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Boundedness of sublinear operators in
Triebel–Lizorkin spaces via atoms

by

Liguang Liu and Dachun Yang (Beijing)

Abstract. Let s ∈ R, p ∈ (0, 1] and q ∈ [p,∞). It is proved that a sublinear opera-
tor T uniquely extends to a bounded sublinear operator from the Triebel–Lizorkin space
Ḟ s

p,q(Rn) to a quasi-Banach space B if and only if

sup{‖T (a)‖B : a is an infinitely differentiable (p, q, s)-atom of Ḟ s
p,q(Rn)} < ∞,

where the (p, q, s)-atom of Ḟ s
p,q(Rn) is as defined by Han, Paluszyński and Weiss.

1. Introduction. It is known that atomic characterization is a power-
ful tool in investigating the boundedness of operators in Hardy spaces on
Euclidean spaces. In principle, boundedness of operators in Hardy spaces
can be deduced from their behavior on atoms. However, Meyer, Taibleson
and Weiss [21, p. 513] gave an example of f ∈ H1(Rn) whose norm cannot
be attained by finite decompositions of into (1,∞)-atoms; see also [12, 2].
Based on this fact, Bownik [2, Theorem 2] constructed a linear functional
defined on a dense subspace of H1(Rn), which maps all (1,∞)-atoms into
bounded scalars, but does not extend to a bounded linear functional on
the whole H1(Rn). This implies that proving that a (sub)linear operator T
maps all (p,∞)-atoms into uniformly bounded elements of B cannot guar-
antee the boundedness of T from the whole Hp(Rn) with p ∈ (0, 1] to some
quasi-Banach space B. This phenomenon was also essentially observed by
Meyer and Coifman in [20, p. 19].

Then a natural question is to find some simple and useful conditions
associated with atoms which can guarantee the boundedness of (sub)linear
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operators in Hardy spaces. In fact, Yabuta [24] gave some sufficient condi-
tions for the boundedness of linear operator T from Hp(Rn) with p ∈ (0, 1]
to Lq(Rn) with q ≥ 1 or Hq(Rn) with q ∈ [p, 1]. By means of the Littlewood–
Paley S-function characterization of Hp(Rn), it was proved in [25] that a
sublinear operator T extends to a bounded sublinear operator from Hp(Rn)
with p ∈ (0, 1] to some quasi-Banach space B if and only if T maps all
(p, 2, s)-atoms of Hp(Rn) for some s ≥ bn(1/p− 1)c into uniformly bounded
elements of B; here and in what follows, bxc for x ∈ R denotes the maxi-
mal integer no more than x. Using the Calderón reproducing formula, Zhao
[27] independently proved that if T is a linear operator which is bounded
on L2(Rn) and also uniformly bounded on all (p, 2, s0)-atoms of Hp(Rn)
with s0 = bn(1/p − 1)c, then T extends to a bounded linear operator from
Hp(Rn) to Lp(Rn). We mention that the result of Yabuta [24] was gener-
alized to Ahlfors 1-regular metric measure spaces in [17], and the result of
[25] was extended to RD-spaces in [26], where an RD-space (see [14, 15]) is
a space of homogeneous type in the sense of Coifman and Weiss [7, 8] with
the additional property that a reverse doubling property holds. Comparing
these results with the example of Meyer, Taibleson and Weiss in [21] and
Bownik’s results in [2], we see that as regards the boundedness of sublin-
ear operators in Hardy spaces, there exists a structural difference between
(p, 2, s)-atoms and (p,∞, s)-atoms.

Recently, Meda, Sjögren and Vallarino [19] independently obtained a
remarkable result by a different method from [25]. For q ∈ (1,∞], denote by
H1,q

fin (Rn) the vector space of all finite linear combinations of (1, q, 0)-atoms
of H1(Rn) endowed with the norm

‖f‖
H1, q

fin (Rn)
≡ inf

{ N∑
j=1

|λj | : f =
N∑
j=1

λjaj , N ∈ N, {λj}Nj=1 ⊂ C, and

{aj}Nj=1 are (1, q, 0)-atoms of H1(Rn)
}
.

By means of the grand maximal function characterization for H1(Rn), Meda,
Sjögren and Vallarino [19] proved that ‖ · ‖H1(Rn) and ‖ · ‖

H1, q
fin (Rn)

are

equivalent quasi-norms on H1, q
fin (Rn) with q ∈ (1,∞) or on H1,∞

fin (Rn) ∩
C(Rn), where C(Rn) denotes the set of continuous functions. From this,
they further deduced that a linear operator defined on H1, q

fin (Rn) which
maps (1, q, 0)-atoms of H1(Rn) or continuous (1,∞, 0)-atoms of H1(Rn)
into uniformly bounded elements of some Banach space B uniquely ex-
tends to a bounded operator from H1(Rn) to B. In [13], the full results
of [19] are generalized to Hp(X ) and quasi-Banach-valued sublinear oper-
ators, where X is an RD-space having “dimension n” in some sense and
p ∈ (n/(n+ 1), 1].
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It is also well-known that Triebel–Lizorkin spaces embrace many clas-
sical function spaces, such as Lebesgue spaces, Hardy spaces, BMO and
Sobolev spaces; see [23]. Frazier and Jawerth established a “smooth” atomic
decomposition for the Triebel–Lizorkin spaces based on the ϕ-transform
techniques; see [10, 11]. From a different aspect, using the Littlewood–Paley
S-function, Han, Paluszyński and Weiss [16] gave another kind of atomic
characterization for the Triebel–Lizorkin space Ḟ sp,q(Rn) that is completely
analogous to the classical atomic characterization for Hardy spaces, where
s ∈ R, p ∈ (0, 1] and q ∈ [p,∞). (We remark that atomic decompositions
of the type considered in [16] were also considered by Frazier and Jawerth
[10]; see Theorem 7.4 therein. These non-smooth Frazier–Jawerth atoms are
introduced implicitly, using the machinery of the φ-transform, but the de-
compositions are of the same type as in [16].) Then the question naturally
arises whether the boundedness of a sublinear operator in these Triebel–
Lizorkin spaces can be deduced from its uniform boundedness on atoms of
Han, Paluszyński and Weiss.

The main purpose of this paper is to answer this question. Indeed, we
extend the results of [19] to the Triebel–Lizorkin spaces Ḟ sp,q(Rn) with s ∈ R,
p ∈ (0, 1] and q ∈ [p,∞) by using the atomic decomposition of these spaces
in [16]; see Theorem 2.1, Corollary 2.1 and Theorem 2.2 below. In con-
trast to the method in [19] which heavily depends on the maximal function
characterization of Hardy spaces, here we mainly use the Littlewood–Paley
S-function characterization of Triebel–Lizorkin spaces. We should mention
that some ideas used in this paper come from [19, 3, 16, 25].

The organization of this paper is as follows. In Section 2, we recall
some necessary notions including Triebel–Lizorkin spaces and atoms of Han,
Paluszyński and Weiss for these spaces, and also state the main results of this
paper (Theorems 2.1 and 2.2). In Section 3, we obtain a finite atomic decom-
position for a certain dense subspace of the Triebel–Lizorkin space consid-
ered, that is, we give the proof of Theorem 2.1. Finally, in Section 4, applying
Theorem 2.1, we establish some criterion for boundedness of sublinear oper-
ators in Triebel–Lizorkin spaces, that is, we give the proof of Theorem 2.2.
We point out that this criterion is useful in the study of boundedness for
(sub)linear operators in Triebel–Lizorkin spaces; see, for example, [5, 6, 18].

Throughout this paper, let N ≡ {1, 2, . . .}, Z+ ≡ N ∪ {0} and R+ ≡
[0,∞). Denote by ]E the cardinality of any given set E. We also denote by C
a positive constant independent of the main parameters involved, which may
vary at different occurrences. We denote f ≤ Cg and f ≥ Cg, respectively,
by f . g and f & g. If f . g . f , we write f ∼ g.

2. Main results. To state our main results, we first recall some no-
tation and notions; see, for example, [10, 11, 23]. Denote by C∞(Rn) the
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set of infinitely differentiable functions on Rn and C∞c (Rn) the set of all
C∞(Rn) functions with compact support. Let S(Rn) be the space of Schwartz
functions on Rn. Denote by S∞(Rn) the set of functions φ ∈ S(Rn) such
that

	
Rn φ(x)xγ dx = 0 for all multiindices γ ∈ (Z+)n. Let (S(Rn))′ and

(S∞(Rn))′ be the dual spaces of S(Rn) and S∞(Rn), respectively, and en-
dow them with the weak-∗ topology. Let φ ∈ S(Rn) be such that

(2.1) supp φ̂ ⊂ {x ∈ Rn : 1/2 ≤ |x| ≤ 2},

and there exists a positive constant C such that for all 3/5 ≤ |x| ≤ 5/3,

(2.2) |φ̂(x)| ≥ C;

here and in what follows, φ̂ represents the Fourier transform of φ, namely,
φ̂(x) ≡

	
Rn φ(ξ)e−ix·ξ dξ. We set φj(x) ≡ 2jnφ(2jx) for all x ∈ Rn and j ∈ Z.

For each cube Q in Rn, denote by cQ the center of Q and by `(Q) the
side length of Q. For every ν ∈ Z and k ∈ Zn, let Qνk be the dyadic cube

Qνk ≡ {(x1, . . . , xn) ∈ Rn : ki ≤ 2νxi < ki + 1, i = 1, . . . , n}.

Denote by Q the collection of all dyadic cubes in Rn, that is,

Q ≡ {Qνk : ν ∈ Z, k ∈ Zn}.

Definition 2.1. Suppose that φ ∈ S(Rn) satisfies (2.1) and (2.2). For
s ∈ R, p ∈ (0,∞) and q ∈ (0,∞], the Triebel–Lizorkin space Ḟ sp,q(Rn) is the
collection of all f ∈ (S∞(Rn))′ such that

‖f‖Ḟ s
p,q(Rn) ≡

∥∥∥(∑
ν∈Z

2νsq|φν ∗ f |q
)1/q∥∥∥

Lp(Rn)
<∞,

with the usual modification for q =∞.

Remark 2.1. In some references (e.g. [10, 11]) in the definition of
Ḟ sp,q(Rn), (S∞(Rn))′ is replaced by (S(Rn))′/P(Rn), where P(Rn) denotes
the set of all polynomials in Rn. Definition 2.1 was given by Triebel [23].

Recall that Ḟ 0
p, 2(Rn) = Lp(Rn) when p ∈ (1,∞) and Ḟ 0

p, 2(Rn) = Hp(Rn)
when p ∈ (0, 1) (see [23]). It is also known that the definition of Triebel–
Lizorkin space as above is independent of the choice of φ; see, for example
[10, 23]. For s ∈ R and p, q ∈ (0,∞), the Littlewood–Paley S-function (or
Lusin function) is used to characterize the Triebel–Lizorkin spaces. Precisely,
letting a be some fixed positive constant, and choosing φ ∈ S(Rn) satisfying
(2.1) and (2.2), for f ∈ (S∞(Rn))′ and x ∈ Rn we define

(2.3) Ṡsa, q(f)(x) ≡
{∑
k∈Z

�

|x−y|≤a2−k

2nk+ksq|(φk ∗ f)(y)|q dy
}1/q

.
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Then there exists a positive constant C such that for all f ∈ Ḟ sp,q(Rn),

(2.4)
1
C
‖f‖Ḟ s

p,q(Rn) ≤ ‖Ṡ
s
a,q(f)‖Lp(Rn) ≤ C‖f‖Ḟ s

p,q(Rn);

see, for example, [23] for more details.
To obtain the “atomic” characterization for Ḟ sp,q(Rn) where the coef-

ficients, as in the Hardy spaces case, belong to `p with p ∈ (0, 1], Han,
Paluszyński and Weiss [16] introduce the following atoms.

Definition 2.2. Let s ∈ R, p ∈ (0, 1] and q ∈ [p,∞). A distribution
a ∈ (S(Rn))′ is said to be a (p, q, s)-atom of Ḟ sp,q(Rn) if

(i) supp a ⊂ Q, where Q is a cube in Rn;
(ii) ‖a‖Ḟ s

q, q(Rn) ≤ |Q|
1/q−1/p;

(iii) for every g ∈ S(Rn), a polynomial P of degree at most N ≡
max{bn(1/p−1)−sc,−1} and a smooth cutoff function ηQ ∈ S(Rn)
such that ηQ ≡ 1 on Q and ηQ ≡ 0 outside 2Q, we have

〈a, g〉 = 〈a, (g − P )ηQ〉.

Here and in what follows, 2Q denotes the cube centered at cQ and of side
length 2`(Q), and P disappears if N = −1. In the above formula, 〈f, φ〉
denotes the natural pairing of f ∈ (S(Rn))′ and φ ∈ S(Rn), and 〈f, φ〉 ≡	
Rn f(x)φ(x) dx when f is a function.

Observe that if a (p, q, s)-atom of Ḟ sp,q(Rn) is locally integrable, then
condition (iii) in Definition 2.2 is again the usual cancellation condition; see
[16]. Moreover, the (p, 2, 0)-atoms of Ḟ sp,q(Rn) are just the classical atoms of
Hardy spaces Hp(Rn) by recalling that Ḟ 0

2, 2(Rn) = L2(Rn) (see [23]).
Han, Paluszyński and Weiss [16, Theorem 1] established the following

“atomic” decomposition for Ḟ sp,q(Rn) when s ∈ R, p ∈ (0, 1] and q ∈ [p,∞).

Lemma 2.1. Let s ∈ R, p ∈ (0, 1] and q ∈ [p,∞). Then f ∈ Ḟ sp,q(Rn) if
and only if there exist {λk}k∈Z ⊂ C and (p, q, s)-atoms {ak}k∈N such that∑

k∈N |λk|p < ∞ and f =
∑

k∈N λkak in (S∞(Rn))′. Moreover , there exists
a positive constant C such that for all f ∈ Ḟ sp,q(Rn),

1
C
‖f‖Ḟ s

p,q(Rn) ≤ inf
{(∑

k∈N
|λk|p

)1/p}
≤ C‖f‖Ḟ s

p,q(Rn),

where the infimum is taken over all the decompositions of f as above.

Let s ∈ R, p ∈ (0, 1] and q ∈ [p,∞). Denote by Ḟ s, fin
p, q (Rn) the vector

space of all finite linear combinations of infinitely differentiable (p, q, s)-
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atoms of Ḟ sp,q(Rn) endowed with the quasi-norm

(2.5) ‖f‖
Ḟ s,fin

p,q (Rn)

≡ inf
{( N∑

j=1

|λj |p
)1/p

: f =
N∑
j=1

λjaj , N ∈ N, {λj}Nj=1 ⊂ C,

{aj}Nj=1 are infinitely differentiable (p, q, s)-atoms of Ḟ sp,q(Rn)
}
.

For s ∈ R, p ∈ (0, 1] and q ∈ [p,∞), it follows from Lemma 4.1 below that
Ḟ s,fin
p,q (Rn) is a dense subset of Ḟ sp,q(Rn). Moreover, by Lemma 2.1, there

exists a positive constant C such that for all f ∈ Ḟ s,fin
p,q (Rn),

(2.6) ‖f‖Ḟ s
p,q(Rn) ≤ C‖f‖Ḟ s,fin

p,q (Rn)
.

The converse inequality for all f ∈ Ḟ s,fin
p,q (Rn) is established in the following

theorem.

Theorem 2.1. Let s ∈ R, p ∈ (0, 1] and q ∈ [p,∞). Then for any
given f ∈ Ḟ s,fin

p,q (Rn), there exist some N ∈ N, a sequence {λk}Nk=1 ⊂ C and
infinitely differentiable (p, q, s)-atoms {ak}Nk=1 of Ḟ sp,q(Rn) such that f =∑N

k=1 λkak pointwise, and( N∑
k=1

|λk|p
)1/p

≤ C‖f‖Ḟ s
p,q(Rn),

where C is a positive constant independent of f .

Here we describe some ideas used in the proof of Theorem 2.1 in Sec-
tion 3. Using the Calderón reproducing formula (see Lemma 3.2 below), we
write f as a sum over all dyadic cubes in Rn (see (3.3)), which essentially
gives the atomic decomposition of f (see [16] or the property (iii) in the
proof of Theorem 2.1). To obtain a finite atomic decomposition of f , we set

Q(0, 2N ) ≡
{

(x1, . . . , xn) ∈ Rn : −1 ≤ 2−Nxi < 1, i = 1, . . . , n
}
,

and then we carefully classify all dyadic cubes in Rn (see (3.4)). Based on this
subtle classification, we write f = fN + bN as in (3.7), where fN is a linear
combination of finitely many (p, q, s)-atoms of Ḟ sp,q(Rn) and the support of
each atom lies in a multiple of some dyadic cube Q with Q ⊂ Q(0, 2N )
and `(Q) ≥ 2−N . So our task is then to show that bN is an arbitrarily small
multiple of a certain (p, q, s)-atom of Ḟ sp,q(Rn) for large N . From this, we can
deduce the desired conclusion of Theorem 2.1; see Section 3 for the details.

The following conclusion is an easy corollary of Theorem 2.1 and (2.6).
We omit the details.
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Corollary 2.1. Let s ∈ R, p ∈ (0, 1] and q ∈ [p,∞). Then there exists
a positive constant C such that for all f ∈ Ḟ s,fin

p, q (Rn),
1
C
‖f‖Ḟ s

p,q(Rn) ≤ ‖f‖Ḟ s,fin
p,q (Rn)

≤ C‖f‖Ḟ s
p,q(Rn).

As an application of Theorem 2.1 and Corollary 2.1, we obtain a bound-
edness criterion for sublinear operators from Ḟ sp,q(Rn) to quasi-Banach spaces.
To state it, we need the following notions; see, for example, [26].

Definition 2.3. (i) A quasi-Banach space B is a vector space endowed
with a quasi-norm ‖·‖B which is non-negative, non-degenerate (i.e., ‖f‖B = 0
if and only if f = 0), homogeneous, and obeys the quasi-triangle inequality,
i.e., there exists a constant K ≥ 1 such that ‖f + g‖B ≤ K(‖f‖B + ‖g‖B)
for all f, g ∈ B.

(ii) Let r ∈ (0, 1]. A quasi-Banach space Br with the quasi norm ‖ · ‖Br

is said to be an r-quasi-Banach space if

‖f + g‖rBr
≤ ‖f‖rBr

+ ‖g‖rBr
for all f, g ∈ Br.

(iii) For any given r-quasi-Banach space Br with r ∈ (0, 1] and a linear
space Y, an operator T from Y to Br is called Br-sublinear if for all f , g ∈ Y
and λ, ν ∈ C,

(2.7) ‖T (λf + νg)‖Br ≤ (|λ|r‖T (f)‖rBr
+ |ν|r‖T (g)‖rBr

)1/r

and

(2.8) ‖T (f)− T (g)‖Br ≤ ‖T (f − g)‖Br .

Theorem 2.2. Let s ∈ R, p ∈ (0, 1], q ∈ [p,∞), r ∈ [p, 1] and Br be
an r-quasi-Banach space. If T : Ḟ s,fin

p,q (Rn) → Br is a Br-sublinear operator
such that

(2.9) sup{‖Ta‖Br : a is an infinitely differentiable
(p, q, s)-atom of Ḟ sp,q(Rn)} <∞,

then T uniquely extends to a bounded Br-sublinear operator from Ḟ sp,q(Rn)
to Br.

Remark 2.2. (a) Let p, q, s and r be as in Theorem 2.2. If T is a
bounded Br-sublinear operator from Ḟ sp,q(Rn) to Br, by Lemma 2.1 we know
that T satisfies (2.9). Thus (2.9) is also necessary for the boundedness of T
from Ḟ sp,q(Rn) to Br.

(b) Any Banach space is a1-quasi-Banach space, and theTriebel–Lizorkin
spaces Ḟ sp,q(Rn) with s ∈ R, p ∈ (0, 1] and q ∈ [p,∞) are typical p-quasi-
Banach spaces.

(c) Obviously, if T is linear, then T is Br-sublinear. Moreover, if Br is
a space of functions and T is sublinear in the classical sense, and T (f) ≥ 0
for all f ∈ Y, then T is also Br-sublinear.
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(d) According to the Aoki–Rolewicz theorem (see [1] or [22]), any quasi-
Banach space is, essentially, an r-quasi-Banach space, where

r = 1/log2(2K)

and K is as in Definition 2.3(i). Thus, Theorem 2.2 eventually holds for all
quasi-Banach spaces satisfying K ∈ [1, 21/p−1].

3. Proof of Theorem 2.1. The main purpose of this section is to
prove Theorem 2.1. The following lemma is a variant of [11, Lemma (5.12)],
which is used to obtain the Calderón reproducing formula. A detailed proof
is included here for the reader’s convenience; see also [9, Theorem 2.6] and
[11, Lemma (1.1)].

Lemma 3.1. For any given L ∈ Z+, there exist real-valued radial func-
tions ψ ∈ C∞c (Rn) and ϕ ∈ S∞(Rn) such that

(i) suppψ ⊂ B(0, 1) ≡ {x ∈ Rn : |x| < 1};
(ii)

	
Rn ψ(x)xγ dx = 0 for all γ ∈ (Z+)n and |γ| ≤ L;

(iii) ψ̂ ≥ 0 and there exists a positive constant C such that ψ̂(ξ) ≥ C for
all 1/2 ≤ |ξ| ≤ 2;

(iv) ϕ̂ ≥ 0, supp ϕ̂ ⊂ {ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2} and there exists a positive
constant C such that ϕ̂(ξ) ≥ C for all 3/5 ≤ |ξ| ≤ 5/3;

(v)
∑

j∈Z ψ̂(2−jξ)ϕ̂(2−jξ) = 1 for all ξ ∈ Rn \ {0}.

Proof. Choose N ∈ N satisfying N ≥ bL/2c + 1. Let θ ∈ C∞c (Rn) be a
real-valued radial function supported on {x ∈ Rn : |x| < 1/2} and θ̂(0) = 1.
Notice that θ being real-valued and radial implies that θ̂ is also real-valued
and radial. So there exists ε > 0 such that θ̂(x) > 1/2 for all |x| ≤ 2ε. Set
h ≡ (−∆)Nθε, where ∆ is the Laplace operator and θε(x) ≡ ε−nθ(x/ε) for
all x ∈ Rn. Integration by parts shows that h satisfies (ii). For all x ∈ Rn

with 1/2 ≤ |x| ≤ 2, we have ĥ(x) = |x|2N θ̂(εx) ≥ 8−N . Set ψ ≡ h ∗ h. Then
it is easy to verify that ψ is a real-valued radial function satisfying (i), (ii),
ψ̂ ≥ 0 and

(3.1) ψ̂(x) ≥ 64−N for all 1/2 ≤ |x| ≤ 2.

Now we select a non-negative radial function η with supp η ⊂ {x ∈ Rn :
1/2 ≤ |x| ≤ 2} and η(x) ≥ 1/2 for all 3/5 ≤ |x| ≤ 5/3. Then we set g(ξ) ≡∑

k∈Z η(2kξ)ψ̂(2kξ) for all ξ ∈ Rn. This combined with (3.1) implies that
there exists a positive constant C depending on L such that C−1 ≤ g(ξ) ≤ C
for all ξ ∈ Rn \{0}. Let ϕ be given by ϕ̂(ξ) ≡ η(ξ)/g(ξ) for all ξ ∈ Rn. Then
it is easy to deduce that ϕ satisfies (iv) and (v). This finishes the proof of
Lemma 3.1.
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By Lemma 3.1 and an argument as in the proof of [11, p. 122, The-
orem 3], we obtain the following Calderón reproducing formula, which is
the fundamental tool used to obtain the atomic decompositions of Ḟ sp,q(Rn).
The proof of Lemma 3.2 is omitted since it is similar to that of [11, p. 120,
Theorem 1] and [11, p. 122, Theorem 3].

Lemma 3.2. Let ϕ ∈ S∞(Rn) and ψ ∈ C∞c (Rn) be as in Lemma 3.1.
Then

(i) if f ∈ S(Rn), then for all x ∈ Rn,

(3.2) f(x) =
∑
k∈Z

(ψk ∗ ϕk ∗ f)(x);

(ii) if f ∈ S∞(Rn), then (3.2) holds in S∞(Rn); and if f ∈ (S∞(Rn))′,
then (3.2) holds in (S∞(Rn))′.

For any L ∈ Z+, denote by SL(Rn) the space of all functions in S(Rn)
with vanishing moments up to order L, i.e.,

SL(Rn) ≡
{
ϕ ∈ S(Rn) :

�

Rn

ϕ(x)xγ dx = 0 for all |γ| ≤ L
}
.

When L = −1, we set S−1(Rn) ≡ S(Rn). Recall that for any function φ, we
set φk(x) ≡ 2knφ(2kx) for all x ∈ Rn and k ∈ Z. The following technical
lemma plays a crucial role in the proof of Theorem 2.1.

Lemma 3.3.

(i) Let g ∈ S(Rn) and ψ ∈ SL(Rn) with L ∈ Z+. Then for any given
M1, L1 ∈ Z+ with L1 ≤ L, there exists a positive constant C such
that for all k ∈ Z+ and x ∈ Rn,

|(ψk ∗ g)(x)| ≤ C2−kL1(1 + |x|)−M1 .

(ii) Let g ∈ SL(Rn) with L ∈ Z+ ∪ {−1} and ψ ∈ S0(Rn). Then for any
given M2 ∈ Z+, L2 ∈ Z+ ∪{−1} with L2 ≤ L, there exists a positive
constant C such that for all k ≤ 0 and x ∈ Rn,

|(ψk ∗ g)(x)| ≤ C2k(n+L2+1)(1 + 2k|x|)−M2 .

Proof. By a procedure as in [11, p. 121, Lemma 2], we obtain (i). Prop-
erty (ii) is essentially given in [11, p. 122, Lemma 4].

Let φ ∈ S∞(Rn) and ψ ∈ SL(Rn) with L ∈ Z+. Notice that for all ν,
j ∈ Z and z ∈ Rn, φν ∗ ψj(z) = 2νn(ψj−ν ∗ φ)(2νz). From this and Lemma
3.3, we directly deduce the following conclusion.
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Corollary 3.1. Let φ ∈ S∞(Rn) and ψ ∈ SL(Rn) with L ∈ Z+. Then

(i) for any given M3, L3 ∈ Z+ with L3 ≤ L, there exists a positive
constant C such that for all ν ≤ j and z ∈ Rn,

|(φν ∗ ψj)(z)| ≤ C2νn2−(j−ν)L3(1 + 2ν |z|)−M3 ;

(ii) for any given M4, L4 ∈ Z+, there exists a positive constant C such
that for all ν > j and z ∈ Rn,

|(φν ∗ ψj)(z)| ≤ C2νn2−(ν−j)(n+L4+1)(1 + 2j |z|)−M4 .

Now we turn to the proof of Theorem 2.1.

Proof of Theorem 2.1. Let f ∈ Ḟ s, fin
p, q (Rn) and f 6≡ 0. Let a be some

fixed positive number and Ṡsa, q(f) as in (2.3). By (2.6) and (2.4), Ṡsa, q(f) ∈
Lp(Rn). Using the idea in [4], for any k ∈ Z, we set

Ωk ≡ {x ∈ Rn : Ṡsa,q(f)(x) > 2k}

and
Qk ≡ {Q ∈ Q : |Q ∩Ωk| > |Q|/2, |Q ∩Ωk+1| ≤ |Q|/2}.

It is easy to see that for each dyadic cube Q ∈ Q, there exists a unique
k ∈ Z such that Q ∈ Qk. A dyadic cube Q ∈ Qk is said to be maximal if
for any dyadic cube Q′ ∈ Qk, either Q′ ⊂ Q or Q′ ∩Q = ∅. For each k ∈ Z,
denote by {Qik}i∈Ik the collection of all maximal dyadic cubes in Qk, where
the index set Ik may be empty. Then

Q =
⋃
k∈Z
Qk =

⋃
k∈Z

⋃
i∈Ik

{
Q ∈ Qk : Q ⊂ Qik

}
.

Let ψ and ϕ be as in Lemma 3.2, where ϕ ∈ S∞(Rn) and ψ ∈ SL0(Rn)
with L0 ∈ N. We may as well assume that L0 > N is a very large natural
number. Set ψQ ≡ ψ` and ϕQ ≡ ϕ` whenever `(Q) = 2−`. Using Lemma
3.2(i), for all x ∈ Rn, we have

f(x) =
∑
k∈Z

∑
{Q∈Q : `(Q)=2−k}

�

Q

ψk(x− y)(ϕk ∗ f)(y) dy(3.3)

=
∑
Q∈Q

�

Q

ψQ(x− y)(ϕQ ∗ f)(y) dy

=
∑
k∈Z

∑
i∈Ik

{ ∑
Q⊂Qi

k, Q∈Qk

�

Q

ψQ(x− y)(ϕQ ∗ f)(y) dy
}
.

When q ∈ [1,∞), we set

λk, i ≡ C|Qik|1/p−1/q
{ ∑
Q⊂Qi

k, Q∈Qk

�

Q

`(Q)−sq|(ϕQ ∗ f)(y)|q dy
}1/q

;
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and when q ∈ [p, 1), we set

λk, i ≡ C|Qik|1/p−1/q
{ ∑
Q⊂Qi

k, Q∈Qk

|Q| sup
y∈Q

(`(Q)−s|(ϕQ ∗ f)(y)|)q
}1/q

,

where C is some positive constant independent of k, i and f . Set

ak,i(x) ≡ 1
λk,i

{ ∑
Q⊂Qi

k, Q∈Qk

�

Q

ψQ(x− y)(ϕQ ∗ f)(y) dy
}
.

Using (3.3), (2.4) and following closely the proof of [16, Theorem 1], we
obtain:

(i) each ak,i is a (p, q, s)-atom of Ḟ sp,q(Rn) supported on (
√
n/2 + 1)Qik;

(ii) there exists a positive constant C such that
∑

k∈Z
∑

i∈Ik |λk,i|
p ≤

C‖f‖p
Ḟ s

p,q(Rn)
;

(iii) for all x ∈ Rn, f(x) =
∑

k∈Z
∑

i∈Ik λk,iak,i(x).

To obtain a finite atomic decomposition of f , we need a new classification
of all dyadic cubes in Rn. For every integer N ∈ N, set

Q(0, 2N ) ≡ {(x1, . . . , xn) ∈ Rn : −1 ≤ 2−Nxi < 1, i = 1, . . . , n},

and

(3.4) WN
1 ≡ {Q ∈ Q : Q ⊂ Q(0, 2N ), `(Q) ≥ 2−N}, WN

2 ≡ Q \WN
1 .

Notice that WN
1 has finitely many elements. For each Q ∈ WN

1 , there exist
unique k ∈ Z and i ∈ Ik such that Q ⊂ Qik. Denote by JN the collection of
all such (k, i). Obviously, ]JN ≤ ]WN

1 and thus JN is finite. For every Qik
with (k, i) ∈ JN , let

Q̃ik ≡ {Q ∈ Q : Q ⊂ Qik, Q ∈ Qk, Q ⊂ Q(0, 2N ), `(Q) ≥ 2−N}.

Notice that

(3.5) WN
1 =

⋃
(k, i)∈JN

{Q ∈ Q : Q ∈ Q̃ik}.

For every (k, i) ∈ JN , we set

(3.6) ãk,i(x) ≡ 1
λk,i

∑
Q∈fQi

k

�

Q

ψQ(x− y)(ϕQ ∗ f)(y) dy.

In a way similar to the proof of ak,i being a (p, q, s)-atom of Ḟ sp,q(Rn) (see
[16, Theorem 1]), we can easily verify that each ãk,i is still a (p, q, s)-atom
of Ḟ sp,q(Rn). For any (k, i) ∈ JN , as f ∈ C∞c (Rn), ψ ∈ SL0(Rn), ϕ ∈ S∞(Rn)
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and ]Q̃ik ≤ ]W
N
1 <∞, we deduce that ãk,i ∈ C∞c (Rn). Set

(3.7) fN ≡
∑

(k, i)∈JN

λk,iãk,i and bN ≡ f − fN .

Then fN is a linear combination of finitely many (p, q, s)-atoms of Ḟ sp,q(Rn),
and the property (ii) above shows that the `p-norm of its coefficients is
bounded by a multiple of ‖f‖Ḟ s

p,q(Rn). The definition of fN together with
(3.5) and (3.6) implies that

(3.8) fN (x) =
∑

Q∈WN
1

�

Q

ψQ(x− y)(ϕQ ∗ f)(y) dy.

This combined with Lemma 3.1(i) and the definition of WN
1 shows that

supp fN ⊂ B(0, Cn2N ), where Cn is a positive constant depending only on
the dimension n. The assumption f ∈ Ḟ s,fin

p,q (Rn) implies that there exists
R > 0 such that supp f ⊂ B(0, R). From this and bN = f − fN , it follows
that there exists some N0 ∈ N large enough such that supp bN ⊂ B(0, Cn2N )
when N > N0. Notice that bN ∈ C∞c (Rn) and bN has vanishing moments
up to order N since f and fN do.

We further claim that there exist constants σ ∈ (0, 1) and C̃ > 0 such
that for all N > N0,

(3.9) ‖bN‖Ḟ s
q,q
≤ C̃2−Nσ|B(0, Cn2N )|1/q−1/p.

Assume that (3.9) holds for the moment. Set aN ≡ C̃−12NσbN . Then aN
is a (p, q, s)-atom of Ḟ sp,q(Rn) for N large enough. Therefore, for large N , we
have

(3.10) f = fN + bN =
∑

(k,i)∈JN

λk,iãk,i + C̃2−NσaN ,

which is a linear combination of finitely many (p, q, s)-atoms of Ḟ sp,q(Rn),
each atom belongs to C∞c (Rn) and the `p-norm of its coefficients is bounded
by a multiple of ‖f‖Ḟ s

p,q(Rn). This implies the desired result of Theorem 2.1.

To complete the proof of Theorem 2.1, we still need to verify (3.9). By
(3.3), (3.4), (3.7) and (3.8), we obtain

(3.11) bN (x) =
∑

Q∈WN
2

�

Q

ψQ(x− y)(ϕQ ∗ f)(y) dy.

Notice that

WN
2 = {Q ∈ Q : Q ∩Q(0, 2N ) = ∅, 2−N ≤ `(Q) ≤ 2N}

∪ {Q ∈ Q : `(Q) < 2−N or `(Q) > 2N}.
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From this and (3.11), it follows that

bN (x) =
{ ∑
|j|≤N

∑
`(Q)=2−j

Q∩Q(0, 2N )=∅

+
∑
|j|>N

∑
`(Q)=2−j

}
(3.12)

×
�

Q

ψQ(x− y)(ϕQ ∗ f)(y) dy

=
∑
|j|≤N

�

Rn\Q(0, 2N )

ψj(x− y)(ϕj ∗ f)(y) dy

+
∑
|j|>N

�

Rn

ψj(x− y)(ϕj ∗ f)(y) dy.

Let φ be as in Definition 2.1. Observe that by Lemma 3.2(ii), we see that
(3.3), and therefore, (3.11) hold in (S∞(Rn))′. From this, Definition 2.1 and
(3.12), it follows that

‖bN‖Ḟ s
q, q(Rn)

=
{∑
ν∈Z

2νsq
�

Rn

|(φν ∗ bN )(x)|q dx
}1/q

.
{∑
ν∈Z

2νsq
�

Rn

∣∣∣ ∑
|j|≤N

�

Rn\Q(0, 2N )

(φν ∗ ψj)(x− y)(ϕj ∗ f)(y) dy
∣∣∣q dx}1/q

+
{∑
ν∈Z

2νsq
�

Rn

∣∣∣ ∑
|j|>N

(φν ∗ ψj ∗ ϕj ∗ f)(x)
∣∣∣q dx}1/q

≡ I + II,

where in the second step, we used Minkowski’s inequality when q ∈ (1,∞);
and when q ∈ [p, 1], we used the fact that (a + b)t ≤ max{2t−1, 1}(at + bt)
for all a, b, t ∈ (0,∞).

The estimate for II is easier. If φν ∗ψj ∗ϕj ∗f is a non-zero function, then
using the fact that φ and ϕ satisfy respectively (2.1) and Lemma 3.1(iv), we
obtain |j − ν| ≤ 2. Therefore,

II .
{ ∑
|ν|>N−2

ν+2∑
j=ν−2

2νsq
�

Rn

|(φν ∗ ψj ∗ ϕj ∗ f)(x)|q dx
}1/q

.

For the sake of simplicity, we only give the estimate for the j = ν term in
the above formula, since the estimates for the other four terms are similar.

Recall that f ∈ C∞c (Rn) has vanishing moments up to order N (if
N = −1, then f has no vanishing moment), ψ ∈ SL0(Rn), φ ∈ S∞(Rn)
and ϕ ∈ S∞(Rn). For any given M3 > max{n, n/q}, L1 ∈ Z+ and M1 >
max{n, n/q}, by Corollary 3.1(i) and Lemma 3.3(i) we find that for all ν ≥ 0
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we have

|(φν ∗ ψν ∗ ϕν ∗ f)(x)|(3.13)

≤
�

Rn

|(φν ∗ ψν)(x− y)| |(ϕν ∗ f)(y)| dy

.
�

Rn

2νn(1 + 2ν |x− y|)−M32−νL1(1 + |y|)−M1 dy

∼
�

|x|≥2|y|

2νn(1 + 2ν |x− y|)−M32−νL1(1 + |y|)−M1 dy

+
�

|x|<2|y|

· · ·

. 2ν(n−L1)(1 + 2ν |x|)−M3 + 2−νL1(1 + |x|)−M1 .

Applying Corollary 3.1(i) with M3 > max{n, n/q}, Lemma 3.3(ii) with L2 =
N and M2 > max{n, n/q}, we similarly infer that for all ν < 0,

(3.14) |(φν ∗ ψν ∗ ϕν ∗ f)(x)|
. 2ν(n+N+1)(1 + 2ν |x|)−M3 + 2ν(n+N+1)(1 + 2ν |x|)−M2 .

We may as well assume that N > 2. Using (3.13) and (3.14), we then have{ ∑
|ν|>N−2

2νsq
�

Rn

|(φν ∗ ψν ∗ ϕν ∗ f)(x)|q dx
}1/q

.
{ ∑
ν>N−2

[2νq(s+n−L1−n/q)+2νq(s−L1)]
}1/q

+
{ ∑
ν<−(N−2)

2νq(s+n+N+1−n/q)
}1/q

.

We choose L1 large enough satisfying

(3.15) max{s+ n− L1 − n/q, s− L1} < n(1/q − 1/p)− 1.

Recalling that N = max{bn(1/p− 1)− sc,−1}, we then have

(3.16) s+ n+N + 1− n/q > n(1/p− 1/q) ≥ 0.

Now we let

(3.17) σ ≡ s+ n+N + 1− n/p.

Then 0 < σ ≤ max{s+ n− n/p, 1} and{ ∑
|ν|≥N−2

2νsq
�

Rn

|(φν ∗ψν ∗ϕν ∗ f)(x)|q dx
}1/q

. (2−N + 2−Nσ)2Nn(1/q−1/p),

which implies that II has the desired estimate of (3.9).
We estimate I by considering the following two cases: q ∈ (1,∞) and

q ∈ [p, 1].
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Case 1: q ∈ (1,∞). In this case, by Minkowski’s inequality, we have

I ≤
∑
|j|≤N

{ �

Rn\Q(0, 2N )

|(ϕj ∗ f)(y)| dy
}

(3.18)

×
{∑
ν∈Z

2νsq
�

Rn

|(φν ∗ ψj)(x)|q dx
}1/q

.

Denote by J the integral in the first bracket of (3.18) and by K the sum-
mation in the second bracket of (3.18). For any given L1 ∈ Z+ and M1 > n,
using Lemma 3.3(i), we find that for all j ≥ 0,

(3.19) J .
�

Rn\Q(0, 2N )

2−jL1(1 + |y|)−M1 dy . 2−jL12−N(M1−n).

For any given M2 > n, using Lemma 3.3(ii) with L2 = N , we deduce that
for all j < 0,

J .
�

Rn\Q(0, 2N )

2j(n+N+1)(1 + 2j |y|)−M2 dy(3.20)

. 2j(n+N+1)−jM22−N(M2−n).

Recall that L0 ∈ SL0(Rn). Then for any given L3 ≤ L0, L4 ∈ Z+, M3 > n/q
and M4 > n/q, applying Corollary 3.1(i), (ii), we find that for all j ∈ Z,

(3.21) K .
∑
ν≤j

2νsq+νnq−(j−ν)L3q−νn +
∑
ν>j

2νsq+νnq−(ν−j)(n+L4+1)q−jn.

Using (3.18)–(3.21) and the fact that for all κ ∈ (0, 1] and aj ∈ C,

(3.22)
{∑
j∈N
|aj |
}κ
≤
∑
j∈N
|aj |κ,

and choosing L1, L3, L4, M1 and M2 large enough so that L1 > n+s−n/q,
L3 > −n − s + n/q, L4 > s − 1, M1 > n + 1 + n(1/p − 1/q) and M2 >
N + 2n+ s+ 1− n/q, we obtain I . (2−N + 2−Nσ)2Nn(1/q−1/p) with σ > 0
as in (3.17). This gives the desired estimate of I for q ∈ (1,∞).

Case 2: q ∈ [p, 1]. In this case, we write∑
|j|≤N

�

Rn\Q(0, 2N )

(φν ∗ ψj)(x− y)(ϕj ∗ f)(y) dy(3.23)

=
∑

0≤j≤N, j≥ν

�

Rn\Q(0, 2N )

(φν ∗ ψj)(x− y)(ϕj ∗ f)(y) dy

+
∑

0≤j≤N, j<ν
· · ·+

∑
−N≤j<0, j≥ν

· · ·+
∑

−N≤j<0, j<ν

· · ·

≡ J1(x) + J2(x) + J3(x) + J4(x).
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Combining the expression of I with (3.22) and (3.23) yields

(3.24) Iq .
∑
ν∈Z

2νsq
�

Rn

([J1(x)]q + [J2(x)]q + [J3(x)]q + [J4(x)]q) dx.

To estimate J1(x), we split the integral into two parts as in (3.13) and then
use Lemma 3.3(i) and Corollary 3.1(i). Therefore, for any given L1 ∈ Z+,
M1 > 2n, L3 ≤ L0 and M3 ∈ Z+, we have

J1(x) .
∑

0≤j≤N, j≥ν

�

Rn\Q(0, 2N )

2νn−(j−ν)L3−jL1(1+2ν |x−y|)−M3(1+|y|)−M1 dy

.
∑

0≤j≤N, j≥ν
2νn−(j−ν)L3−jL1(1 + 2ν |x|)−M3

�

y/∈Q(0, 2N )
|x|≥2|y|

(1 + |y|)−M1 dy

+
∑

0≤j≤N, j≥ν
2νn−(j−ν)L3−jL1(1+|x|)−M1/2

�

y/∈Q(0, 2N )
|x|≥2|y|

(1+|y|)−M1/2 dy

. 2−N(M1−n)
∑

0≤j≤N, j≥ν
2νn−(j−ν)L3−jL1(1 + 2ν |x|)−M3

+ 2−N(M1/2−n)
∑

0≤j≤N, j≥ν
2νn−(j−ν)L3−jL1(1 + |x|)−M1/2.

This combined with the fact q ∈ [p, 1) and (3.22) implies that if we choose
L1 > n + s, L3 > −n − s + n/q, M1 > 2 max{n/q, n(1/p − 1/q) + n + 1}
and M3 > n/q, then∑

ν∈Z
2νsq

�

Rn

[J1(x)]q dx . 2−Nq(M1−n) + 2−Nq(M1/2−n)(3.25)

. 2−Nq2Nnq(1/q−1/p).

For any given L1 ∈ Z+, M1 > 2n, L4 ∈ Z+ and M4 ∈ Z+, by Lemma
3.3(i), Corollary 3.1(ii) and an argument similar to the estimate of J1(x),
we obtain

J2(x) .
∑

0≤j≤N, j<ν
2νn−(ν−j)(n+L4+1)−jL1

×
�

Rn\Q(0, 2N )

(1 + 2j |x− y|)−M4(1 + |y|)−M1 dy

. 2−N(M1−n)
∑

0≤j≤N, j<ν
2νn−(ν−j)(n+L4+1)−jL1(1 + 2j |x|)−M4

+ 2−N(M1/2−n)
∑

0≤j≤N, j<ν
2νn−(ν−j)(n+L4+1)−jL1(1 + |x|)−M1/2.

We choose L4 > s − 1 and L1 > n + s. From this, the estimate for J2(x),
(3.22) and the assumption M1 > 2 max{n/q, n(1/p−1/q)+n+1}, it follows
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that ∑
ν∈Z

2νsq
�

Rn

[J2(x)]q dx . 2−Nq(M1−n) + 2−Nq(M1/2−n)(3.26)

. 2−Nq2Nnq(1/q−1/p).

For any given L3 ≤ L0, M2 > 2n and M3 ∈ Z+, applying Lemma 3.3(ii)
and Corollary 3.1(i) yields

J3(x).
∑

−N≤j<0, j≥ν
2νn−(j−ν)L3+j(n+N+1)

×
�

Rn\Q(0, 2N )

(1 + 2ν |x− y|)−M3(1 + 2j |y|)−M2 dy

. 2−N(M2−n)
∑

−N≤j<0, j≥ν
2νn−(j−ν)L3+j(n+N+1)−jM2(1 + 2ν |x|)−M3

+2−N(M2/2−n)
∑

−N≤j<0, j≥ν
2νn−(j−ν)L3+j(n+N+1)−jM2/2(1+2j |x|)−M2/2.

We choose M2 > 2 max{n/q, s+ 2n+ 1 +N −n/q} and L3 > −n− s+n/q.
From this, (3.22) and (3.16), we conclude that for σ as in (3.17),

(3.27)
∑
ν∈Z

2νsq
�

Rn

[J3(x)]q dx . 2−Nq(M2/2−n) . 2−Nσq2−Nnq(1/q−1/p).

Now we estimate J4(x). For any given M2,M4, L4 ∈ Z+, using Lemma
3.3(ii) and Corollary 3.1(ii), we have

J4(x) .
∑

−N≤j<0, j<ν

2νn−(ν−j)(n+L4+1)+j(n+N+1)

×
�

Rn\Q(0, 2N )

(1 + 2j |x− y|)−M4(1 + 2j |y|)−M2 dy

. 2−N(M2−n)
∑

−N≤j<0, j<ν

2νn−(ν−j)(n+L4+1)+j(n+N+1)−jM2(1+2j |x|)−M4

+ 2−N(M2/2−n)
∑

−N≤j<0, j<ν

2νn−(ν−j)(n+L4+1)+j(n+N+1)−jM2/2

× (1 + 2j |x|)−M2/2.

Choose M2 > 2 max{n/q, s+ 2n+ 1 +N − n/q} and L4 > s− 1. From this
and the estimate of J4(x) together with (3.22) and (3.16), it follows that for
σ as in (3.17),

(3.28)
∑
ν∈Z

2νsq
�

Rn

[J4(x)]q dx . 2−Nq(M2/2−n) . 2−Nσq2−Nnq(1/q−1/p).

Combining (3.23) through (3.28) yields the desired estimate of I for q in
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[p, 1). This combined with the argument of Case 1 and the estimate of II
implies the validity of (3.9) for all q ∈ [p,∞), which completes the proof of
Theorem 2.1.

Remark 3.1. From the proof of Theorem 2.1, it follows that we need to
assume that ψ ∈ SL0(Rn) with L0 ∈ Z+ and L0 > −n− s+ n/q.

4. Proof of Theorem 2.2. Applying Theorem 2.1 and following a
standard argument, we can obtain Theorem 2.2. To this end, we need the
following density lemma.

Lemma 4.1. Let s ∈ R, p ∈ (0, 1] and q ∈ [p,∞). Then Ḟ s,fin
p,q (Rn) is

dense in Ḟ sp,q(Rn).

Proof. Fix f ∈ Ḟ sp,q(Rn). It suffices to show that for any given ε > 0,
there exists h ∈ Ḟ s,fin

p,q (Rn) such that ‖f − h‖Ḟ s
p,q(Rn) < ε.

Since S∞(Rn) ⊂ Ḟ sp,q(Rn) and S∞(Rn) is a dense subset of Ḟ sp,q(Rn)
(see [23, p. 240]), it follows that there exists some g ∈ S∞(Rn) such that
‖g − f‖Ḟ s

p,q(Rn) < ε/3.

Applying Lemma 3.2, we find that g =
∑

k∈Z ψk ∗ ϕk ∗ g in S∞(Rn),
where ψ and ϕ are as in Lemma 3.2. For any N ∈ N, set

gN ≡
∑
|k|≤N

ψk ∗ ϕk ∗ g.

Then there exists N ∈ N large enough such that ‖gN − g‖Ḟ s
p,q(Rn) < ε/3

(see [23, p. 240] again). Now we use the same notation as in the proof of
Theorem 2.1. For any k ∈ Z, set Ωk ≡ {x ∈ Rn : Ṡsa,q(g)(x) > 2k} and

Qk ≡ {Q ∈ Q : |Q ∩Ωk| > |Q|/2, |Q ∩Ωk+1| ≤ |Q|/2}.

Denote by {Qik}i∈Ik the collection of all maximal dyadic cubes in Qk, where
Ik is the index set. Similarly to (3.3), we write gN as

gN (x) =
∑
|k|≤N

∑
{Q∈Q : `(Q)=2−k}

�

Q

ψk(x− y)(ϕk ∗ g)(y) dy(4.1)

=
∑

{Q∈Q : 2−N≤`(Q)≤2N}

�

Q

ψQ(x− y)(ϕQ ∗ g)(y) dy

=
∑
k∈Z

∑
i∈Ik

{ ∑
Q⊂Qi

k, Q∈Qk

2−N≤`(Q)≤2N

�

Q

ψQ(x− y)(ϕQ ∗ g)(y) dy
}

≡
∑
k∈Z

∑
i∈Ik

µk, ibk,i,
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where µk,i and bk,i are defined as λk,i and ak,i in the proof of Theorem 2.1
with

∑
Q⊂Qi

k, Q∈Qk
replaced by

∑
{Q:Q⊂Qi

k, Q∈Qk, 2−N≤`(Q)≤2N}. Arguing as
in the proof of [16, Theorem 1], we conclude that each bk,i is a (p, q, s)-atom
of Ḟ sp,q(Rn) and {∑

k∈Z

∑
i∈Ik

|µk,i|p
}1/p

. ‖g‖Ḟ s
p,q(Rn) <∞.

It is easy to see that the series in the bracket of (4.1) belongs to C∞c (Rn) since
it has only finitely many terms. This implies that each bk,i is in C∞c (Rn).

For any M ∈ N, we set hNM ≡
∑
|k|≤M

∑
i∈Ik, i≤M µk,ibk,i. Then there

exists M ∈ N large enough such that ‖hNM − gN‖Ḟ s
p,q(Rn) < ε/3. Therefore,∥∥hNM − f∥∥pḞ s

p,q(Rn)
≤ ‖hNM − gN‖

p

Ḟ s
p,q(Rn)

+ ‖gN − g‖pḞ s
p,q(Rn)

+ ‖g − f‖Ḟ s
p,q(Rn)

< ε.

Setting h ≡ hNM completes the proof of Lemma 4.1.

Proof of Theorem 2.2. For any given f ∈ Ḟ s,fin
p,q (Rn), by Theorem 2.1,

we write f =
∑N

j=1 λjaj , where N ∈ N, {λj}Nj=1 ⊂ C, {aj}Nj=1 are infinitely
differentiable (p, q, s)-atoms of Ḟ sp,q(Rn), and

∑N
j=1 |λj |p . ‖f‖p

Ḟ s
p,q(Rn)

. Using

the assumption r ∈ [p, 1] together with (2.7), (2.9) and (3.22), we obtain

‖T (f)‖Br .
{ N∑
j=1

|λj |r
}1/r

≤
{ N∑
j=1

|λj |p
}1/p

.

Taking the infimum over all finite atomic decompositions of f and using
Corollary 2.1, we see that for all f ∈ Ḟ s, fin

p, q (Rn),

(4.2) ‖T (f)‖Br . ‖f‖Ḟ s
p, q(Rn).

For any given f ∈ Ḟ sp,q(Rn), by Lemma 4.1, there exists a sequence
{fm}∞m=1 ⊂ Ḟ s, fin

p, q (Rn) such that ‖f − fm‖Ḟ s
p, q(Rn) → 0 as m → ∞. This

combined with (2.8) and (4.2) implies that {T (fm)}∞m=1 is a Cauchy sequence
in Br. So we define T̃ (f) = limm→∞ T (fm), where the limit is taken in Br.
It follows that T̃ (f) is well defined, and T̃ is bounded from Ḟ sp,q(Rn) to Br.

Supposed that T̃ ′ is another bounded extension of T . That is, T̃ ′ is
bounded from Ḟ sp,q(Rn) to Br, and T̃ ′(f) = T (f) for all f ∈ Ḟ s, fin

p, q (Rn).
From this and (2.8), we conclude that for any f ∈ Ḟ sp,q(Rn),

‖T̃ ′(f)− T (fm)‖Br ≤ ‖T̃ ′(f − fm)‖Ḟ s
p,q(Rn) . ‖f − fm‖Ḟ s

p,q(Rn) → 0

as m→∞. This implies that T̃ ′ = T̃ .
Therefore, T̃ is the unique bounded extension of T , which completes the

proof of Theorem 2.2.
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