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Abstract. We define the class of integral holomorphic functions over Banach spaces;
these are functions admitting an integral representation akin to the Cauchy integral for-
mula, and are related to integral polynomials. After studying various properties of these
functions, Banach and Fréchet spaces of integral holomorphic functions are defined, and
several aspects investigated: duality, Taylor series approximation, biduality and reflexivity.

Introduction. In this paper we define and study a class of holomorphic
functions over infinite-dimensional Banach spaces admitting integral repre-
sentation. Our purpose, and the motivation for our definition, are two-fold:
we wish to obtain an integral representation formula akin to the Cauchy
integral formula valid for some holomorphic functions over a Banach space,
and we also wish to obtain a duality theorem generalizing those of Sebastião
e Silva and Köthe [S], [K].

In the 1950’s Sebastião e Silva and Köthe studied the dual of H(U),
where U is an open subset of the Riemann sphere. They found that H(U)′

can be represented as the algebra of germs of analytic functions on K = U c

via the duality H(U)×O(K)→ C given by

〈f, h〉 =
1

2πi

�

Γ

h(λ)f(λ) dλ

where Γ is a curve around K contained in the domain of h. Thus one ob-
tains an isomorphism B : H(U)′ → O(K) given by B(T )(ω) = T (fω), where
fω(x) = 1/(x− ω). As it stands, this of course cannot be done on an ar-
bitrary Banach space. However, we may look at the duality above after a
change of variables (and reversal of circulation) as H(U) × O(K−1) → C
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with

〈f, g〉 =
1

2πi

�

Γ−1

g(ω)
f(1/ω)
ω

dω =
�

Γ−1

g(ω)f(1/ω)
dω

2πiω
.

Once this is done, one has the isomorphism B : H(U)′ → O(K−1), where
B(T )(ω) = T (fω), with fω(x) = 1/(1− ωx). This can be generalized to a
Banach space E if we are willing to accept ω ∈ E ′.

We also want to obtain a representation similar to the Cauchy integral
formula for some analytic functions over a Banach space. The usual gen-
eralization of the Cauchy formula to infinite dimensions is very useful, but
is really just the one-dimensional formula in each direction: for x ∈ E and
|z| < r,

h(zx) =
1

2πi

�

|λ|=r

h(λx)
λ− z dλ.

But if we return to the one-dimensional formula and change variables we
have, for f analytic near the unit disc ∆, and x ∈ ∆◦,

f(x) =
1

2πi

�

T

1
1− ωx

f(1/ω)
ω

dω =
�

T

1
1− ωx f(1/ω)

dω

2πiω
.

We want to generalize this to the infinite-dimensional setting by replacing
the Cauchy kernel 1/(λ− x) with 1/(1− γ(x)), where x ∈ E has norm less
than one, and γ ∈ E′ is in the unit ball.

In Section 1 we define and study integral holomorphic functions, as well
as the space of all such functions on the open unit ball of E, which we denote
by HI(B◦E). We also present a duality result referred to above. Since in this
space the Taylor series expansion does not have good convergence proper-
ties, as we shall see, we introduce related spaces, HbI(B◦E) and HbI(E), in
Section 2, in which the Taylor series is better behaved. Finally, in Section 3,
we study the biduality and reflexivity of these spaces.

The authors have received valuable comments and remarks regarding the
content of this paper from several colleagues, including Oscar Blasco, Daniel
Carando, Seán Dineen and Domingo Garćıa. It is a pleasure to acknowledge
their help.

1. Integral holomorphic functions and the space HI(B◦E). Integral
polynomials were introduced by Dineen in [D1] and [D2]. An n-homogeneous
polynomial P : E → C over E is said to be integral if it can be represented as

P (x) =
�

BE′

γ(x)n dµ(γ)

for all x ∈ E, where µ is a regular Borel measure on (BE′ , w∗). Of course
many measures may represent the same polynomial P . The integral norm
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of P is defined as

‖P‖I = inf{|µ| : µ represents P}.
With this norm, the space of all n-homogeneous integral polynomials over E,
PI(nE), is a Banach space. It is in fact the dual of the complete symmetric n-
fold ε-tensor product

⊗̂
n,s,εE (this result was first proved by Dineen in [D2]

when E is a dual space), or equivalently, the dual of the subspace of C(BE′)
spanned by the w∗-continuous functions γ 7→ γ(x)n for x ∈ E. All nuclear
polynomials are integral, and if E′ has the Radon–Nikodym property, the
spaces of nuclear and integral polynomials coincide isomorphically [A] and
isometrically [CD], [BR]. For more on integral polynomials see [D3, Section
2.3].

Definition 1. We will say that a function f : B◦E → C is integral if
there is a regular Borel measure µ on (BE′ , w∗) such that for every x,

f(x) =
�

BE′

1
1− γ(x)

dµ(γ).

On the space of all such functions, which we will denote by HI(B◦E), we
define the norm

‖f‖ = inf{|µ| : µ represents f}.
The following properties of integral functions are very elementary and

for this reason we do not prove them here.

Proposition 2. Let f and HI(B◦E) be as above. Then

(i) f is holomorphic on B◦E. In fact , for each a ∈ B◦E the k-homogeneous
polynomial in the Taylor series expansion of f about a is

P (x) =
�

BE′

γ(x)k

(1− γ(a))k+1 dµ(γ).

(ii) (HI(B◦E), ‖ · ‖I) is a Banach space.

Note that (i) above implies that the Taylor series expansion of an integral
function involves only integral polynomials, and one has the Cauchy-type
inequalities

‖P‖I ≤
‖f‖I

(1− ‖a‖)k+1 .

For a = 0, if f =
∑
k Pk is the Taylor series expansion of f around 0, one

has ‖Pk‖ ≤ ‖Pk‖I ≤ ‖f‖I, so the radius of convergence of the series is

rc =
1

lim sup ‖Pk‖1/k
≥ 1.

Thus integral functions are holomorphic of bounded type (though not neces-
sarily bounded) on the open unit ball of E. In fact, the mapping HI(B◦E)→
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Hb(B◦E) is continuous, though not closed. Note that though the sequence
(‖Pk‖I) is bounded, it need not belong to any `p space: indeed, if ϕ ∈ E′
has norm one, then f(x) =

∑
k ϕ(x)k is integral (with representing measure

δϕ) but ‖Pk‖I = 1 for all k.
Integral polynomials are integral holomorphic functions, and their norms

as integral functions coincide with their norms as integral polynomials. In
fact, the following proposition holds.

Proposition 3. If f =
∑
k Pk, where Pk are k-homogeneous integral

polynomials and the sequence (‖Pk‖I)k is summable, then f is integral , with
integral norm not exceeding the `1-norm of (‖Pk‖I)k.

Proof. Let ε > 0, and for each k = 0, 1, . . . take µk to be a measure
representing Pk as a k-homogeneous polynomial:

Pk(x) =
�

BE′

γ(x)k dµk(γ)

and with total variation ‖µk‖ bounded above by ‖Pk‖I+ε/2k. Let Mk be the
closed subspace of C(BE′ , w∗) spanned by {x̂k : x ∈ E}, and denote by M
the direct sum of these over k. Define µ ∈ M ′ by µ(Q) =

∑m
k=0 µk(Qk) if

Q =
∑m
k=0 Qk with Qk ∈Mk. We check the continuity of µ:

|µ(Q)| =
∣∣∣
m∑

k=0

µk(Qk)
∣∣∣ ≤

m∑

k=0

‖µk‖ ‖Qk‖,

which by the Cauchy inequalities is no larger than

‖Q‖
m∑

k=0

‖µk‖ ≤ ‖Q‖
( m∑

k=0

‖Pk‖I +
ε

2k

)
≤ ‖Q‖

( ∞∑

k=0

‖Pk‖I + ε
)
.

Thus µ extends to the closure of M , and by Hahn–Banach to all of
C(BE′ , w∗) conserving its norm, thus ‖µ‖ ≤∑∞k=0 ‖Pk‖I + ε as one wants.
We have Pk(x) = � γ(x)kdµ(γ), and then

f(x) =
∞∑

k=0

�

BE′

γ(x)k dµ(γ) =
�

BE′

1
1− γ(x)

dµ(γ).

Example 4. Let E = `2 and Pk(x) = akx
k
k, with (ak) a bounded

non-summable sequence of positive numbers. We have ‖Pk‖I = ak. Since
ake
′
k → 0 weakly, f =

∑
k Pk is holomorphic on `2. If f were integral, there

would be a measure µ such that for all x,

f(x) =
�

B`2

1
1− γ(x)

dµ(γ),
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and thus
Pk(x) =

�

B`2

γ(x)k dµ(γ).

Now, for each N ≥ 2, let hN =
∑N
k=2 e

k
k. These are weakly continuous

functions on the unit ball and each hN has norm one: hN (e′2) = 1, and

‖hN‖ = sup
γ∈B`2

∣∣∣
N∑

k=2

γkk

∣∣∣ ≤ sup
γ∈B`2

N∑

k=2

|γk|k ≤ sup
γ∈B`2

N∑

k=2

|γk|2 = 1.

However,

|µ(hN)| =
∣∣∣

�

B`2

hN (γ) dµ(γ)
∣∣∣ =

∣∣∣
N∑

k=2

�

B`2

ekk(γ) dµ(γ)
∣∣∣

=
∣∣∣
N∑

k=2

Pk(ek)
∣∣∣ =

N∑

k=2

ak,

which tends to infinity with N , so µ is not bounded, absurd; hence f is not
integral.

Proposition 3 is sharp in the sense that one can have (‖Pk‖I)k ∈ `p for
all p > 1, and f not integral. It suffices to take in the above example (ak)
a non-summable sequence of positive numbers which is p-summable for all
p > 1.

We now present a duality result analogous to those of Sebastião e Silva
and Köthe referred to in the Introduction.

Theorem 5. HI(B◦E) is a dual space. In fact , if E has the approximation
property , then HI(B◦E) = A(BE′)′ (i.e., the dual of the “ball algebra” of
analytic functions in B◦E′ which are w∗-continuous in BE′ .) This duality
has an integral representation HI(B◦E)× A(BE′)→ C given by

〈f, g〉 =
�

BE′

g(γ) dµ(γ),

where µ represents f .

Proof. Recall that PI(kE) is the dual of the symmetric ε-tensor product⊗
ε,k,s E (cf. [CZ]), which can be identified with the closed subspace of

C(BE′ , w∗) spanned by {x̂k : x ∈ E}, where x̂k(γ) = γ(x)k (denoted Mk in
our previous proposition). Now define gx(γ) = 1/(1− γ(x)) for each x ∈ B◦E ;
the family {gx}x∈B◦E is linearly independent. Let X be the closed subspace
spanned by this family. HI(B◦E) is the dual of X: If α ∈ X ′, extend α to all
of C(BE′ , w∗) by Hahn–Banach preserving the norm (and the name). There
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is then a regular Borel measure µ on (BE′ , w∗) such that

α(h) =
�

BE′

h(γ) dµ(γ)

for all h ∈ C(BE′ , w∗). Define

f(x) = α(gx) =
�

BE′

1
1− γ(x)

dµ(γ).

Then f is integral, and ‖f‖I ≤ ‖µ‖ (for any µ representing α). Thus we have
‖f‖I ≤ ‖α‖.

Now if f ∈ HI(B◦E), define α on s =
∑m
i=1 aigxi by

α(s) =
m∑

i=1

aif(xi).

Then for any µ representing f ,

|α(s)| =
∣∣∣
m∑

i=1

ai
�

BE′

1
1− γ(xi)

dµ(γ)
∣∣∣ =

∣∣∣
�

BE′

s(γ)dµ(γ)
∣∣∣ ≤ ‖µ‖ ‖s‖.

This shows that α is well defined and continuous. It also proves the inte-
gral representation. By continuity, α extends to X, with ‖α‖ ≤ ‖f‖I. Thus
HI(B◦E) is the dual of X.

Now note that X is the closed subspace of C(BE′ , w∗) spanned by {x̂k :
x ∈ E and k = 0, 1, . . .}, denoted M in the previous proposition. Indeed,
clearly X ⊂M ; but if µ is such that µ|X = 0, then

0 =
�

BE′

1
1− γ(x)

dµ(γ)

for all x ∈ B◦E . By the Taylor expansion,

0 =
�

BE′

γ(x)k dµ(γ)

for all x and k. Thus µ is zero over M , and therefore X = M , so HI(B◦E) is
also the dual of M . But [ACG] have shown that if E has the approximation
property, then M = A(BE′).

As with integral polynomials [CZ], if E is a subspace of G, the predual
M(E) is a subspace of M(G). Thus by Hahn–Banach integral functions
are extendible, in the sense that if f ∈ HI(B◦E), there is an f ∈ HI(B◦G),
with f |E = f and ‖f‖I = ‖f‖I. Moreover, as C is always isomorphic to a
subspace of any complex Banach space E we see that the disc algebra A(∆)
is isomorphic to a subspace of M(E) and then HI(B◦C) is isomorphic to a
quotient of HI(B◦E).
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We now show thatHI(B◦E) is never separable. First we need the following
proposition.

Proposition 6. Let φ : E → F be a linear map with ‖φ‖ ≤ 1. The
composition operator Cφ : HI(B◦F ) → HI(B◦E) given by Cφ(f) = f ◦ φ is a
well defined linear and continuous mapping.

Proof. The transpose mapping of φ, φ′ : F ′ → E′, also maps the unit ball
BF ′ into BE′ and is w∗-w∗ continuous. Therefore the composition operator
Cφ′ : g ∈ C(BE′ , w∗) → g ◦ φ′ ∈ C(BF ′ , w∗) is a well defined linear and
continuous mapping.

We then have (Cφ′)′ : C(BF ′ , w∗)′ → C(BE′ , w∗)′ satisfying (Cφ′)′(ν)(g)
= ν(g◦φ′) for all g ∈ C(BE′ , w∗) and all ν ∈ C(BF ′ , w∗)′. Given f ∈ HI(B◦F )
and ν a measure representing f we have

f(φ(x)) = ν(gφ(x)) = ν(gx ◦ φ′) = (Cφ′)′(ν)(gx)

for all x ∈ B◦E . Therefore f ◦ φ is an integral holomorphic function on B◦E
and (Cφ′)′(ν) is a measure representing it. Moreover,

‖f ◦ φ‖I ≤ ‖(Cφ′)′(ν)‖ ≤ ‖Cφ′‖ ‖ν‖ ≤ ‖ν‖
for all ν representing f . Thus ‖f ◦ φ‖I ≤ ‖f‖I.

Corollary 7. (i) The Banach space HI(B◦E) is never separable.
(ii) The integral polynomials are not a dense set in HI(B◦E).

Proof. To begin with, pick e ∈ E and Φ : E → C linear such that
‖e‖ = 1 = ‖Φ‖ = Φ(e), and consider the norm one linear embedding φ :
z ∈ C→ ze ∈ E. The composition operator Cφ : HI(B◦E)→ HI(B◦C) is also
an onto mapping since for any g ∈ HI(B◦C), we have g ◦ Φ ∈ HI(B◦E) and
Cφ(g ◦ Φ)(z) = (g ◦ Φ ◦ φ)(z) = g(Φ(ze)) = g(z).

(i) Now, note that HI(B◦C) is non-separable as it is isomorphic to the
dual of the disc algebra, which is known to be non-separable. Therefore,
HI(B◦E) cannot be separable.

(ii) If the integral polynomials were a dense subset of HI(B◦E), its image
under Cφ would also be a dense set in HI(B◦C). The proposition above en-
sures that for P ∈ PI(E), P ◦ φ is an integral holomorphic function, hence
an integral polynomial, thus Cφ(PI(E)) ⊂ PI(C). Moreover, as PI(C) ⊂
span{1, z, z2, . . . , zn, . . .} it would follow that this span is a dense set in
HI(B◦C), against its non-separability.

Remark 8. The above corollary shows that, in general, the Taylor series
of a holomorphic integral function does not converge in HI(B◦E) to the given
function. This will prompt us to introduce, in the next section, another space
of integral functions with better convergence properties. Even the Taylor
series of an integral holomorphic function may not converge with respect to
a coarser topology, like w∗(HI(B◦E), A(BE′)).
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Let E be a Banach space with the approximation property. Select e ∈ E
and ϕ ∈ E∗ with ‖ϕ‖ = 1 = ‖e‖ = ϕ(e). We have e ∈ E ⊂ A(BE′),
which is a predual ofHI(B◦E). We consider the integral holomorphic function
f(x) =

∑
k ϕ(x)k and we check that (ϕk) is not weak∗ null: Indeed, choose a

sequence (am) of scalars converging to 1 with |am| < 1. Since limm ame = e
in A(B◦E∗),

〈ϕk, e〉 = lim
m
〈ϕk, ame〉 = lim

m

�

B◦
E∗

γ(ame)k dδϕ(γ)

= lim
m

�

B◦
E∗

akmγ(e)k dδϕ(γ) = lim
m
akmϕ(e)k = 1.

Thus (ϕk) is not weak∗ null, so the Taylor series of f is not w∗(HI(B◦E),
A(BE′)) convergent.

Remark 9. If f =
∑
k Pk is a nuclear holomorphic function in the

sense of
∑
k ‖Pk‖N <∞ ([D3, Definition 2.9]) then f is also integral because

‖Pk‖I ≤ ‖Pk‖N ([D3, §2.3]). Moreover, not every integral function is nuclear
even in the case when PN(E) = PI(E), which holds for instance if E∗ has
the Radon–Nikodym property ([D3, Proposition 2.27]), as the example in
Remark 8 shows since ‖ϕk‖N = 1.

2. The spaces HbI(B◦E) and HbI(E). In this section we define a Fréchet
space of integral holomorphic functions over the open unit ball of E, in which
the Taylor series expansion of an integral function converges to the function.

Definition 10. For any holomorphic function f and any 0 < r < 1 set
fr(x) = f(rx). Then we define

HbI(B◦E) = {f ∈ H(B◦E) : fr ∈ HI(B◦E) for all 0 < r < 1}.
Also, define on this space the set of seminorms pr(f) = ‖fr‖I.

Note that if P is an integral k-homogeneous polynomial, Pr(x) = P (rx)
= rkP (x), and thus pr(P ) = rk‖P‖I, so on the space PI(kE) all semi-
norms pr are equivalent to the integral norm. Hence the topology induced
by HbI(B◦E) on PI(kE) is the usual one. Note also that if f ∈ HbI(B◦E),
and f =

∑
k Pk is its Taylor series expansion at 0, then all Pk’s are inte-

gral polynomials (indeed, for any r, Pk = r−kPkr). We have the following
characterization of HbI(B◦E) in terms of the radius of integral convergence
of f =

∑
k Pk,

rI =
1

lim sup ‖Pk‖1/kI

.

Proposition 11. Let f ∈ H(B◦E). Then f ∈ HbI(B◦E) if and only if
Pk ∈ PI(kE) and rI ≥ 1.
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Proof. Take f ∈ HbI(B◦E) and r < 1. Then f =
∑
k Pk implies fr =∑

k Pkr and since this is an integral function, the sequence (‖Pkr‖I) is
bounded, so

1 ≥ lim sup(‖Pkr‖I)1/k = lim sup(rk‖Pk‖I)1/k = r lim sup(‖Pk‖I)1/k =
r

rI
.

Thus rI ≥ r for any r < 1. So rI ≥ 1.
Now if rI ≥ 1, then

∑
k ‖Pk‖Irk converges for all r < 1. Thus (rk‖Pk‖I)k

= (‖Pkr‖I)k ∈ `1, and fr =
∑
k Pkr is integral for all r < 1, by Proposition 3.

Hence, f ∈ HbI(B◦E).

Note that since the usual polynomial norm is bounded above by the
integral norm, we have rI ≤ rc, the usual radius of convergence. Hence
all functions of HbI(B◦E) are of bounded type in the open unit ball of E.
Note also that if f ∈ HI(B◦E), then f ∈ HbI(B◦E), for f =

∑
k Pk with

(‖Pk‖I) bounded, so lim sup(‖Pk‖I)1/k ≤ 1 and rI ≥ 1. Something more
can be said: if f ∈ HI(B◦E) is represented by the measure µ, then one may
obtain measures representing fr as follows. If A ⊂ rBE′ is such that A/r is
measurable, define νr(A) = µ(A/r). Then for all such A,

�

rBE′

χA(ϕ) dνr(ϕ) = νr(A) = µ(A/r) =
�

BE′

χA/r(γ) dµ(γ)

=
�

BE′

χA(rγ) dµ(γ) =
�

BE′

χA(ϕ) dµ(ϕ/r).

Now if we set µr(U) = νr(U ∩ rBE′) = µ
(
U
r ∩ BE′

)
for any measurable

U ⊂ BE′ , we have

fr(x) = f(rx) =
�

BE′

1
1− γ(rx)

dµ(γ) =
�

BE′

1
1− rγ(x)

dµ(γ)

=
�

rBE′

1
1− ϕ(x)

dνr(ϕ) =
�

BE′

1
1− γ(x)

dµr(γ),

so that µr represents fr. Note that |µr| ≤ |µ|, so ‖fr‖I ≤ ‖f‖I and the map
f 7→ fr is continuous in the integral norm, a fact which we shall use below.
We now prove completeness of HbI(B◦E).

Theorem 12. HbI(B◦E) is a Fréchet space.

Proof. Clearly the topology of HbI(B◦E) is given by a countable cofinal
subset of the seminorms pr. We check the completeness.

Let (fn) be a Cauchy sequence in HbI(B◦E). Then for all r < 1, (fnr)
is a Cauchy sequence in HI(B◦E). Thus for each r < 1 we have an integral
holomorphic function f(r) with fnr → f(r) in the integral norm. Now for any
s > r, since fnr = (fns)r/s, continuity of the map h→ hr gives f(r) = f(s)r/s .
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Then for any x ∈ B◦E, and r large enough, one has

f(s)

(
x

s

)
= f(s)

(
r

s

x

r

)
= f(s)r/s

(
x

r

)
= f(r)

(
x

r

)
.

There is then no ambiguity in setting f(x) = f(r)(x/r) for r large enough;
f is easily seen to be holomorphic on B◦E , and fr = f(r) for all r < 1, so
f ∈ HbI(B◦E). Also,

pr(fn − f) = ‖fnr − fr‖I = ‖fnr − f(r)‖I → 0

as n increases.

Lemma 13. If fn → f in HbI(B◦E), then fn converges uniformly to f in
%BE for all % < 1.

Proof. For all r < 1 we have fnr → fr in HI(B◦E). Now if x ∈ B◦E and
‖x‖ < r < 1, then

|fn(x)− f(x)| =
∣∣∣∣fnr

(
x

r

)
− fr

(
x

r

)∣∣∣∣ =
∣∣∣∣

�

BE′

1
1− γ(x/r)

d(µnr − µr)
∣∣∣∣

≤ 1
1− ‖x/r‖ ‖fnr − fr‖I =

r

r − ‖x‖ ‖fnr − fr‖I → 0

as n increases. Thus fn converges to f uniformly on any ball of radius
% < 1.

We now prove the convergence of the Taylor series in HbI(B◦E).

Theorem 14. If f ∈ HbI(B◦E), then its Taylor series at 0 converges
to f in HbI(B◦E).

Proof. Let
∑
k Pk be the Taylor series expansion of f about 0. Its partial

sums form a Cauchy sequence; indeed, if m > n and r < s < 1, then

pr

( m∑

k=0

Pk −
n−1∑

k=0

Pk

)
= pr

( m∑

k=n

Pk

)
=
∥∥∥

m∑

k=n

Pkr

∥∥∥
I

≤
m∑

k=n

‖Pkr‖I =
m∑

k=n

rk‖Pk‖I =
m∑

k=n

(
r

s

)k
‖Pks‖I

≤ c
m∑

k=n

(
r

s

)k
→ 0

as n increases. Thus, by completeness of HbI(B◦E), there is a function h
in HbI(B◦E) such that

∑∞
k=0 Pk = h. Since by Lemma 13 convergence in

HbI(B◦E) implies uniform convergence on %BE for any % < 1, this h can only
be f . Thus f ’s Taylor series converges to f in the topology of HbI(B◦E).
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The concept of integral holomorphic function on the open unit ball of a
Banach space E can be generalized in the following way: given a convex bal-
anced open subset Λ of a Banach space E we denote by HI(Λ) the Banach
space of all holomorphic functions on Λ such that there is a regular Borel
measure µ on (Λ◦, w∗) satisfying

f(x) =
�

Λ◦

1
1− γ(x)

dµ(γ)

for every x ∈ Λ, endowed with the norm ‖f‖ = inf{|µ| : µ represents f}.
As ||| · |||, the Minkowski gauge of Λ, is an equivalent norm on E such
that B(E,|||·|||) = Λ, all properties obtained in Section 1 remain true for
HI(Λ).

We will denote by HbI(E) the Fréchet space of all entire functions f
on the Banach space E whose restrictions to nBE belong to HI(nBE) for
n = 1, 2, . . . , endowed with the sequence (pn)n of norms defined as

pn(f) = ‖f |nBE‖I, n = 1, 2, . . .

3. Biduality and reflexivity. According to [GMR] a sequence of Ba-
nach spaces (Ek, ‖ · ‖)k is an R-Schauder decomposition (0 < R ≤ ∞) of
a Fréchet space E if it is a Schauder decomposition of E and for every
sequence (xk)k, xk ∈ Ek, the series

∑∞
k=0 xk converges in E if and only

if lim supk ‖xk‖1/kk ≤ 1/R. By Proposition 11, (PI(kE))k is a 1-Schauder
decomposition of HbI(B◦E). Analogously it can be proved that (PI(kE))k
is an ∞-Schauder decomposition of HbI(E). Hence, by [GMR, Remark 5],
HbI(B◦E) andHbI(E) are not topologically isomorphic spaces when E 6= {0}.

The space HI(B◦E) is never reflexive. The disc algebra A(∆) is not a
reflexive space, and so by Theorem 5, HI(B◦C) is not a reflexive Banach
space. But for any Banach space E, HI(B◦C) is isomorphic to a quotient of
HI(B◦E), hence the space HI(B◦E) is never reflexive. The situation is quite
different for HbI(B◦E) and HbI(E) as we will show in the proposition be-
low.

In [GMR, Theorem 8], it is proved that if (En, ‖ · ‖n)n is an R-Schauder
decomposition of E, 0 < R ≤ ∞, then (E′′n, ‖ · ‖′′n)n is (canonically) an
R-Schauder decomposition of E′′. Hence we have the following result.

Proposition 15. Let E be a Banach space. The spaces HbI(BE) and
HbI(E) are reflexive if and only if PI(kE) is a reflexive space for every
k = 1, 2, . . .

As E′ = PI(1E) we have to assume that E is a reflexive Banach space in
order to find examples satisfying the above proposition.

Note that if E is a reflexive Banach space with the approximation prop-
erty, then the dual space of PI(kE) is isometric to P (kE′). Indeed, since E′
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has the Radon–Nikodym property, the space of integral polynomials is iso-
metric to that of nuclear polynomials ([CD], [BR]), and since E ′ has the
approximation property, PN(kE)′ = P (kE′) ([G]). Thus, in this situation,
PI(kE) is reflexive if and only if P (kE′) is reflexive.

If T ∗ is the original Tsirelson space, P (kT ∗) is reflexive for all k ([AAD]).
Hence (PI(kT ))k is a sequence of reflexive Banach spaces, thus HbI(BT ) and
HbI(T ) are reflexive. Note that for any k ≥ 2, P (kT ) is not a reflexive
Banach space and hence neither HbI(BT ∗) nor HbI(T ∗) are reflexive spaces.

Now we turn to the study of the bidual of the spaces of integral holomor-
phic functions. In recent years biduality and reflexivity of spaces of poly-
nomials have been extensively studied by a number of authors ([AD], [D4],
[JPZ], [JM], [Ve], [V1]). Our next two propositions and corollary are the
dual versions of [D3, Proposition 2.45, Corollary 2.46 and Propositions 2.47
and 2.48]. We refer to [D3] for the definition and properties of Q-reflexive
Banach spaces.

Proposition 16. Let E be a Q-reflexive Banach space such that E′′′

has the approximation property and Pw(kE′′) = P (kE′′) for all k = 1, 2, . . .
Then PI(kE′)′′ is isomorphic to PI(kE′′′) for all k = 1, 2 . . .

Proof. Since E′ has the approximation property the dual of Pw(kE)
is isometric to PI(kE′). As E is Q-reflexive, by [D3, Definition 2.44 and
Proposition 2.45] we see that Pw(kE) = P (kE) as sets and that Pw(kE′′) is
canonically isomorphic to P (kE)′′. By hypothesis Pw(kE′′) = P (kE′′) and
E′′′ has the approximation property, thus P (kE′′)′ = PI(kE′′′) isometrically,
hence we have the chain

PI(kE′)′′ ∼= P (kE′′)′ = Pw(kE′′)′ = PI(kE′′′).

We need to improve the above result in a way that allows us to control
the norms of the isomorphisms between PI(kE′)′′ and PI(kE′′′) in order to
obtain results for spaces of holomorphic functions of integral type. We do
this in the next proposition.

Proposition 17. Let E be a Q-reflexive Banach space such that E′′′

has the approximation property , Pw(kE′′) = P (kE′′) for all k = 1, 2, . . .
and the space `1 is not contained in

⊗̂
k,s,εE

′ (in particular if E′′ has the
Radon–Nikodym property). Then the space PI(kE′)′′ is isometric to PI(kE′′′)
for all k = 1, 2 . . .

Proof. By [CD], [BR] the space PI(kE′) coincides with the space of nu-
clear polynomials PN(kE′) and moreover the identity is an isometric isomor-
phism. As E′′ has the approximation property we have

⊗̂
k,s,πE

′ = PN(kE′)
isometrically and then PN(kE′)′ = P (kE′′) isometrically. Thus we have the
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following chain of isometries:

PI(kE′)′′ = PN(kE′)′′ = P (kE′′)′ = Pw(kE′′)′ = PI(kE′′′).

Corollary 18. Let E be a Q-reflexive Banach space such that E′′ has
the Radon–Nikodym property , E′′′ has the approximation property and
Pw(kE′′) = P (kE′′) for all k = 1, 2, . . . Then the space HbI(E′)′′ is iso-
morphic to HbI(E′′′) and the space HbI(B◦E′)

′′ is isomorphic to HbI(B◦E′′′).

Proof. PI(kE′)′′ is isometric to PI(kE′′′) for all k = 1, 2, . . . Then the
conclusion follows from [GMR, Theorem 9].

To give an example of a Banach space satisfying the hypothesis of the
above corollary we need the following lemma.

Lemma 19. Let E a quasi-reflexive Banach space such that Pw(kE) =
P (kE). Then Pw(kE′′) = P (kE′′).

Proof. By hypothesis E has finite codimension in its bidual E ′′. Consider
a finite-dimensional subspace F of E′′ such that E′′ = E ⊕ F ; this is a
topological decomposition for the topology of the norm. We denote by p
the projection, and by r the maximum of the norms of p and Id − p. Let
P ∈ P (kE′′). As P is uniformly continuous on rBE′′ , given ε > 0 there
exists a δ > 0 such that ‖P (z) − P (u)‖ < ε for all z, u ∈ rBE′′ with
‖z − u‖ < δ. Consider a net {zα, α ∈ A, ≤} in BE′′ , the closed unit ball
of E′′, weakly convergent to z0 ∈ BE′′ . Let xα = p(zα) and yα = zα− p(zα)
for all α ∈ A, x0 = p(z0) and y0 = z0 − p(z0). We have ‖x0‖ ≤ r, ‖y0‖ ≤ r,
‖xα‖ ≤ r, ‖yα‖ ≤ r for all α. As E′′ = E ⊕ F , topologically also for the
w(E′′, E′′′) topology, {xα, α ∈ A, ≤} weakly converges to x0 in E and
{yα, α ∈ A, ≤} weakly converges to y0 in F . But F is finite-dimensional,
thus {yα, α ∈ α, ≤} norm converges to y0 in F . Hence we can find α0 ∈ A
such that ‖yα − y0‖ < δ for all α ≥ α0 and then |P (zα) − P (xα + y0)| < ε
for all α ≥ α0.

Let P̌ be the symmetric multilinear form associated to P . If we define
Qn : E → C by Qn(x) := P̌ (xn, yk−n0 ) for all x ∈ E and every n = 1, . . . , k,
we have Qn ∈ P (nE) = Pw(nE) for n = 1, . . . , k. Then {Qn(xα), α ∈ A, ≤}
converges to Qn(x0) for n = 1, . . . , k and we can find αn with |Qn(xα) −
Qn(x0)| < ε for α ≥ αn, n = 1, . . . , k. Consider β ≥ αn for n = 0, 1, . . . , k.
We have

|P (zα)− P (z0)| ≤ |P (zα)− P (xα + y0)|+ |P (xα + y0)− P (z0)|

≤ ε+
k∑

n=1

|P̌ (xnα, y
k−n
0 )− P̌ (xn0 , y

k−n
0 )| < 2kε

whenever α ≥ β. Hence P ∈ Pw(kE′′).
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The best known example of a non-reflexive Q-reflexive Banach space is
the Tsirelson–James space T ∗J ([AD], [D3, Example 2.43]). As T ∗J and all its
higher duals are quasi-reflexive and moreover have a basis, the higher duals
have the approximation property and the Radon–Nikodym property. Now
by applying Lemma 19 and Corollary 18 we obtain the following.

Corollary 20. HbI(T ∗J
′)′′ ∼= HbI(T ∗J

′′′) and HbI(B◦T ∗J ′
′′) ∼= HbI(B◦T ∗J ′′′).

Remark 21. A sequence (xn) in a Banach space E is called τα-converg-
ent to zero (for 0 < α < 1) if there is a c ≥ 0 such that ‖∑n∈B xn‖ ≤ c|B|α
for all finite B ⊂ N, where |B| is the number of elements of B. A Banach
space E is said to have property Pα if every weak-null sequence admits a τα-
convergent subsequence. The concept of τα-convergence is due to Pełczyński
[P]. If E is a quasi-reflexive Banach space which has property Pα, then E′′

also has property Pα. Indeed, let (x′′n) ⊂ E′′ be a w(E′′, E′′′)-null sequence.
Consider a finite-dimensional subspace F of E ′′ such that E′′ = E⊕F ; this is
a topological decomposition for the weak topology. Hence there exist weak-
null sequences (xn) ⊂ E and (yn) ⊂ F such that x′′n = xn+yn for all n ∈ N.
As (yn) also converges in norm, we can assume, by taking a subsequence if
necessary, that ‖yn‖ ≤ 1/2n for all n ∈ N. Since E has property Pα there
exists a subsequence (xnk) and c ≥ 0 such that ‖∑k∈B xnk‖ ≤ c|B|α for all
finite B ⊂ N. Hence∥∥∥

∑

k∈B
x′′nk

∥∥∥ ≤
∥∥∥
∑

k∈B
xnk

∥∥∥+
∥∥∥
∑

k∈B
ynk

∥∥∥ ≤ c|B|α + 1 ≤ (c+ 1)|B|α

for all finite B ⊂ N.

There are examples of Q-reflexive Banach spaces which are not quasi-
reflexive. In Theorem 5 of [V2] it is proved that if Y is a closed subspace
of T ∗ with the approximation property, then X := Y ⊗̂π T ∗J is Q-reflexive
and moreover that X ′ = Y ⊗̂ε T ∗J ′ and X ′′ = Y ⊗̂π T ∗J ′′. We have the
following.

Theorem 22. Let Y be a closed subspace of T ∗ with the approximation
property. If X := Y ⊗̃π T ∗J , then HbI(X ′)′′ ∼= HbI(X ′′′) and HbI(B◦X′)

′′ ∼=
HbI(B◦X′′′).

Proof. The proof of Theorem 5 in [V2] shows that X ′ = Lw(Y, T ∗J ) =
Lw∗(Y ′′, T ∗J ′′), which by Theorem 1 in [V1] is an Asplund space, that is, X ′′

has the Radon–Nikodym Property. Now we follow the arguments in that
proof to check the remaining assumptions in Corollary 18 for X.

By [AF1, Corollary 3.2], if F and G are two Banach spaces that have
property Pα for all α > 0, then all 2n-linear continuous mappings F n×Gn →
C are weakly sequentially continuous. If moreover `1 6⊂ Fn × Gn, they are
weakly continuous on bounded subsets of F n×Gn. Hence, by [V2, Lemma 2],
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Pw(kF ⊗̂πG) = P (kF ⊗̂π G). All closed subspaces of Tsirelson’s space T ∗

and the space T ∗J have property Pα for all α > 0 ([AF2]). Now, by Remark
21, G = T ∗J

′′ has property Pα as well for all α > 0. As X ′′ = Y ⊗̂π T ∗J ′′, the
above comment leads to Pw(kX ′′) = P (kX ′′) for all k = 1, 2, . . . and also
to proving that all bilinear mappings on Y × T ∗J ′′ are weakly continuous on
bounded sets; thus X ′′′ = (Y ⊗̂π T ∗J ′′)′ = Y ′ ⊗̂ε T ∗J ′′′ since both Y ′ and T ∗J

′′′

have the approximation property, which in turn implies that X ′′′ has the
approximation property.

Final comments. We end with some informal comments and open
problems. In the one-dimensional case, we had

f(x) =
�

T

1
1− ωx f(1/ω)

dω

2πiω
and 〈f, g〉 =

�

Γ−1

g(ω)f(1/ω)
dω

2πiω
.

Two questions immediately come to mind regarding the integral represen-
tation of holomorphic functions on Banach spaces.

(i) Should we be integrating over BE′ or over some smaller subset K?
(ii) Can we describe µ in terms of f and some “universal” measure P?

(That is, dµ(γ) = f̂(γ)dP (γ); note that dω/(2πiω) is a probability measure
on T .)

We want elements of the dual of A(BE′) to provide us with measures.
Thus we need A(BE′) to be a subspace of C(K), with K ⊂ BE′ , so functions
in A(BE′) should attain their norm on K, that is, we want K to be a w∗-
closed boundary for A(BE′). The unit sphere of E′ is not w∗-closed, and
hence not a good candidate. The Shilov boundary of A(BE′) is a better
candidate.

One interesting case is E = `1 (E′ = `∞ and BE′ = ∆N). Here the
Shilov boundary of A(BE′) is TN, on which one has the rotation-invariant
probability measure P = product of normalized Lebesgue measure on T .
We can then write, for x ∈ B`1 ,

f(x) =
�

T N

1
1− γ(x)

f̂(γ) dP (γ).

Of course any integrable f̂ will give us an integral holomorphic function f .
Given f , we can find the corresponding f̂ in only a few elementary cases,
such as

x1x
2
2 =

�

T N

1
1− γ(x)

γ1γ
2
2 dP (γ)

(see also [R]).
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