 1 ≤ i ≤ nk implies Ai ⊂ B. Enumerate all the
(k + 1)-basic subsets as B1, . . . , Brk . Now put

Alk+rnk+1+s := Br+1 + irnk+1+s for all 0 ≤ r < rk, 1 ≤ s < nk+1,

where the positive integers (ij)1≤j≤(nk+1−1)rk are chosen so that (1-1) is
satisfied.

We now verify the conclusion of the lemma for the triplet (G,H, v).
Take g = (gi)i∈Z ∈ H. Let C := {i | gi 6= 0}. Notice that gi = gj = 1
for all i, j ∈ C. Denote by p the cardinality of C. Then p is the smallest
number such that C ⊂

⊔
i≤lp Ai. By construction, there is a k-basic subset

B such that C is a translation of B in Z. Moreover, there exist exactly np
different translations of C which are inside A. This means that the v-orbit
of g intersects H exactly np times. Therefore L(G,H, v) ⊂ E. The converse
inclusion is obvious. Thus the first claim of the lemma is shown.

It is easy to see that (i) is satisfied.
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Let Gm := {a ∈ G | v̂m(a) = a}. Then Gm is a finite v̂-invariant subgroup
of G. If g1, g2 ∈ G and vi(g1) 6= g2 for all i ∈ Z then we can find m > 0 such
that vi(g1)�Gm 6= g2�Gm for all i ∈ Z. Then( m∑

i=0

vi(g1)�Gm
)
⊥
( m∑
i=0

vi(g2)�Gm
)

as elements of L2(Gm),

and (ii) follows.
We consider an element 0 6= g ∈ G as an infinite sequence of symbols

0 and 1 with finitely many, say j, symbols 1. Take a block b ∈ (Z/2Z)m

consisting of one symbol 1 and m−1 symbols 0 for a very large m. Then we
set a := b∞∈Gm. It is easy to verify that m−1

∑m−1
i=0 a(vi(g)) = (m−2j)/m.

This yields (iii).

Notice that stronger versions of the above result have been established
in some particular cases:

(◦) If 1 ∈ E then v in the statement of the Algebraic Lemma can be
chosen quasi-periodic, i.e. every v-orbit is finite. If, in addition, E is
finite then E = L(G,H, v) for finite-dimensional tori G and H and
a periodic automorphism v [KL].

(◦) If E = {2} ∪ n · (M ∪ {1}), where n > 1 and M is a finite subset
of N, then E = L(G,H, v) for finite groups G and H and a periodic
automorphism v [KaL].

In this connection we note that v in our construction is not quasi-periodic
even for E finite or 1 ∈ E.

2. Weak limits of powers, cocycles, and (C,F )-construction. We
will need two lemmata on spectral properties of some Cartesian products.
For the proof we refer to [Ag1], [Ry1] and [KaL].

Lemma 2.1 ([Ag1], [Ry1]). Let T be a weakly mixing transformation with
simple spectrum. If the weak closure of the powers of UT contains 0.5(I+UT )
then T × T has a homogeneous spectrum of multiplicity 2 in the orthocom-
plement to the constants.

We note that a theory of linked approximation suggested in [KaS] plays
an important role in the proof of the above lemma.

Lemma 2.2 ([KaL]). Let Vi, i = 1, 2, be unitary operators with simple
spectrum. Assume moreover that there are two sequences (nt)t>0 and (mt)t>0

such that

(i) V nt
i → 0.5(I + V ∗i ) weakly, i = 1, 2.

(ii) V mt
i → 0.5(I + ciV

∗
i ) weakly, i = 1, 2.

If c1 6= c2 then V1 ⊗ V2 also has a simple spectrum.
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Let T be an ergodic transformation of (X,µ). Denote by R ⊂ X×X the
T -orbit equivalence relation. A Borel map α from R to a compact group K
is called a cocycle of R if

α(x, y)α(y, z) = α(x, z) for all (x, y), (y, z) ∈ R.
Two cocycles α, β : R → K are cohomologous if

α(x, y) = φ(x)β(x, y)φ(y)−1 at a.a. (x, y) ∈ R
for a Borel map φ : X → K. If a transformation S commutes with T (i.e.
S ∈ C(T )) then a cocycle α ◦ S : R → K is well defined by α ◦ S(x, y) :=
α(Sx, Sy). The important cohomology equation on α mentioned in Section 0
can now be stated as follows:

(2-1) α ◦ S is cohomologous to v ◦ α
for some S ∈ C(T ) and a group automorphism v : K → K.

To prove the Main Theorem we will use the (C,F )-construction (see
[Ju], [Da1]–[Da3]). We now briefly outline its formalism. Let two sequences
(Cn)n>0 and (Fn)n≥0 of finite subsets in Z be given such that:

• Fn = {0, 1, . . . , hn − 1}, h0 = 1, #Cn > 1,
• Fn + Cn+1 ⊂ Fn+1,
• (Fn + c) ∩ (Fn + c′) = ∅ if c 6= c′, c, c′ ∈ Cn+1,

• limn→∞
hn

#C1 · · ·#Cn
<∞.

Let Xn := Fn×Cn+1×Cn+2×· · · . Endow this set with the (compact Polish)
product topology. The map

(fn, cn+1, cn+2) 7→ (fn + cn+1, cn+2, . . . )

is a topological embedding of Xn into Xn+1. We now set X :=
⋃
n≥0Xn and

endow it with the (locally compact Polish) inductive limit topology. Given
A ⊂ Fn, we denote by [A]n the cylinder {x = (f, cn+1, . . . ) ∈ Xn | f ∈ A}.
Then {[A]n | A ⊂ Fn, n > 0} is the family of all compact open subsets in X.
It forms a base of the topology on X.

Let R stand for the tail equivalence relation on X: two points x, x′∈X
are R-equivalent if there is n > 0 such that x = (fn, cn+1, . . .), x′ =
(f ′n, c

′
n+1, . . .) ∈ Xn and cm = c′m for all m > n. There is only one proba-

bility (non-atomic) Borel measure µ on X which is invariant (and ergodic)
under R.

Now we define a transformation T of (X,µ) by setting

T (fn, cn+1, . . . ) := (1 + fn, cn+1, . . . ) whenever fn < hn − 1, n > 0.

This formula defines T partly on Xn. When n → ∞, T extends to the
entire X minus countably many points as a µ-preserving transformation.
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Moreover, the T -orbit equivalence relation coincides with R (on the subset
where T is defined). We call T the (C,F )-transformation associated with
(Cn+1, Fn)n≥0.

We recall the concept of (C,F )-cocycle (see [Da2]). From now on, the
group K is assumed Abelian. Given a sequence of maps αn : Cn → K,
n = 1, 2, . . . , we first define a Borel cocycle α : R ∩ (X0 × X0) → K by
setting

α(x, x′) :=
∑
n>0

(αn(cn)− αn(c′n))

whenever x = (0, c1, c2, . . . ) ∈ X0, x′ = (0, c′1, c
′
2, . . . ) ∈ X0 and (x, x′) ∈ R.

To extend α to the entire R, we first define a map π : X → X0 as follows.
Given x ∈ X, let n be the least positive integer such that x ∈ Xn. Then
x = (fn, cn+1, . . . ) ∈ Xn. We set

π(x) := ( 0, . . . , 0︸ ︷︷ ︸
n+1 times

, cn+1, cn+2, . . . ) ∈ X0.

Of course, (x, π(x)) ∈ R. Now for each pair (x, y) ∈ R, we let

α(x, y) := α(π(x), π(y)).

It is easy to verify that α is a well defined cocycle of R with values in K.
We call it the (C,F )-cocycle associated with (αn)∞n=1.

The following statement follows from [Da2, Section 4].

Lemma 2.3. Let z̄ = (zn)∞n=1 be a sequence of positive reals. Suppose
that ∑

n>0

#(Cn 4 (Cn − zn))/#Cn <∞.

For each m > 0, set

X z̄
m := {0, 1, . . . , hm − z1 − · · · − zm} ×

∏
n>m

(Cn ∩ (Cn − zn)) ⊂ Xm.

Then a transformation Sz̄ of (X,µ) is well defined by setting

(2-2) Sz̄(x) := (z1 + · · ·+ zm + fm, zm+1 + cm+1, zm+2 + cm+2, . . . )

for all x = (fm, cm+1, cm+2, . . . ) ∈ X z̄
m, m = 1, 2, . . . . Moreover, Sz̄ com-

mutes with T , and T z1+···+zm → Sz̄ as m→∞.
Now let C◦m := {c ∈ Cm ∩ (Cm − zm) | αm(c+ zm) = v(αm(c))}. If

(2-3)
∑
n>0

(1−#C◦n/#Cn) <∞

then the cocycle α ◦ Sz̄ is cohomologous to v ◦ α.
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3. Proof of the Main Theorem. By the Algebraic Lemma, there
exist a compact Polish Abelian group K, a closed subgroup H of K and a
continuous automorphism v of K such that

E = L(K̂, K̂/H, v̂).

We also assume that conditions (i)–(iii) from the statement of the lemma
are satisfied. The subgroup of v-periodic points in K will be denoted by K.

We will construct some special (C,F )-transformation and its cocycle
with values in K. Fix a partition

N =
⊔
a∈K
Na t

⊔
a,b∈K

Na,b

of N into infinite subsets. Now we define a sequence (Cn, hn, zn, αn)∞n=1 via
an inductive procedure. Suppose we have already constructed this sequence
up to index n. Consider now two cases.

[I] If n + 1 ∈ Na for some a ∈ K, we denote by ma the least positive
period of a under v. Now we set

zn+1 := manhn, rn := n3ma,

Cn+1 := hn · {0, 1, . . . , rn − 1}, hn+1 := rnhn,

Let αn+1 : Cn+1 → K be any map satisfying the following conditions:

(A1) αn+1(c+ zn+1) = v ◦ αn+1(c) for all c ∈ Cn+1 ∩ (Cn+1 − zn+1),
(A2) for each 0 ≤ i < ma there is a subset Cn+1,i ⊂ Cn+1 such that

Cn+1,i − hn ⊂ Cn+1,

αn+1(c) = αn+1(c− hn) + vi(a) for all c ∈ Cn+1,i,∣∣∣∣#Cn+1,i

#Cn+1
− 1
ma

∣∣∣∣ < 2
nma

.

[II] If n+1 ∈ Na,b for some a, b ∈ K, we denote by ma,b the least common
positive period of a and b under v. Now we set

zn+1 := ma,bn(2hn + 1), rn := 2n3ma,b,

Dn+1 :=hn ·{0, 1, . . . , nma,b−1}t ((hn + 1) · {1, . . . , nma,b}+hn(nma,b−1)),

Cn+1 := Dn+1 + zn+1 · {0, 1, . . . , n2 − 1}, hn+1 := rnhn + rn/2.

Let αn+1 : Cn+1 → K be any map satisfying the following conditions:

(A3) αn+1(c+ zn+1) = v ◦ αn+1(c) for all c ∈ Cn+1 ∩ (Cn+1 − zn+1),
(A4) for each e ∈ {a, b} and 0 ≤ i < ma there is a subset Cen+1,i ⊂ Cn+1

such that
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Cen+1,i − hn − 1 ⊂ Cn+1,

αn+1(c) = αn+1(c− hn − 1) + vi(e) for all c ∈ Cen+1,i,∣∣∣∣#Cen+1,i

#Cn+1
− 1

2ma,b

∣∣∣∣ < 2
nma,b

.

Thus, Cn+1, hn+1, zn+1, αn+1 are completely defined.
We now let Fn := {0, 1, . . . , hn − 1}. Denote by (X,µ, T ) the (C,F )-

transformation associated with the sequence (Cn+1, Fn)n≥0. Let R stand for
the tail equivalence relation (or, equivalently, T -orbit equivalence relation)
on X. Denote by α : R → K the cocycle of R associated with the sequence
(αn)n>0. Let λK/H stand for the Haar measure on K/H. We denote by Tα,H
the following transformation of the space (X ×K/H, λK/H):

Tα,H(x, k +H) := (Tx, α(Tx, x) + k +H).

Our purpose is to prove that M(T × Tα,H) = E ∪ {2}.
Since ∑

n>0

#(Cn 4 (Cn − zn))
#Cn

=
∑
n>0

2
n2
,

it follows from Lemma 2.3 that a transformation Sz̄ of (X,µ) is well defined
by the formula (2-2) and Sz̄ ∈ C(T ).

It follows from (A1) and (A3) that (2-3) is satisfied. Hence by Lemma 2.3,
the cocycle α ◦ Sz̄ is cohomologous to v ◦ α.

We need more notation. Given a ∈ K and χ ∈ K̂, let

lχ(a) := m−1
a

ma−1∑
i=0

χ(vi(a)).

We also denote by UT,χ the unitary operator on the space L2(X,µ) given by

UT,χg(x) = χ(α(Tx, x))g(Tx).

Lemma 3.1. Let a, b ∈ K. Then for each χ ∈ K̂,

(i) UhnT,χ → lχ(a) · I as Na − 1 3 n→∞,

(ii) UhnT,χ → 0.5(lχ(a) · I + lχ(b) · U∗T,χ) as Na,b − 1 3 n→∞.

Proof. We show only (ii) since (i) is proved in a similar way but a bit
simpler. Let n ∈ Na,b.

Take any subset A ⊂ Fn. We note that [A]n = [A+Cn+1]n+1. Therefore
it follows from (A4) that for each x ∈ T [Fn]n,
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UhnT,χ1[A]n(x) =
∑

e∈{a,b}

ma,b−1∑
i=0

χ(α(T hnx, x))1[A+Cen+1,i]n+1
(T hnx) + h(x)

=
ma,b−1∑
i=0

χ(vi(a))1[A+Can+1,i−hn]n+1
(x)

+
ma,b−1∑
i=0

χ(vi(b)α(T−1x, x))1[A+Cbn+1,i−hn−1]n+1
(T−1x)+h(x)

=
ma,b−1∑
i=0

χ(vi(a))1[A+Can+1,i−hn]n+1
(x)

+
ma,b−1∑
i=0

χ(vi(b))U∗T,χ1[A+Cbn+1,i−hn−1]n+1
(x) + h(x),

where x 7→ h(x) is a function whose L2-norm is small. Hence

UhnT,χ−
ma,b−1∑
i=0

χ(vi(a))1[Can+1,i−hn]n+1
−
ma,b−1∑
i=0

χ(vi(b))U∗T,χ1[Cbn+1,i−hn−1]n+1
→0

weakly as Na,b − 1 3 n→∞, where the functions

1[Can+1,i−hn]n+1
, 1[Cbn+1,i−hn−1]n+1

∈ L∞(X,µ)

are considered as multiplication operators in L2(X,µ).
It remains to use the inequalities from (A2) and (A4) and a standard

fact that for any sequence C ′n ⊂ Cn such that #C ′n/#Cn → δ for some δ > 0
we have

1[C′
n]n → δI weakly as n→∞.

Proof of Main Theorem. Lemma 3.1 implies that the transformation Tα
(and hence its factor Tα,H) is weakly mixing.

To show that M(T × Tα,H) = E ∪ {2} we consider a natural decompo-
sition of UT×Tα,H into an orthogonal sum

UT×Tα,H =
⊕

χ∈K̂/H

(UT ⊗ UT,χ).

It is enough to prove the following:

(a) UT ⊗ UT has homogeneous spectrum of multiplicity 2 in the ortho-
complement to the constants,

(b) UT ⊗ UT,χ has simple spectrum if χ 6= 0,
(c) UT ⊗ UT,χ and UT ⊗ UT,ξ are unitarily equivalent if χ and ξ belong

to the same v̂-orbit,
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(d) the measures of maximal spectral type of UT ⊗ UT,χ and UT ⊗ UT,ξ
are mutually singular if χ and ξ are not on the same v̂-orbit.

By Lemma 3.1(ii), UhnT → 0.5(I + U∗T ) as N0,0 − 1 3 n→∞. Therefore
(a) follows from Lemma 2.1.

Since T is of rank one and the map [f ] 3 x 7→ α(Tx, x) ∈ K is constant
for each f ∈ Fn \ {hn − 1}, n ∈ N, it follows that the operator UT,χ has
simple spectrum. Moreover, UhnT,χ → 0.5(I + U∗T,χ) as N0,0 − 1 3 n → ∞
by Lemma 3.1(ii). Since χ is nontrivial, it follows from claim (ii) of the
Algebraic Lemma that there is a ∈ K with lχ(a) 6= 1. By Lemma 3.1(ii),

UhnT → 0.5(I + U∗T ) but UhnT,χ → 0.5(I + lχ(a)U∗T,χ)

as N0,a − 1 3 n→∞. Therefore Lemma 2.2 implies (b).
Since the cocycles α ◦ Sz̄ and v ◦ α are cohomologous, UT,χ and UT,ξ are

unitarily equivalent whenever χ and ξ lie on the same orbit of v̂ (see [G–L],
[KL]). This yields (c).

To prove (d), we first find a ∈ G such that lχ(a) 6= lξ(a) (see claim (ii)
of the Algebraic Lemma). It follows from Lemma 3.1(i) that

UhnT ⊗ U
hn
T,χ → lχ(a)I and UhnT ⊗ U

hn
T,ξ → lξ(a)I

as Na − 1 3 n→∞. Hence (d) holds.

4. Concluding remarks. Combining the techniques developed in [KaL]
with our approach one can also realize some subsets of N \ {1, 2}. For in-
stance, given any subset E ⊂ N, let Tα,H denote the skew product transfor-
mation constructed in Section 3. Then

(4-1) M(T×k×Tα,H) = {k+1, (k+1)k, . . . , (k+1)!}∪{k, k(k−1), . . . , k!}·E.
For example, taking k = 2 we obtain {3, 6}∪2·E. To show (4-1) we repeat the
proof of the Main Theorem almost literally but apply the following lemma
instead of Lemma 2.2.

Lemma 4.2 ([KaL, Proposition 1], [DaR, Lemma 1.2]). Let V and W be
unitary operators with simple spectrum in Hilbert spaces H and H̃ respec-
tively. Assume moreover that for each i = 1, . . . , k, there are two sequences
n

(i)
t →∞ and m(i)

t →∞ and complex numbers κi 6= κ̃i such that

(i) V n
(i)
t → 0.5(κiI + V ∗), Wn

(i)
t → 0.5(κiI +W ∗) weakly,

(ii) V m
(i)
t → 0.5(κiI + V ∗i ), Wm

(i)
t → 0.5(κ̃iI +W ∗) weakly

and #{κ1, . . . , κk} = k. Then V �k ⊗W has a simple spectrum.

A more general class of multiplicities arises when considering natural
factors of T×k × Tα,H as in [Ag4]. Moreover, Ryzhikov recently constructed
a new series of realizable sets that do not belong to this class [Ry4]. For
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instance, the sets {p, q, pq} are realizable for all p, q > 0. The sets {3, 4} and
{3, 5} are the simplest ones that are covered neither by this class nor by
Ryzhikov’s.

We also note that while our approach based on the Algebraic Lemma
and weak limits techniques is not sufficient to solve the spectral multiplicity
problem completely in the framework of ergodic finite measure preserving
transformations, it can be adapted to the framework of infinite measure
preserving maps to show the following: every subset of N is realizable on
an ergodic infinite measure preserving transformation. This is done in a
forthcoming paper of Ryzhikov and the author [DaR].

It is also interesting to study the spectral multiplicity problem for general
Abelian group actions. Some results in this field have recently been obtained
by Konev, a post-graduate student of Ryzhikov, for Z2-actions [Ko].
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