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Hankel type operators on the unit disk

by

Jie Miao (State University, AR)

Abstract. We study Hankel operators and commutators that are associated with a
symbol and a kernel function. If the kernel function satisfies an upper bound condition,
we obtain a sufficient condition for commutators to be bounded or compact. If the kernel
function satisfies a local bound condition, the sufficient condition turns out to be necessary.
The analytic and harmonic Bergman kernels satisfy both conditions, therefore a recent
result by Wu on Hankel operators on harmonic Bergman spaces is extended.

1. Introduction. Let D denote the open unit disk in the complex plane
C and A denote the normalized Lebesgue area measure on D. For p ≥ 1,
let Lp denote Lp(D, dA). Let P denote an integral operator with a kernel
function K on D ×D given by

P (g)(z) =
�

D

g(w)K(z, w) dA(w).

For f ∈ L1, we define the Hankel operator Hf = (I − P )MfP and the
commutator Cf = MfP − PMf , where Mf is the multiplication operator
defined by Mf (g) = fg. The function f is called the symbol of Hf and Cf .
There is a close relation between Hf and Cf when P 2 = P . In this paper,
we study the boundedness and compactness of Cf that is associated with a
kernel function K(z, w) on Lp.

Let L2
a = {f ∈ L2 : f is analytic on D} denote the analytic Bergman

space and let P denote the orthogonal projection from L2 onto its closed
subspace L2

a. Then the corresponding Hankel operators and commutators
have been well studied; see [1], [4], and [7]. In this case P is an integral
operator with the kernel function

(1) Ka(z, w) =
1

(1− zw)2 .

Another case that was recently studied in [8] is the Hankel operators on
the harmonic Bergman space L2

h = {f ∈ L2 : f is harmonic on D}. The
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orthogonal projection P from L2 onto its closed subspace L2
h is an integral

operator with the kernel function (see page 357 of [9] on how it can be
derived)

(2) Kh(z, w) = 2< 1
(1− zw)2 − 1.

Wu [8] obtained characterizations for the boundedness and compactness of
Hf and Cf when f is a harmonic function on D.

The study of Hankel operators on the analytic and harmonic Bergman
spaces often depends on specific techniques that are only effective for an-
alytic or harmonic functions. As we will show, there is a necessary and
sufficient condition for Cf to be bounded or compact if the kernel function
satisfies an upper bound condition and a local bound condition. Descrip-
tions for both conditions on the kernel can be stated easily and do not rely
on analytic or harmonic functions. The proof of the sufficiency is essentially
the same as in [4]. The technique using a local estimation for the kernel to
prove the necessity is new. We use the unit disk as our setting in this paper
since it is easier to present concrete examples of kernel functions that satisfy
both conditions.

2. Preliminaries. In this section, we introduce some notation and func-
tion spaces. All the results are known in L2 norm (see [4]).

For w ∈ D, let ϕw be the analytic map of D onto D defined by

ϕw(z) =
w − z
1− wz .

The Bergman metric on D is defined by

β(z, w) =
1
2

ln
(

1 + |ϕw(z)|
1− |ϕw(z)|

)
.

For r > 0 and z ∈ D, the Bergman disk centered at z of radius r is defined by

E(z, r) = {w ∈ D : β(w, z) < r}.
Let |E(z, r)| = A(E(z, r)). For fixed r > 0, let

f̂(z, r) = |E(z, r)|−1
�

E(z,r)

f(w) dA(w)

and
MOp(f, z, r) = |E(z, r)|−1

�

E(z,r)

|f(w)− f̂(z, r)|p dA(w).

We say that f is in BMOp,r if MOp(f, z, r) is a bounded function of z. We say
that f is in VMOp,r

∂ if MOp(f, z, r)→ 0 as |z| → 1−. By Hölder’s inequality,
we have MOp(f, z, r) ≤ MOq(f, z, r) for p ≤ q. Hence BMOq,r ⊂ BMOp,r

and VMOq,r
∂ ⊂ VMOp,r

∂ for p ≤ q.
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We will show that BMOp,r and VMOp,r
∂ actually do not depend on r.

To achieve this goal, we need two more function spaces.
Let OSC(f, z) = supw∈E(z,1) |f(z)− f(w)| and let

BO = {f continuous on D : OSC(f, z) is bounded on D},
VO∂ = {f continuous on D : OSC(f, z)→ 0 as |z| → 1−}.

By Corollary to Theorem 13 of [4], E(z, 1) can be replaced by any E(z, r)
for r > 0 in the definition above.

Finally, let

Fp =
{
f ∈ Lp : |E(z, 1)|−1

�

E(z,1)

|f(w)|p dA(w) is bounded on D
}
,

Fp∂ =
{
f ∈ Lp : |E(z, 1)|−1

�

E(z,1)

|f(w)|p dA(w)→ 0 as |z| → 1−
}
.

Hölder’s inequality gives Fq ⊂ Fp and Fq∂ ⊂ Fp∂ for p ≤ q. Note that E(z, 1)
can be replaced by any E(z, r) in the definition above (see [6]).

We now introduce norms on these spaces. Let

‖f‖BMOp = sup
z∈D
{MOp(f, z, 1)}1/p, ‖f‖BO = sup

z∈D
OSC(f, z),

‖f‖Fp = sup
z∈D

{
|E(z, 1)|−1

�

E(z,1)

|f(w)|p dA(w)
}1/p

.

We use c throughout the paper for any positive constants that may
depend on the parameter p, but do not depend on r, where r is the radius
of the Bergman disk. If a positive constant depends on r, it will be denoted
by c(r).

The following lemma is analogous to Theorems 18 and 19 of [4].

Lemma 1. Let 1 ≤ p <∞. Then

(i) BMOp,r = BO + Fp.
(ii) VMOp,r

∂ = VO∂ + Fp∂ .

Proof. To prove (i), we first prove that BMOp,r ⊂ BO+Fp. Suppose that
f ∈ BMOp,r. Let z ∈ D and f̂(z) = f̂(z, r/2). Then by Hölder’s inequality,

|f̂(z)− f̂(w)|p

≤ |E(z, r/2)|−1|E(w, r/2)|−1
�

E(z,r/2)

�

E(w,r/2)

|f(u)− f(w)|p dA(u) dA(w),

and for β(w, z) ≤ r/2, we have

|f̂(z)− f̂(w)|p ≤ c(r)|E(z, r)|−2
�

E(z,r)

�

E(z,r)

|f(u)− f(w)|p dA(u) dA(w).
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Further,

|E(z, r)|−2
�

E(z,r)

�

E(z,r)

|f(u)− f(w)|p dA(u) dA(w)

= |E(z, r)|−2
�

E(z,r)

�

E(z,r)

|f(u)− f̂(z, r) + f̂(z, r)− f(w)|p dA(u) dA(w)

≤ 2p−1|E(z, r)|−2

×
�

E(z,r)

�

E(z,r)

(|f(u)− f̂(z, r)|p + |f(w)− f̂(z, r)|p) dA(u) dA(w)

= 2pMOp(f, z, r).

Therefore for β(w, z) ≤ r/2,

|f̂(z)− f̂(w)| ≤ 2pc(r)MOp(f, z, r).

Thus f̂ is in BO.
Next we show that f − f̂ is in Fp. Use Minkowski’s inequality to get
{
|E(z, r/2)|−1

�

E(z,r/2)

|f(w)− f̂(w)|p dA(w)
}1/p

≤
{
|E(z, r/2)|−1

�

E(z,r/2)

|f(w)− f̂(z)|p dA(w)
}1/p

+
{
|E(z, r/2)|−1

�

E(z,r/2)

|f̂(z)− f̂(w)|p dA(w)
}1/p

.

It is easy to check that both terms above on the right are dominated by
MOp(f, z, r). So f − f̂ ∈ Fp. This shows that BMOp,r ⊂ BO + Fp.

Now we show that BO + Fp ⊂ BMOp,r. By

MOp(f, z, r) ≤ |E(z, r)|−2
�

E(z,r)

�

E(z,r)

|f(w)− f(u)|p dA(w) dA(u),

we conclude that BO ⊂ BMOp,r. From

MOp(f, z, r) ≤ 2p|E(z, r)|−1
�

E(z,r)

|f(w)|p dA(w),

we conclude that Fp ⊂ BMOp,r. Hence BO + Fp ⊂ BMOp,r. This proves (i).
The argument above implies (ii) if we take the limit as |z| → 1−.

Remarks. (i) Lemma 1 shows that BMOp,r and BMOp,r
∂ are indepen-

dent of r and hence will be denoted by BMOp and VMOp
∂ , respectively.

(ii) For f ∈ BMOp (or VMOp), a typical decomposition of f is f =
f̂ + f − f̂ , where f̂ ∈ BO (or VO∂) and f − f̂ ∈ Fp (or F∂).
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(iii) If p ≥ 2, then BMOp ⊂ BMO2 and VMOp ⊂ VMO2. Let

f̃(z) = (1− |z|2)2
�

D

f(w)|1− zw|4 dA(w)

be the Berezin transform of f . Then Theorem 20 of [4] shows that we can
also decompose f ∈ BMOp (or VMOp) for p ≥ 2 as f = f̃ + f − f̃ such that
f̃ ∈ BO (or VO∂), f − f̃ ∈ Fp (or F∂) and

(3) ‖f̃‖BO ≤ c‖f‖BMOp , ‖f − f̃‖Fp ≤ c‖f‖BMOp .

We need two more lemmas. The proof of the first lemma is similar to
one given in [2] (see pages 5 and 6) and will be omitted.

Lemma 2. Let 1 < p < ∞ and t(w) = (1 − |w|2)−1/pp′ , where w ∈ D
and 1/p+ 1/p′ = 1. Then

�

D

t(w)p
′
β(z, w)|1− zw|−2 dA(w) ≤ ct(z)p

′
,

�

D

t(w)pβ(z, w)|1− zw|−2 dA(w) ≤ ct(z)p.

The other lemma is a special case of Theorem 2.2 of [6].

Lemma 3. Let 1 ≤ p <∞ and α > −1. If f ∈ Fp, then
�

D

|g(z)|p(1− |z|2)α|f(z)|p dA(z) ≤ c‖f‖pFp
�

D

|g(z)|p(1− |z|2)α dA(z)

for all analytic functions g on D.

3. An upper bound condition. In this section, we give a sufficient
condition for Cf = MfP − PMf , where

P (g)(z) =
�

D

g(w)K(z, w) dA(w),

to be bounded or compact on Lp. The following upper bound condition for
the kernel function K is needed for the sufficiency:

(4) |K(z, w)| ≤ c|1− zw|−2, z, w ∈ D.
We have the following theorem.

Theorem 1. Let 2 ≤ p <∞ and K satisfy (4).

(i) If f ∈ BMOp, then Cf is bounded on Lp.
(ii) If f ∈ VMOp

∂ , then Cf is compact on Lp.

Proof. First let us prove (i). Suppose that f ∈ BMOp for 2 ≤ p < ∞.
Then by Remark (iii) following Lemma 1, f = f̃ + h, where h = f − f̃ ∈
Fp. We will show that both Cf̃ and Ch are bounded on Lp. Note that Cf̃
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is an integral operator with the kernel function (f̃(z) − f̃(w))K(z, w). By
Corollary 1 of [4], for z, w ∈ D we have

|(f̃(z)− f̃(w))K(z, w)| ≤ c‖f‖BMOβ(z, w)|1− zw|−2.

In view of Lemma 2 and the Schur test, Cf̃ is bounded on Lp. Moreover,
‖Cf̃‖ ≤ c‖f‖BMOp .

To show that Ch is bounded, note that

Ch = MhP − PMh = MhP − (MhP
∗)∗,

where P ∗ is an integral operator with the kernel function K(w, z) on Lp
′

where 1/p+ 1/p′ = 1. For g ∈ Lp, we have

|MhP (g)(z)|p ≤ c
∣∣∣h(z)

�

D

|g(w)| · |1− zw|−2 dA(w)
∣∣∣
p

.

Apply Hölder’s inequality to the right side above to get

|MhP (g)(z)|p ≤ c|h(z)|p
( �

D

|g(w)|pt(w)−p|1− zw|−2 dA(w)
)

×
( �

D

t(w)p
′ |1− zw|−2 dA(w)

)p−1

≤ c|h(z)|pt(z)p
�

D

|g(w)|pt(w)−p|1− zw|−2 dA(w),

where t(w) is defined as in Lemma 2. Thus we have
�

D

|MhP (g)(z)|p dA(z)

≤ c
�

D

|g(w)|p|t(w)|−p dA(w) ·
�

D

|h(z)|pt(z)p|1− zw|−2 dA(z)

≤ c
�

D

|g(w)|p|t(w)|−p dA(w) · ‖h‖pFp
�

D

t(z)p|1− zw|−2 dA(z)

≤ c‖f‖pBMOp
�

D

|g(w)|p dA(w),

where we used Lemma 3 in the second step above and (3) in the last step.
Therefore MhP is bounded on Lp. Since p ≥ 2, p ≥ p′. So h ∈ Fp

′
. The

same argument yields that (MhP
∗) is bounded on Lp

′
, therefore (MhP

∗)∗

is bounded on Lp. This proves that Cf = Cf̃ + Ch is bounded on Lp and
gives ‖Cf‖ ≤ c‖f‖BMOp .

Now we prove (ii). Suppose that f ∈ VMOp for 2 ≤ p <∞. Let f = f̃+h,
where h = f − f̃ ∈ F∂ . We show that both Cf̃ and Ch are compact on Lp.



Hankel type operators on the unit disk 61

For 0 < δ < 1, let Cf̃ ,δ be the integral operator with kernel function

Kf̃ ,δ(z, w) = (f̃(z)− f̃(w))χ{|z|<δ}(z, w)K(z, w).

If |z| < δ < 1 and w ∈ D, then |K(z, w)| ≤ c and hence

|(f̃(z)− f̃(w))K(z, w)| ≤ c‖f‖BMOβ(z, w) ≤ c‖f‖BMO(β(z, 0) + β(w, 0))

≤ c‖f‖BMO(1 + ln(1/(1− |w|)).
It is clear that

�

D

( �

D

|Kf̃ ,δ(z, w)|p dA(z)
)p′/p

dA(w) <∞.

Thus for every δ < 1, Cf̃ ,δ is a compact operator on Lp by Ex. 7 in Section 6.3
of [5]. Given ε > 0, by the proof of Lemma 26 of [4], there is δ ∈ (0, 1) such
that for δ < |z| < 1,

|(f̃(z)− f̃(w))K(z, w)| ≤ cε‖f‖BMOβ(z, w)|1− zw|−2.

Therefore ‖Cf̃ − Cf̃ ,δ‖ ≤ cε‖f‖BMO by the proof in part (i) and hence
‖Cf̃ − Cf̃ ,δ‖ → 0 as δ → 1−. This shows that Cf̃ is compact on Lp.

To prove that Ch is compact, let hδ(z) = h(z)χ{|z|<δ}(z) for 0 < δ < 1.
Then MhδP is an integral operator with the kernel hδ(z)K(z, w). Since
|hδ(z)K(z, w)| ≤ c|hδ(z)| for z, w ∈ D, it is clear that MhδP is a compact
operator on Lp. By the argument in part (i) that is used to prove that MhP
is bounded, for g ∈ Lp we have

�

D

|Mh−hδP (g)(z)|p dA(z) ≤ c sup
|z|≥δ

(
|E(z, 1)|−1

�

E(z,1)

|h(w)|p dA(w)
)
‖g‖pp.

Thus ‖MhP −MhδP‖ = ‖Mh−hδP‖ → 0 as δ → 1−, since h ∈ Fp∂ . So MhP

is compact. The same argument implies that (MhP
∗) is compact on Lp

′
,

since h ∈ Fp
′

∂ . Hence PMh = (MhP
∗)∗ is compact on Lp. This shows that

Ch = MhP − PMh is compact on Lp and completes the proof.

4. A local bound condition. In this section, we prove the converse of
Theorem 1 if the kernel function satisfies the following local bound condition:

K−1(u,w) = K−1(z, z) +R(u,w, z), u, w ∈ E(z, r), z ∈ D,
such that

(5) K−1(z, z) ≈ (1−|z|2)2, |R(u,w, z)| ≤ cr(1−|z|2)2, u, w ∈ E(z, r),

where r is considered to be small enough and K−1(z, z) ≈ (1− |z|2)2 means
that

0 < c1 ≤
K−1(z, z)
(1− |z|2)2 ≤ c2.
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We have the following theorem.

Theorem 2. Let 1 < p <∞ and K satisfy (5) for all r small enough.

(i) If Cf is bounded on Lp, then f ∈ BMOp.
(ii) If Cf is compact on Lp, then f ∈ VBOp

∂.

Proof. For z ∈ D, we have

MOp(f, z, r)

= |E(z, r)|−1−p �

E(z,r)

∣∣∣
�

E(z,r)

(f(u)− f(w))K(u,w)K−1(u,w) dA(w)
∣∣∣
p

dA(u).

By (5) we have

MOp(f, z, r)

≤ 2p−1|E(z, r)|−1−p

×
�

D

∣∣∣
�

E(z,r)

(f(u)− f(w))K(u,w)K−1(z, z) dA(w)
∣∣∣
p

dA(u)

+ 2p−1|E(z, r)|−1−p

×
�

E(z,r)

∣∣∣
�

E(z,r)

(f(u)− f(w))K(u,w)R(u,w, z) dA(w)
∣∣∣
p

dA(u)

≤ c(r)(1− |z|2)−2‖Cf (χE(z,r))‖pp
+ 2p−1|E(z, r)|−1−p

×
�

E(z,r)

( �

E(z,r)

|f(u)− f(w)| · |K(u,w)R(u,w, z)| dA(w)
)p
dA(u),

where we used the fact that |E(z, r)| ≈ r2(1 − |z|2)2 in the last step. If we
denote the second term above by T (f, p, z, r), then

(6) MOp(f, z, r) ≤ c(r)(1− |z|2)−2‖Cf (χE(z,r))‖pp + T (f, p, z, r).

By (5), for u,w ∈ E(z, r) and r small enough,

|K(u,w)| = |(K−1(z, z) +R(u,w, z))−1|
≤ (K−1(z, z)− |R(u,w, z)|)−1 ≤ c(1− |z|2)−2.

Therefore we have, for r small enough,

|K(u,w)R(u,w, z)| ≤ cr, u, w ∈ E(z, r).

By the estimate above and Hölder’s inequality, for r small enough we have
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T (f, p, z, r)

≤ crp|E(z, r)|−1−p �

E(z,r)

( �

E(z,r)

|f(u)− f(w)| dA(w)
)p
dA(u)

≤ crp|E(z, r)|−2
�

E(z,r)

�

E(z,r)

|f(u)− f(w)|p dA(w) dA(u)

≤ crp|E(z, r)|−2

×
�

E(z,r)

�

E(z,r)

2p−1(|f(u)− f̂(z, r)|pe+ |f(w)− f̂(z, r)|p) dA(w) dA(u)

= 2pcrpMOp(f, z, r).

Now we choose r small enough such that 1 − 2pcrp > 1/2 where c is the
constant given in the last step. Then by (6) we have

1
2 MOp(f, z, r) ≤ (1− 2pcrp)MOp(f, z, r)

≤ c(r)(1− |z|2)−2‖Cf (χE(z,r))‖pp
= c(r)‖Cf ((1− |z|2)−2/pχE(z,r))‖pp.

Suppose that Cf is bounded. Since (1 − |z|2)−2/pχE(z,r) is Lp-norm
bounded, ‖Cf ((1 − |z|2)−2/pχE(z,r))‖pp is bounded for z ∈ D. This shows
that f ∈ BMOp.

Suppose that Cf is compact. Since (1 − |z|2)−2/pχE(z,r) is Lp-norm
bounded and tends to zero uniformly on compact subsets of D as |z| → 1−,
(1− |z|2)−2/pχE(z,r) tends to zero weakly in Lp as |z| → 1−. Thus

‖Cf ((1− |z|2)−2/pχE(z,r))‖pp → 0

as |z| → 1−. This shows that f ∈ VMOp
∂ and the proof is now complete.

5. Examples. In this section, we give some kernel functions that satisfy
both (4) and (5).

(a) Analytic Bergman kernel :

Ka(z, w) =
1

(1− zw)2 .

Clearly, Ka satisfies (4). Note that K−1
a (z, z) = (1 − |z|2)2 for z ∈ D. Let

R(u,w, z) = (1− uw)2 − (1− |z|2)2. Thus

R(u,w, z) = (|z|2 − uw)((1− uw) + (1− |z|2)).

It is an easy computation that if u ∈ E(z, r) and r ≤ 1/2, then

|u− z| < cr(1− |z|2).
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So for u,w ∈ E(z, r) and r ≤ 1/2,

(7)
∣∣|z|2 − uw

∣∣ = |−z(u− z)− u(w − z)| ≤ cr(1− |z|2).

By (7) we have

|1− uw| = |(1− |z|2) + (|z|2 − uw)| ≤ c(1− |z|2).

Therefore for u,w ∈ E(z, r) and r ≤ 1/2,

|R(u,w, z)| =
∣∣|z|2 − uw

∣∣ · |(1− uw) + (1− |z|2)| ≤ cr(1− |z|2)2.

This shows that Ka satisfies (5).
Let Ca

f = MfP − PMf , where P is an integral operator with the kernel
function Ka.

Theorems 1 and 2 give the following known result.

Corollary 1. Let 2 ≤ p <∞. Then

(i) Ca
f is bounded on Lp ⇔ f ∈ BMOp;

(ii) Ca
f is compact on Lp ⇔ f ∈ VMOp

∂.

Let Ha
f = (I − P )MfP be the Hankel operator. We have the following

relations between Ca
f and Ha

f :

Ca
f = Ha

f − (Ha
f
)∗, Ha

f = (I − P )Ca
f , (Ha

f
)∗ = −Ca

f (I − P ).

Thus Corollary 1 is equivalent to the following result.

Corollary 2. Let 2 ≤ p <∞ and 1/p+ 1/p′ = 1. Then

(i) Ha
f is bounded on Lp and Ha

f
is bounded on Lp

′ ⇔ f ∈ BMOp.

(ii) Ha
f is compact on Lp and Ha

f
is compact on Lp

′ ⇔ f ∈ VMOp
∂ .

(b) Harmonic Bergman kernel :

Kh(z, w) = 2< 1
(1− zw)2 − 1.

Clearly, Kh satisfies (4). In order to show that Kh satisfies (5), we need the
following proposition.

Proposition. For r small enough, we have

K−1
h (u,w) = K−1

h (z, z) +R(u,w, z), u, w ∈ E(z, r), z ∈ D,
where

|R(u,w, z)| ≤ cr(1− |z|2)2, u, w ∈ E(z, r).

Proof. Using the formula for Kh(z, w) given on page 427 of [8], we have

K−1
h (u,w) =

|1− uw|4
(1− |u|2|w|2)2 − 2|u|2|w|2|1− uw|2 ≡

A(u,w)
B(u,w)

.
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Since

K−1
h (z, z) =

(1− |z|2)2

2− (1− |z|2)2 ,

it is easy to show that

(1/2)(1− |z|2)2 ≤ K−1
h (z, z) ≤ (1− |z|2)2.

Let u = x1 + ix2, w = x3 + ix4. We will expand K−1
h (u,w) at the

point (z, z) for z ∈ D. For u,w ∈ E(z, r), since R(u,w, z) = K−1
h (u,w) −

K−1
h (z, z), we have

|R(u,w, z)| ≤
2∑

i=1

sup
u,w∈E(z,r)

|(K−1
h )xi(u,w)| · |u− z|(8)

+
4∑

i=3

sup
u,w∈E(z,r)

|(K−1
h )xi(u,w)| · |w − z|.

For i = 1, 2, 3, 4,

(K−1
h )xi(u,w) =

Axi(u,w)B(u,w)− A(u,w)Bxi(u,w)
B2(u,w)

.

It is straightforward to check that for u,w ∈ E(z, r), r < 1/2, and i =
1, 2, 3, 4,

|Axi(u,w)| ≤ c(1− |z|2)3, |Bxi(u,w)| ≤ c(1− |z|2),

|A(u,w)| ≤ c(1− |z|2)4, |B(u,w)| ≤ c(1− |z|2)2,

therefore

|Axi(u,w)B(u,w)− A(u,w)Bxi(u,w)| ≤ c(1− |z|2)5.

Next we will obtain a lower bound for B(u,w) for u,w ∈ E(z, r). We
have

B(u,w)

= (1− |u|2|w|2)2 − 2|u|2|w|2|1− uw|2

= (1− |u|2|w|2)2 − 2|u|2|w|2|(1− |u| · |w|) + (|u| · |w| − uw)|2

≥ (1− |u|2|w|2)2 − 2|u|2|w|2
(
(1− |u| · |w|) +

∣∣|u| · |w| − uw
∣∣)2

= (1− |u|2|w|2)2 − 2|u|2|w|2(1− |u| · |w|)2

︸ ︷︷ ︸
C(u,w)

−
(

4|u|2|w|2(1− |u| · |w|)
∣∣|u| · |w| − uw

∣∣+ 2|u|2|w|2
∣∣|u| · |w| − uw

∣∣2
︸ ︷︷ ︸

D(u,w)

)

= C(u,w)−D(u,w).
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For u,w ∈ E(z, r) and r ≤ 1/2, |u− z| < cr(1− |z|2), |w− z| < cr(1− |z|2),
therefore for r small enough, 1− |u| > c(1− |z|2), 1− |w| > c(1− |z|2). We
have

C(u,w) = (1− |u| · |w|)2(1 + 2|u| · |w| − |u|2|w|2)

≥ (1− |u| · |w|)2 ≥ (1− |u|)2 ≥ c(1− |z|2)2

for u,w ∈ E(z, r) and r small enough. By (7), for u,w ∈ E(z, r) and r ≤ 1/2
we get ∣∣|z|2 − |u| · |w|

∣∣ ≤
∣∣|z|2 − uw

∣∣ ≤ cr(1− |z|2),

therefore ∣∣|u| · |w| − uw
∣∣ ≤ cr(1− |z|2).

Thus

D(u,w) ≤ 4(1− |u| · |w|)
∣∣|u| · |w| − uw

∣∣+ 2
∣∣|u| · |w| − uw

∣∣2 ≤ cr(1− |z|2)2

for u,w ∈ E(z, r) and r ≤ 1/2. Therefore for u,w ∈ E(z, r) and r small
enough,

B(u,w) ≥ c(1− |z|2)2 − cr(1− |z|2)2 ≥ c(1− |z|2)2.

Thus for r small enough,

sup
u,w∈E(z,r)

|(K−1
h )xi(u,w)| ≤ c(1− |z|2), i = 1, 2, 3, 4.

Hence the desired estimate for R(u,w, z) follows from (8).

Therefore Kh satisfies both (4) and (5). Let

Ch
f = MfP − PMf , Hh

f = (I − P )MfP,

where P is an integral operator with the kernel function Kh.
Theorems 1 and 2 imply the following result.

Corollary 3. Let p ≥ 2. Then

(i) Ch
f is bounded on Lp ⇔ f ∈ BMOp.

(ii) Ch
f is compact on Lp ⇔ f ∈ VMOp

∂.

Since Kh is real-valued, Hh
f is bounded or compact on Lp iff Hh

f
is

bounded or compact on Lp. Corollary 3 can now be rewritten as follows:

Corollary 4. Let p ≥ 2 and 1/p+ 1/p′ = 1. Then

(i) Hh
f is bounded on Lp and Hh

f is bounded on Lp
′ ⇔ f ∈ BMOp.

(ii) Hh
f is compact on Lp and Hh

f is compact on Lp
′ ⇔ f ∈ VMOp

∂ .

Corollaries 3 and 4 generalize Theorems 2.1 and 2.3 of [9]. The author
was informed that these generalizations have also been obtained by Zhijian
Wu using a different method.
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(c) A nonorthogonal projection kernel :

Kn(z, w) = 3
(1− |w|2)2

(1− zw)4 .

See Lemma 1.17 of [2]. Clearly, Kn satisfies (4). We can use the same ar-
gument as for Kh(z, w) to show that Kn also satisfies (5). The details are
omitted.

6. A related result. In this section, we consider the following integral
operator:

Cf (g)(z) =
�

D

|f(z)− f(w)|g(w)K(z, w) dA(w).

Let r > 0 be fixed and K satisfy the following local bound condition:

(9) K−1(u,w) ≈ (1− |z|2)2, u, w ∈ E(z, r), z ∈ D.
It is clear that condition (5) implies (9) if K is real-valued.

The following is a similar result on Cf .

Theorem 3. Let 2 ≤ p <∞ and K satisfy both (4) and (9). Then

(i) Cf is bounded on Lp ⇔ f ∈ BMOp.
(ii) Cf is compact on Lp ⇔ f ∈ VMOp

∂ .

Proof. “⇐” This part of the proof is entirely the same as for Theorem 1.
“⇒” This part of the proof is significantly easier than that for Theorem 2.

We only prove (i) since the proof for (ii) is similiar. Suppose that Cf is
bounded on Lp. Then for z ∈ D, we have

MOp(f, z, r) = |E(z, r)|−1−p

×
�

E(z,r)

∣∣∣
�

E(z,r)

(f(u)−f(w))K(u,w)K−1(u,w) dA(w)
∣∣∣
p

dA(u)

≤ c(1− |z|2)2p|E(z, r)|−1−p

×
�

E(z,r)

( �

E(z,r)

|f(u)− f(w)|K(u,w) dA(w)
)p
dA(u)

≤ c(r)‖Cf ((1− |z|2)−2/pχE(z,r))‖pp,
where we used (9) in the second step and the fact |E(z, r)| ≈ (1− |z|2)2 in
the last step. Since (1−|z|2)−2/pχE(z,r) is norm bounded on Lp, MOp(f, z, r)
is bounded for z ∈ D, i.e., f is in BMOp.
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[4] D. Békollé, C. A. Berger, L. A. Coburn and K. H. Zhu, BMO and the Bergman
metric on bounded symmetric domains, ibid. 93 (1990), 310–350.

[5] J. B. Conway, A Course in Functional Analysis, Springer, New York, 1985.
[6] D. H. Luecking, Forward and reverse Carleson inequalities for functions in Bergman

spaces and their derivatives, Amer. J. Math. 107 (1985), 85–111.
[7] —, Characterizations of certain classes of Hankel operators on the Bergman spaces

of the unit disc, J. Funct. Anal. 110 (1992), 247–271.
[8] J. Miao, Toeplitz operators on harmonic Bergman spaces, Integral Equations Oper-

ator Theory 27 (1997), 426–438.
[9] Z. Wu, Operators on harmonic Bergman spaces, ibid. 24 (1996), 352–371.

Department of Computer Science and Mathematics
Arkansas State University
P.O. Box 70
State University, AR 72467, U.S.A.
E-mail: miao@csm.astate.edu

Received July 26, 1999 (4364)


