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Note on distortion and Bourgain `1-index

by

Anna Maria Pelczar (Kraków)

Abstract. Relations between different notions measuring proximity to `1 and dis-
tortability of a Banach space are studied. The main result states that a Banach space all
of whose subspaces have Bourgain `1-index greater than ωα, α < ω1, contains either an
arbitrarily distortable subspace or an `α1 -asymptotic subspace.

1. Preliminaries. The study of asymptotic properties and in particular
complexity of the family of copies of `n1 in Banach spaces is closely related to
investigating their distortability (cf. [17, 16, 19]). Investigation of arbitrarily
distortion of Banach spaces is concentrated mainly on `1-asymptotic spaces.
The first tool measuring the way `1 is represented in a Banach space is
provided by the Bourgain `1-index. Another approach is given by higher
order spreading models, studied extensively in mixed and modified mixed
Tsirelson spaces. The `1-asymptoticity of higher order of a Banach space can
be measured by the constants introduced in [19].

We present here an observation, in the spirit of the theorem of [17] re-
called below, relating distortability of a Banach space to the “proximity” to
`1 measured by the tools presented above.

Theorem 1.1 ([17]). Let X be a Banach space. Then X contains either
an arbitrarily distortable subspace or an `p-asymptotic (1 ≤ p < ∞) or
c0-asymptotic subspace.

Our main result states that a Banach space with a basis whose block sub-
spaces all have Bourgain `1-block index greater than ωα, contains either an
arbitrarily distortable subspace or an `α1 -asymptotic subspace. In particular,
a space saturated with `α1 -spreading models generated by block sequences
contains either an arbitrarily distortable subspace or an `α1 -asymptotic sub-
space. This implies Theorem 2.1 of [15]. Analogous results also hold in the
c0 case. As a corollary we show that the “stabilized” (with respect to block
subspaces) Bourgain `1-block index of a space with bounded distortion not
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containing `1 is of the form ωω
γ for some non-limit γ < ω1. Let us also

recall here the result of [21] stating that a Banach space with bounded dis-
tortion contains an unconditional basic sequence; the proof uses the notion
of unconditional ordinal index.

We now recall the basic definitions and standard notation. Let X be a
Banach space with a basis (ei). The support of a vector x =

∑
i xiei is the

set suppx = {i ∈ N : xi 6= 0}. We shall also use the interval support of a
vector x ∈ X, the smallest interval in N containing the support of x, and
denote it by suppx.

Given any x =
∑

i xiei and finite E ⊂ N put Ex =
∑

i∈E xiei. We write
x < y for vectors x, y ∈ X if max(suppx) < min(supp y). A block sequence is
any sequence (xi) ⊂ X satisfying x1 < x2 < · · · , and a block subspace of X
is any closed subspace spanned by an infinite block sequence. If Y is a block
subspace of X spanned by a block sequence (yi) then Yn, n ∈ N, denotes the
“tail” subspace spanned by (yi)i≥n, and EY , E ⊂ N, denotes the subspace
spanned by (yi)i∈E .

A basic sequence (x1, . . . , xk) in a Banach space is K-equivalent to the
unit vector basis of k-dimensional `1 (resp. c0) space, for some K ≥ 1, if for
any scalars a1, . . . , ak we have K‖a1x1 + · · ·+akxk‖ ≥ |a1|+ · · ·+ |ak| (resp.
‖a1x1 + · · ·+ akxk‖ ≤ Kmax{|a1|, . . . , |ak|}).

Definition 1.2. A Banach space (X, ‖ · ‖) is λ-distortable, for λ > 1, if
there is an equivalent norm | · | on X such that for any infinite-dimensional
subspace Y of X,

sup{|x|/|y| : x, y ∈ Y, ‖x‖ = ‖y‖ = 1} ≥ λ.
A Banach spaceX is arbitrarily distortable if it is λ-distortable for any λ > 1.

A Banach space X has D-bounded distortion if for any equivalent norm
| · | and any infinite-dimensional subspace Y of X there is a further infinite-
dimensional subspace Z of Y such that |x|/‖x‖ ≤ D|y|/‖y‖ for any non-
zero x, y ∈ Z. A Banach space has bounded distortion if it has D-bounded
distortion for some D ≥ 1.

Notice that any Banach space X contains either an arbitrarily distortable
subspace or a subspace with bounded distortion.

Given any M ⊂ N, let [M ]<∞ denote the family of finite subsets of M .
A family F ⊂ [N]<∞ is regular if it is: hereditary, i.e. for any G ⊂ F ,
F ∈ F implies G ∈ F ; spreading, i.e. for any integers n1 < · · · < nk and
m1 < · · · < mk with ni ≤ mi, i = 1, . . . , k, if (n1, . . . , nk) ∈ F then also
(m1, . . . ,mk) ∈ F ; and compact in the product topology of 2N. If F ⊂ [N]<∞

is compact, let F ′ denote the set of limit points of F . Define inductively
F (0) = F , F (α+1) = (F (α))′ for any ordinal α and Fα =

⋂
ξ<αF (ξ) for any

limit ordinal α. Set ι(F) = inf{α : F (α+1) = ∅}.
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A tree on a set S is a subset T of
⋃∞
n=1 S

n such that (x1, . . . , xk) ∈ T
whenever (x1, . . . , xk, xk+1) ∈ T , k ∈ N. A tree T is well-founded if there is
no infinite sequence (xi) ⊂ S with (x1, . . . , xk) ∈ T for any k ∈ N. Given a
tree T on S put

D(T ) = {(x1, . . . , xk) : (x1, . . . , xk, x) ∈ T for some x ∈ S}.
Inductively define trees Dα(T ): D0(T ) = T , Dα+1 = D(Dα(T )) and
Dα(T ) =

⋂
ξ<αD

ξ(T ) for α limit. The order of a well-founded tree T is
given by the formula o(T ) = inf{α : Dα(T ) = ∅}.

Let X be a Banach space with a basis. For K ≥ 1, a tree T on X is an
`1-K-block tree on X if any (x1, . . . , xk) ∈ T is a normalized block sequence
K-equivalent to the unit vector basis of k-dimensional `1 space. An `1-block
tree on X is an `1-K-block tree on X for some K ≥ 1.

Let Ib(X,K) = sup{o(T ) : T is an `1-K-block tree onX} forK ≥ 1. The
Bourgain `1-block index of X is defined by Ib(X) = sup{Ib(X,K) : K ≥ 1}.

Theorem 1.3 ([10]). Let X be a Banach space with a basis not contain-
ing `1. Then Ib(X) = ωα for some α < ω1 and Ib(X) > Ib(X,K) for any
K ≥ 1.

Remark 1.4. Recall the close relation ([10]) between Ib(X) and I(X),
the original Bourgain `1-index defined as the block index but by trees of not
necessarily block sequences: for I(X) ≥ ωω we have Ib(X) = I(X), and if
I(X) = ωn+1 for some n ∈ N, then Ib(X) = ωn+1 or ωn.

The generalized Schreier families (Sα)α<ω1 of finite subsets of N, intro-
duced in [1], are defined by transfinite induction. First,

S0 = {{n} : n ∈ N} ∪ {∅}.
Suppose the families Sξ are defined for all ξ < α. If α = β + 1, put

Sα = {F1 ∪ · · · ∪ Fm : m ∈ N, F1, . . . , Fm ∈ Sβ, m ≤ F1 < · · · < Fm}.
If α is a limit ordinal, choose αn ↗ α and set

Sα = {F : F ∈ Sαn and n ≤ F for some n ∈ N}.
It is well known that any family Sα, α < ω1, is regular with ι(Sα) = ωα, and
considered as a tree on N it satisfies o(Sα) = ωα (cf. [1]).

Fix α < ω1. A finite sequence (Ei) of subsets of N is α-admissible
(resp. α-allowable) if E1 < E2 < · · · (resp. (Ei) are pairwise disjoint) and
(minEi) ∈ Sα.

Let X be a Banach space with a basis (en), and fix α < ω1. A finite
sequence (xi) ⊂ X is α-admissible (resp. α-allowable) with respect to the
basis (en) if (suppxi) is α-admissible (resp. α-allowable).

Definition 1.5. Fix α < ω1. Let X be a Banach space with a basis (en).
A normalized block sequence (xi) ⊂ X generates an `α1 -spreading model with
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constant C ≥ 1 if for any F ∈ Sα the sequence (xi)i∈F is C-equivalent to
the unit vector basis of ]F -dimensional `1 space.

The space X is `α1 -asymptotic (resp. `α1 -strongly asymptotic) with con-
stant C ≥ 1 if any sequence (xi)ki=1 α-admissible (resp. α-allowable) with
respect to (en) is C-equivalent to the unit vector basis of k-dimensional `1
space.

Obviously X is `α1 -asymptotic with constant C iff each normalized block
sequence in X generates an `α1 -spreading model with constant C. By the
properties of Sα’s, any block subspace of an `α1 -asymptotic (resp. strongly
asymptotic) space with constant C is also `α1 -asymptotic (resp. strongly
asymptotic) with the same constant. The relations between the Bourgain
`1-block index and the notions introduced above are described by

Proposition 1.6. Let X be a Banach space with a basis. Fix α < ω1.

• If X admits an `α1 -spreading model , then Ib(X) > ωα.
• If X is an `α1 -asymptotic space, then Ib(X) ≥ ωαω.

Proof. The first part follows from Theorem 1.3 and the fact that o(Sα) =
ωα. The second part follows from the proof of Theorem 5.19 of [10]. We recall
it briefly. For anyM,N ⊂ [N]<∞ put

M[N ] = {F1 ∪ · · · ∪ Fk : F1, . . . , Fk ∈ N , m1 ≤ F1 < · · · < mk ≤ Fk
for some (m1, . . . ,mk) ∈M, k ∈ N}.

Put [Sα]n = Sα[. . . [Sα]] (n times). If X is `α1 -asymptotic with constant C,
then any normalized block sequence (x1, . . . , xk) with (min(suppxi)) ∈ [Sα]n

is Cn-equivalent to the unit vector basis of k-dimensional `1 space. Since
o([Sα]n) = ωαn ([1]), we have Ib(X) > ωαn for any n ∈ N, which ends the
proof.

Remark 1.7. Definition 1.5 extends the well-known notions of `1-asym-
ptotic space (introduced in [17]) and spreading model generated by a ba-
sic sequence. The higher order `1-spreading models were introduced in [11]
and investigated in [4, 14, 15]. The constants describing `1-asymptoticity of
higher order were introduced and studied in [19]. The term `1-asymptoticity
of higher order was explicitly introduced in [9], where also a criterion for ar-
bitrary distortion in terms of `1-spreading models was given. The `p-strongly
asymptotic spaces were introduced and studied in [6]. The Bourgain `1-index
and `1-block index of various spaces in relation to existence of higher order
spreading models, distortability and quasiminimality were investigated in
[10, 12, 13, 14].

We shall need additional norms given by the `1-asymptoticity of the
space:
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Definition 1.8. Let U be a Banach space with a basis. Fix α < ω1. If
U is `α1 -asymptotic with constant C, define an associated norm | · |α on U by

|x|α = sup
{ k∑
i=1

‖Eix‖ : E1 < · · · < Ek α-admissible, k ∈ N
}
, x ∈ U.

Clearly ‖ · ‖ ≤ | · |α ≤ C‖ · ‖. If U is `α1 -strongly asymptotic, we define anal-
ogously the norm | · |sα using allowable sequences instead of admissible ones.

Simpler versions of these norms were used to show arbitrary distortion
of the famous Schlumprecht space, the first Banach space known to be arbi-
trarily distortable; these norms also distort some mixed and modified mixed
Tsirelson spaces [3, 4, 14].

2. Main result. Now we present the main result, which shows that
we can reverse the implication in Proposition 1.6 in spaces with bounded
distortion.

Theorem 2.1. Let X be a Banach space with a basis. Fix α < ω1.
Assume that Ib(Y ) > ωα for any block subspace Y of X. Then X contains
either an arbitrarily distortable subspace or an `α1 -asymptotic subspace.

If , additionally , X is `11-strongly asymptotic, then X contains either an
arbitrarily distortable subspace or an `α1 -strongly asymptotic subspace.

By Proposition 1.6 a Banach space admitting, in any block subspace,
`α1 -spreading models generated by normalized block sequences satisfies the
assumption of Theorem 2.1. We also have the following corollary, implying
Theorem 2.1 of [15]:

Corollary 2.2. Fix 1 < α < ω1. Suppose that X is a Banach space with
a basis that admits for any ξ < α, in every block subspace, an `ξ1-spreading
model generated by a normalized block sequence with a universal constant
C ≥ 1. Then X contains either an arbitrarily distortable subspace or an
`α1 -asymptotic subspace.

If , additionally , X is `11-strongly asymptotic, then X contains either an
arbitrarily distortable subspace or an `α1 -strongly asymptotic subspace.

Proof. Assume X has no arbitrarily distortable subspaces. If α = β + 1
for some β < ω1, then by Theorem 2.1, there is an `β1 -asymptotic subspace
W with some constant C ≥ 1. By Proposition 3.2 of [19] there is n0 ∈ N
such that F ∈ Sβ for any n0 ≤ F ∈ S1. Thus Wn0 is also `11-asymptotic with
constant C, and therefore also `α1 -asymptotic (with constant C2).

If α is a limit ordinal, then by assumption Ib(Y ) > Ib(Y,C) ≥ ωα for
any block subspace Y of X, and Theorem 2.1 ends the proof. The case of
`1-strong asymptoticity follows analogously.
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Remark 2.3. By Lemma 6.5 (and Remark 6.6(iii)) of [10] the universal
constant C (arbitrarily close to 1) in the assumption of Corollary 2.2 is
automatic for α = ωγ , with γ a limit ordinal.

Remark 2.4. We collect some known examples:

(i) Ib(X) > ω iff 1 belongs to the Krivine set of X, i.e. `1 is finitely
(almost isometrically) represented on block sequences in X.

(ii) For any α < ω1 by Theorem 5.19 of [10], and Proposition 1.6, any
block subspace Y of the Tsirelson type space T (Sα, 1/2) (which is
clearly `α1 -asymptotic) satisfies Ib(Y ) = ωαω.

(iii) By Theorem 4.2 of [2], the mixed Tsirelson space X = T [(Sn, θn)n]
with θn↘0 contains no `ω1 -asymptotic subspace. On the other hand,
it was shown in [14] that Ib(Y )>ωω for any block subspace Y ofX iff
any block subspace Y admits an `ω1 -spreading model. In such a case
X is arbitrarily distortable. This holds in particular if lim n

√
θn = 1.

(iv) In [13] the Bourgain `1-block index of mixed Tsirelson spaces is
computed, and as a consequence it is proved that for any α not of
the form ωγ , γ a limit ordinal, there is a Banach space Xα with
Ib(Xα) = ωα. In particular, it is proved that (with a special choice
of sequences in the definition of Schreier families) Ib(T (Sβn , θn)n) is
either ωωξ2 or ωωξ , where βn ↗ ωξ with ξ < ω1 successor.

Proof of Theorem 2.1. We can assume that X has a bimonotone basis.
Assume X contains no arbitrarily distortable subspaces, and pick a block
subspace Y of X with D-bounded distortion, for some D ≥ 1. We restrict
our considerations to Y and use transfinite induction.

The idea of the proof of the initial step and the limit case of the inductive
step (the successor case is trivial) could be described as follows: we consider
equivalent norms, whose uniform equivalence to the original norm would
give asymptoticity of the desired order. We “glue” the norms on some special
vectors provided by the high `1-index of the space (Lemmas 2.5 and 2.6),
using methods now standard in the study of Tsirelson type spaces, and by
bounded distortion of the space we obtain uniform equivalence of these norms
to the original one on some subspace. In the proof we will also show the
relation between the constants involved, which will be useful for the next
corollary.

Initial step. The result for α = 1 follows from Theorem 1.1, but we
present here a shorter proof, whose idea was used in the proof of Theorem
1.1 given in [16], and whose scheme will also be applied in the inductive step.
Define new equivalent norms on Y as follows:

‖y‖n = sup
{ n∑
j=1

‖Ejy‖ : E1 < · · · < En intervals
}
, y ∈ Y, n ∈ N.
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We recall a standard observation providing vectors “gluing” the original norm
and the new norms:

Lemma 2.5. Let U be a Banach space with a bimonotone basis. Fix n ∈ N
and assume Ib(U) > ω. Then for any ε > 0 there is a vector x ∈ U with
1/(1 + ε) ≤ ‖x‖ ≤ ‖x‖n ≤ 1 + ε.

Proof of Lemma 2.5. Pick k ∈ N such that n2−k < ε and by Remark 2.4(i)
take a normalized block sequence (xi)n

k

i=1 ⊂ U which is (1 + ε)-equivalent to
the unit vector basis of nk-dimensional `1 space, and put x = n−1

k

∑nk

i=1 xi.
Obviously ‖x‖ ≥ 1/(1 + ε). Take any E1 < · · · < En and put

I = {i : minEj ∈ suppxi for some j}.
Since ]I ≤ n we have

n∑
j=1

∥∥∥∥Ej 1
nk

∑
i∈I

xi

∥∥∥∥ ≤ n∥∥∥∥ 1
nk

∑
i∈I

xi

∥∥∥∥ ≤ n2−k < ε.

Notice that suppxi intersects at most one Ej if i 6∈ I, hence
n∑
j=1

∥∥∥∥Ej 1
nk

∑
i 6∈I

xi

∥∥∥∥ ≤ 1
nk

∑
i 6∈I
‖xi‖ = 1,

which ends the proof of the lemma.

Now we finish the proof of the initial step. Fix ε > 0. Applying bounded
distortability of Y and standard diagonalization pick a block subspace Z of
Y such that ‖y‖n/‖y‖ ≤ (1 + ε)D‖z‖n/‖z‖ for any non-zero y, z ∈ Zn and
n ∈ N.

Fix n ∈ N and take x ∈ Zn as in Lemma 2.5. By the choice of Z we have
‖y‖n ≤ (1 + ε)3D‖y‖ for any y ∈ Zn. By definition of ‖ · ‖n,

‖E1y‖+ · · ·+ ‖Eny‖ ≤ (1 + ε)3D‖y‖
for any y ∈ Z and any intervals Ei with n ≤ E1 < · · · < En, which shows
that Z is `11-asymptotic with constant (1 + ε)3D.

Inductive step. Take 1 < α < ω1 and suppose that the assertion
holds true for all ξ < α. If α = β + 1 for some β < ω1 then by inductive
hypothesis there is a block subspace W of Y which is `β1 -asymptotic, and
thus `α1 -asymptotic.

If α is a limit ordinal pick (αn)n with αn ↗ α as in the definition of Sα.
By the inductive hypothesis we can pick a block subspace W of Y such that
W is `αn1 -asymptotic for any n ∈ N.

Let | · |n, n ∈ N, denote the norm on W given by `αn1 -asymptoticity of
W (Definition 1.8, norms defined with respect to the block basis of W ). As
before we will use some special vectors in order to “glue” the original norm
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and the new norms. Those vectors—so-called special convex combinations,
introduced in [3]—are the crucial tool in studying properties of mixed and
modified mixed Tsirelson spaces. In order to construct the vectors on `1-K-
block trees we will slightly generalize the reasoning from Lemma 4 of [12]
(cf. also [4, Lemma 4.9]).

Lemma 2.6. Let U be a Banach space with a bimonotone basis. Fix 1 ≤
η < ξ < ω1 and assume that U is `η1-asymptotic and Ib(U,K) > ωξ for some
K ≥ 1. Then for any ε > 0 there is x ∈ U with 1/K ≤ ‖x‖ ≤ |x|η ≤ 1 + ε.

If , additionally , U is `11-strongly asymptotic with a constant C1, then for
any ε > 0 there is x ∈ U satisfying 1/K ≤ ‖x‖ ≤ |x|sη ≤ C1 + ε.

The important part of the lemma is that the estimates of the norms in
the assertion do not depend on the `η1-asymptoticity constant.

Proof of Lemma 2.6. Let U be `η1-asymptotic with constant C. Let T
be an `1-K-block tree on U with o(T ) > ωξ. We can assume that for any
(xi) ∈ T also any subsequence (xim) is in T . Put
F = {(m1, . . . ,ml) ⊂ N : mi ≥ max(suppxi), 1 ≤ i ≤ l,

for some (x1, . . . , xl) ∈ T }.
The family F is hereditary and either non-compact or, by Proposition 13
of [13], compact with ι(F) ≥ o(T ) > ωξ = ι(Sξ). Hence by Theorem 1.1
of [7], there is an infinite M ⊂ N with

Sξ ∩ [M ]<∞ ⊂ F .
Using Proposition 3.6 of [19], we get F ∈ Sξ ∩ [M ]<∞ and positive scalars
(am)m∈F such that

∑
m∈F am = 1 and

∑
m∈G am < ε/C for any G ∈ Sη with

G ⊂ F . By definition of F there is (xi) ∈ T such that F = (m1, . . . ,ml) with
mi ≥ max(suppxi) for 1 ≤ i ≤ l. Let x =

∑
mi∈F amixi. Since (xi) ∈ T , we

have ‖x‖ ≥ 1/K.
Take now any η-admissible sequence E1 < · · · < Ek. Put

J =
{
j ∈ {1, . . . , k} : minEj ∈ suppxij for some ij

}
.

Let I = {ij : j ∈ J} and split the sum of the norms as follows:
k∑
j=1

‖Ejx‖ ≤
k∑
j=1

∥∥∥Ej∑
i∈I

amixi

∥∥∥+
k∑
j=1

∥∥∥Ej∑
i 6∈I

amixi

∥∥∥.
In order to estimate the first part of the sum notice that G = {mij : j ∈ J}
belongs to Sη since (minEj)kj=1 ∈ Sη and mij ≥ minEj for any j ∈ J . Hence
by `η1-asymptoticity of U and the choice of the scalars (am) we have

k∑
j=1

∥∥∥Ej∑
i∈I

amixi

∥∥∥ ≤ C∥∥∥∑
i∈I

amixi

∥∥∥ ≤ C∑
j∈J

amij ‖xij‖ = C
∑
m∈G

am ≤ ε.
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On the other hand, notice that suppxi intersects at most one Ej , provided
i 6∈ I. Therefore

k∑
j=1

∥∥∥Ej∑
i 6∈I

amixi

∥∥∥ ≤∑
i 6∈I
‖amixi‖ ≤

∑
m∈F

am = 1.

Putting together those two estimates we obtain
∑k

j=1 ‖Ejx‖ ≤ 1 + ε.
Now we consider the strongly asymptotic case. We repeat the whole proof

up to the estimation of
∑k

j=1 ‖Ej
∑

i 6∈I amixi‖, which must be dealt with in
a different way. To handle this notice that for any i 6∈ I and j = 1, . . . , k we
have minEj < min(suppxi) whenever suppxi ∩ Ej 6= ∅. Therefore the sets
Ji = {j : Ej ∩ suppxi 6= ∅}, i 6∈ I, satisfy ]Ji < min(suppxi). Hence for any
i 6∈ I the sequence (Ej ∩ suppxi)j∈Ji is 1-admissible and thus

k∑
j=1

∥∥∥Ej∑
i 6∈I

amixi

∥∥∥ ≤∑
i 6∈I

ami
∑
j∈Ji

‖Ejxi‖ ≤
∑
i 6∈I

amiC1‖xi‖ ≤ C1.

Putting those estimates together we obtain
∑k

j=1 ‖Ejx‖ ≤ C1 + ε, which
ends the proof of the lemma.

Now we return to the proof of the inductive step. Fix ε > 0 and take
a block subspace Z of W such that |y|n/‖y‖ ≤ (1 + ε)D|z|n/‖z‖ for any
non-zero y, z in Zn and n ∈ N.

Since Ib(Z) > ωα, Lemma 5.8 of [10] implies that Ib(Zn,K) ≥ ωα for
some K ≥ 1 and any n ∈ N.

Fix n ∈ N. We use Lemma 2.6 for U = Zn, η = αn, ξ = αn+1 to get a
vector x ∈ Zn with 1/K ≤ ‖x‖ and |x|n ≤ 1 + ε. Therefore, by the choice
of Z, |y|n ≤ (1 + ε)2KD‖y‖ for any y ∈ Zn. Hence, by the definition of the
norms | · |n,

‖E1y‖+ · · ·+ ‖Eky‖ ≤ (1 + ε)2KD‖y‖, y ∈ Z,
for any αn-admissible sequence n ≤ E1 < · · · < Ek and any n ∈ N, i.e. for any
α-admissible sequence E1 < · · · < Ek, which shows that Z is `α1 -asymptotic
with constant (1 + ε)2KD.

The second part of the theorem can be proved in the same way, re-
placing α-admissible sequences by α-allowable sequences. The initial step is
provided by the assumptions on the space, and the inductive step follows
analogously by use of Lemma 2.6, the only difference showing up in a worse
`α1 -asymptoticity constant, depending also on the `11-strong asymptoticity
constant C1, namely (C1 + ε)(1 + ε)KD.

The following corollary characterizes “stabilized” Bourgain `1-block index
and provides a quantitative version of Theorem 2.1 for spaces with bounded
distortion.
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Corollary 2.7. Let X be a Banach space of D-bounded distortion,
D > 1, with a bimonotone basis, not containing `1. If Ib(Y ) = Ib(X) for
any block subspace Y of X, then Ib(X) = ωω

γ for some non-limit γ < ω1.
If , additionally , `1 is finitely block represented in X, i.e. γ = β + 1 for

some β < ω1, then X is block saturated with `ωβ1 -asymptotic subspaces with
constant D + ε, for any ε > 0.

Proof. Let Ib(X) = ωα. For any β < α, by Theorem 2.1, X has an
`β1 -asymptotic subspace, thus Ib(X) > ωβ2 by Proposition 1.6. Hence for
any β < α also β2 < α, thus α = ωγ for some γ < ω1. By Remark 5.15(iii)
of [10], γ is not a limit ordinal.

Assume now that γ = β + 1, β < ω1, fix ε > 0 and pick any block
subspace Y of X. It is enough to repeat the reasoning from the proof of
Theorem 2.1 for α = ωβ .

If β = 0 we repeat the initial step obtaining some block subspace Z which
is `11-asymptotic with constant (1 + ε)3D.

If β > 0 we use the limit inductive step: we pick a subspace W which is
`ω

β

1 -asymptotic (by Theorem 2.1), and, using D-bounded distortability, we
find a subspace Z stabilizing the norms | · |n given by a sequence (αn) with
αn ↗ ωβ .

We shall need the following result from [10]: if Ib(U) > ωω
β for a Banach

space U with a basis, then Ib(U, 1 + ε) ≥ ωω
β for any ε > 0 ([10, proof of

Theorem 1.1, Remark 4.3]). Now we repeat the reasoning for Z as in the
proof of Theorem 2.1 with K = 1 + ε, showing that Z is `ωβ1 -asymptotic
with constant (1 + ε)3D, which ends the proof.

Remark 2.8.

(i) Observe that any Banach space X has a block subspace Y with
Ib(Z) = Ib(Y ) for any block subspace Z of Y . Indeed, either X
contains `1, or Ib(X) < ω1 ([5]) and we can use standard diagonali-
zation.

(ii) It follows that in spaces with bounded distortion, with the notation
as in Corollary 2.7, the spectral index I∆(X) defined in [19, Def.
4.22] is equal to ωβ (use [19, Theorem 4.23]).

(iii) The norms (‖·‖n)n appearing in the first step of the proof of Theorem
2.1 were used in the proof of arbitrary distortion of the Schlumprecht
space [20]. These norms give (2−ε)-distortion of the Tsirelson space
T = T [S1, 1/2] for any ε > 0; moreover, the norms (| · |n)n given
by `n1 -asymptoticity of T do not arbitrarily distort T ([18, Thm.
2.1, Prop. 1.1]). In the case of mixed and modified mixed Tsirelson
spaces T [(Sαn , θn)n] and TM [(Sαn , θn)n] studied in [3, 4, 14], the
norms (| · |αn)n distort the whole space under certain conditions on
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(αn, θn)n. In [3, 4] the special convex combinations, which we used
in our proof, are applied to produce an asymptotic biorthogonal
system.

3. The c0 case. In an obvious way, we can formulate analogous defini-
tions of the c0-block index, denoted here by Jb(X), cα0 -spreading models and
cα0 -asymptotic spaces, obtaining various measures of “proximity” of a Banach
space to c0. The notion of c0-block index was investigated in particular in
[10]; in [8] higher order c0-spreading models were used to construct a strictly
singular operator on a reflexive `1-asymptotic HI space.

We will sketch here briefly the variant of the reasoning presented in the
previous section, proving Theorem 2.1 in the c0 case.

Theorem 3.1. Let X be a Banach space with a basis. Fix α < ω1.
Assume that Jb(Y ) > ωα for any block subspace Y of X. Then X contains
either an arbitrarily distortable subspace or a cα0 -asymptotic subspace.

If , additionally , X is c1
0-strongly asymptotic, then X contains either an

arbitrarily distortable subspace or a cα0 -strongly asymptotic subspace.

Proof. We shall need suitable norms reflecting c0-asymptoticity of a space.

Definition 3.2. Let U be a Banach space with a basis. Fix α < ω1 and
assume U is cα0 -asymptotic with constant C. The associated norm | · |α is
given by |x|α = sup{|φ(x)| : φ ∈ U∗, |φ|∗α ≤ 1} for x ∈ U , where

|φ|∗α = sup
{ k∑
i=1

‖φ|EjU‖∗ : E1 < · · · < Ek α-admissible
}
, φ ∈ U∗.

As before, if U is cα0 -strongly asymptotic, in the definition of the correspond-
ing norm | · |sα we use allowable sequences instead of admissible ones.

Remark 3.3. Clearly ‖ · ‖∗ ≤ | · |∗α ≤ C‖ · ‖∗ and |x|α ≤ max{‖Ejx‖ :
1 ≤ j ≤ k} for any x ∈ U and α-admissible E1 < · · · < Ek, and the same
relations hold in the strongly asymptotic case.

As before, we will restrict the considerations to the case where X has a
block subspace Y with D-bounded distortion.

Initial step. Define on Y ∗ new equivalent norms as follows:

‖φ‖∗n = sup
{ n∑
j=1

‖φ|EjY ‖∗ : E1 < · · · < En intervals
}
, φ ∈ Y ∗, n ∈ N.

Let ‖y‖n = sup{|φ(y)| : φ ∈ Y ∗, ‖φ‖∗n ≤ 1} for y ∈ Y and n ∈ N.

Lemma 3.4. Let U be a Banach space with a bimonotone basis. Fix n ∈ N
and assume Jb(U) > ω. Then for any ε > 0 there is a vector x ∈ U with
1/(1 + ε) ≤ ‖x‖n ≤ ‖x‖ ≤ 1 + ε.
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Proof of Lemma 3.4. Pick k ∈ N such that n2−k < ε, take a normalized
block sequence (xi)n

k

i=1 ⊂ U which is (1+ε)-equivalent to the unit vector basis
of a c0 space of dimension nk, and put x =

∑nk

i=1 xi. Obviously ‖x‖ ≤ 1 + ε.
Since the basis is bimonotone we can take normalized functionals (φi)n

k

i=1 ⊂
U∗ with φi(xi) = 1 and φi(y) = 0 for any y ∈ U with supp y∩suppxi = ∅ for
1 ≤ i ≤ nk. Put φ = n−k

∑nk

i=1 φi. Since φ(x) = 1 it is enough to show that
‖φ‖∗n ≤ 1 + ε. Take any E1 < · · · < En, define the set I as in the proof of
Lemma 2.5 and proceed by computing the norms of φi|EjU instead of Ejxi.
The second estimate follows from the fact that by the choice of (φi), for any
i 6∈ I there is at most one 1 ≤ j ≤ n with φi|EjU 6≡ 0.

Returning to the proof of the initial step, fix ε > 0 and take a block
subspace Z of Y such that ‖y‖n/‖y‖ ≤ (1 + ε)D‖z‖n/‖z‖ for any non-zero
y, z ∈ Zn and any n ∈ N. For a fixed n ∈ N take x ∈ Zn as in Lemma 3.4 to
get ‖y‖ ≤ (1 + ε)3D‖y‖n for any y ∈ Zn. It follows that

‖y‖ ≤ (1 + ε)3D max
j=1,...,n

‖Ejy‖

for any y ∈ Y , n ∈ N, and n ≤ E1 < · · · < En, which shows that Z is
c1

0-asymptotic with constant (1 + ε)3D.

Inductive step. Take 1 < α < ω1 and assume that the conclusion
holds true for all ξ < α. If α = β + 1 for some β < ω1 then by the inductive
hypothesis there is a block subspace W of Y which is cβ0 -asymptotic, and
hence also cα0 -asymptotic.

If α is a limit ordinal take (αn)n with αn ↗ α as in the definition of Sα.
By the inductive hypothesis we can pick a subspace W of Y such that W is
cαn0 -asymptotic for any n ∈ N.

Let | · |n and | · |∗n denote the norms on W and W ∗ respectively given by
the cαn0 -asymptoticity of W . We need the following analogue of Lemma 2.6:

Lemma 3.5. Let U be a Banach space with a bimonotone basis. Fix ordi-
nals η < ξ < ω1 and assume U is cη0-asymptotic and Jb(U,K) > ωξ for some
K ≥ 1. Then for any ε > 0 there is x ∈ U with 1/(1 + ε) ≤ |x|η ≤ ‖x‖ ≤ K.

If , additionally , U is c1
0-strongly asymptotic with constant C1, then for

any ε > 0 there is x ∈ U satisfying 1/(C1 + ε) ≤ |x|sη ≤ ‖x‖ ≤ K.

Proof of Lemma 3.5. Let U be cη0-asymptotic with constant C. Proceed
as in the proof of Lemma 2.6, obtaining a normalized block sequence (xi)li=1

in a c0-K-block tree, a set F = (m1, . . . ,ml) ∈ Sξ with mi ≥ max(suppxi),
1 ≤ i ≤ l and suitable positive scalars (am)m∈F .

Pick normalized functionals (φi)li=1 ⊂ U∗ with φi(xi) = 1 and φi(y) = 0
for any y ∈ U with supp y ∩ suppxi = ∅ for 1 ≤ i ≤ l. Put x =

∑l
i=1 xi

and φ =
∑l

i=1 amiφi. Then ‖x‖ ≤ K. Since φ(x) = 1 it is enough to show
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that |φ|∗η ≤ 1 + ε in the asymptotic case and ‖φ‖η ≤ C1 + ε in the strongly
asymptotic case.

Take any η-admissible sequence E1 < · · · < Ek, define the sets J , I and Ji
for i 6∈ I as in the proof of Lemma 2.6 and proceed to compute the norms of
φi|EjU instead of Ejxi. To estimate

∑k
j=1 ‖(

∑
i∈I amiφi)|EjU )‖∗ use Remark

3.3. To estimate
∑k

j=1 ‖(
∑

i 6∈I amiφi)|EjU )‖∗ use Remark 3.3 and the fact
that φi|EjU ≡ 0 whenever j 6∈ Ji.

Now we return to the proof of the inductive step. Fix ε > 0 and take a
block subspace Z of W such that |y|n/‖y‖ ≤ (1 + ε)D|z|n/‖z‖ for all n ∈ N
and any non-zero y, z ∈ Zn.

Since Jb(Z) > ωα, we have Jb(Zn,K) ≥ ωα for some K ≥ 1 and any
n ∈ N (it is easy to check that Lemma 5.8 of [10] is also valid in the c0

case). Fix n ∈ N. Apply Lemma 3.5 for Zn, αn, αn+1 to get x ∈ Zn with
1/(1 + ε) ≤ |x|n ≤ ‖x‖ ≤ K. It follows that ‖y‖ ≤ (1 + ε)2KD|y|n for any
y ∈ Zn and thus

‖y‖ ≤ (1 + ε)2KD max
j=1,...,k

‖Ejy‖

for any y ∈ Y and α-admissible E1 < · · · < Ek, which shows that Z is
cα0 -asymptotic with constant (1 + ε)2KD.

The part for cα0 -strongly asymptotic spaces follows easily as in the `1
case.

Remark 3.6. Corollary 2.7 also remains true in the c0 case, since the
result of [10] also holds for c0: if Jb(U) > ωω

β for a Banach space U , then
Jb(U, 1 + ε) ≥ ωωβ for any ε > 0 ([10, Remark 4.3]).

One can consider Theorem 2.1 also in the `p case, 1 < p < ∞, using
the corresponding notions partly analyzed in [10]. Recall here that by [16]
any `p-asymptotic Banach space, 1 < p < ∞, not containing finite copies
of `1 uniformly is arbitrarily distortable. Theorem 2.1 remains true in the
`p-asymptotic variant.

Notice that `αp -asymptoticity of a space U with a basis is characterized
by two norms equivalent to the original one, namely the norm

|x|α = sup{(‖E1x‖p + · · ·+ ‖Ekx‖p)1/p : E1 < · · · < Ek α-admissible}
and the predual norm ||| · |||α to

|||φ|||∗α = sup{((‖φ|E1U‖∗)q + · · ·+ (‖φ|EkU‖
∗)q)1/q :

E1 < · · · < Ek α-admissible}
where 1/p+1/q = 1, thus in order to show Theorem 2.1 in the `p-asymptotic
case one should combine the proofs for the `1 and c0 cases.

The initial step of the proof follows from Theorem 1.1 of [17]. In the
inductive step for a limit ordinal α, and αn ↗ α, working in a subspace Y
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with bounded distortion we pick a block subspace Z stabilizing the norms
(| · |αn)n and (||| · |||αn)n.

We need the following version of [19, Prop. 3.6] (proved by induction
analogously to the original version): for any η < ξ < ω1, 1 < r <∞, infinite
M ⊂ N, and ε > 0 there are F ∈ Sξ ∩ [M ]<∞ and positive scalars (am)m∈F
such that

∑
m∈F a

r
m = 1 and

∑
m∈G am < ε for any G ∈ Sη with G ⊂ F .

Having this we prove an analogue of Lemma 2.6 choosing a vector x =∑
mi∈F amixi with (am)m∈F given by the observation above for p = r. An

analogue of Lemma 3.5 also holds true: to prove it one uses a vector x =∑
mi∈F a

q/p
mi xi and a functional φ =

∑
mi∈F amiφi, with (am)m∈F given by

the observation above for r = q. Once we have suitable versions of Lemmas
2.6, 3.5 we are able to “glue” the norms (| · |αn)n and (||| · |||αn)n on Z and
obtain `αp -asymptoticity.
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