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Canonical Banach function spaces generated by
Urysohn universal spaces. Measures as Lipschitz maps

by

Piotr Niemiec (Kraków)

Abstract. It is proved (independently of the result of Holmes [Fund. Math. 140
(1992)]) that the dual space of the uniform closure CFL(Ur) of the linear span of the
maps x 7→ d(x, a)− d(x, b), where d is the metric of the Urysohn space Ur of diameter r,
is (isometrically if r = +∞) isomorphic to the space LIP(Ur) of equivalence classes of all
real-valued Lipschitz maps on Ur. The space of all signed (real-valued) Borel measures on
Ur is isometrically embedded in the dual space of CFL(Ur) and it is shown that the image
of the embedding is a proper weak∗ dense subspace of CFL(Ur)

∗. Some special properties
of the space CFL(Ur) are established.

The unbounded Urysohn space was introduced in [13, 14]. Holmes [3]
has proved that this space generates a unique (up to linear isometry) Ba-
nach space (for simpler proofs see [4], [8] or [10]). Such metric spaces are
called linearly rigid. The Banach space generated by a linearly rigid metric
space X is isometrically isomorphic to the predual of the space Lip0(X) of
real-valued Lipschitz maps on X vanishing at a fixed point of X (equipped
with the “Lipschitz” norm). It turns out that linearly rigid spaces are nec-
essarily unbounded, provided they have more than two points (see [10]).
This means that bounded Urysohn spaces do not generate unique Banach
spaces. However, as we shall show, the dual space of some Banach func-
tion space generated by a bounded Urysohn space Ur is isomorphic to the
space Lip0(Ur). The fundamental properties of Urysohn spaces will also en-
able us to link Borel measures with Lipschitz maps by means of a linear
isometric map (given by a simple formula). However, the correspondence
is not one-to-one, i.e. there are Lipschitz maps which do not “come from”
measures.

Notation and terminology. The sets of all nonnegative reals and positive
integers are denoted by R+ and N∗, respectively.
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For a separable complete metric space X, Mes(X) stands for the Banach
space of all signed (real-valued) Borel measures on X, equipped with the
standard total variation norm. It is well known that each nonnegative (finite)
Borel measure µ onX is regular, i.e. µ(A) = sup{µ(K) | K ⊂ A,K compact}
for any Borel subset A of X. This implies that the subspace Mesc(X) of
Mes(X) consisting of all measures supported on compact sets is dense (with
respect to the norm topology) in the whole space.

A Lipschitz map between metric spaces (X, d) and (Y, %) is any func-
tion f : X → Y for which there is a finite constant M ≥ 0 such that
%(f(x), f(y)) ≤ Md(x, y) for every x, y ∈ X. We denote by Lip(X) the
space of all real-valued Lipschitz maps on X. If X has more than one point,
we equip the space Lip(X) with the following seminorm:

l(f) = sup
x,y∈X
x 6=y

|f(x)− f(y)|
d(x, y)

, f ∈ Lip(X).

This is not a norm, because l(f) = 0 if and only if f is constant. Therefore
we take the quotient space Lip(X)/Const(X), where Const(X) consists of
all (real-valued) constant maps on X, and denote it by LIP(X). The space
LIP(X) is a Banach space with respect to its norm:

L(f + Const(X)) = l(f), f ∈ Lip(X).

In what follows we shall write, for simplicity, f ∈ LIP(X) and L(f) instead of
f ∈ Lip(X) or L(f+Const(X)). However, one has to remember that LIP(X)
is not a function space. Nevertheless, if x and y are two points of X, the
functional LIP(X) 3 f 7→ f(x) − f(y) ∈ R is well defined. Additionally, let
BL(X) stand for the closed unit ball of LIP(X).

It is easy to see that LIP(X) is isometrically isomorphic to Lip0(X,x),
the subspace of Lip(X) constisting of the maps vanishing at x, where x is
any fixed point of X. Spaces of type Lip0 are well studied (see e.g. [15]). It
is known that they are dual spaces, and the preduals are well described (the
Arens–Eells spaces). For us, the two most important properties of Lip0(X,x),
after an adaptation to LIP(X), are (see also [11] for proofs):

(L1) If X is separable, then the ball BL(X) is (compact and) metriz-
able in the weak∗ topology, and a sequence (fn)n∈N∗ of elements of
BL(X) is weak∗ convergent to f ∈ BL(X) if and only if fn(x) −
fn(y) → f(x) − f(y) (n → ∞) for all x, y ∈ X (this condition, in
fact, defines the weak∗ topology on BL(X)).

(L2) Any weak∗ continuous functional ψ : LIP(X)→ R has the form

ψ(f) =
∞∑
n=1

an
f(xn)− f(yn)
d(xn, yn)

,
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where
∑∞

n=1 |an| <∞ and (xn)n∈N∗ and (yn)n∈N∗ are two sequences
of elements of X such that xn 6= yn; what is more, the sequences
(an)n∈N∗ , (xn)n∈N∗ and (yn)n∈N∗ may be taken so that

∑∞
n=1 |an|

is arbitrarily close to ‖ψ‖.
Whenever we deal with spaces of real-valued maps, the symbol ‖ · ‖ denotes
the supremum norm.

Now we pass to the main subject of the paper.

1. Definition. An Urysohn space is a separable complete metric space
X such that every separable metric space of diameter no greater than diamX
is isometrically embeddable in X, and each isometry between finite subsets
of X is extendable to an isometry of X onto itself. An Urysohn space is
nontrivial if it has more than one point.

For every r ∈ [0,+∞] there is a unique (up to isometry) Urysohn space
of diameter r. We shall denote it by Ur, and U will stand for the unbounded
Urysohn space.

A Katětov map on a metric space (X, d) is any function f : X → R+

such that

|f(x)− f(y)| ≤ d(x, y) ≤ f(x) + f(y) for all x, y ∈ X.

A common sphere is a set of the form

SX(A, f) = {x ∈ X | ∀a ∈ A : d(x, a) = f(a)}
with nonempty A ⊂ X and any function f : A→ R+. If X is Urysohn, then
SX(K, f) is nonempty for each nonempty compact subset K of X and every
Katětov map f on K such that f(K) ⊂ [0, diamX]. This is a consequence
of the Huhunaišvili theorem [5]. For r ∈ [0,+∞], we denote by Er(X) the
set of Katětov maps f on X such that f(X) ⊂ [0, r]. For more on Katětov
maps, see [6], [8], [1]. The reader interested in Urysohn spaces is referred to
[7, 8].

From now on, r ∈ (0,+∞], d is the metric of Ur, and BL = BL(Ur). Let
% : Ur → LIP(Ur) be defined as follows: %(x) is the equivalence class of the
map ex, where ex(y) = d(x, y). It is easy to see that %(Ur) ⊂ BL, and % is
continuous when LIP(Ur) is considered with the weak∗ topology.

First we shall establish the basic properties of the set %(Ur).

2. Proposition. The set %(Ur) is linearly independent.

Proof. Let n ≥ 2. Suppose that x1, . . . , xn are distinct points of Ur and
α1, . . . , αn are scalars such that the map u = α1ex1 + · · ·+αnexn is constant.
Let M=diam{x1, . . . , xn}. For j∈{1, . . . , n}, put pj=mink 6=j d(xj , xk) > 0.
Let A = {x1, . . . , xn}, let f0 : A → R+ be the constant map with value M ,
and for j = 1, . . . , n, let fj : A → R+ be defined as follows: fj(xj) =
M − pj and fj(xk) = M for k 6= j. It is easy to verify that f0, . . . , fn are
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Katětov maps and take values in [0, r]. There are points z0, . . . , zn such that
exj (zk) = fk(xj). Since the map u is constant it follows that u(zj) = u(z0),
or equivalently

∑n
m=1 αm(fj(xm) − f0(xm)) = 0. But this yields αjpj = 0

and thus α1 = · · · = αn = 0.

3. Theorem. The weak∗ closure of %(Ur) contains the ball 1
2BL. If r =

+∞, then %(Ur) is weak∗ dense in BL.

Proof. First assume that r = +∞. It is enough to show that for each
f ∈ BL and any finite nonempty subset A of U there are C ∈ R and x ∈ U
such that f + C = ex on A. Since A is finite, there is C such that d(a, b)−
f(a) − f(b) ≤ 2C for a, b ∈ A. This implies that f + C is a Katětov map
on A. So, there exists x ∈ U for which f(a) + C = d(x, a) (a ∈ A). But this
means that f + C = ex on A.

Now assume that r is finite. Take f ∈ BL and a finite nonempty subset
A of Ur. We have to prove that there are C ∈ R and x ∈ Ur such that
1
2f +C = ex on A. Observe that since L(f) ≤ 1 and diam Ur = r, there is a
constant α such that the image of f +α is contained in

[
−1

2r,
1
2r
]
. But then

the image of 1
2f + C, where C = 1

2α + 3
4r, is a subset of

[
1
2r, r

]
and thus

f + C is a Katětov map on A (because 1
2r ≥

1
2 diamA). So, as in the first

case, it suffices to take x ∈ Ur such that 1
2f + C = ex on A.

4. Corollary. If ψ ∈ LIP(Ur)∗ is weak∗ continuous, then
1
2
‖ψ‖ ≤ sup

x∈Ur

ψ(%(x)) ≤ ‖ψ‖,

and if r = +∞, then ‖ψ‖ = supx∈Ur
ψ(%(x)).

5. Corollary. The set %(U) is metrizable in the weak∗ topology , but is
not completely metrizable. In particular , % : U → %(U) is not a homeomor-
phism.

Proof. Suppose that, on the contrary, %(U) is completely metrizable.
Then, by Theorem 3, it is a dense Gδ-subset of BL and thus so is −%(U).
But %(U) and −%(U) are disjoint (thanks to Proposition 2), contrary to the
Baire theorem.

Corollary 4 leads us to the following

6. Definition. The canonical function linear space (for short, the CFL
space) of the Urysohn space Ur is the space CFL(Ur) consisting of the maps
f : Ur → R of type f(x) = ψ(%(x)), where ψ is a weak∗ continuous functional
on LIP(Ur). Since %(Ur) is a subset of BL, CFL(Ur) consists of bounded
maps. The CFL space is equipped with the supremum norm.

As an immediate consequence of Corollary 4 we obtain
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7. Theorem. The CFL space of the [unbounded ] Urysohn space Ur is
[isometrically] isomorphic to the predual of LIP(Ur) and therefore it is a Ba-
nach space. The canonical [isometric] isomorphism J : LIP(Ur)∗ → CFL(Ur)
has the form

(J(ψ))(x) = ψ(%(x)) (ψ ∈ LIP(Ur)∗, x ∈ Ur),

and max(‖J‖, ‖J−1‖) ≤ 2.

Now we will characterize the maps belonging to CFL(Ur).

8. Theorem. A function f : Ur → R is a member of CFL(Ur) if and
only if for any ε > 0 there are u1, . . . , um ∈ Ur and α1, . . . , αm ∈ R such
that

∑m
j=1 αj = 0 and for each x ∈ Ur,

(1)
∣∣∣f(x)−

m∑
j=1

αjd(uj , x)
∣∣∣ ≤ ε.

Proof. If f ∈ CFL(Ur), then, by (L2), there are sequences (an)∞n=1 ∈ l1
and (xn, yn)∞n=1 ∈ (Ur × Ur)N∗ such that xn 6= yn and

f(x) =
∞∑
n=1

an
d(xn, x)− d(yn, x)

d(xn, yn)
.

So, it is enough to take N ≥ 1 such that
∑∞

n=N+1 |an| < ε and to express the
map x 7→

∑N
n=1 an(d(xn, x)− d(yn, x))/d(xn, yn) in the form

∑m
j=1 αjeuj .

Now assume that f is the uniform limit of a sequence of maps of the form∑m
j=1 αjeuj with

∑m
j=1 αj = 0. It is easy to check that( m∑

j=1

αjeuj

)
(x) = ψ(%(x)),

where ψ : LIP(Ur) → R is a weak∗ continuous functional given by ψ(g) =∑m
j=1 αjg(uj) (g ∈ LIP(Ur)). So,

∑m
j=1 αjeuj ∈ CFL(Ur) and thus the com-

pleteness of CFL(Ur) finishes the proof.

9. Corollary. Let f be a nonzero member of the CFL space of U.
Then the image R of f is a bounded interval such that (−‖f‖, ‖f‖) ⊂ R ⊂
[−‖f‖, ‖f‖].

Proof. By Theorem 8, f is continuous and thus R is an interval. Further,
thanks to Corollary 4, ‖f‖ belongs to the closure of R and, similarly, ‖−f‖
is in the closure of −R. This implies that the closure of R coincides with
[−‖f‖, ‖f‖]. Now the assertion is clear.

In contrast to the case of the unbounded Urysohn space, for r < +∞ the
set %(Ur) is not weak∗ dense in BL. What is more, the canonical isomorphism
J : LIP(Ur)∗ → CFL(Ur) is nonisometric, as shown by
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10. Proposition. For r < +∞, the convex hull V of the set %(Ur) ∪
(−%(Ur)) is not weak∗ dense in BL. In particular , the canonical isomorphism
J is nonisometric.

Proof. Take four points p1, p2, p3, p4 of Ur such that d(pj , pk) = r for
distinct j, k ∈ {1, 2, 3, 4}. Let g ∈ BL be any nonexpansive map such that
g(pj) = 0 and g(pk) = r for j = 1, 2 and k = 3, 4. We claim that g does
not belong to the weak∗ closure W of V . Suppose, for contradiction, that
g ∈W . This implies that there are numbers t1, . . . , tn and points x1, . . . , xn
of Ur such that

∑n
j=1 |tj | = 1 and the map g −

∑n
j=1 tjexj is constant on

A = {p1, p2, p3, p4}. Since ex ∈ Er(Ur) for each x ∈ Ur and Er(A) is convex
we infer that there is a c ∈ R such that

(2) (g + c)|A ∈ conv[Er(A) ∪ (−Er(A))]

(“conv” stands for convex hull). It is easily seen that g|A, as an element of
LIP(A), is an extreme point of BL(A). Thus, by (2), g|A + c = ±f for some
f ∈ Er(A). This shows that f(p1) = f(p2), f(p3) = f(p4) and |f(p1) −
f(p3)| = r. But f(A) ⊂ [0, r] and therefore f(p1) = f(p2) = 0 and f(p3) =
f(p4) = r or conversely. So, card f−1({0}) > 1, which contradicts the relation
f ∈ Er(A).

We have shown that g /∈W . By the separation theorem, there is a weak∗
continuous functional ψ : LIP(Ur)→ R such that |ψ(u)| ≤ 1 for each u ∈W
and ψ(g) > 1. Hence ‖ψ‖ > 1 and ‖J(ψ)‖ ≤ 1, which finishes the proof.

Theorem 7 says that the dual of CFL(Ur) may be identified with LIP(Ur)
(at least in the unbounded case). This identification has the following form:
a functional ϕ ∈ CFL(Ur)∗ corresponds to a map g ∈ LIP(Ur) such that
g(x) − g(y) = ψ(ex − ey) (x, y ∈ Ur). For f ∈ CFL(Ur) and g ∈ LIP(Ur),
we shall write

	
f dg or

	
f(x) dg(x) for the value at f of the functional

corresponding to g. Thus for each a, b ∈ Ur,

(3)
�
(ea − eb) dg =

�
(d(a, x)− d(b, x)) dg(x) = g(a)− g(b).

The next result will enable us to link measures with Lipschitz maps on
Urysohn spaces.

11. Theorem. Let K be a (nonempty) compact subset of Ur and let
f : K → R be continuous. Then there is F ∈ CFL(Ur) such that F |K = f
and ‖F‖ = ‖f‖. What is more, for a given element z of the common sphere
SUr(K, s), where s ∈ (0,+∞) is such that 2

3 diamK ≤ s ≤ 4
5r, there are

sequences (xn)n∈N∗ and (tn)n∈N∗ of elements of Ur and of positive numbers,
respectively , such that ‖F‖ =

∑
n∈N∗ tnd(xn, z) and F =

∑
n∈N∗ tn(exn−ez).

Proof. It is easily seen that SUr(K, s) is nonempty and z /∈ K.
First assume that f ∈ Lip(K), l(f) ≤ 1 and ‖f‖ ≤ 1

4s. Define a map
g : K ∪ {z} → R by g(x) = f(x) + s for x ∈ K and g(z) = ‖f‖. The map g
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is clearly nonexpansive on K (i.e. l(g|K) ≤ 1). What is more, for x, y ∈ K
we have d(x, y) ≤ 3

2s ≤ g(x) + g(y). Further,

|g(x)− g(z)| = s−‖f‖+ f(x) ≤ s = d(x, z) ≤ s+ f(x) + ‖f‖ = g(x) + g(z).

So, g is a Katětov map and g(K ∪ {z}) ⊂ [0, r]. This implies that there is
u ∈ Ur such that g(y) = d(u, y) for y ∈ K ∪ {z}. But then f = (eu − ez)|K
and d(u, z) = g(z) = ‖f‖, and thus in that case the proof is finished.

Now consider an arbitrary map f . By [12], there are sequences (tn)n∈N∗
and (fn)n∈N∗ of positive numbers and real-valued nonexpansive maps on
K (respectively) such that ‖f‖ =

∑
n∈N∗ tn‖fn‖ and f =

∑
n∈N∗ tnfn. Re-

placing, if necessary, the pair (tn, fn) by a suitable pair (tn/sn, snfn) with
sn ∈ (0, 1), we may assume that ‖fn‖ ≤ 1

4s for every n. We infer from
the first part of the proof that there is a sequence (xn)n∈N∗ of elements
of Ur for which (exn − ez)|K = fn and d(xn, z) = ‖fn‖. This implies that
‖f‖ =

∑
n∈N∗ tnd(xn, z) and therefore the series

∑
n∈N∗ tn(exn − ez) is uni-

formly convergent. Let F be its uniform limit. By Theorem 7, F ∈ CFL(Ur).
Furthermore, F |K =

∑
n∈N∗ tnfn = f and thus ‖f‖ ≤ ‖F‖. On the other

hand, ‖F‖ ≤
∑

n∈N∗ tnd(xn, z) = ‖f‖, which finishes the proof.

12. Corollary. Let K be a (nonempty) compact subset of Ur and

ΦK : CFL(Ur) 3 f 7→ f |K ∈ C(K),

where C(K) is the algebra of all real-valued continuous functions on K. Then
ΦK sends the closed unit ball onto the closed unit ball and therefore the
adjoint operator Φ∗K : Mes(K)→ LIP(Ur) is a weak∗ continuous isomorphic
(and isometric if r = +∞) embedding such that max(‖Φ∗K‖, ‖(Φ∗K)−1‖) ≤ 2.
If µ ∈ Mes(K) and g = Φ∗K(µ), then for each f ∈ CFL(Ur),

(4)
�

K

f dµ =
�
f dg.

In particular , Φ∗K(δa) = %(a) for a ∈ K, where δa is the Dirac measure at a.

13. Lemma. Let K and L be two (nonempty) compact subsets of Ur. If
µ ∈ Mes(Ur) is a measure supported on K ∩L (and therefore µ may be seen
as a member of Mes(K) and Mes(L)), then Φ∗K(µ) = Φ∗L(µ).

Proof. Let g = Φ∗K(µ) and h = Φ∗L(µ). Then for any f ∈ CFL(Ur) we
have �

f dg =
�

K

f dµ =
�

K∩L
f dµ =

�

L

f dµ =
�
f dh,

which implies that g = h.

The above lemma enables us to define an operator j0 : Mesc(Ur) →
LIP(Ur) by j0(µ) = Φ∗K(µ), where K is a compact subset of Ur such that µ
is supported on K. Since the definition is independent of the choice of K,
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the map j0 is a linear embedding such that max(‖j0‖, ‖j−1
0 ‖) ≤ 2 and thus it

is uniquely extendable to an isomorphic embedding of Mes(Ur) in LIP(Ur).
We introduce the following

14. Definition. The canonical embedding of Mes(Ur) in LIP(Ur) is a
unique continuous extension j : Mes(Ur) → LIP(Ur) of j0. The canonical
embedding is an isomorphism between its domain and range which sends
Dirac’s measure δx to %(x) for each x ∈ Ur. What is more, the formula (4)
is satisfied for any µ ∈ Mes(Ur) with g = j(µ) and K replaced by Ur. If
r = +∞, then j is isometric.

The next result can be easily obtained from (4) by substituting f =
ex − ey.

15. Theorem. Let µ ∈ Mes(Ur) and g = j(µ). Then for each x, y ∈ Ur,

(5) g(x)− g(y) =
�

Ur

(d(x, z)− d(y, z)) dµ(z).

It is rather surprising that j is isometric also for bounded Urysohn spaces.
We shall prove this in the following

16. Proposition. For r < +∞, the canonical embedding j : Mes(Ur)→
LIP(Ur) is isometric.

Proof. Let K be a compact nonempty subset of Ur and let µ ∈ Mes(Ur).
Put g = j(µ). It is enough to check that ‖g‖ ≥ ‖µ‖ − ε for ε > 0. Since
the space Lip(K) is dense in C(K), there is u ∈ Lip(K) such that ‖u‖ = 1
and

	
K udµ ≥ ‖µ‖ − ε. Take t > 0 such that l(tu) ≤ 1 and ‖tu‖ ≤ 3

16r.
It follows from the proof of Theorem 11 that there are x, z ∈ Ur for which
u = 1

t (ex − ez)|K . This yields t = ‖ex − ez‖ = d(x, z) and thus

‖µ‖ − ε ≤
�

K

udµ =
�

K

ex − ez
d(x, z)

dµ =
g(x)− g(z)
d(x, z)

≤ ‖g‖.

17. Corollary. The norm closure of the linear span of %(Ur) in LIP(Ur)
is (naturally) isometrically isomorphic to l1(%(Ur)).

18. Corollary. For any µ ∈ Mes(Ur), the total variation |µ|(Ur) of
the measure µ satisfies the condition

|µ|(Ur) = sup
{∣∣∣∣ �

Ur

d(x, z)− d(y, z)
d(x, y)

dµ(z)
∣∣∣∣ : x, y ∈ Ur, x 6= y

}
.

Our next aim is to prove that the canonical embedding j is nonsurjec-
tive. We shall do this using different methods for bounded and unbounded
Urysohn spaces.

It is folklore that %(Ur) consists of extreme points of the ball BL. How-
ever, %(Ur) ∪ (−%(Ur)) is a proper subset of the set of all extreme points
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of BL, as we shall see below. In fact, for r = +∞, this is a consequence of
the following

19. Lemma. Let (Z, λ) be a metric space and A its nonempty subset. If
f ∈ LIP(A) is an extreme point of BL(A), then the Katětov extension f̂ of
f is an extreme point of BL(Z), where f̂(z) = infa∈A(f(a) + λ(a, z)).

Proof. It is easily checked that f̂ ∈ BL(Z) and f̂ extends f . What
is more, f̂ is the greatest element (with respect to the pointwise order)
among nonexpansive extensions of f . So, if g1, g2 ∈ BL(Z) are such that
f̂ = (g1 + g2)/2 + C for some constant C, then f = (g1|A + g2|A)/2 + C
and thus f = g1|A + C1 = g2|A + C2, where C1 and C2 are constants with
C1 +C2 = 2C. Thus gj +Cj ≤ f̂ (j = 1, 2). But g1 +C1 + g2 +C2 = 2f̂ and
therefore f̂ = g1 + C1 = g2 + C2.

20. Proposition. There are extreme points of BL which do not belong
to %(U) ∪ (−%(U)). In particular , the canonical embedding j : Mes(U) →
LIP(U) is not surjective.

Proof. Let A be a subset of U which is isometric to R and let ϕ : A→ R
be an isometry. Since the operator LIP(R) 3 u 7→ u ◦ ϕ ∈ LIP(A) is an
isometric isomorphism and the map f : R 3 t 7→ t ∈ R is an extreme point
of BL(R), it follows that ϕ = f ◦ ϕ is an extreme point of BL(A). So, by
Lemma 19, v = ϕ̂ is extreme in BL. Observe that v(U) = R, from which we
infer that v /∈ %(U) ∪ (−%(U)). Finally, since the set j−1(%(U) ∪ (−%(U)))
consists of all extreme points of the closed unit ball of Mes(U) (and j is
isometric), it follows that v is not the value of j.

Now we have to show the same for a bounded Urysohn space. In order
to do that, we need the following

21. Lemma. Let r < +∞ and let {an : n ≥ 1} be a dense subset of Ur.
If g ∈ LIP(Ur) is an element of the image of j, then for any ε > 0 there
exists N ≥ 1 such that

(6) |g(x)− g(y)| ≤ ‖g‖ · ‖(ex − ey)|A‖+ ε

for all x, y ∈ Ur, where A = {a1, . . . , aN}.
Proof. We may assume that g 6= 0. Let µ = j−1(g). There is a com-

pact nonempty subset K of Ur such that |µ|(Ur \ K) ≤ ε/3r. Since K is
compact, there are x1, . . . , xp ∈ K such that K ⊂

⋃p
j=1B(xj , ε/6‖g‖). Fi-

nally, there are positive integers m1, . . . ,mp such that d(xj , amj ) ≤ ε/6‖g‖
for j = 1, . . . , p. Put N = max(m1, . . . ,mp) and A = {a1, . . . , aN}. Take
x, y ∈ Ur. By the triangle inequality, for each z ∈ K there is a ∈ A for which
|d(x, z) − d(y, z)| ≤ |d(x, a) − d(y, a)| + 2ε/3‖g‖ and thus ‖(ex − ey)|K‖ ≤
‖(ex − ey)|A‖+ 2ε/3‖g‖. This yields
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|g(x)− g(y)| =
∣∣∣ �
Ur

(d(x, z)− d(y, z)) dµ(z)
∣∣∣

≤
�

K

|ex − ey|d|µ|+
�

Ur\K

|ex − ey| d|µ|

≤
(
‖(ex − ey)|A‖+

2ε
3‖g‖

)
|µ|(Ur) + r · |µ|(Ur \K)

≤ ‖g‖ · ‖(ex − ey)|A‖+ ε.

And now the announced result:

22. Proposition. For r < +∞, the canonical embedding j is nonsurjec-
tive. There are extreme points of BL which do not belong to %(Ur)∪(−%(Ur)).

Proof. Let (Un)n≥1 be a sequence of nonempty open subsets of Ur which
form a basis of the topology of Ur. Take any x1 ∈ U1 and put g(x1) = 0.
Now suppose that we have found points x1, . . . , x3k−2 of Ur and have de-
fined g(x1), . . . , g(x3k−2) (for some k ≥ 1) in such a way that for any
j ∈ {1, . . . , k}:

(1)j {x1, . . . , x3j−2} ∩ Uj 6= ∅,
(2)j |g(xp)−g(xq)| ≤ d(xp, xq) and g(xp) ∈ [0, r] for p, q = 1, . . . , 3j−2,
(3)j if j > 1, then |g(x3j−4)− g(x3j−3)| = r and ex3j−4 = ex3j−3 on the

set {x1, . . . , x3j−5}.

Take x3k−1, x3k ∈ Ur such that d(xp, xq) = r for p = 1, . . . , 3k − 2 and
q = 3k − 1, 3k and d(x3k−1, x3k) = r. Put g(x3k−1) = r and g(x3k) = 0.
Now pick any x3k+1 ∈ Uk+1 \{x1, . . . , x3k} and define g(x3k+1) = min{g(xj)
+ d(xj , x3k+1) : j ∈ {1, . . . , 3k}}. There is no difficulty in checking that
g(x3k+1) ∈ [0, r] and that the conditions (1)k+1–(3)k+1 hold. Thus we have
obtained sequences (xn)n∈N∗ and (g(xn))n∈N∗ such that the set D = {xn :
n ≥ 1} is dense in Ur, the map g : D → R is nonexpansive and for any finite
subset C ofD there are x, y ∈ D such that ex = ey on C and |g(x)−g(y)| = r.
Let h ∈ BL be the unique nonexpansive extension of g. The properties of g
and Lemma 21 imply that h /∈ j(Mes(Ur)).

Now suppose that the set of all extreme points of BL coincides with
M = %(Ur) ∪ (−%(Ur)). As BL is metrizable in the weak∗ topology, the
Choquet theorem yields a Borel probability measure λ on M such that

(7)
�

M

udλ(u) = h.

Further, since Ur 3 x 7→ %(x) ∈ %(Ur) is a continuous bijection, %(Ur) is a
Borel subset of M and the inverse function is Borel. Let µ1, µ2 ∈ Mes(Ur)
be defined by µ1(A) = λ(%(A)) and µ2(A) = λ(−%(A)) for a Borel subset A
of Ur, and let µ = µ1 − µ2. Fix x, y ∈ Ur. Since the functional LIP(Ur) 3
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u 7→ u(x)−u(y) ∈ R is weak∗ continuous, by (7) and the measure transport
theorem,

h(x)− h(y) =
�

M

(u(x)− u(y)) dλ(u)

=
�

%(Ur)

(u(x)− u(y)) dλ(u) +
�

−%(Ur)

(u(x)− u(y)) dλ(u)

=
�

Ur

(%(z)(x)− %(z)(y)) dµ1(z) +
�

Ur

(−%(z)(x) + %(z)(y)) dµ2(z)

=
�

Ur

(d(x, z)− d(y, z)) dµ(z),

which means that h = j(µ). But this contradicts the first part of the proof.

23. Remark. The nonsurjectivity of j in the case of a bounded Urysohn
space may be immediately deduced from Propositions 10 and 16. Indeed, it
is easy to check that if Ψ : Mes(Ur) → CFL(Ur)∗ is an operator defined by
Ψ(µ)(f) =

	
Ur
f dµ, then Ψ is isometric (by Theorem 11 or Corollary 12)

and j = J ◦ Ψ . The same argument shows that J |E is an isometry between
E = Ψ(Mes(Ur)) and F = j(Mes(Ur)). What is more, J , as a dual operator,
is a weak∗ homeomorphism and the spaces E and F are weak∗ dense in
CFL(Ur)∗ and LIP(Ur), respectively. So, we have obtained an interesting
example of a weak∗ homeomorphism which is isometric on a weak∗ dense
subspace of the domain, but not isometric on the whole domain.

Our last aim is to establish some geometric properties of the space
CFL(Ur). The property (L2) implies that BL is the closed convex hull of
the set CFL0(Ur) = {(ex − ey)/d(x, y) : x, y ∈ Ur, x 6= y}. The next result
shows that the set CFL0(U) is transitive with respect to isometric isomor-
phisms of CFL(U).

24. Theorem. For any f, g ∈ CFL0(U) there exists an isometric iso-
morphism V : CFL(U)→ CFL(U) such that V (f) = g.

Proof. Let (p, q) and (a, b) be pairs of distinct points of U such that

f =
ep − eq
d(p, q)

and g =
ea − eb
d(a, b)

.

There is a bijection ϕ : U→ U such that ϕ(p) = a, ϕ(q) = b and d(ϕ(x), ϕ(y))
= λd(x, y) for any x, y ∈ U, where λ = d(a, b)/d(p, q). Now let V : CFL(U)→
CFL(U) be the linear operator defined by V (h) = h ◦ϕ−1 (h ∈ CFL(U)). The
map V is well defined, because

(8) V (ex − ey) =
eϕ(x) − eϕ(y)

λ
.

It is clearly a bijective isometric map and (8) shows that V (f) = g.
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Now let ω ∈ Ur and Aω = {ex − eω : x ∈ Ur} ⊂ CFL(Ur). Note that
0 ∈ Aω and the map mω : Ur 3 x 7→ ex − eω ∈ Aω is isometric, so the set
Aω is closed. It is also a total subset of CFL(Ur). First we shall prove the
following

25. Proposition. The set Aω \ {0} is linearly independent.

Proof. Let x1, . . . , xn be distinct elements of Ur \ {ω} and α1, . . . , αn be
real numbers such that

∑n
j=1αj(exj−eω) = 0. This implies that

∑n
j=1αj%(xj)

= (
∑n

j=1 αj)%(ω). So, Proposition 2 finishes the proof.

To state the next result, we need an auxiliary notion. For a number
λ ∈ (0,+∞), we say that a function w : P → Q between metric spaces (P, p)
and (Q, q) is λ-isometric if

q(w(x), w(y)) = λp(x, y) for each x, y ∈ P .

Additionally, set Λ(P ) = {1} if P is bounded, and Λ(P ) = (0,+∞) other-
wise. Now we are ready to present

26. Theorem. Let ω, τ ∈ Ur. Let K be a nonempty compact subset of
Aω and let v : K → Aτ be λ-isometric with λ ∈ Λ(Ur). Then there is an
isometric isomorphism V : CFL(Ur) → CFL(Ur) and f0 ∈ Aτ such that
v(f) = λV (f) + f0 for every f ∈ K.

Proof. Let K0 = m−1
ω (K) and u : K0 3 x 7→ m−1

τ (v(mω(x))) ∈ Ur. The
set K0 is compact and u is λ-isometric, so there is a bijective λ-isometric
map U : Ur → Ur which extends u. Now put V : CFL(Ur) 3 f 7→ f ◦U−1 ∈
CFL(Ur) and f0 = eU(ω) − eτ ∈ Aτ . As in the proof of Theorem 24, V is
an isometric isomorphism such that V (ex − ey) = (eU(x) − eU(y))/λ. So, if
x ∈ Ur and f = ex − eω, then

v(f) = v(mω(x)) = mτ (u(x)) = mτ (U(x)) = eU(x) − eτ
= λV (ex − eω) + eU(ω) − eτ = λV (f) + f0.

27. Remark. As mentioned at the beginning of the paper, the fact that
the dual of CFL(U) is linearly isometric to LIP(U) is a consequence of the
Holmes theorem [3, 4]. Namely, he has shown that if (E, ‖ · ‖) is any Banach
space such that U ⊂ E and ‖x − y‖ = d(x, y) for all x, y ∈ U, then for any
x1, . . . , xn ∈ U and α1, . . . , αn ∈ R with

∑n
j=1 αj = 0 one has∥∥∥ n∑

j=1

αjxj

∥∥∥ = sup
{∣∣∣ n∑

j=1

αjf(xj)
∣∣∣ : f ∈ BL({x1, . . . , xn})

}
.

However, other properties of CFL(U) cannot be deduced from the above fact,
and Holmes’ theorem applies only to the unbounded Urysohn space.
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We end the paper with the following two questions. In both of them, r is
finite.

Question 1. The universality of an unbounded Urysohn space U and
the results of Godefroy and Kalton [2] imply that the space CFL(U) is uni-
versal for separable Banach spaces (this was observed by Melleray [9]). These
arguments do not work in the case of a bounded Urysohn space. Is the space
C([0, 1]) isometrically or isomorphically embeddable in CFL(Ur)?

Question 2. Suppose that (E, ‖·‖) is a Banach space such that Ur ⊂ E
and ‖x−y‖ = d(x, y) for all x, y ∈ Ur. Does there exist a constant c > 0 such
that whenever x1, . . . , xn are points of Ur and α1, . . . , αn are real numbers
with

∑
j=1 αj = 0, then∥∥∥ n∑
j=1

αjxj

∥∥∥ ≥ c sup
{∣∣∣ n∑

j=1

αjg(xj)
∣∣∣ : g ∈ BL({x1, . . . , xn})

}
?

Does there exist a universal constant c > 0 for which the above estimate
holds (independently of the space E)?
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