
STUDIA MATHEMATICA 146 (1) (2001)

A new characterization of Eberlein compacta

by

Luis Oncina (Murcia)

Abstract. We give a sufficient and necessary condition for a Radon–Nikodým com-
pact space to be Eberlein compact in terms of a separable fibre connecting weak-* and
norm approximation.

Introduction. A compact topological space is called Eberlein compact
if it is homeomorphic to a weakly compact subset of some Banach space,
and Radon–Nikodým compact if it is homeomorphic to a weak-* compact
subset of the dual of an Asplund space. By the factorization result of [1],
every Eberlein compact space is homeomorphic to a weakly compact subset
of a reflexive Banach space, therefore an Eberlein compact space is Radon–
Nikodým compact. However, these two classes are different; indeed any scat-
tered compact space is Radon–Nikodým but no separable, non-metrizable
scattered compact space can be an Eberlein compact since for the class of
Eberlein compacta, separability and metrizability are equivalent.

The class of Radon–Nikodým compacta has been investigated by several
authors [14, 15, 19, 22] after the systematic study made by I. Namioka in
[14]. In that paper the following question was asked:

Problem. Find conditions for a Radon–Nikodým compact space to be
Eberlein compact.

An answer to this problem was given in [19] and [22] by showing that a
necessary and sufficient condition for a Radon–Nikodým compact space to
be Eberlein compact is that it is Corson compact. Recall that a compact
space is called Corson compact if it is homeomorphic to a subset of the
Σ-product space

Σ(Γ ) = {x ∈ [−1, 1]Γ : {γ ∈ Γ : x(γ) 6= 0} is countable}.
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It is our aim here to give another necessary and sufficient condition on
a Radon–Nikodým compact space for it to be Eberlein compact.

If a Radon–Nikodým compact lives in a separable dual, it is metrizable
and so it is Eberlein compact. In the non-separable case, we know that it lives
in a dual of an Asplund space where we can define a projectional resolution
of the identity [6]. These projections are not, in general, weak-* continuous,
but if they were, we could construct a weak-*-to-weak continuous injection
into a c0(Γ ) space, and so the compact space would be Eberlein compact
[4, 18, 23].

We shall formulate here a “linking condition” that relates the separable
pieces of a given Radon–Nikodým compact space with the separable pieces
of the dual norm of the space where it lives, which will be necessary and
sufficient for the Radon–Nikodým compactum to be Eberlein compact. This
condition goes back to the transfer techniques developed in [11] for renorm-
ings, and studied in the non-metric case in [18].

To formulate our main results we need the following:

Definition 0.1. (1) LetX be a set and τ1, τ2 be two topologies on it. We
say that X has property L(τ1, τ2) if for any x ∈ X there exists a countable
set S(x) containing x so that if A ⊂ X then A

τ2 ⊂ ⋃{S(x) : x ∈ A}τ1 .
(2) Let (X, τ) be a topological space. We say that X has the Linking

Separability Property (LSP, for short) if there exists a metric d on X, with
the metric topology finer than τ , such that X has L(d, τ).

In [18] we studied LSP topological spaces and we shall point out some
of their properties when needed.

Our main results are the following.

Theorem A. Let (K, τ) be a compact Hausdorff space. The following
are equivalent :

(i) K is Eberlein compact.
(ii) There exists a lower semicontinuous metric % on K such that K has

L(%, τ).

Theorem B. Let K be a Radon–Nikodým compact space. Then K is
Eberlein compact if , and only if , K has LSP.

As a corollary we obtain the following [7, 19, 22]:

Theorem C. Let X be an Asplund generated Banach space, i.e., there

exists an Asplund space E and a map T : E → X with T (E)
‖·‖

= X. Then
X is WCG if , and only if , (BX∗ , w∗) has LSP.

For further references on this topic we refer the reader to [5], Chapter 8.
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1. Characterizing Eberlein compact spaces. In this section we give
the proof of Theorem A. The first step is to prove that every K satisfying
condition (ii) of Theorem A is Corson compact (Th. 1.6). To prove that, we
need some lemmas. Let us begin by setting some notation.

In this paper we study compact Hausdorff spaces (K, τ) that admit a
lower semicontinuous metric % such that K has L(%, τ). We notice that, by
a result of Jayne, Namioka and Rogers [8], the metric topology must then
be finer than τ , which we denote by τ � %. In the same paper they state
the following result which improves a result by Ghoussoub and Maurey.

Let K be a compact Hausdorff space and let % be a bounded lower semi-
continuous metric on K. Then there is a dual Banach space E∗ and a hom-
eomorphism ϕ : K → E∗ (where E∗ is taken with its weak∗ topology) with

‖ϕ(x)− ϕ(y)‖E∗ = %(x, y) for all x, y ∈ K.
The space E is the space of all continuous real-valued functions f on K

that satisfy a uniform Lipschitz condition of order 1 with respect to %. Then
‖f‖Lip, defined to be the least constant M > 0 such that

|f(z1)− f(z2)| ≤M%(z1, z2) for all z1, z2 ∈ K,
is a norm on E. Another norm ‖ · ‖ on E is defined by

‖f‖ = max{‖f‖Lip, ‖f‖∞}.
The map ϕ : K → E∗ is defined as follows. Given z ∈ K, let ϕ(z) be the

linear map ϕ(z) : E → R in E∗ defined by ϕ(z)(f) = f(z). (So ϕ sends a
point in the compact space to its associated Dirac measure in E∗ ⊃ C(K)∗.)
We then have ‖ϕ(x)− ϕ(y)‖E∗ = %(x, y).

If % is not bounded, we could take a homeomorphism ψ : R→ (0, 1) and
consider d = ψ ◦ %, which would be a bounded lower semicontinuous metric
on K.

Lemma 1.1 (Main construction). Let (K, τ) be a compact Hausdorff
space and % be a lower semicontinuous metric on K such that K has L(%, τ).
Let A0 ⊂ C(K) and M0 ⊂ K, with |A0| = |M0|. Then there are sets A and
M with the following properties:

(i) A0 ⊂ A ⊂ C(K), A is a Q-linear algebra with 1 ∈ A and |A| = |A0|.
(ii) M0 ⊂M ⊂ K and |M0| = |M |.

(iii) A ∩ BE is a norming set for spanϕ(S(M)) ⊂ E∗ and a norming

set for spanϕ(M)
σ(E∗,E) ⊂ E∗. (Here S(M) is the set associated with M by

property L.)
(iv) If x and y are in M , x 6= y, then there is f ∈ A with f(x) 6= f(y)

and for every f ∈ A there is ξ(f) ∈M with |f(ξ(f))| = sup{|f(x)| : x ∈ K}.
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Proof. We shall construct M and A by an “exhaustion argument” of
countable type thanks to L(%, τ) we have on K.

For x ∈ K, S(x) is the countable set given by L(%, τ) and S(N) =⋃{S(x) : x ∈ N}. For any f ∈ C(K), let ξ(f) ∈ K be such that |f(ξ(f))| =
max{|f(x)| : x ∈ K}. For any subset N ⊂ K, define a subset of E∗ by

Φ(N) = Q-linear span{ϕ(S(N))}.
For y ∈ Φ(N) consider a countable subset {fny : n ∈ N} of BE such that

‖y‖E∗ = sup{|fny (y)| : n ∈ N}}.
Finally set

Ψ(N) =
⋃
{fny : n ∈ N, y ∈ Φ(N)}.

Consider M0 ⊂ K, A0 ⊂ C(K) and define

A1 = Q-linear algebra generated by {1, Ψ(M0), A0)} ⊂ C(K),

and M1 = M0 ∪ {ξ(f) : f ∈ A1}. It is clear that |A1| = |A0|, |M1| = |M0|
and A1 ∩BE is a norming set for the Q-linear spanϕ(S(M0)).

Assume we have defined sequences of sets A0 ⊂ A1 ⊂ . . . ⊂ An and
M0 ⊂M1 ⊂ . . . ⊂Mn as A1 and M1 above. Define An+1 = Q-linear algebra
generated by {1, Ψ(Mn), An} and Mn+1 = Mn ∪ {ξ(f) : f ∈ An+1}. Take
A =

⋃{An : n ∈ N} and M =
⋃{Mn : n ∈ N}. Let us show that M and A

are the sets we are looking for.
(i) and (ii) are quite clear by construction and since for any point x the

set S(x) is at most countable.
By construction, A ∩ BE is norming for spanϕ(S(M)) ⊂ E∗. Thus,

A ∩BE norms

spanϕ(S(M))
‖·‖∗ ⊂ spanϕ(S(M))

‖·‖∗
.

Now by L(%, τ), ϕ(M)
w∗⊂ ϕ(S(M))

‖·‖∗
and that implies that A∩BE norms

spanϕ(M)
w∗

.
Let us check (iv). Take x, y ∈ M , x 6= y, and assume that f(x) = f(y)

for all f ∈ A. Since ϕ injects K homeomorphically in E∗, we have ϕ(x) 6=
ϕ(y). Now since x, y belong to K = M

τ
, there must be (xn) ∈ S(M) and

(yn) ∈ S(M) converging to x and y in the %-distance by L(%, τ).
Fix n ∈ N. There must be p ∈ N such that xn, yn ∈ S(Mp) (since S(Mj)

is an increasing sequence), therefore

ϕ(xn)− ϕ(yn) ∈ Q-linear span{ϕ(S(Mp))} ⊂ E∗

whose members are normed in Ψ(Mp) ⊂ Ap+1 ⊂ A. The same argument
holds for any n ∈ N and so ϕ(xn) − ϕ(yn) is normed in A ∩ BE for any
n ∈ N. Finally we have



Characterization of Eberlein compacta 73

%(xn, yn) = ‖ϕ(xn)− ϕ(yn)‖E∗ = sup{|f(ϕ(xn)− ϕ(yn))| : f ∈ A ∩BE}
≤ sup{|f(ϕ(xn)− ϕ(x)|+ |f(ϕ(x)− ϕ(y))|

+ |f(ϕ(y)− ϕ(yn))| : f ∈ A ∩BE}
≤ ‖ϕ(xn)− ϕ(x)‖E∗ + ‖ϕ(y)− ϕ(yn)‖E∗ = %(xn, x) + %(yn, y)

and that implies that limn→∞ %(xn, yn) = 0, hence x = y, which contradicts
the hypothesis.

The second part of (iv) is clear by construction.

Lemma 1.2. For sets A and M as in Lemma 1.1, there exists a norm-one
projection P : C(K)→ C(K) with:

(i) P (C(K)) = A
‖·‖∞ .

(ii) P is a homomorphism of algebras with P (1) = 1.
(iii) There is a continuous retraction r : K →M such that P (f) = f ◦ r

for all f ∈ C(K).
(iv) %(r(x), r(y)) ≤ %(x, y) for all x, y ∈ K.

Proof. Consider C(M) with its supremum norm ||| · ||| and let R be the
restriction map R : C(K)→ C(M), R(f) = f|M .

Given ε > 0 and f ∈ A‖·‖∞ , there exists g ∈ A with ‖g − f‖∞ < ε. Let
ξ(g) ∈M with |g(ξ(g))| = ‖g‖∞. Then

‖f‖∞ ≤ ‖f − g‖∞ + ‖g‖∞ ≤ ε+ |g(ξ(g))| = |||Rg|||+ ε

≤ |||Rg −Rf |||+ |||Rf |||+ ε ≤ |||Rf |||+ 2ε.

Since the reasoning is valid for every ε > 0 we have ‖f∞‖ ≤ |||Rf ||| for

all f ∈ A‖·‖∞ and R is an isometry and algebraic homomorphism between

A
‖·‖∞ and (C(M), ||| · |||). Since A separates the points of M and contains

1, R(A
‖·‖∞) must coincide with C(M) by the Stone–Weierstrass theorem.

Then
R−1 : C(M)→ A

‖·‖∞
↪→ C(K)

is a linear extension operator and the projection P defined by P = R−1 ◦R
obviously satisfies (i) and (ii).

(iii) follows from a very special case of variants of the theorems of
Banach–Stone and Gelfand–Naimark. Indeed, every measure δx for x ∈ K
gives us a character for the algebra C(K), i.e., a multiplicative linear func-
tional sending 1 to 1, and every character is a Dirac measure. Any algebraic
homomorphism and linear isometry between algebras puts in one-to-one cor-
respondence the characters of the algebras by the transpose isomorphism.
Consequently, if we consider A with the weak∗ topology, then for every
x ∈ K, δx provides a character for the algebra A which corresponds to a
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Dirac measure δr(x) ∈ M . See [21]. This provides us with a continuous re-
traction r : K → M and P (f) = f ◦ r since f ◦ r is continuous on K and
f ◦ r|M = f|M .

Let us finish proving (iv). For x and y in K we have r(x) ∈ M and
r(y) ∈M , so

ϕ(r(x))− ϕ(r(y)) ∈ spanϕ(M)
σ(E∗,E)

and by in Lemma 1.1(iii) we have

%(r(x), r(y)) = ‖ϕ(r(x))− ϕ(r(y))‖E∗ = sup
f∈A∩BE

{|〈ϕ(r(x))− ϕ(r(y)), f〉|}

= sup
f∈A∩BE

{|f(r(x))− f(r(y))|} = sup
f∈A∩BE

{|〈f ◦ r, δx − δy〉|}

= sup
f∈A∩BE

{|〈P (f), δx − δy〉|} ≤ sup
f∈BE

{|〈f, δx − δy〉|}

= sup
f∈BE

{|〈f, ϕ(x)− ϕ(y)〉|} = ‖ϕ(x)− ϕ(y)‖E∗ = %(x, y).

Proposition 1.3. Let (K, τ) be a compact Hausdorff space and % be a
lower semicontinuous metric on it such that K has L(%, τ). Then

dens(K, τ) = dens(K, %) = dens(C(K), ‖ · ‖∞).

Proof. The definition of L(%, τ) clearly implies dens(K, τ) = dens(K, %).
Since always dens(K, τ) ≤ dens(C(K), ‖ · ‖∞), we only have to show that
dens(C(K), ‖ · ‖∞) ≤ dens(K, τ).

Let M0 = {xα : 0 ≤ α < µ} be a dense subset of K, where µ is the
first ordinal number whose cardinality |µ| is dens(K, τ). And let A0 be any
subset of C(K) of the same cardinality as M0.

Applying Lemmas 1.1 and 1.2 to A0 and M0, we obtain A ⊃ A0 and
M ⊃ M0 with the properties stated in both results. But M = K and
therefore the restriction R is the identity. So A = C(K) and the density
character of A, and hence of C(K), is at most the cardinality of M0.

The previous lemmas can be applied to obtain the following:

Theorem 1.4. Let (K, τ) be a compact Hausdorff space and % be a lower
semicontinuous metric on it with L(%, τ). Then there exists a PRI {Pα :
ω0 ≤ α ≤ µ} on C(K), and a family of continuous retractions rα : K → K
with Pα(f) = f ◦ rα, dens(rα(K)) ≤ |α| and %(rα(x), rα(y)) ≤ %(x, y) for all
x, y ∈ K and for all α ∈ [α, µ]. Moreover , rα → rβ as α → β pointwise on
K in the %-topology. The latter implies that given x ∈ K and ε > 0, the set

{α : ω0 ≤ α ≤ µ, %(rα+1(x), rα(x)) > ε}
is finite. Thus, the set {α : ω0 ≤ α ≤ µ, rα+1(x) 6= rα(x)} is at most
countable.
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Proof. Let |µ| be the first ordinal such that |µ| = dens(C(K)) and let
{xα : 0 ≤ α < µ} and {fα : 0 ≤ α < µ} be dense subsets of K and C(K)
respectively.

Let us begin by applying Lemmas 1.1 and 1.2 to the sets A0 = {fα : 0 ≤
α ≤ ω0} and M0 = {xα : 0 ≤ α ≤ ω0}. We obtain Aω0 = A, Mω0 and Pω0

with the properties stated in both lemmas.
Now let β ≤ µ be any ordinal and assume that for any α < β, we have

constructed families Aω0 ⊂ . . . ⊂ Aα of Q-algebras and Mω0 ⊂ . . . ⊂ Mα ⊂
K with S(Mα) ⊂ Mα+1, as well as the corresponding linear projections
{Pα : ω0 ≤ α < β} satisfying the conditions in both lemmas and |α| =
|Mα| = |Aα|.

If β is not a limit ordinal, i.e., β = α+ 1, set

A0 = Aα ∪ {fα+1} and M0 = S(Mα ∪ {xα+1}).
Apply the lemmas to these sets to obtain Aα+1 and Mα+1 satisfying all the
conditions required.

If β is a limit ordinal define

Aβ =
⋃
{Aα+1 : ω0 ≤ α < β}, Mβ =

⋃
{Mα+1 : ω0 ≤ α < β}.

We shall now see that Aβ and Mβ satisfy the conditions of Lemma 1.1.
First let us show that Aβ ∩BE norms spanϕ(SMβ

) ⊂ E∗.
Take x ∈ spanϕ(S(Mβ)). Then x is a finite linear combination of points

in
⋃{ϕ(S(Mα+1)) : ω0 ≤ α < µ}. Hence, by construction, there must be α

such that x ∈ spanϕ(S(Mα)), which is normed, by induction hypothesis, by
Aα ∩BE , which is contained in Aβ ∩BE.

Consequently, as in Lemma 1.1, Aβ ∩BE norms spanϕ(S(Mβ))
w∗ ⊂ E∗.

It also norms spanϕ(S(Mβ))
‖·‖∗

since

spanϕ(S(Mβ))
‖·‖∗ ⊂ spanϕ(S(Mβ))

‖·‖∗
.

Now by L(%, τ), ϕ(Mβ)
w∗ ⊂ ϕ(S(Mβ))

‖·‖∗
and that implies that Aβ ∩ BE

norms spanϕ(Mβ)
w∗

.
To prove (iv) we essentially follow the proof of Lemma 1.1. Take x, y ∈

Mβ , x 6= y, and assume that f(x) = f(y) for all f ∈ A. Then ϕ(x) 6= ϕ(y).
Since x, y belong to Kβ = Mβ

τ
, there must be (xn) ∈ S(Mβ) and (yn) ∈

S(Mβ) converging to x and y in the %-distance by L(%, τ).
Fix n ∈ N. There must be α(n) < β such that xn, yn ∈ S(Mα(n)) (since

S(Mα) is an increasing sequence), therefore

ϕ(xn)− ϕ(yn) ∈ Q-linear spanϕ(S(Mα(n))) ⊂ E∗

whose members are normed in Aα(n) ⊂ Aβ . The same argument holds for
any n ∈ N and so ϕ(xn)−ϕ(yn) are normed in Aβ ∩BE for any n ∈ N. And,
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as in Lemma 1.1, we would get x = y. The second part of (iv) in Lemma 1.1
is clear.

Consequently, by Lemma 1.2, we have a projection Pβ with range A
‖·‖∞ ,

and a continuous retraction rβ of K onto Mβ and dens(rβ(K)) ≤ |β|.
To finish let us show that for each x ∈ K, rα(x) → rβ(x) in the %-

topology.
Since S(Mα) ⊂Mα+1 for any α, for any limit ordinal β we have

Mβ
τ ⊂

⋃

α<β

Mα+1

%

⊂Mβ
β
,

therefore Mβ
τ

= Mβ
%
.

Trivially, rα(x) → rβ(x) for any x ∈ Mβ . Since {rα} are %-uniformly
equicontinuous, and Mβ

τ
= Mβ

%
, we have rα(x)→ rβ(x) for all x ∈Mβ

τ
.

The following result is in [18].

Remark 1.5. Let (X, τ) be an LSP topological space. Then any subspace
of X is also LSP. In fact if d is a metric on X such that X has L(d, τ) and
H ⊂ X then H has L(d, τ).

Theorem 1.6. Let (K, τ) be a compact Hausdorff space and % be a lower
semicontinuous metric on it with L(%, τ). Then K is Corson compact.

Proof. We argue by induction on the density character of the com-
pactum.

If (K, τ) is separable, then by Proposition 1.7 below, it is metrizable,
hence Corson compact.

Now let µ be the first ordinal with cardinality dens(K, τ), and assume
that any compact space of density character less than |µ| and having LSP
for a lower semicontinuous metric is Corson.

Let {rα : ω0 ≤ α < µ} be the family of retractions on K given by
Theorem 1.4.

Let Kα = rα(K) ⊂ K. By construction dens(Kα) ≤ |α|. Since property
L is hereditary (Remark 1.5), by the induction hypothesis each Kα is Corson
compact. Hence, for any α with ω0 ≤ α < µ there exists a set Γα and a
homeomorphism Ψα : Kα → Σ(Γα) ⊂ RΓα .

Let Γ be the disjoint union of the sets {Γα}ω0<α<µ and N, and define
T : K → RΓ by

T (x)(n) = Ψω0(rω0(x))(n), n ∈ N,
T (x)(γ) = Ψα+1(rα+1(x))(γ)− Ψα+1(rα(x))(γ) for γ ∈ Γα+1.

Given x ∈ K, since the set {α : rα+1(x) 6= rα(x)} is at most countable
and Ψα(rα(x)) lives in Σ(Γα) for any α, it clearly follows that T (x) lives in
Σ(Γ ).
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T is clearly continuous. To see that it is an injection, take x, y ∈ K
and suppose T (x) = T (y). Let us show that rα(x) = rα(y) for all α, which
implies x = y.

In particular, Ψω0(rω0(x)) = Ψω0(rω0(y)), and since Ψω0 is one-to-one,
rω0(x) = rω0(y). So assume rα(x) = rα(y) for all α < β. Since rα(x)→ rβ(x)
we obtain rβ(x) = rβ(y). Moreover, x = rµ(x) = rµ(y) = y. For non-limit
ordinals the reasoning is also trivial.

Hence T injects (K, τ) homeomorphically into a sigma product. Thus,
K is Corson compact.

The conditions of the following two propositions are clearly satisfied if
K has L(%, τ).

Proposition 1.7. Let (K, τ) be a compact Hausdorff space and % a
lower semicontinuous metric on K. If every separable subset of K is also
%-separable, then separable subsets of K are metrizable.

Proof. Since the %-topology is finer than τ , the result follows from the
fact that any compact image of a separable metrizable space is metrizable
([3], Theorem 3.1.20).

It is known after Namioka [14] that a compact space is Radon–Nikodým
compact if and only if it is fragmented by a lower semicontinuous metric.
Recall that a topological space is said to be fragmented by a metric if for
any ε > 0, and any non-empty subset A of the space, there exists a relatively
open subset of A with diameter less than ε.

Proposition 1.8. Let (K, τ) be a compact Hausdorff space and % a
lower semicontinuous metric on K. If every separable subset of K is also
%-separable, then % is a fragmenting metric. Hence, K is RN compact.

Proof. The result follows immediately from Theorem 4.1(c)⇒(j) of [8],
where one should consider the irreducible map p.

We can now prove Theorem A of the introduction:

(i)⇒(ii). K is Radon–Nikodým (Proposition 1.8) and Corson (Theo-
rem 1.6), so by the already mentioned result of [19, 22], we conclude that
K is Eberlein.

(ii)⇒(i). We can view (K, τ) as a weakly compact subset of a WCG
Banach space E. In [16] we showed that any WCG Banach space has L(‖ ·
‖,weak), hence by Remark 1.5 so does K for τ and ‖ · ‖.

2. Consequences in Banach spaces. In order to show Theorem B,
we need the following definition by Jayne, Namioka and Rogers [9].

Definition 2.1. Let (X, τ) be a topological space and d be a metric on
X. We shall say that X is σ-fragmented by d if for every ε > 0, it is possible
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to represent X as
⋃∞
n=1X

ε
n so that for each n ∈ N and any subset A ⊂ Xε

n

there exists a relatively τ -open subset of A with d-diameter less than ε.

We also need the following result from [18].

Remark 2.2. Let (X, τ) have LSP and % be any metric on X finer
than τ . If (X, τ) is σ-fragmented by %, then X has L(%, τ).

Now let us give the proof of Theorem B.
If K is Eberlein the reasoning in the proof of Theorem A applies. So let

K have LSP, i.e., there exists a metric on K, say d, with the metric topology
finer than τ and such that K has L(d, τ).

SinceK is Radon–Nikodým, there must be a lower semicontinuous metric
% fragmenting (K, τ). Remark 2.2 shows that K has L(%, τ); now Theorem A
yields that K is Eberlein.

We can also extend Theorem 8.3.4 of [5] giving the Banach space ver-
sion of the former result, i.e., Theorem C of the introduction. The proof of
Theorem C is as follows.

T ∗ is one-to-one and gives a homeomorphism between (BX∗ , w∗) and
(T ∗(BX∗), w∗).

If X is WCG we know that (BX∗ , w∗) is Eberlein compact and it has
LSP.

Conversely, if (BX∗ , w∗) has LSP, then since it is Radon–Nikodým com-
pact we deduce, by Theorem B, that it is Eberlein. Now Theorem 8.3.4 of
[5] applies to show X is WCG.

3. Final remarks. In [18] we studied the relationship between property
L, σ-fragmentability and property SLD of Jayne, Namioka and Rogers. The
last property is defined as follows:

Definition 3.1. We say that X has a countable cover by sets of small
local diameter (SLD) if for every ε > 0 it is possible to represent X as⋃∞
n=1X

ε
n so that for each n ∈ N every point ofXε

n has a relative τ -neighbour-
hood of d-diameter less than ε.

It was shown that whenever (X, τ) is a metric space and % is a metric
on X finer than τ , the conditions: X has L(%, τ), (X, τ) is %-σ-fragmented
and (X, τ) has %-SLD, are all equivalent.

Our aim now is to show that this is no longer true when τ is a non-
metrizable topology, i.e., we shall give examples of a space with property
LSP but not SLD, and another with SLD but not LSP. First, one more
property from [18] is needed:

Remark 3.2. Let (X, τ) be σ-fragmented by a metric d finer than τ
(resp. d-SLD). If % is another metric such that X has L(%, τ), then (X, τ)
is σ-fragmented by % (resp. %-SLD).
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Example 3.3. Let (K, τ) be a separable non-metrizable RN compactum.
Then K does not have property LSP.

Proof. If there were a metric % finer than the topology of K, with L(%, τ),
then since K is RN, i.e., fragmented by a lower semicontinuous metric, by
Remark 2.2, K would also have property L for this metric, and therefore by
Proposition 1.7, K would be metrizable.

The next example is due to A. Moltó, and can be found in [2].

Example 3.4. There exists a compact Hausdorff space (K, τ) and a met-
ric % such that (K, τ) has the %-SLD property and it fails to have L(%, τ).
Moreover , (K, τ) does not have LSP.

Proof. We denote by ∆ = {0, 1}N the Cantor set, and by D the set of
finite sequences of 0’s and 1’s. For σ ∈ D, we denote by Iσ the clopen (i.e.
closed and open) subset of ∆ consisting of those sequences which start with
σ. We consider the following set K0 of functions on ∆: the set K0 consists
of the characteristic functions of the sets Iσ, σ ∈ D (denoted by χIσ), and
of the points of ∆, and the function identically equal to zero.

When equipped with the topology of pointwise convergence on ∆, K0

becomes a compact set, which is separable, scattered, non-metrizable and
K

(3)
0 = ∅.

By a result of Deville C(K)∗ admits an equivalent dual LUR norm, which
is equivalent ([20]) to (C(K)∗, w∗) having the ‖ · ‖∗-SLD property.

So (K, τ) has %-SLD for a τ -lower semicontinuous metric (% is the restric-
tion to K of the dual norm). Now, if K had L(%, τ), then by Proposition 1.7,
(K, τ) would be metrizable (since it is separable), which is not true.

To prove the moreover part, we only have to apply Remark 2.2.

So Example 3.4 shows that for a compact space (K, τ) that has the
%-SLD property we may not have LSP (not only L(%, τ)).

Remark 3.5. In [16] we proved that under CH, `∞ has L(‖ · ‖,weak)
and it does not have SLD [10].

The same arguments as in the example above work for the next result.

Proposition 3.6. Let K be a scattered compact space with K(ω1) = ∅,
having separable subsets which are non-metrizable. Then K has the %-SLD
property for a lower semicontinuous metric and K does not have LSP.

Example 3.7. (B`∞ , w∗) is a metrizable compact space, and B`∞ does
not have L(‖ · ‖∞, w∗).

Proof. This is clear since (`∞, w∗) is separable whereas (`∞, ‖ · ‖∞) is
not. (Of course (`∞, w∗) lacks the ‖ · ‖∞-SLD property [9].)
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