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Operator theoretic properties of semigroups
in terms of their generators

by

S. Blunck and L. Weis (Karlsruhe)

Abstract. Let (Tt) be a C0 semigroup with generator A on a Banach space X and let
A be an operator ideal, e.g. the class of compact, Hilbert–Schmidt or trace class operators.
We show that the resolvent R(λ,A) of A belongs to A if and only if the integrated

semigroup St :=
� t
0
Ts ds belongs to A. For analytic semigroups, St ∈ A implies Tt ∈ A,

and in this case we give precise estimates for the growth of the A-norm of Tt (e.g. the
trace of Tt) in terms of the resolvent growth and the imbedding D(A) ↪→ X.

0. Introduction. In this paper we study how operator theoretic prop-
erties of the generator and the resolvent of a C0 semigroup on a Banach
space X are reflected in the properties of the semigroup.

Often operator theoretic properties of an operator T can be checked
conveniently by showing that T belongs to a suitable operator ideal. If T
belongs to the ideal of compact or strictly singular operators we know that its
spectrum σ(T ) consists of a series of eigenvalues with possible limit point 0,
that T is an admissible Fredholm perturbation, etc. We know about the
summability of its eigenvalues and its trace if T belongs to the Hilbert–
Schmidt class, the trace class or to one of the ideals extending the Schatten
classes to the Banach space setting.

To have a unified approach to many of these topics, we phrase our ques-
tion as follows: Given an operator ideal A and a C0 semigroup (Tt) with
generator A and resolvent R(λ,A), how can we characterize “R(λ,A) ∈ A”
in terms of A and the semigroup Tt?

Since the semigroup and the resolvent are connected by the Laplace
transform

(1) R(λ,A) =
∞�

0

e−λtTt dt

the resolvent is a “smoothing” of the semigroup and one would generally

2000 Mathematics Subject Classification: 47A60, 47B10, 47D06.

[35]



36 S. Blunck and L. Weis

expect that Tt ∈ A implies R(λ,A) ∈ A (see e.g. [V] for details). But the
inversion of the Laplace transform is very singular so that it is not surprising
that the converse is false in general. For instance, a well known result of Pazy
shows that the compactness of R(λ,A) implies the compactness of the Tt
only if the mapping t 7→ Tt is continuous in the operator norm for t > 0.

In Section 2 we show essentially that R(λ,A) belongs to an ideal A if
and only if the integrated semigroup St :=

� t
0 Ts ds belongs to A. We also

express “Tt ∈ A” in terms of growth conditions on the resolvent.
In Section 3 we extend this result to the Phillips functional calculus:

For a closed ideal A (e.g. if A is the ideal of compact or weakly compact
operators) we have R(λ,A) ∈ A if and only if ĝ(−A) ∈ A for one or all
functions g considered in this calculus (with a mild restriction). We also
generalize Pazy’s result on “Tt ∈ K”.

As pointed out to us by the referee, one obtains a similar result for
Lipschitz continuous integrated semigroups.

In Section 4 we consider analytic semigroups. Here R(λ,A) ∈ A always
implies Tt ∈ A, but if A is not closed the norm ‖Tt‖A usually blows up as
t → 0 (e.g. if A is the Hilbert–Schmidt or the trace class). So the question
arises how this growth of ‖Tt‖A as t → 0 is related to the growth of the
resolvent. Our main result here is that for all α > 0 and β ∈ (0, 1] one has

‖Tt‖A ≤ Ctβ−α on R+ ⇔ ‖R(λ,A)α‖A ≤ Dλ−β on R+.

This result allows one to obtain estimates on (Tt) directly from information
on the imbeddings Jα(A) : D((−A)α) ↪→ X. Indeed, if Jα(A) ∈ A then
‖Tt‖A ≤ Ct−α for small t.

To illustrate the use of our general framework we discuss briefly some ap-
plications to ultracontractivity as well as to trace and Gaussian estimates for
semigroups, all of which are related to (one-sided) operator ideals. Detailed
expositions of these applications are given in [B2] and [B3].

1. Preliminaries and notations. Let X be a complex Banach space
with unit ball BX and identity operator IX . With the convention S0 :=
R+ := {r ∈ R : r > 0} we denote for all δ ∈ [0, π/2) by Σδ and Sδ the open
sectors

Σδ := {λ ∈ C : |arg(λ)| < π/2 + δ}, Sδ := {z ∈ C : |arg(z)| < δ}.
Let (Tt)t≥0 be a C0 semigroup on X with generator A. The family (St)t≥0

given by

Stx :=
t�

0

Tsx ds

is called the integrated semigroup and provides an integrated semigroup in
the sense of [A]. We will also consider fractional powers of the resolvent
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(cf. 4.8(b)):

(2) R(λ,A)α = Γ (α)−1
∞�

0

e−λttα−1Tt dt, α > 0.

If A is the generator of a bounded holomorphic semigroup we denote by
δ(A) its maximal angle of holomorphy and put for all 0 ≤ δ < δ(A),

Rδ(A) := sup
λ∈Σδ

‖λR(λ,A)‖.

For a generator A the operator −A is non-negative in the sense of [MSM],
i.e. its fractional powers (−A)α are well defined for α > 0.

We denote by Jα(A) and (if 0 ∈ %(A)) J0
α(A) the imbedding operators

D((−A)α) ↪→ X and D0((−A)α) ↪→ X

where D0((−A)α) is the usual domain equipped with the norm x 7→
‖(−A)αx‖.

We briefly summarize some relevant facts from the theory of operator
ideals as developed in [P]. Suppose that for every pair of Banach spaces X
and Y we are given a subspace A(X,Y ) of the space L(X,Y ) of all bounded
linear operators that contains the finite-dimensional operators and has the
following “ideal” property:

T ∈ L(X0,X), S ∈ A(X,Y ), R ∈ L(Y, Y0) ⇒ RST ∈ A(X0, Y0).

Then the union A of all A(X,Y ) is called an operator ideal .
Such an operator ideal is called a normed operator ideal if every com-

ponent A(X,Y ) carries a complete norm ‖ · ‖A stronger than the operator
norm with

‖x∗ ⊗ y‖A = ‖x∗‖ ‖y‖ for all x∗ ∈ X∗, y ∈ Y
and

T ∈ L(X0,X), S ∈ A(X,Y ), R ∈ L(Y, Y0) ⇒ ‖RST‖A ≤ ‖R‖ ‖S‖A ‖T‖.
An operator ideal is called closed if ‖ · ‖A = ‖ · ‖ and A(X,Y ) is closed

in L(X,Y ). For example the compact, weakly compact and strictly singular
operators form closed operator ideals K, W and S, respectively.

Other well known examples are the operator ideals Pr and Nr of all
absolutely r-summing operators and r-nuclear operators which coincide for
1 < r < ∞ and Hilbert spaces X,Y with the class S2 of Hilbert–Schmidt
operators and therefore can be considered as extensions of S2 to the Banach
space setting.

The ideal S1 of operators with summable approximation numbers ex-
tends in this sense the trace class of Hilbert space operators, and there are
further ideals extending the other Schatten classes Sp to the Banach space
setting. For definitions and basic properties of these ideals see e.g. [P].
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We will use the notation A(X) := A(X,X) and the following useful fact
which is immediate from a convexity theorem for the Bochner integral (see
e.g. [DU], II.2.8).

Remark 1.1. Let I be an interval and F ∈ L1(I,L(X)) satisfy F (I) ⊂
BA(X). If BA(X) is closed in the operator norm then

�
I
F (t) dt ∈ |I|BA(X).

This observation can be applied not only to closed ideals but to most
popular ideals.

Lemma 1.2. The unit ball BA(X) is closed with respect to the strong
operator topology of L(X) if

(a) A is maximal (see [P]; e.g. if A = Pr), or
(b) A = Nr for some 1 ≤ r < ∞ and X is a dual space such that X∗

has the Radon–Nikodym property (e.g. if X is reflexive).

Proof. Let Amax denote the maximal hull of A ([P], 8.7.1). Then

(3) BA(X) ⊂ L-cl(BA(X)) ⊂ s-cl(BA(X)) ⊂ BAmax(X)

where s-cl denotes the closure in the strong operator topology. Here the
last inclusion is shown similarly to [P], 10.3.4. The maximality of A means
A = Amax, hence in the case (a) the claim follows from (3). The maximality
of Pr is shown in [P]. In the case (b) the assumptions on X yield A(X) =
Amax(X) ([P], 19.2.1; [DF], 33.6.1) though A = Nr is not maximal and we
can conclude as before.

2. General semigroups. Let A be the generator of a C0 semigroup
(Tt) on X. In this general situation we will show that the properties of the
resolvent are reflected not necessarily by the semigroup (Tt) itself but rather
in the properties of the integrated semigroup

Stx :=
t�

0

Tsx ds.

If the growth bound ω(Tt) is not negative we also need

S̃tx :=
t�

0

e−bsTsx ds

for some b > ω(Tt). (Of course, if ω(Tt) < 0 we might choose S̃t = St.)

Theorem 2.1. For a C0 semigroup (Tt) with generator A and (St), (S̃t)
as above the following statements are equivalent for every normed operator
ideal A:

(a) R(λ,A) ∈ A(X) for one (all) λ ∈ %(A).
(b) J1(A) ∈ A(D(A),X).
(c) S̃t ∈ A(X) for one (all) t > 0.
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If BA(X) is closed in L(X) we may add

(d) {t ∈ R+ : St ∈ A(X)} contains a set of positive Lebesgue measure.

Remark 2.2. (i) Condition (c) implies that (S̃t) is ‖ · ‖A-bounded while
condition (d) ensures that (St) is ‖ · ‖A-bounded on finite intervals and

lim sup
t→∞

1
t

log ‖St‖A ≤ ω(Tt) ∨ 0.

(ii) The proof will show that aside from the equivalence (a)⇔(b) all
claims of Theorem 2.1 remain true if we assume A(X) only to be a one-sided
ideal in the Banach algebra L(X) with norm estimate

(4) ‖ST‖A ≤ ‖S‖ ‖T‖A or ‖ST‖A ≤ ‖T‖‖S‖A.
Contrary to what one might expect, one cannot use the “translation”

Ã = A − b to get (c) if St ∈ A(X) for some t ∈ R+. This is shown by the
following example where {t ∈ R+ : St ∈ A(X)} is infinite.

Example 2.3. The bounded translation semigroup (Ttf)(s) := f(s − t)
on L2(T) is unitarily equivalent to the semigroup of diagonal operators

(5) Dtx := (e−antxn) on l2(Z)

for the special choice an := −in and has the following properties:

(a) R(λ,A) ∈ S2, but R(λ,A) 6∈ S1 for all λ ∈ %(A).
(b) St ∈ S1 for t = 2πk, k ∈ N.

Proof. For ht(s) :=
∑
n e
−anteins a direct computation shows ht ∗ f =

Ttf for all f ∈ L2(T). Thus it is sufficient to establish the properties (a)
and (b) for the semigroup (Dt) defined in (5) which admits the following
representation:

(6) R(λ,A)x =
(

1
λ+ an

xn

)
, Stx =

(
1− e−ant

an
xn

)

where expressions of the form (1− e−at)/a are read as t if a = 0.
Now (a) is obvious because (1/(λ− in)) 6∈ l1 for all λ in the resolvent

set %(A). Furthermore, in the case t = 2πk the operator St has rank 1 since

Stx = (. . . , 0, tx0, 0, . . .).

Example 2.3 also shows how far (Tt) can be from A if we only have
R(λ,A) ∈ A. However, for a differentiable (in particular analytic) semigroup
the Tt are bounded operators from X into D(A) and hence we have

Corollary 2.4. If (Tt) is a differentiable semigroup then R(λ,A) ∈
A(X) implies Tt ∈ A(X) for all t > 0. The converse holds if BA(X) is
closed in L(X).

In general, we have the following connection between the resolvent and
the semigroup.
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Proposition 2.5. Let BA(X) be closed with respect to the strong opera-
tor topology of L(X) (cf. Lemma 1.2). Then Tt0 ∈ A(X) for a fixed t0 > 0
if and only if there are constants C, λ0 ≥ 0 such that

‖Tt0R(λ,A)‖A ≤ Cλ−1 for all λ ≥ λ0.

Remark 2.6. (a) If Tt0 ∈ A(X) we trivially have, for every ω > ω(Tt),

‖Tt0+t‖A ≤Meωt‖Tt0‖A for all t ≥ 0.

(b) If IX 6∈A(X) then the strong convergence Tt→IX implies ‖Tt‖A→∞
as t→ 0. In Section 4 we will relate this growth to the growth of ‖R(λ,A)‖A
as λ→∞ in the case of analytic semigroups.

(c) For closed ideals A (for which BA(X) is in general not closed with
respect to the strong operator topology) we refer to Theorem 3.2.

Proof of Proposition 2.5. The “only if” part follows from the strong
convergence of λR(λ,A)Tt0 to Tt0 to λ→∞. The “if” part is a consequence
of 2.6(a) and

Tt0R(λ,A) =
∞�

0

e−λtTt+t0 dt.

For the proof of Theorem 2.1 we need

Lemma 2.7. Let f : [0, T ]→ L(X) be strongly continuous and bounded.
For all ω ∈ R consider the continuous function Fω : [0, T ]→ L(X) defined
by

Fω(t)x :=
t�

0

e−ωsf(s)x ds.

Assume that BA(X) is closed in L(X). If Fω0 is A(X)-valued and ‖ · ‖A-
bounded for some ω0 ∈ R then the same holds for all ω ∈ R.

Proof. Fix ω ∈ R. For gt : [0, T ] → R, s 7→ (ω0 − ω)e−(ω0−ω)(t−s),
a straightforward computation using Fubini’s theorem shows

(7) Fω(t) = e(ω0−ω)t
(
Fω0(t)−

t�

0

Fω0(s)gt(s) ds
)
.

Hence the assertion follows from 1.1 and the assumption on A.

Proof of Theorem 2.1. The resolvent identity shows the equivalence of
the two versions of (a). For (a)⇔(b) we just have to observe that J1(A) =
(R(λ,A) : X → X) ◦ (A − λI : D(A) → X) and (R(λ,A) : X → X) =
J1(A) ◦ (R(λ,A) : X → D(A)) for all λ ∈ %(A).

(a)⇒(c). Let M̃ := (1 +M)‖R(b,A)‖A and t ≥ 0. From

(I − T̃t)R(b,A) =
∞�

0

T̃s ds−
∞�

t

T̃s ds = S̃t
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we get S̃t = (I−T̃t)R(b,A) ∈ A(X) and ‖S̃t‖A ≤ ‖I−T̃t‖·‖R(b,A)‖A ≤ M̃ .
(c)⇒(a). We can assume that ‖T̃t‖ < 1 and the representation

R(b,A) =
∞�

0

T̃s ds =
∞∑

k=0

T̃kt

t�

0

T̃s ds =
( ∞∑

k=0

(T̃t)k
)
S̃t

reveals that R(b,A) = (
∑∞
k=0(T̃t)k)St ∈ A(X).

(c)⇒(d). By the proof of (a)⇒(c) we can assume in addition that (S̃t)
is ‖ · ‖A-bounded on [0, T ]. Now we can apply Lemma 2.7 to the function
f(t) := Tt.

(d)⇒(c). If we knew that (St) is ‖ ·‖A-bounded on [0, T ] for some T > 0
we could apply Lemma 2.7 again. As a first step towards this boundedness we
show that there exists a non-empty open subset E of R+ with the property
that (St) is ‖ · ‖A-bounded on E.

Indeed, since {t ∈ R+ : St ∈ A(X)} contains a set of positive Lebesgue
measure it has a compact subset K still of positive Lebesgue measure. Now
put Kn := {t ∈ K : St ∈ nBA(X)}. If Kn 3 tm → t then Stm → St in L(X),
and since BA(X) is closed in L(X) it follows that t ∈ Kn, i.e. Kn is closed.
Since K =

⋃
Kn some Kn has positive Lebesgue measure and thus contains

a non-empty open set E.
Now we deduce the ‖ · ‖A-boundedness of (St) on some interval [0, T ] as

follows. By Corollary 20.17 in [HR] we have [0, T ] ⊂ E −E for some T > 0.
An integrated semigroup satisfies the identity

St = ThSt−h + Sh, t ≥ h ≥ 0.

If we choose for every h ∈ [0, T ] some t, s ∈ E such that h = t − s then
Sh = St − ThSs and

‖Sh‖A ≤ ‖St‖A + ‖Th‖ · ‖Ss‖A ≤ 2 sup
t≤T
‖Tt‖C.

Proof of Remark 2.2. (i) The A-boundedness of (S̃t) is already shown in
(a)⇒(c) above. The claim for (St) follows inductively from the identity

SnT = T(n−1)TST + S(n−1)T .

Indeed, we get ‖SnT ‖A ≤ n‖TnT ‖ · ‖ST ‖A.
(ii) The above proof of Theorem 2.1—aside from the equivalence (a)⇔(b)

—only uses the fact that A is a left ideal. Since the Tt, R(λ,A) and St
commute the proof is also valid for right ideals.

3. Application to the Phillips calculus. In this section we give a
refinement of Theorem 2.1 in terms of the Phillips functional calculus for a
C0 semigroup (Tt) with generator A.
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Let L+
1 (a) denote the space of all measurable C-valued functions g on

R≥0 satisfying

‖g‖1,a :=
∞�

0

|g(s)|eas ds <∞.

If a > ω(Tt) the Phillips functional calculus ([HP], §15) is defined by

ĝ(−A)x :=
∞�

0

Tsxg(s) ds, g ∈ L+
1 (a).

Example 3.1. (a) Let Re(λ)>a, α>0. Then gλ,α(s) :=(sα−1/Γ (α))e−λs

∈ L+
1 (a) and

(8) ĝλ,α(−A) = R(λ,A)α.

(b) Let t > 0. Then χt := χ[0,t] ∈ L+
1 (a) and

(9) χ̂t(−A) = St.

(c) For all t>0 and δ ∈ (0, 1) let ft,δ denote the inverse Laplace trans-
form of e−tz

δ

on C+. Then ft,δ ∈ L+
1 (a) for a ≤ 0, and the fractional power

−(−A)δ generates the holomorphic semigroup Tt,δx :=
� ∞
0 Tsxft,δ(s) ds

([Y], §IX.11), i.e.

(10) f̂t,δ(−A) = Tt,δ.

After a glance at (8) and (9) the equivalent statements of Theorem 2.1
are of the form “ĝ(−A) ∈ A(X)” for certain g ∈ L+

1 (a). For instance, for
the ideal A = K of compact operators this can be generalized.

Theorem 3.2. If A is closed then the following statements are equiva-
lent :

(a) R(λ,A) ∈ A(X) for one (all) λ ∈ %(A).
(b) St ∈ A(X) on [0, T ] for some T > 0.
(c) ĝ(−A) ∈ A(X) for all g ∈ L+

1 (a).
(d) ĝ0(−A) ∈ A(X) for some g0 ∈ L+

1 (a) satisfying

(11) ĝ0(z) 6= 0 for all Re(z) ≥ −a and 0 ∈ supp(g0).

If in addition a ≤ 0 then another equivalent statement is:

(e) Tt,δ ∈ A(X) for one (all) t > 0 and one (all) 0 < δ < 1.

Notice that χ̂t(z) = (1− e−tz)/z 6= 0 for Re(z) > 0, i.e. if a < 0 and
b = 0 then the choice g0 := χt in (d) reproduces the condition (d) of 2.1.
Plugging g0 := gλ,α in statement (d) leads to

Corollary 3.3. The resolvent is compact if and only if it is power com-
pact.
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This can also be seen from the formula [De]

R(λ,A) = (m− 1)
∞�

0

µm−2R(λ+ µ,A)m dµ, λ > a.

The corollary has some interesting consequences.

Remark 3.4. (a) Let X be a space C(K) or L1(Ω,µ) (or more generally,
a space with the so-called Dunford–Pettis property [DU]). Then the product
of two weakly compact operators is compact, hence Corollary 3.3 implies
that a weakly compact resolvent is already compact. In other words, if A
is a closed operator such that R(λ,A) is weakly compact but not compact,
then A is not the generator of a C0 semigroup.

(b) Let X be a space Lp(Ω,µ), 1 < p < ∞. Then in a similar way we
deduce from [M] and [W] that if R(λ,A) is strictly singular (or an admissible
Fredholm perturbation) then R(λ,A) is already compact.

From (10) we derive

Corollary 3.5. If A is a closed ideal and R(λ,A) ∈ A(X) then the
subordinated semigroups (Tt,δ) and the δ-times integrated semigroups

St,δ = Γ (δ)−1
t�

0

(t− s)δ−1Ts ds

belong to A for all t > 0 and all δ ∈ (0, 1).

In view of these consequences it is not surprising that the closedness of
A is essential.

Example 3.6. For the semigroup in 2.3 we see from (6) that

R(λ,A)2 ∈ S1 and R(λ,A) 6∈ S1.

For the proof of Theorem 3.2 we need

Lemma 3.7. (a) {χt : t > 0} is total in L+
1 (a).

(b) Let g0 ∈ L+
1 (a). Then g0 ∗ L+

1 (a) is dense in L+
1 (a) if and only if

(11) holds.

Proof. (a) is the density of the step functions in L+
1 (a).

(b) We can assume a = 0 by applying this special case to ea(·)g0 ∈ L+
1 :=

L+
1 (0) otherwise. According to Nyman’s lemma ([D], 6.1), (11) holds if and

only if the right translates {τtg0 : t > 0} of g0 are total in L+
1 . This is

equivalent to the density of g0 ∗ L+
1 in L+

1 (see e.g. [K], 2.3).

Proof of Theorem 3.2. In view of (8)–(10) all statements are implied
by (c).

(b)⇒(c). Due to 3.7(a) every g ∈ L+
1 (a) is approximable in L+

1 (a) by
linear combinations gn of suitable χt. But (b) implies χ̂t(−A) = St ∈ A(X)
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for all t ≥ 0. Hence ĝ(−A) ∈ A(X) follows from the closedness of A and the
continuity of the functional calculus:

A(X) 3 ĝn(−A)→ ĝ(−A) in L(X).

(d)⇒(c). By means of 3.7(b) we find some h ∈ L+
1 (a) such that

‖g − g0 ∗ h‖1,a ≤ ε. Recalling that ĝ0(−A)ĥ(−A) ∈ A(X) yields the as-
sertion because

‖ĝ(−A)− ĝ0(−A)ĥ(−A)‖ = ‖ĝ(−A)− ̂g0 ∗ h(−A)‖
≤M‖g − g0 ∗ h‖1,a ≤Mε.

Now (a)⇒(c) and (e)⇒(c) follow from ĝλ,1(z) = (λ + z)−1 6= 0 and
f̂t,δ(z) = e−tz

δ 6= 0 for Re(z) ≥ −a.

Next we present an extension of Pazy’s result on compact semigroups
([Pa], §I.2.3).

Theorem 3.8. Let A be closed and (Tt) be norm-continuous for t > 0.
Then we may add in Theorem 3.2 the following equivalent statements:

(f) Tt ∈ A(X) for all t > 0.
(g) µ̂(−A) ∈ A(X) for all µ ∈M+

1 (a).

Here we denote by M+
1 (a) the space of all measures µ on R+ satisfying

‖µ‖1,a :=
∞�

0

eas d|µ|(s) <∞.

Remark 3.9. IfX is a Hilbert space the norm-continuity of (Tt) is equiv-
alent to

‖R(a+ ir, A)‖ → 0 for |r| → ∞ and some a > ω(Tt).

The same is true for positive semigroups on Lp(Ω,µ) (see [GW] for refer-
ences). So in these cases statement (f) can be characterized by conditions
on the resolvent only.

Proof of Theorem 3.8. (a)⇒(f). For a fixed t > 0 and all λ > 0 we have

λR(λ,A)Tt − Tt = λ

∞�

0

e−λs(Tt+s − Tt) ds

and thus for every δ > 0 and a > ω(Tt),

‖λR(λ,A)Tt − Tt‖ ≤ sup
s∈[0,δ]

‖Tt+s − Tt‖+ C
λ

λ− ωe
a(t+δ)e−δλ.

The first term tends to zero as δ → 0 while for every fixed δ the second
term tends to zero as λ → ∞. Since λR(λ,A)Tt ∈ A(X) and A is closed it
follows that Tt ∈ A(X).
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(f)⇒(g). Since R+ 3 t 7→ Tt ∈ L(X) is measurable the integral

µ̂(−A) =
∞�

0

Tt dµ(t)

exists in L(X) for every µ ∈ M+
1 (a) with a > ω(Tt). Since A is closed we

deduce µ̂(−A) ∈ A(X).
(g)⇒(a) is clear.

As pointed out to us by the referee, our Theorem 3.2 can be extended
to bounded integrated semigroups (St)t≥0 (cf. [A]) satisfying the Lipschitz
condition

lim sup
h↘0

h−1‖St+h − St‖ ≤M for all t ≥ 0.

By the integrated version of Widder’s Theorem [A, Cor. 1.2], the operators

R(λ) := λ

∞�

0

e−λtSt dt, λ > 0,

provide a pseudo-resolvent (R(λ))λ>0 which is tempered at infinity in the
sense of [CK]. Due to [CK, Thm. 2], there exists a continuous Banach algebra
homomorphism H : L1(R+)→ L(X) such that

H(e−λ·) = R(λ) and H(χ[0,t]) = St for all λ > 0, t ≥ 0.

In this setting, the proof of Theorem 3.2 (for a = 0) shows the following
version for integrated semigroups. By A we still denote a normed operator
ideal.

Theorem 3.10. If A is closed then the following statements are equiv-
alent :

(a) R(λ) ∈ A(X) for one (all) λ > 0.
(b) St ∈ A(X) for all t ≥ 0.
(c) H(g) ∈ A(X) for all g ∈ L1(R+).
(d) H(g0) ∈ A(X) for some g0 ∈ L1(R+) satisfying

ĝ0(z) 6= 0 for all Re(z) ≥ 0 and 0 ∈ supp(g0).

4. Analytic semigroups. In this section (Tt) is always a bounded holo-
morphic semigroup of angle δ(A) with generator A, and A is a one-sided
operator ideal in the sense of (4).

From Corollary 2.4 we already know that R(λ,A) ∈ A if and only if
Tt ∈ A but this qualitative information can be improved by using precise
growth estimates on the A-norms of R(λ,A) and Tt, using among other
things estimates by Prüss on the inverse Laplace transform [Pr].

If BA(X) is closed with respect to the strong operator topology of L(X)
(as shown in Lemma 1.2 for maximal ideals, e.g. the Hilbert–Schmidt and
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the trace class) and IX 6∈ A(X) then, of course, ‖Tt‖A → ∞ blows up as
t→ 0. The essential information of the next theorem is then how this growth
is related to the growth of ‖R(λ,A)‖A as |λ| → ∞.

In our growth conditions we use the symbol � to indicate that the left
hand side is dominated by a positive multiple of the right hand side.

Theorem 4.1. Let β ∈ [0, 1], α ≥ β and δ ∈ [0, δ(A)).

(a) If β > 0 and ‖Tt‖A � tβ−α on R+ then

‖R(λ,A)α‖A � |λ|−β on C+.

(b) If ‖R(λ,A)α‖A ≤ Dδ|λ|−β on Σδ then

‖Tz‖A ≤ CβΓ (α+ 2)Rδ(A)2Dδ|z|β−α on Sδ.

Here we let C+ := Σ0 = {z ∈ C : Re(z) > 0}. Simple examples of
diagonal operators of the type (5) show that the assertion (a) is not true for
β = 0 (cf. [B1]).

We postpone the proof of Theorem 4.1 to the end of the section and
discuss first some consequences. Combining (a) and (b) of Theorem 4.1
leads to the following characterization.

Corollary 4.2. (a) If β ∈ (0, 1] then the following equivalences hold :

‖Tt‖A � tβ−α on R+ ⇔ ‖R(λ,A)α‖A � λ−β on R+

m m
∀δ : ‖Tz‖A � |z|β−α on Sδ ⇔ ∀δ : ‖R(λ,A)α‖A � |λ|−β on Σδ

All implications except for the two “⇒” also hold for β = 0.
(b) Let ε > 0. If 0 ∈ %(A) then the following implications hold :

(−A)−α ∈ A(X)⇒ ‖Tz‖A � |z|−α on Sδ ⇒ (−A)−(α+ε) ∈ A(X).

Example 4.3. Let (Tt) be a bounded holomorphic semigroup on Lp(G)
for a measure space G. By considering the right-sided operator ideal A
defined via A(X,Y ) := L(X,Lq(G)) and using the notation ‖ · ‖p,q :=
‖ · ‖L(Lp,Lq) this section establishes the following connections:

‖Tt‖p,q � t−α ⇀↽ (−A)−α ∈ L(Lp, Lq) ⇀↽ ‖R(λ,A)α+β‖p,q � |λ|−β.
(The symbol “⇀↽” is used in order to indicate that, if necessary, the expo-
nents α and β have to be interpreted “up to an ε”.) Characterizations of
the above type are studied in the setting of ultracontractivity of semigroups,
i.e. of ‖Tt‖1,∞-estimates (cf. e.g. [C]; [VSC], §2).

In the following applications (mostly to differential operators) we use
information on the imbedding J1(A) : D(A) → X, provided by Sobolev
imbeddings or the integral kernel of the resolvent, to obtain directly esti-
mates for the semigroup.
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Example 4.4. Let Ω be a bounded domain in Rn and fix ε > 0. Assume
that A is a differential operator in Lp(Ω) with D((−A)α) ⊂ W 1+ε

p (Ω). If
p = n the Sobolev imbedding theorem implies that R(λ,A)α(Lp(Ω)) ⊂
Cb(Ω) ⊂ Lp(Ω) and R(λ,A) is a Hille–Tamarkin operator (these provide
a one-sided operator ideal A in L(Lp(Ω)); cf. [Pi]) with ‖R(λ,A)α‖A ≤ C.
Corollary 4.2 implies

‖Tt‖A � t−α.
In particular, the Tt are integral operators with p-summable eigenvalues.
Indeed, since operators in A are absolutely p-summing with p = n we deduce
from [Pi], Thm. 3.7.3, that Tnt has summable eigenvalues λk(Tnt ). Hence
Tt = (Tt/n)n yields

∑
|λk(T )| ≤ C1‖Tt/n‖nA ≤ C2(n/t)αn = C3t

−αn.

For a Schrödinger operator A one can choose α > 1/2+ε and we almost get
the trace estimate O(t−n/2) obtained by direct estimation of the integral
kernel of the Tt. But our approach applies to more general operators A
also in Lp-spaces and it shows how the exponent in the Sobolev imbedding
theorem determines the exponent in the trace estimate.

In [B2] this method is refined to give precise estimates for elliptic op-
erators on Hilbert spaces, even in the much more complicated case of un-
bounded domains.

Example 4.5. In [B3] we present an alternative approach to Gaussian
heat kernel estimates. Instead of applying the standard method using Nash-
type inequalities and Moser iteration we apply the combination of the cor-
responding Sobolev inequality and the ellipticity of A to

(12) D((−Ã%)1/2) ↪→ W̊m
2 (Ω) ↪→ Lq(Ω)

where the Ã% are suitable translations of the generators A% of the perturba-
tions (T %t ) corresponding to Davies’ perturbation method [Da]. From (12) it
follows that J1/2(Ã%) ∈ A for the operator ideal A defined in Example 4.3
for p = 2. Hence one obtains ‖T̃ %t ‖2,q � t−1/2 uniformly in all perturba-
tions from our perturbation result 4.6 and then ‖T̃ %t ‖1,∞ � t−N/2m from an
extrapolation result due to Coulhon [C]. Ultracontractive estimates of this
type are equivalent to the desired Gaussian estimates (cf. [AE], 3.3).

In Corollary 4.2 we omitted explicit constants in the characterization

(13) ‖Tz‖A ≤ C1|z|β−α ⇔ ‖R(λ,A)α‖A ≤ C2|λ|−β.
Here we analyse the implication “⇐” and state explicitly which parame-
ters of the semigroup enter in the constant C1. This allows uniform ‖ · ‖A-
estimates for such perturbations (T̂t) of the given semigroup (Tt) whose
perturbative effect on these parameters is uniformly bounded.
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This is of crucial importance for both announced applications [B2], [B3]
to partial differential operators A. Hence we will express the right hand side
of (13) in terms of the imbedding operator Jα(A), i.e. in terms of the Sobolev
imbedding corresponding to A.

As in Theorem 2.1 we need a right-sided ideal property of ‖ · ‖A here.

Proposition 4.6. If Jα(A) ∈ A and 0 ∈ %(A) then

(14) ‖Tt‖A ≤ CαR0(A)α+5‖J0
α(A)‖At−α on R+

for a constant Cα of the type Cα = C ′CαΓ (α+ 2).

Now we come to the proofs for this section. Recall that (Tt) is always a
bounded holomorphic semigroup. In the proof of Theorem 4.1 we will use
the ideal property to obtain A-norm estimates for resolvent powers R(λ,A)α

from the corresponding estimates for the operator norm. These resolvent
estimates are collected in the following two lemmas.

Lemma 4.7. (a) For all λ ∈ Σδ, η > 0 we have ‖η(η + λ − A)−1‖ ≤
(1 + tan δ)Rδ(A). In particular , λ− A is non-negative for all such λ.

(b) D((λ−A)α) is independent of λ ∈ Σδ with equivalent graph-norms.
(c) Let 0 < α < 1. Then, for all λ1, λ2 ∈ Σδ and x ∈ D((−A)α),

(15) ‖(λ1 −A)αx− (λ2 − A)αx‖ ≤ CδRδ(A)2|λ1 − λ2|α‖x‖.
If λ1 = 0 we can replace Cδ by

Eα :=
√
πΓ

(
1− α

2

)−1

Γ

(
1 + α

2

)−1

.

Proof. (a) is trivial since η + λ ∈ Σδ and η/|η + λ| ≤ 1 + tan δ =: Cδ.
(b) D((λ − A)α) = D((λ + ε − A)α) holds for all λ ∈ Σδ, ε > 0 due to

[MSM], Theorem 2.1. Applying this to rotations eiγA of A yields the first
statement.

Now let ‖ · ‖λ denote the graph-norm of (λ−A)α. Then D := D((−A)α)
= D((λ − A)α) is a Banach space with respect to ‖ · ‖0 and ‖ · ‖λ because
(−A)α and (λ− A)α are closed operators. Hence D is also a Banach space
with respect to ‖ · ‖0 + ‖ · ‖λ which is stronger than and thus equivalent to
‖ · ‖0 and ‖ · ‖λ.

(c) The standard representation for fractional powers of non-negative
operators B,

(16) Bαx =
sinαπ
π

∞�

0

ηα−1(η +B)−1Bxdη, x ∈ D(B)

([MSM], Remarks 2.4, 2.5), admits the following estimate for all x ∈ D(A):
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‖x‖−1 π

sinαπ
‖(λ1 − A)αx− (λ2 − A)αx‖

≤
∞�

0

ηα‖(η + λ1 − A)−1 − (η + λ2 − A)−1‖ dη

≤ 2CδRδ(A)
|λ1−λ2|�

0

ηα−1 dη + C2
δRδ(A)2|λ1 − λ2|

∞�

|λ1−λ2|
ηα−2 dη

≤ (2Cδα−1 + C2
δ (1− α)−1)Rδ(A)2|λ1 − λ2|α.

Thus (15) is shown for x ∈ D(A). But D(A) is a core for (−A)α and the
general statement follows from (b). If λ1 = 0 and λ2 = λ ∈ C+ the estimate
reads as follows:

‖x‖−1 π

sinαπ
‖(−A)αx− (λ−A)αx‖ ≤

∞�

0

ηα‖λR(η + λ,A)R(η,A)‖ dη

≤ R0(A)2
∞�

0

ηα−1|λ|√
η2 + |λ|2

dη

= R0(A)2|λ|α
∞�

0

sα−1
√

1 + s2
ds.

The assertion follows from the formula

(17)
∞�

0

sα−1
√

1 + s2
ds =

π

sinαπ
·

√
π

Γ (1− α/2)Γ ((1 + α)/2)

and is transferred to λ2 ∈ Σδ by means of the above rotation argument.

Lemma 4.8. (a) Let λ ∈ Σδ, µ ∈ Σδ. Then R(λ,A) and (µ−A)R(λ,A)
are non-negative, R(λ,A)α ∈ L(X) has range D((−A)α), and

(18) (µ− A)αR(λ,A)α = ((µ− A)R(λ,A))α ∈ L(X).

(b) For all |γ| < δ(A) and all λ ∈ C+ we have

(19) R(eiγλ,A)α = Γ (α)−1e−iγα
∞�

0

e−λttα−1Te−iγt dt.

(c) For all λ ∈ Σδ we have

‖(λR(λ,A))α‖ ≤ EαRδ(A), 0 < α < 1,(20)

‖(−A)αR(λ,A)α‖ ≤ C ′CαRδ(A)α+3,(21)

‖(|λ| − A)αR(λ,A)α‖ ≤ CδCαRδ(A)α+3.(22)

Proof. (a) Since η(η+R(λ,A))−1 = I − η−1(η−1 + λ−A)−1 and λ−A
is non-negative this is also true for R(λ,A). So R(λ,A)α ∈ L(X) follows
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from [MSM], Rem. 2.3. Moreover, (λ−A)α = [R(λ,A)α]−1 per definitionem
([MSM], 2.1).

To show the non-negativity of (µ−A)R(λ,A) and the formula (18), one
follows (the proof of) Theorem 2.1 of [MSM], and uses the above rotation
argument.

(b) By means of the rotation argument we can assume γ = 0. For α ∈ N,
(19) follows inductively from (1), and for α ∈ (0, 1) it is obtained by using
the integral representation (16). These two cases combine to the general
statement by applying the additivity of the fractional powers [MSM] and
Fubini’s theorem.

(c) Again we can assume δ = 0, i.e. λ ∈ C+. Then (20) follows from (17)
and

‖x‖−1 π

sinαπ
‖R(λ,A)αx‖ = ‖x‖−1

∥∥∥
∞�

0

ηα−2R(η−1 + λ,A)x dη
∥∥∥

≤ R0(A)
∞�

0

ηα−2
√
η−2 + |λ|2

dη

= R0(A)|λ|−α
∞�

0

s−α√
1 + s2

ds

where we used (16) again. Now we verify (21). For β := α− bαc ∈ [0, 1) we
have

‖(−A)αR(λ,A)α‖ ≤ (1 +Rδ(A))bαc‖(−A)βR(λ,A)β‖.
Thus we can assume α ∈ (0, 1). Using 4.7(c) for λ1 := 0 and λ2 := λ as well
as (20) we deduce for all x ∈ X that

‖(−A)αR(λ,A)αx− x‖ ≤ EαRδ(A)2|λ|α‖R(λ,A)αx‖ ≤ E2
αRδ(A)3‖x‖.

The proof of (2.2) is completely analogous.

Remark 4.9. If 0 ∈ %(A) one deduces analogously that 4.8(a)–(b) also
hold for λ = 0. In this case we define the negative powers of −A by (−A)−α

:= R(0, A)α.

In order to interpret the representations of R(λ,A)α in (2), (19) as an
A(X)-valued Lebesgue integral (provided that Tt ∈ A(X) on R+ with a
suitable ‖ · ‖A-behaviour) we have to check that the ‖ · ‖-smoothness of the
semigroup implies at least its ‖ · ‖A-measurability. Similarly, if the resolvent
belongs to A, it will be necessary to transfer its ‖ · ‖-holomorphy into ‖ · ‖A-
holomorphy.

Lemma 4.10. (a) If Tt ∈ A(X) for all t > 0 then T(·) : R+ → A(X) is
holomorphic.

(b) Let R(λ0, A)α ∈ A(X) for some λ0 ∈ Σδ. Then R(λ,A)α ∈ A(X)
for all λ ∈ Σδ and Fα : Σδ → A(X), λ 7→ R(λ,A)α, is holomorphic with
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derivative
F ′α(λ) = −αR(λ,A)α+1.

Proof. (a) follows by letting h→ 0 in

‖h−1(Tt+h − Tt)− ATt‖A ≤ ‖Tt/2‖A‖h−1(Tt/2+h − Tt/2)− ATt/2‖.
(b) The first part is trivial in view of the “resolvent power identity”

R(λ,A)α −R(µ,A)α = ((µ− A)α − (λ− A)α)R(λ,A)αR(µ,A)α.

Now denote by ‖ · ‖λ the graph-norm of (λ − A)α. We see that Fα is holo-
morphic into L(X) via differentiating under the integral in (19). Let us
assume for the moment that Fα is continuous into L := L(X,D((−A)α)).
Then Fα is even holomorphic into L since L ↪→ L(X) (cf. [Wr]). Because of
R(λ,A)α+1 ∈ A(X) and ‖ · ‖λ � ‖ · ‖0 we can estimate as follows:
∥∥∥∥
R(λ+ h,A)α−R(λ,A)α

h
+ αR(λ,A)α+1

∥∥∥∥

=
∥∥∥∥(λ−A)α

(
R(λ+ h,A)α−R(λ,A)α

h
+ αR(λ,A)α+1

)
R(λ,A)α

∥∥∥∥
A

�
∥∥∥∥
R(λ+ h,A)α−R(λ,A)α

h
+ αR(λ,A)α+1

∥∥∥∥
L

‖R(λ,A)α‖A

→ 0 as h→ 0.

Therefore we will show inductively that for all n ∈ N and all α ∈ (0, n) the
map Fα : Σδ → L is continuous. For n = 1 this follows from 4.7(b)–(c):

‖R(λ+ h,A)αx−R(λ,A)αx‖0 � ‖R(λ+ h,A)αx−R(λ,A)αx‖λ
� ‖((λ−A)α− (λ+h−A)α)R(λ+h,A)αx‖
� |h|α‖R(λ+ h,A)αx‖ ≤ |h|αC‖x‖

for |h| small. For n > 1 the commutativity of the (λ− A)α guarantees

‖R(λ+ h,A)αx−R(λ,A)αx‖0
� ‖((λ−A)α − (λ+ h− A)α)R(λ+ h,A)αx‖
=
∥∥∥((λ− A)α/n − (λ+ h− A)α/n)

◦
n−1∑

j=0

(λ−A)α(n−1−j)/nR(λ+ h,A)α(n−j)/nx
∥∥∥

� |h|α/n
n−1∑

j=0

‖(λ− A)α(n−1−j)/nR(λ+ h,A)α(n−j)/nx‖ ≤ |h|α/nC‖x‖

for |h| small, where we used the induction hypothesis in the last step.
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Now the preparations for the proofs of Section 4 are finished.

Proof of Theorem 4.1. (a) By hypothesis we have ‖Tt‖A � tβ−α on R+,
which extends to ‖Tz‖A-estimates on sectors. Indeed, let δ′, δ′′ ∈ (δ, δ(A))
such that δ′ < δ′′ and r := sin(δ′′ − δ′). Since z ∈ Sδ′ implies z − r|z| ∈ Sδ′′
we have

(23) ‖Tz‖A ≤ ‖Tr|z|‖A‖Tz−r|z|‖ � |z|β−α on Sδ′ .

Now we continue with a slightly modified rotation argument. For |γ| ≤
δ′ the semigroup (Teiγt) has the generator Aγ := eiγA and satisfies, by
Lemma 4.10(a), the representation (19) and the line (23), the following
estimate on C+:

‖R(λ,Aγ)α‖A ≤ Γ (α)−1D0

∞�

0

e−Re(λ)ttβ−1 dt = DRe(λ)−β

with D independent of γ and λ. Thus we only have to show the estimate on
S := Σδ \ Sπ/2−ε, where ε := δ′ − δ. Now fix γ := −δ′. For all λ ∈ S with
Im(λ) > 0 we have eiγλ ∈ Sπ/2−ε and therefore

‖R(λ,A)α‖A = ‖R(eiγλ,Aγ)α‖A ≤ DRe(e−iγλ)−β � |λ|−β.
On S ∩ {z | Im(z) < 0} we proceed analogously using γ := δ′.

(b) Suppose first that δ = 0. By 4.10(b) the function F : C+ → A(X),
λ 7→ R(λ,A)α, is holomorphic and satisfies the following estimate on C+:

(24) ‖F (λ)‖A, ‖λF ′(λ)‖A ≤ max(1, αR0(A))D0|λ|−β.
This can be seen from

‖λF ′(λ)‖A ≤ α‖λR(λ,A)‖ · ‖R(λ,A)α‖A ≤ αR0(A)D0|λ|−β.
So if β > 0 we are in a position to apply Theorems 1 and 2 of [Pr] and
obtain a continuous function u : R+ → A(X) with the properties

(25) F (λ) =
∞�

0

e−λtu(t) dt on C+,

‖u(t)‖A ≤ Cβ max(1, αR0(A))D0t
β−1 on R+.

In view of (19) the identity (25) holds for the function

u0(t) = Γ (α)−1tα−1Tt

so that the uniqueness of the Laplace transform yields the assertion. Now
we turn to the case β = 0 and set α̃ := α + 1, β̃ := 1, F̃ (λ) := R(λ,A)α̃

and D̃0 := R0(A)D0. Then (24) holds for these -̃quantities and our earlier
conclusion shows

‖Tt‖A ≤ C1Γ (α̃)α̃R0(A)D̃0t
β̃−α̃ = C1Γ (α+ 2)R0(A)2D0t

β−α.
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For arbitrary δ ∈ [0, δ(A)) we use the rotation argument again. Indeed, for
|γ| < δ we get from the first part

‖Teiγt‖A ≤ CβΓ (α+2)R0(eiγA)2Dδt
β−α ≤ CβΓ (α+2)Rδ(A)2Dδ|eiγt|β−α.

Proof of Corollary 4.2. (a) The ‖ · ‖A-estimates for the semigroup on
the halfline imply estimates on sectors analogous to those shown in the
proof of Theorem 4.1(a). For the resolvent this can be seen as follows. If
‖R(λ,A)α‖A ≤ D|λ|−β on R+ then from (18) and (22) we obtain, for all
λ ∈ Σδ,

‖R(λ,A)α‖A = ‖((|λ| − A)αR(λ,A)α)R(|λ|, A)α‖A
≤ ‖(|λ| −A)αR(λ,A)α‖‖R(|λ|, A)α‖A
≤ CδCαRδ(A)α+3D|λ|−β.

All other implications are trivial or proved in Theorem 4.1.
(b) According to (21) we can estimate onΣδ as follows if (−A)−α∈A(X):

‖R(λ,A)α‖A ≤ ‖(−A)αR(λ,A)α‖‖(−A)−α‖A � 1.

Hence 4.1 yields the first implication. The second follows directly from (19)
for γ = 0 and λ = 0 (cf. 4.9!) if we keep in mind that (Tt) has negative
type.

Proof of Proposition 4.6. Because of (18) and (21), on C+ we have

‖R(λ,A)α‖A ≤ ‖(−A)αR(λ,A)α‖‖J0
α(A)‖A(26)

≤ C ′CαR0(A)α+3‖J0
α(A)‖A,

and we can apply Theorem 4.1(b) for β = 0.

References

[A] W. Arendt, Vector-valued Laplace transforms and Cauchy problems, Israel J.
Math. 59 (1987), 327–352.

[AE] W. Arendt and A. F. M. ter Elst, Gaussian estimates for second order elliptic
operators with boundary conditions, J. Operator Theory 38 (1997), 87–130.

[B1] S. Blunck, Operatorenhalbgruppen und Operatorenideale, Ph.D. thesis, Kiel,
1998.

[B2] —, Polynomial trace estimates for semigroups, Potential Anal., to appear.
[B3] —, Gaussian estimates via the inverse Laplace transform, submitted.
[BW] S. Blunck and L. Weis, Operator theoretic properties of differences of semigroups

in terms of their generators, Arch. Math. (Basel), submitted.
[CK] W. Chojnacki and J. Kisyński, On the Favard classes of semigroups associated

with pseudo-resolvents, Acta Sci. Math. (Szeged) 64 (1998), 681–696.
[C] T. Coulhon, Dimensions of continuous and discrete semigroups on the Lp-spaces,

in: Lecture Notes in Pure and Appl. Math. 135, Dekker, 1991, 93–99.



54 S. Blunck and L. Weis

[D] H. G. Dales, Convolution algebras on the real line, in: Radical Banach Algebras
and Automatic Continuity, J. M. Bachar et al. (eds.), Lecture Notes in Math.
975, Springer, 1983, 180–209.

[Da] E. B. Davies, Heat Kernels and Spectral Theory , Cambridge Univ. Press, 1989.
[DF] A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland,

1993.
[De] M. Demuth, private communication.
[DU] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc.,

Providence, RI, 1977.
[GW] V. Goersmeyer and L. Weis, Norm-continuous semigroups, Studia Math. 134

(1999), 169–178.
[HR] E. Hewitt and K. Ross, Abstract Harmonic Analysis I , Springer, 1963.
[HP] E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math.

Soc. Colloq. Publ. 31, Amer. Math. Soc., Providence, RI, 1957.
[K] P. C. Kunstmann, Regularization of semigroups that are strongly continuous for

t > 0, Proc. Amer. Math. Soc. 126 (1998), 2721–2724.
[MSM] C. Martinez, M. Sanz and L. Marco, Fractional powers of operators, J. Math.

Soc. Japan 40 (1988), 331–347.
[M] V. D. Milman, Some properties of strictly singular operators, Funct. Anal. Appl.

3 (1969), 77–78.
[Pa] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential

Equations, Springer, 1983.
[P] A. Pietsch, Operator Ideals, North-Holland, 1980.
[Pi] —, Eigenvalues and s-numbers, Cambridge Univ. Press, 1987.
[Pr] J. Prüss, Laplace transforms and regularity of solutions of evolutionary and in-

tegral equations, Ulmer Seminare 1996, 317–330.
[VSC] N. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and Geometry on

Groups, Cambridge Univ. Press, 1993.
[V] J. Voigt, On the convex compactness property for the strong operator topology ,

Note Mat. 12 (1992), 259–269
[W] L. Weis, On perturbations of Fredholm operators on Lp(µ)-spaces, Proc. Amer.

Math. Soc. 67 (1977), 287–292.
[Wr] V. Wrobel, Analytic functions into Banach spaces and a new characterization

for isomorphic embeddings, ibid. 85 (1982), 539–543.
[Y] K. Yosida, Functional Analysis, Springer, 2nd ed., 1968.

Mathematisches Institut I
Universität Karlsruhe
Englerstr. 2
D-76128 Karlsruhe, Germany
E-mail: soenke.blunck@math.uni-karlsruhe.de

lutz.weis@math.uni-karlsruhe.de

Current address of S. Blunck :
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