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Convergence a.e. of spherical partial Fourier integrals
on weighted spaces for radial functions: endpoint estimates

by

Maŕıa J. Carro (Barcelona) and Elena Prestini (Roma)

Abstract. We prove some extrapolation results for operators bounded on radial Lp

functions with p ∈ (p0, p1) and deduce some endpoint estimates. We apply our results to
prove the almost everywhere convergence of the spherical partial Fourier integrals and to
obtain estimates on maximal Bochner–Riesz type operators acting on radial functions in
several weighted spaces.

1. Introduction. For maximal spherical partial Fourier integrals as well
as for maximal Bochner–Riesz means long standing open problems still re-
main to be solved concerning boundedness properties for general f ∈ Lp(Rn)
while a lot is known in case f is radial. The situation is similar for other
operators such as general maximal spherical operators and Kakeya maximal
operators ([7], [18], [19], [14], [1], [15], [28], [29], [17], [22]). Setting

Lprad(µ) = {f ∈ Lp(µ) : f is radial}
where µ is a sigma-finite measure in Rn, we are interested in operators T
such that

T : Lprad(µ)→ Lp(µ)

is bounded for every p ∈ (p0, p1) and the operator norm satisfies

(1.1) ‖T‖p ≤
C

(p− p0)α0(p− p1)α1
,

with C a constant independent of p. This is the case for many of the examples
in the above literature.

To obtain information at the endpoints p0, p1, one is led naturally from
inequalities of the kind (1.1) to the theory of extrapolation of operators due
to Yano (see [31]), which says that a sublinear operator satisfying an Lp

estimate, with constant (p− 1)−m as p→ 1+, is bounded from L(logL)m to
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L1 + L∞. More recently the work by Antonov [2] has spurred new research
on endpoint estimates ([30], [11], [10], [9]) and has brought new ideas to this
old theory.

In Section 2 we obtain endpoint results for operators bounded on Lprad(µ)
with p ∈ (p0, p1) using extrapolation techniques. We deal separately with
the right and the left endpoint since the spaces involved are different.

In Section 3 we present some applications. First we prove the almost
everywhere convergence of the spherical partial Fourier integrals of radial
functions f in certain weighted spaces such as Lpj (logL)βj (w), as well as in
weighted Lorentz spaces Λ1

w(t1/p0−1(1+log 1
t )
β0) and Λ1

w(t1/p1−1(1+log t)β1)
where w is a radial weight satisfying an A1 condition and βj are positive
numbers, j = 0, 1. The case w = 1 has been studied in [15] and [27]. In
the case of weighted Lp spaces a result can be found in [26]. In the process
we estimate the norm of the maximal Carleson operator in weighted Lp

spaces for certain weights in the Muchkenhoupt class Ap ([24]). Our second
application deals with maximal Bochner–Riesz type operators acting on
radial functions introduced in [19]. For n odd we improve the main result of
[19] at the endpoints.

We shall denote by C a constant depending possibly on p but uniformly
bounded for all p ∈ [p0, p1]. Also C might not be the same in all instances.
We write A . B if there exists a universal constant C such that A ≤ CB,
and A ≈ B if A . B and B . A. We shall work in Rn, µ will be a
sigma-finite measure on Rn, and w will be a radial weight in Rn. As usual,
g∗µ(t) = inf{s : λµg (s) ≤ t} is the decreasing rearrangement of g, where
λµg (y) = µ{x ∈ Rn : |g(x)| > y} is the distribution function of g with respect
to the measure µ and g∗∗µ (t) = t−1

	t
0 g
∗
µ(s) ds. When the measure µ is given

by w(x)dx we shall write g∗w and λwg instead of using the subscript µ (we
refer the reader to [4] for further information about distribution functions
and decreasing rearrangements). For a measurable set E, χE denotes the
characteristic function of E, |E| denotes the Lebesgue measure of E and
w(E) =

	
E w(x) dx.

We mention that with obvious changes everything could be done for op-
erators T : Lprad(µ)→ Lp(ν), but for simplicity of notation we shall consider
µ = ν.

2. Endpoint estimates. Let us first recall that given a weight v in R+,
the weighted Lorentz spaces Λ1

µ(v) and Γ 1,∞
u (v) are defined to be the sets

of measurable functions such that

‖f‖Λ1
µ(v) =

∞�

0

f∗µ(t)v(t) dt <∞
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and
‖f‖

Γ 1,∞
µ (w)

= sup
t>0

V (t)f∗∗µ (t) <∞

respectively, with V (t) =
	t
0 v(s) ds.

Since in this section the measure µ is fixed, we shall write ‖f‖p =
‖f‖Lp(µ), f∗µ = f∗, λf = λµf , Λ1

µ(v) = Λ1(v) and so on.

2.1. Let us start with the left endpoint p0; that is, we shall assume that
T is a sublinear operator such that

(2.1) ‖Tf‖Lp .
1

(p− p0)α
‖f‖Lprad(µ)

for every p ∈ (p0, p1) with α > 0.
Our first extrapolation result is the following:

Theorem 2.1. If T satisfies (2.1) and f is a radial function, then

sup
t>0

t1/p0(Tf)∗∗(t)
(1 + log+ t)α

.
∞�

0

f∗(t)t1/p0
(

1 + log+ 1
t

)α dt
t
,

that is, T : Λ1
rad(v0)→ Γ 1,∞(v1) is bounded with

v0(t) = t1/p0−1

(
1 + log+ 1

t

)α
and v1(t) = t1/p0−1(1 + log+ t)−α.

Remark 2.2. At this point, it is important to observe that, if p0 > 1,
the above endpoint estimate is “near” (except for the logarithmic factors) to
the restricted weak type estimate for T : Lp0,1rad (µ)→ Lp0,∞(µ). However, we
have to mention that, under our hypothesis, we cannot expect to get the re-
stricted weak type estimate, since there are examples of operators satisfying
(2.1) for which the restricted weak type inequality is known to be false. For
instance (see [28]), the classical spherical maximal function was observed by
Bourgain to be of restricted weak type at the endpoint p = d/(d− 1) when
d ≥ 3 but it is known to fail to be of restricted weak type at p = 2 when
d = 2. We thank the referee for pointing out to us this concrete example.

Proof of Theorem 2.1. If ‖g‖∞ ≤ 1 and g is radial then

(Tg)∗∗(t)t1/p ≤ ‖Tg‖p .
1

(p− p0)α
‖g‖p .

1
(p− p0)α

‖g‖1/p1

and hence

(Tg)∗∗(t) .
1

(p− p0)α

(
‖g‖1
t

)1/p

.

Taking the infimum over p0 < p < p1, we get

(Tg)∗∗(t) .

(
‖g‖1
t

)1/p0(
1 + log+ t

‖g‖1

)α
.
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Let now f be a general radial function and let us write f =
∑

i∈Z 2ifi where
fi = (f/2i)χ{2i−1≤|f |<2i} is also radial and ‖fi‖∞ ≤ 1. Hence,

(Tf)∗∗(t) ≤
∑
i∈Z

2i(Tfi)∗∗(t) .
∑
i∈Z

2i
(
‖fi‖1
t

)1/p0(
1 + log+ t

‖fi‖1

)α
,

and since ‖fi‖1 ≤ λf (2i−1), we obtain

sup
t>0

t1/p0(Tf)∗∗(t)
(1 + log+ t)α

.
∑
i∈Z

2iD(λf (2i)) ≈
∞�

0

D(λf (y)) dy

with D(x) = x1/p0
(
1 + log+ 1

x

)α. The result now follows since
∞�

0

D(λf (y)) dy ≈
∞�

0

f∗(t)t1/p0
(

1 + log+ 1
t

)αdt
t
.

This result is the best known for the case p0 = 1. However, if p0 > 1, it
can be improved using some technical results of interpolation theory plus a
modification adapted to radial functions of some extrapolation techniques
developed in [11].

Let us start with a technical lemma.

Lemma 2.3. Let G be a concave function such that

G(t) ≈
( tp0�

0

g∗(s)p0 ds
)1/p0

and let , for every i ∈ Z,

Ei = {s ∈ (0,∞) : G′(s) > 2i}.
Then there exist (gi)i∈Z such that g =

∑
i 2igi and( tp0�

0

g∗i (s)
p0 ds

)1/p0
. min(t, |Ei|).

Proof. Let us first mention that since the function

H(t) =
( tp0�

0

g∗(s)p0 ds
)1/p0

is increasing and H(s)/s is decreasing, H is quasi-concave and hence equiva-
lent to a concave function; so the existence of G is clear. Since G′ is a decreas-
ing function we have G′(s) ≤ 4

∑
i 2iχEi(s) and G(t) .

∑
i 2i min(t, |Ei|).

On the other hand, H(t) ≈ K(g, t;Lp0 , L∞) and thus we can use the K-
divisibility theorem of interpolation theory ([5, p. 325]) to prove the result.

Our next theorem is an improvement of Theorem 2.1.
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Theorem 2.4. If T satisfies (2.1), then for every radial function f ,

sup
t>0

(
	t
0[(Tf)∗(s)]p0 ds)1/p0

(1 + log+ t)α
. ‖f‖p0 +

1�

0

(
	t
0 f
∗(s)p0 ds)1/p0

t

(
log

1
t

)α−1

dt.

Proof. Let f be a radial function on Rn and let g be defined in (0,∞)
by g(u) = f(u1/n). Then simple computations show that f∗(t) = g∗(cnt) for
a certain constant cn depending only on n.

Given g we can apply Lemma 2.3 to deduce that g =
∑

i∈Z 2igi, where( tp0�
0

g∗i (s)
p0 ds

)1/p0
. min(t, |Ei|).

Taking fi radial such that fi(u1/n) = gi(u) we find that f =
∑

i∈Z 2ifi and( tp0�
0

f∗i (s)p0 ds
)1/p0

. min(t, |Ei|),

or equivalently
t�

0

f∗i (s)p0 ds . min(t, |Ei|p0).

From this it follows (see [4, p. 61]) that, for every p ≥ p0,

‖fi‖p . |Ei|p0/p.
Then, for every i ∈ Z and every p > p0,(

1
t

t�

0

[(Tfi)∗(s)]p0 ds
)1/p0

≤
(

1
t

t�

0

[(Tfi)∗(s)]p ds
)1/p

≤ t−1/p‖Tfi‖p

. t−1/p 1
(p− p0)α

‖fi‖p ≤
1

(p− p0)α

(
|Ei|p0
t

)1/p

.

Taking the infimum over p0 < p ≤ q < p1 we obtain(
1
t

t�

0

[(Tfi)∗(s)]p0 ds
)1/p0

.
|Ei|
t1/p0

(
1 + log+ t1/p0

|Ei|

)α
and therefore

sup
t>0

(
	t
0[(Tfi)∗(s)]p0 ds)1/p0

(1 + log+ t)α
. |Ei|

(
1 + log+ 1

|Ei|

)α
=: D(|Ei|).

Summing over i ∈ Z we obtain

sup
t>0

(
	t
0[(Tf)∗(s)]p0 ds)1/p0

(1 + log+ t)α
.
∑
i∈Z

2iD(|Ei|) ≈
∞�

0

D(λG′(y)) dy,
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where G is defined as in Lemma 2.3,

G(t) ≈
( tp0�

0

g∗(s)p0 ds
)1/p0

=
( tp0�

0

f∗
(
s

cn

)p0
ds

)1/p0

=
(
cn

tp0/cn�

0

f∗(s)p0 ds
)1/p0

≈
( tp0�

0

f∗(s)p0 ds
)1/p0

.

Thus, integrating by parts gives

sup
t>0

(
	t
0[(Tf)∗(s)]p0 ds)1/p0

(1 + log+ t)α
.
∞�

0

G′(t) dD(t)

=
1�

0

G′(t)
(

log
1
t

)α
dt+

∞�

1

G′(t) dt . ‖f‖p0 +
1�

0

G(t)
t

(
log

1
t

)α−1

dt

. ‖f‖p0 +
1�

0

(
	tp0
0 f∗(s)p0 ds)1/p0

t

(
log

1
t

)α−1

dt,

as we wanted to prove.

Definition 2.5. We define the spaces D+
p,α and R+

p,α by the norms

‖f‖D+
p,α

= ‖f‖p +
1�

0

(
	t
0 f
∗(s)p ds)1/p

t

(
log

1
t

)α−1

dt

and

‖f‖R+
p,α

= sup
t>0

(
	t
0 f
∗(s)p ds)1/p

(1 + log+ t)α
.

Also,
D+
p,α,rad = {f ∈ D+

p,α : f is radial}.

With these definitions, Theorem 2.4 can be stated as follows:

Theorem 2.6. If T satisfies (2.1) then T : D+
p0,α,rad → R+

p0,α is bounded.

In the following remark, we compare our spaces above with classical
Orlicz and Lorentz spaces.

Remark 2.7. 1. Theorem 2.4 is an improvement of Theorem 2.1: to see
this, let us just recall that Lp0,1 ⊂ Lp0 ([4]) and, in fact (see [13]),

sup
f

(
	t
0 f
∗(s)p0 ds)1/p0	t

0 f
∗(s)s1/p0−1 dt

= sup
r>0

(
	t
0 χ(0,r) ds)1/p0	t

0 χ(0,r)s1/p0−1 dt
= p0 <∞.
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Hence

‖f‖D+
p0,α

= ‖f‖p0 +
1�

0

(
	t
0 f
∗(s)p0 ds)1/p0

t

(
log

1
t

)α−1

dt

≤ ‖f‖p0 +
1�

0

	t
0 f
∗(s)s1/p0−1 ds

t

(
log

1
t

)α−1

dt

.
∞�

0

f∗(s)s1/p0−1

(
1 + log

1
s

)α
ds = ‖f‖Λ1(v0),

with v0 as in the statement of Theorem 2.1. Therefore

Λ1(v0) ⊂ D+
p0,α.

In fact, the above inclusion is strict since if we take f such that

f∗(s) = s−1/p0

(
1 + log+ 1

s

)−β
with 1/p0 + α < β < 1 + α

then we have ‖f‖Λ1(v0) =∞ while ‖f‖D+
p0,α

<∞.

Also, if v1 is as in the statement of Theorem 2.1,

‖f‖Γ 1,∞(v1) = sup
t>0

t1/p0f∗∗(t)
(1 + log+ t)α

≤ sup
t>0

(
	t
0 f
∗(s)p0 ds)1/p0

(1 + log+ t)α
= ‖f‖R+

p0,α

and hence

R+
p0,α ⊂ Γ

1,∞(v1).

Moreover, this inclusion is strict since taking f such that f∗(s) = s−1/p0 we
have ‖f‖R+

p0,α
=∞ while ‖f‖Γ 1,∞(v1) <∞.

2. D+
p0,α is not comparable with Lp0,1 for any α. To see this, we observe

first that taking

f∗(t) = χ(0,1)(t) +
1

t1/p0
(

log 1
t

) χ(1,∞)(t)

we have f ∈ D+
p0,α\L

p0,1. For the converse, we have to apply Theorem 4.1(ii)
of [12] to deduce that, for every α > 0,

sup
f

	1
0 (
	t
0 f
∗(s)p0 ds)1/p0

(
log 1

t

)α−1 dt
t	1

0 f
∗(s)s1/p0−1 dt

=∞.
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3. If β/p0 > α, then
1�

0

(
	tp0
0 f∗(s)p0 ds)1/p0

t

(
log

1
t

)α−1

dt ≤
1�

0

(
	tp0
0 f∗(s)p0(1 + log 1

s )β ds)1/p0

t(1 + log 1
t )
β/p0+1−α dt

≤
(∞�

0

f∗(s)p0
(

1 + log
1
s

)β
ds

)1/p0

. ‖f‖Lp0 (logL)β ,

that is, Lp0(logL)β ⊂ D+
p0,α.

2.2. Now we consider the right endpoint p1. Let T be a sublinear op-
erator such that, for every p0 ≤ p < p1,

(2.2) ‖Tf‖Lp(µ) .
1

(p1 − p)α
‖f‖Lprad(µ).

Theorem 2.8. If T satisfies (2.2) then, for every radial function f ,

sup
t>0

t1/p1(Tf)∗∗(t)(
1 + log+ 1

t

)α .
∞�

0

f∗(t)t1/p1(1 + log+ t)α
dt

t
;

that is, T : Λ1(v0) → Γ 1,∞(v1) is bounded with v0(t) = t1/p1−1(1 + log+ t)α

and v1(t) = t1/p1−1
(
1 + log+ 1

t

)−α.

Proof. Let g be a radial function such that ‖g‖∞ ≤ 1. Then

(Tg)∗∗(t) .

(
1

p1 − p

)α(‖g‖1
t

)1/p

and taking the infimum over p0 ≤ p < p1 we obtain

(Tg)∗∗(t) .

(
‖g‖1
t

)1/p1(
1 + log+ ‖g‖1

t

)α
.

Let now f be a general radial function and let us write f =
∑

i∈Z 2ifi where
fi = (f/2i)χ{2i−1≤|f |<2i}. As in Theorem 2.1 we obtain

sup
t>0

t1/p1(Tf)∗∗(t)(
1 + log+ 1

t

)α .
∞�

0

D(λf (y)) dy

with D(x) = x1/p1(1 + log+ x)α. The result now follows since
∞�

0

D(λf (y)) dy ≈
∞�

0

f∗(t)t1/p1(1 + log+ t)α
dt

t
.

To improve the above result in the case p1 < ∞, we have to proceed as
in Theorem 2.4.
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Lemma 2.9. Let G be a concave function such that

G(t) ≈ t
( ∞�
tp
′
1

g∗∗(s)p1 ds
)1/p1

and let , for every i ∈ Z,

Ei = {s ∈ (0,∞) : G′(s) > 2i}.

Then there exist (gi)i∈Z such that g =
∑

i 2igi and

t
( ∞�
tp
′
1

g∗∗i (s)p1 ds
)1/p1

. min(t, |Ei|).

Proof. It suffices to observe that G(t) ≈ K(g, t;L1, Lp1) (see [4]) and
proceed as in Lemma 2.3.

Theorem 2.10. If T satisfies (2.2) then, for every f radial ,

sup
t>0

(
	∞
t (Tf)∗∗(s)p1 ds)1/p1(

1 + log+ 1
t

)α
. ‖f‖p1 +

∞�

1

(
	∞
t f∗∗(s)p1 ds)1/p1

t
(1 + log+ t)α−1dt.

Proof. Let f ∈ Lp1rad(Rn) be such that ‖f‖p1 = c with c to be chosen
later, and let g be defined in (0,∞) by g(u) = f(u1/n).

Now given g we can apply Lemma 2.9 to deduce that g =
∑

i∈Z 2igi,
where

t
( ∞�
tp
′
1

g∗∗i (s)p1 ds
)1/p1

. min(t, |Ei|).

with Ei = {s : G′(s) > 2i} and G defined as in Lemma 2.9.
Since G′ is decreasing,

G′(t) ≤ 1
t

t�

0

G′(s) ds =
G(t)
t

. ‖f‖p1 ≈ c,

and hence choosing c such that G′(t) ≤ 1 we find that Ei = ∅ whenever
i > 0. Taking fi radial such that fi(u1/n) = gi(u) we have f =

∑0
i=−∞ 2ifi

and

t
( ∞�
tp
′
1

f∗∗i (s)p1 ds
)1/p1

. min(t, |Ei|).
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From this it follows that ‖fi‖p1 . 1 and since
t�

0

f∗(s) ds ≈ t1/p′1
(∞�

t

1
sp1

ds

)1/p1 t�

0

f∗(s) ds

. t1/p
′
1

(∞�
t

(
	s
0 f
∗(u) du)p1

sp1
ds

)1/p1

. min(t1/p
′
1 , |Ei|)

we see that ‖fi‖1 . |Ei| and hence, for every p < p1,

‖fi‖p . |Ei|1−p
′
1+p′1/p.

Then, for every i ∈ Z− and every p < p1,( ∞�
tp
′
1

[(Tfi)∗∗(s)]p1 ds
)1/p1

.
( ∞�
tp
′
1

[(Tfi)∗∗(s)]psp/p1−1 ds
)1/p

. tp
′
1(1/p1−1/p)‖Tfi‖p . tp

′
1(1/p1−1/p)

(
1

p1 − p

)α
‖fi‖p

≤
(

1
p1 − p

)α( |Ei|
t

)1−p′1( |Ei|
t

)p′1/p
.

Taking the infimum over p0 ≤ p < p1 we obtain( ∞�
tp
′
1

[(Tfi)∗∗(s)]p1 ds
)1/p1

.

(
1 + log+ |Ei|

t

)α
and therefore

sup
t>0

(
	∞
tp
′
1
[(Tfi)∗∗(s)]p1 ds)1/p1(

1 + log+ 1
t

)α . (1 + log+ |Ei|)α =: D(|Ei|).

Summing over i ∈ Z− we obtain

sup
t>0

(
	∞
t [(Tf)∗∗(s)]p1 ds)1/p1(

1 + log+ 1
t

)α .
∑
i∈Z−

2iD(|Ei|) ≈
1�

0

D(λG′(y)) dy

≈ 1 +
∞�

0

(log+(λG′(y)))α dy.

Integrating by parts gives

sup
t>0

(
	∞
t [(Tf)∗∗(s)]p1 ds)1/p1(

1 + log+ 1
t

)α . 1 +
∞�

1

G′(t)(log t)α−1 dt

t

. 1 +
∞�

1

G(t)(log t)α−1 dt

t2
≤ 1 +

∞�

1

(
	∞
t f∗∗(s)p1 ds)1/p1

t
(log t)α−1 dt,

as we wanted to prove.
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Definition 2.11. We define the spaces D−p,α and R−p,α by the norms

‖f‖D−p,α = ‖f‖p +
∞�

1

(
	∞
t f∗∗(s)p ds)1/p

t
(1 + log+ t)α−1 dt

and

‖f‖R−p,α = sup
t>0

(
	∞
t f∗∗(s)p ds)1/p(
1 + log+ 1

t

)α .

Also
D−p,α,rad = {f ∈ D−p,α : f is radial}.

With these definitions, Theorem 2.10 reads as follows:

Theorem 2.12. Under the hypothesis of Theorem 2.10,

T : D−p1,α,rad → R−p1,α

is bounded.

As before, let us now make some comparison with classical spaces.

Remark 2.13. 1. Let us see that Theorem 2.10 improves Theorem 2.8:
first of all, by a discretization argument, it is easy to see that(∞�

t

f∗∗(s)p1 ds
)1/p1

.
∞�

t

f∗∗(s)s1/p1−1 ds

and hence

‖f‖D−p1,α = ‖f‖p1 +
∞�

1

(
	∞
t f∗∗(s)p1 ds)1/p1

t
(1 + log+ t)α−1 dt

. ‖f‖p1 +
∞�

1

	∞
t f∗∗(s)s1/p1−1 ds

t
(1 + log+ t)α−1 dt

= ‖f‖p1 +
∞�

1

f∗∗(s)s1/p1−1
s�

1

(1 + log+ t)α−1

t
dt

≈ ‖f‖p1 +
∞�

1

f∗∗(s)s1/p1−1(1 + log+ s)α ds

.
∞�

0

f∗(u)
∞�

max(1,u)

s1/p1−2(1 + log+ s)α ds

≈
∞�

0

f∗(u)u1/p1−1(1 + log+ u)α du

= ‖f‖Λ1(v0)
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with v0 as in Theorem 2.8. Hence

Λ1(v0) ⊂ D−p1,α.

The inclusion is strict since taking f such that f∗(s) = s−1/p1(1 + log+ u)−β

with α + 1/p1 < β ≤ 1 + α we obtain ‖f‖Λ1(v0) = ∞ and ‖f‖D−p1,α < ∞.

Also taking h∗(t) = t1/p1 one can imediately see that R−p1,α ⊂ Γ
1,∞(v1) with

v1 as in Theorem 2.8 and the embedding is strict.

2. In particular, if f ∈ Lp1(log 1/L)β with β > αp1, that is,

�

Rn
|f(x)|p1

(
1 + log+ 1

|f(x)|

)β
dx <∞

then
∞�

1

(
	∞
t f∗∗(s)p1 ds)1/p1

t
(log t)α−1 dt

≤
(∞�

0

f∗∗(s)p1(1 + log+ s)β ds
)1/p1

∞�

1

(log t)α−1

t(1 + log t)β/p1
dt

.
(∞�

0

f∗∗(s)p1(1 + log+ s)β ds
)1/p1

≈
(∞�

0

f∗(s)p1(1 + log+ s)β ds
)1/p1

where the last inequality follows since (1 + log+ s)β ∈ Bp1 (see [3]). Finally,
since sups f∗(s)s1/p1 <∞ we have(∞�

0

f∗(s)p1(1 + log+ s)β ds
)1/p1

.

(∞�
0

f∗(s)p1
(

1 + log
1

f∗(s)

)β
ds

)1/p1

≈
( �

Rn
|f(x)|p1

(
1 + log+ 1

|f(x)|

)β
dx

)1/p1

and therefore Lp1(log 1/L)β ⊂ D−p1,α.

3. Applications

3.1. Almost everywhere convergence of spherical partial Fourier integrals
for radial functions in weighted spaces. In [25] one of the authors proved that
if f is a radial function belonging to Lp(Rn), 2n/(n+ 1) < p < 2n/(n− 1),
then SRf(x) converges a.e. to f(x) whenever R tends to ∞, where

SRf(x) =
�

B(0,R)

f̂(ξ)e2πixξ dξ
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is the spherical partial Fourier integral. To do this it was shown that, for
radial functions f ,

(3.1) S̃f(x) = sup
R
|SRf(x)| ≤ C(n)

s(n−1)/2
(M + L+ H̃ + C̃)(g)(s)

where s = |x|, g(r) = f(r)r(n−1)/2χ(0,∞)(r), M is the Hardy–Littlewood
maximal operator, H̃ is the maximal Hilbert transform, C̃ is the maximal
Carleson operator defined by

C̃f(x) = sup
y∈R

sup
ε>0

∣∣∣∣ �

ε<|x−t|

e−iytf(t)
x− t

dt

∣∣∣∣
and L is the Hilbert integral

Lf(s) =
∞�

0

f(t)
s+ t

dt.

Using (3.1) it is proved in [27] and [15] that

S̃ : Lpj ,1rad → Lpj ,∞, j = 0, 1,

is bounded with

p0 =
2n
n+ 1

and p1 =
2n
n− 1

·

From this the almost everywhere convergence of SRf(x) in L
pj ,1
rad follows.

Again (3.1) is used in [26] to prove that if v is a radial weight such that
u(s) = v(s)s(n−1)(1−p/2) ∈ Ap then

(3.2) ‖S̃f‖Lp(v) ≤ Cv,p‖f‖Lprad(v)

but no information is given about the behaviour of the constant Cv,p.
In this section, we shall give an estimate of the constant Cw,p for any

radial weight w on Rn provided w0 ∈ A1, where w0(r) = w(|x|) for |x| =
r > 0 and w0(r) = w0(−r) for r < 0. Recall w0 ∈ A1 if

Mw0(s) ≤ Cw0(s) a.e. s ∈ R,

and ‖w0‖A1 is the infimum of all the above constants C.
When w : Rn → R+ is a radial function such that w0 ∈ A1, we shall

write w ∈ A1(R) and ‖w‖A1(R) = ‖w0‖A1 .
With this notation we shall prove that, for every p0 < p ≤ 2,

Cw,p . ‖w‖A1(R)

(
1

p− p0

)3

.

Then we can apply Theorem 2.6 and deduce the convergence almost ev-
erywhere of the spherical partial Fourier integrals for radial functions in
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D+
p0,3,rad(w), which is D+

p0,3,rad with µ = w(x) dx; similarly for R+
p0,3

(w).
Precisely, we shall prove the following:

Theorem 3.1. If w is a radial function in Rn such that w ∈ A1(R) then

S̃ : D+
p0,3,rad(w)→ R+

p0,3
(w)

is bounded. Hence if f ∈ D+
p0,3,rad(w), then

(3.3) SRf(x)→ f(x)

as R → ∞ for almost every x ∈ Rn. In particular , (3.3) holds for every
radial function f satisfying

∞�

0

f∗w(t)t1/p0
(

1 + log+ 1
t

)3 dt

t
<∞

and every radial function in Lp0(logL)β(w) with β > 3p0.

Proof. From (3.1) we have

‖S̃f‖Lp(w) . ‖Tg‖Lp(R+;w(s)s(n−1)(1−p/2)) ≤ ‖Tg‖Lp(R;u)

where u(s) = w(s)|s|(n−1)(1−p/2) and, for s ∈ R,

Tg(s) = (M + L+ H̃ + C̃)(g)(|s|).

To give an estimate of the constant C(w, p) in the inequality

‖Tg‖Lp(u) ≤ C(w, p)‖g‖Lp(u)
we will go through the following steps:

Step 1. If −1 < α ≤ 0 and vα(s) = |s|α, with s ∈ R, then

‖vα‖A1 ≤
2

1 + α
.

Then recalling that u(s) = w(s)|s|(n−1)(1−p/2) and w ∈ A1(R), we shall
prove that, for every p0 < p ≤ 2, the following four steps hold:

Step 2.

‖u‖Ap . ‖w‖A1(R)

(
1

p− p0

)p−1

.

Step 3.

‖Mg‖Lp(u) ≤
‖w‖(n+1)/(n−1)

A1(R)

p− p0
‖g‖Lp(u).

Step 4.

‖Lg‖Lp(u) ≤
‖w‖(n+1)/(n−1)

A1(R)

p− p0
‖g‖Lp(u).
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Step 5.

‖(H̃ + C̃)g‖Lp(u) . ‖w‖(n+1)/(n−1)
A1(R)

(
1

p− p0

)3

‖g‖Lp(u).

From Steps 3–5 it follows that

‖S̃f‖Lp(w) . ‖w‖(n+1)/(n−1)
A1(R)

(
1

p− p0

)3

‖g‖Lp(u).

Then the result follows by Theorem 2.4, since trivially ‖g‖Lp(u) ≈ ‖f‖Lp(w).

Proof of Step 1. Since vα is even, so also is

M(vα)(x) = sup
a<x<b

1
b− a

b�

a

|s|α ds,

and hence we can assume x > 0. If a > 0 then from −1 < α < 0 it follows
that bα < xα < aα and

1
b− a

b�

a

|s|α ds =
1

1 + α

b1+α − a1+α

b− a
≤ 1

1 + α

xαb− xαa
b− a

=
xα

1 + α
.

If a < 0 and −a > b then

1
b− a

b�

a

|s|α ds =
1

1 + α

b1+α + (−a)1+α

b− a
≤ 2

1 + α
bα ≤ 2xα

1 + α
.

If a < 0 and −a < b, 0 < B = −a/b < 1 then

1
b− a

b�

a

|s|α ds =
1

1 + α

b1+α + (−a)1+α

b− a
≤ 1

1 + α
bα

1 +B1+α

1 +B
≤ 2xα

1 + α
.

Therefore
M(vα)(x) ≤ 2xα

1 + α
.

Proof of Step 2. This result follows from the fact (see [16]) that if
w0, w1 ∈ A1, then w0w

1−p
1 ∈ Ap and

(3.4) ‖w0w
1−p
1 ‖Ap ≤ ‖w0‖A1‖w1‖p−1

A1
.

Hence writing

w0 = w and w1(s) = |s|
(n−1)(1−p/2)

1−p

we see that u = w0w
1−p
1 and thus by Step 1,

‖u‖Ap ≤ ‖w‖A1‖w1‖p−1
A1

. ‖w‖A1

(
1

1 + (n−1)(1−p/2)
1−p

)p−1

. ‖w‖A1(R)

(
1

p− p0

)p−1

.
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Proof of Step 3. By [6] (see also [23]) we know that

(3.5) ‖Mg‖Lp(u) ≤ ‖u‖
1/(p−1)
Ap

‖g‖Lp(u),

and hence the result follows by Step 2 since 1/(p− 1) ≤ (n+ 1)/(n− 1).

Proof of Step 4. First we observe that

Lg(|s|) =
∞�

0

g(t)
t+ |s|

dt ≤ 1
|s|

2|s|�

0

g(t) dt+
∞�

|s|

g(t)
t
dt

. Mg(|s|) +
∞�

|s|

g(t)
t
dt = Mg(|s|) +Rg(s).

For the first term, we can apply Step 3, and for the second one we shall
proceed by duality:

‖Rg‖Lp(u) = sup
‖h‖

Lp
′
(u−p′/p)

≤1

∣∣∣∣ �(∞�
|s|

g(t)
t
dt

)
h(s) ds

∣∣∣∣
= sup
‖h‖

Lp
′
(u−p′/p)

≤1

∣∣∣∣ � g(t)
(

1
t

�

|s|≤t

h(s) ds
)
dt

∣∣∣∣
. sup
‖h‖

Lp
′
(u−p′/p)

≤1

�
|g(t)|Mh(t) dt ≤ ‖g‖Lp(u)‖Mh‖Lp′ (u−p′/p).

Using (3.5), we obtain

‖Mh‖Lp′ (u−p′/p) ≤ ‖u
−p′/p‖1/(p

′−1)
Ap′

‖h‖Lp′ (u−p′/p)
and hence

‖Rg‖Lp(u) ≤ ‖u−p
′/p‖1/(p

′−1)
Ap′

‖g‖Lp(u).

Since (see [16]) u−p
′/p ∈ Ap′ if and only if u ∈ Ap and, in fact,

‖u−p′/p‖Ap′ = ‖u‖p
′−1
Ap

,

applying Step 2 for p ≤ 2, we obtain

‖Rg‖Lp(u) ≤ ‖u‖Ap‖g‖Lp(u) . ‖w‖A1

(
1

p− p0

)p−1

‖g‖Lp(u)

≤ ‖w‖A1

p− p0
‖g‖Lp(u).

Proof of Step 5. For this step we refer to [21] where the following good-
lambda inequality is proved, for a decomposition of {C̃f(x) > λ} into pair-
wise disjoint intervals (Ij)j :

|{x ∈ Ij : C̃f(x) > 3λ, Mrf(x) ≤ γλ}| ≤ Crγr|Ij |,
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where Mrf(x) =
(
M(|f |r)(x)

)1/r, 1 < r < p and γ > 0 is small enough.
We are interested in the behaviour of Cr as r → 1. The proof shows that
Cr . 1/(r − 1)2 since ‖C̃‖Lr→Lr,∞ . 1/(r − 1)2 ([8], [20]). Hence, for r > 1,

|{x ∈ Ij : C̃f(x) > 3λ, Mrf(x) ≤ γλ}| . γr

(r − 1)2
|Ij |.

Now we observe that even though our weight u depends on p, by using Step 1
and (3.4), it follows that, for every 2n/(n+ 1) < p ≤ 2,

‖u‖A2 ≤ ‖w‖A1‖ |s|(n−1)(p/2−1)‖A1 . ‖w‖A1

1
1 + (n− 1)(p/2− 1)

≤ n+ 1
2
‖w‖A1 .

Hence the norm of u as a weight in A∞ is uniformly bounded on p. Since
u ∈ A∞ implies that there exist C and δ depending on ‖u‖A∞ such that,
for every subset S of an interval I,

u(S)
u(I)

≤ C
(
|S|
|I|

)δ
,

we obtain

u({x ∈ Ij : C̃f(x) > 3λ, Mrf(x) ≤ γλ}) .

(
γr

(r − 1)2

)δ
u(Ij).

Summing over j we have

u({x : C̃f(x) > 3λ, Mrf(x) ≤ γλ}) .

(
γr

(r − 1)2

)δ
u({C̃f(x) > λ}).

From this inequality and using standard techniques we deduce that, for r>1,

‖C̃g‖Lp(u) .
1

(r − 1)2
‖Mrg‖Lp(u)

and thus

‖C̃g‖Lp(u) .
1

(r − 1)2
‖u‖

r
p/r−1

Ap/r
‖g‖Lp(u) .

1
(r − 1)2

‖w‖
r

p/r−1

A1

1 + (n−1)(1−p/2)
1−p/r

‖g‖Lp(u).

Let us choose r such that

1− 1
r

= c

(
p− 2n

n+ 1

)
,

with c small enough. Then it is easy to see that if p is near 2n/(n+ 1), then
1 < r < p and

1
(r − 1)2

1

1 + (n−1)(1−p/2)
1−p/r

≈
(

1
p− p0

)3

,

and the result follows.
The particular cases are consequences of Remark 2.7.
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At the right endpoint p1, it is not true that u(s) = w(s)|s|(n−1)(1−p/2) ∈
Ap with p near p1 for every w ∈ A1 and thus we have to impose another
condition on w:

Theorem 3.2. If w(s)|s|−2n/(n−1) ∈ A1(R) then

S̃ : D+
p1,3,rad(w)→ R+

p1,3
(w)

is bounded. Hence if f ∈ D+
p1,3,rad(w) then SRf(x) → f(x) as R → ∞ for

almost every x ∈ Rn. In particular , the almost everywhere convergence holds
for every radial function satisfying

∞�

0

f∗(u)u1/p1−1(1 + log+(1/u))3 du <∞

or f ∈ Lp1(logL)β with β > 3p1.

Proof. The proof follows the same steps as that of Theorem 3.1 as soon
as we prove that u ∈ Ap. We shall use the fact that u ∈ Ap if and only if
u1−p′ ∈ Ap′ and that ‖u‖Ap = ‖u1−p′‖1/(p

′−1)
Ap′

and write

u(s)1−p
′

= (w(s)|s|−2n/(n−1))1−p
′ |s|((n−1)(1−p/2)+2n/(n−1))(1−p′).

To see that u1−p′ ∈ Ap′ it is enough to check |s|((n−1)(1−p/2)+2n/(n−1))(1−p′) ∈
A1 and hence we need

−1 <
(

(n− 1)
(

1− p

2

)
+

2n
n− 1

)
(1− p′) ≤ 0,

which trivially holds for p near p1, p > p1, and by Step 1 in the proof of
Theorem 3.1 and (3.4),

‖u‖Ap = ‖u1−p′‖1/(p
′−1)

Ap′

.

(
‖w(s)|s|−2n/(n−1)‖p

′−1
1

1
1 + (1− p′)

(
(n− 1)(1− p/2) + 2n

n−1

))1/(p′−1)

. ‖w(s)|s|−2n/(n−1)‖1
(

1
p− 1− (n− 1)(1− p/2)− 2n

n−1

)p−1

. ‖w(s)|s|−2n/(n−1)‖1
(

1
p− 2n

n−1

)p−1

.

Following now the same steps as in the proof of Theorem 3.1, it remains
only to prove that u ∈ A∞; but this follows easily since, in fact, for n > 1,
u ∈ A3 using again (3.4) and Step 1.

The particular cases follow from Remark 2.13.
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3.2. Endpoint estimates for maximal Bochner–Riesz type operators act-
ing on radial functions. In [19] the following theorem for maximal Bochner–
Riesz type operators was proved:

Theorem 3.3. Let Tf(x) = supt>0 |(Kt ∗ f)(x)|, where K : Rn → C is
a radial , bounded measurable function, and let 0 < δ < (n− 1)/2. Suppose
that K(x) = a(|x|)eiϕ(|x|) for |x| > %, where

(3.6)
∣∣∣∣ dmdsm a(s)

∣∣∣∣ ≤ cs−((n+1)/2+δ+m),

∣∣∣∣ dmdsm (ϕ′(s))−1

∣∣∣∣ ≤ cs−m,
for s > % and m = 0, . . . , [n/2]. Then T is bounded on Lprad(Rn) for every
2n/(n+ 1 + 2δ) < p < 2n/(n− 1− 2δ).

Remark 3.4. In [19] it is also proved that, for n even, T is of weak
type on Lprad(Rn) for p = 2n/(n+ 1 + 2δ) and restricted weak type for
p = 2n/(n− 1− 2δ). If n is odd the same is proved under the additional
assumption that (3.6) also holds for m = (n+ 1)/2.

Set

p0(δ) =
2n

n+ 1 + 2δ
and p1(δ) =

2n
n− 1− 2δ

·

Claim. If T satisfies the hypothesis of Theorem 3.3 then

‖Tf‖p,∞ .
1

p− p0(δ)

(
1

p1(δ)− p

)(3n+1+2δ)/2n

‖f‖Lprad .

Proof. This follows by carefully checking Epperson’s calculations. First
of all, it turns out that the constant c in the statement of Lemma 1.4 in [19]
satisfies

c = c(η) . 1/η.

Indeed, the computations involve
	π/2
k1

θ−(1+η) dη and
	k2
π/2(π − θ)−(1+η) dη

(Case 4, p. 114), which are both bounded by C/η. The other cases give
better constants.

Now, the proof of Theorem 1.1 in [19] shows that

‖Tf‖Lp,∞ . ( max
i=1,...,6

ai)‖f‖p

where the ai are given by
�

Ciλ

sn−1 ds ≤ api

(
‖f‖p
λ

)p
.

Following Epperson’s calculations we see that for i = 1, 3, 5, 6,

ai . c(η).
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For i = 2, 4,

ai .
c(η)
η1/p′

if p is close to p1(δ), and ai . c(η) if p is close to p0(δ).
From this our claim follows. Indeed, if p < p1(δ), we choose η > 0 such

that p1(δ̄) < p with δ̄ = δ − η and so we have

p1(δ)− p1(δ̄) . η

and consequently
1
η

.
1

p1(δ)− p
.

Hence, for p close to p1(δ), we obtain

‖Tf‖Lp,∞ .

(
1

p1(δ)− p

)1+1/p′

‖f‖Lprad ,

which implies

‖Tf‖Lp,∞ .

(
1

p1(δ)− p

)(3n+1+2δ)/2n

‖f‖Lprad ,

and similarly, for p close to p0(δ),

‖Tf‖Lp,∞ .
1

p− p0(δ)
‖f‖Lprad .

Theorem 3.5. Under the hypothesis of the previous theorem,

T : Λ1
rad(v0)→ Γ 1,∞(v1)

is bounded with

(i) v0(t) = t1/p0(δ)−1

(
1 + log+ 1

t

)
and v1(t) = t1/p0(δ)−1(1 + log+ t)−1

and also

(ii) v0(t) = t1/p1(δ)−1(1+log+ t)α and v1(t) = t1/p1(δ)−1

(
1+log+ 1

t

)−α
with α = (3n+ 1 + 2δ)/2n.

Proof. (i) Near p0(δ) we have

(3.7) ‖Tf‖p,∞ .
1

p− p0(δ)
‖f‖p.

Now, from the proof of Theorem 2.1, one can easily see that, in fact, the
only condition on T that we use is that

sup
t>0

(Tf)∗∗(t)t1/p .
1

p− p0
‖f‖p,

and this condition follows immediately from (3.7) since p > pδ > 1.
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(ii) Near p1(δ), we have

(3.8) ‖Tf‖p,∞ .

(
1

p1(δ)− p

)(3n+1+2δ)/2n

‖f‖p,

but from the proof of Theorem 2.8, one can easily see that, in fact, the only
condition on T that we use is that

sup
t>0

(Tf)∗∗(t)t1/p .

(
1

p1(δ)− p

)(3n+1+2δ)/2n

‖f‖p,

and this condition follows immediately from (3.8).
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