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The space of multipliers and convolutors of Orlicz spaces
on a locally compact group

by

Hasan P. Aghababa (Tabriz), Ibrahim Akbarbaglu (Zanjan),
and Saeid Maghsoudi (Zanjan)

Abstract. Let G be a locally compact group, let (ϕ,ψ) be a complementary pair of
Young functions, and let Lϕ(G) and Lψ(G) be the corresponding Orlicz spaces. Under
some conditions on ϕ, we will show that for a Banach Lϕ(G)-submodule X of Lψ(G), the
multiplier space HomLϕ(G)(L

ϕ(G), X∗) is a dual Banach space with predual Lϕ(G) • X
:= span{ux : u ∈ Lϕ(G), x ∈ X}, where the closure is taken in the dual space of
HomLϕ(G)(L

ϕ(G), X∗). We also prove that if ϕ is a ∆2-regular N -function, then Cvϕ(G),
the space of convolutors of Mϕ(G), is identified with the dual of a Banach algebra of
functions on G under pointwise multiplication.

1. Introduction. Let A be a Banach algebra and X, Y be right Banach
A-modules. A right A-module homomorphism from X into Y is a linear
operator T : X → Y such that T (xa) = T (x)a for all a ∈ A, x ∈ X. The
Banach space of all bounded right A-module homomorphisms from X into
Y with the operator norm is denoted by HomA(X,Y ). Characterizing the
space HomA(X,Y ) for various classes of Banach algebras A and right Banach
A-modules X and Y is a longstanding problem that many mathematicians
have paid special attention to it; for the example see [Gr, L, M, Ri1, Ri2].
Also, for a recent study, see for example [Da, HNR1, HNR2, K].

Let G be a locally compact group with a fixed left Haar measure λ. Let
also (ϕ,ψ) be a complementary pair of Young functions, and let Lϕ(G) and
Lψ(G) be the corresponding Orlicz spaces. Orlicz spaces are genuine gener-
alizations of the usual Lp-spaces. They have been thoroughly investigated
from the functional analysis point of view. For analysis of some aspects of
Orlicz spaces see [CHL, JPU, R1, R2, R3].

In this paper, we will study the problem of characterizing HomA(X,Y ),
when A = X = Lϕ(G) and Y is the dual of a closed Lϕ(G)-submodule of
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Lψ(G), with convolution as the module action. Also, if ϕ is a finite Young
function, we will consider the space Cvϕ(G) of convolutors of Mϕ(G), where
Mϕ(G) is the closure of Cc(G) in Lϕ(G). Then we show that Cvϕ(G) is a
dual space when ϕ is a ∆2-regular N -function, and obtain its predual. Our
results extend some interesting results of [M] to Orlicz spaces.

2. Preliminaries. Throughout this paper let G be a locally compact
group with a fixed left Haar measure λ. By

	
G f(x) dx we denote the integral

of a function f defined on G with respect to λ. Also, let L0(G) denote the set
of all equivalence classes of λ-measurable complex-valued functions on G.
By [RR, p. 6], a function ϕ : R → [0,∞] is called a Young function if
ϕ is a convex, even, and left continuous function with ϕ(0) = 0 which is
neither identically zero nor identically infinite. We call a Young function ϕ
an N -function (a nice Young function) if it satisfies the limit conditions

lim
x→0

ϕ(x)

x
= 0 and lim

x→∞

ϕ(x)

x
=∞.

For any Young function ϕ let

ψ(x) = sup{xy − ϕ(y) : y ∈ R} (x ∈ R).

It is easily verified that ψ is a Young function, called the complementary
Young function to ϕ. It should be remarked that ϕ is also the complementary
Young function to ψ. Then (ϕ,ψ) is called a complementary pair of Young
functions.

A Young function ϕ is said to satisfy the ∆2-condition, written ϕ ∈ ∆2,
if there exist k > 0 and x0 ≥ 0 such that

ϕ(2x) ≤ kϕ(x) for x ≥ x0.

Let ϕ be a Young function. For f ∈ L0(G) define

ρϕ(f) =
�

G

ϕ(|f(x)|) dx.

Then the Orlicz space Lϕ(G) is defined by

Lϕ(G) = {f ∈ L0(G) : ρϕ(af) <∞ for some a > 0}.
We also set

Mϕ(G) = {f ∈ L0(G) : ρϕ(af) <∞ for all a > 0}.
Then Lϕ(G) and Mϕ(G) are both Banach spaces under the norm Nϕ(·),
called the Luxemburg–Nakano norm, defined for f ∈ Lϕ(G) by

Nϕ(f) = inf{k > 0 : ρϕ(f/k) ≤ 1}.
It is well known that Nϕ(f) ≤ 1 if and only if ρϕ(f) ≤ 1. Furthermore, if
the Young function ϕ vanishes only at the origin and is finite, then using
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the complementary Young function ψ, another norm ‖ · ‖ϕ, called the Orlicz
norm, is defined on Lϕ(G) by

‖f‖ϕ = sup
{ �
G

|fg| dλ : ρψ(g) ≤ 1
}
.

Let us remark that ‖ · ‖ϕ is equivalent to Nϕ(·); in fact, Nϕ(f) ≤ ‖f‖ϕ ≤
2Nϕ(f) for every f ∈ Lϕ(G). For 1 ≤ p ≤ ∞, the classical Lebesgue spaces
on G with respect to the left Haar measure λ will be denoted by Lp(G) with
the norm ‖ · ‖p as defined in [F]. It is clear that Lp(G) is an elementary
example of an Orlicz space.

We say that a Young function ϕ ∈ ∆2 is ∆2-regular and write ϕ ∈ ∆2-
regular if ϕ satisfies the ∆2-condition, with x0 = 0 in the case when G is
not compact. It is well known that if ϕ ∈ ∆2-regular then Lϕ(G) = Mϕ(G)
and Lϕ(G) is equal to the closure of Cc(G) in the norm Nϕ(·). Here Cc(G)
stands for the space of continuous functions on G with compact support.

If ϕ is a finite Young function, then the dual space of Mϕ(G) is the
Banach space Lψ(G) under the usual duality

〈f, g〉 =
�

G

f(x)g(x) dx (f ∈Mϕ(G), g ∈ Lψ(G)),

where ϕ and ψ are complementary Young functions.

The above concepts relating to Young functions are quite standard and
can be found in any standard textbook on Orlicz spaces. Here we refer to
the excellent monographs [KR, RR].

For measurable functions f and g on a locally compact group G, the
convolution product

(f ∗ g)(x) =
�

G

f(y)g(y−1x) dy

is defined at each point x ∈ G for which this makes sense. For any function
f : G → C we denote by f̌ the function defined by f̌(x) = f(x−1) for all
x ∈ G.

Let ϕ be a finite Young function whose right derivative ϕ′ is strictly
positive at the origin. For such ϕ by [R2, Proposition 4.1], Lϕ(G) is a Banach
algebra with convolution multiplication, and is contained in L1(G) with
‖f‖1 ≤ 1

ϕ′(0)Nϕ(f) for any f ∈ Lϕ(G). Also we have the following easy

lemma.

Lemma 2.1. Let G be a locally compact group and ϕ a finite Young
function with ϕ′(0) > 0. Then Lϕ(G) is a left Banach L1(G)-module.

Proof. Take arbitrary positive elements f ∈ L1(G), g ∈ Lϕ(G) and
h ∈ Lψ(G), where ψ is the complementary Young function to ϕ. Then we
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have

〈f ∗ g, h〉 =
�

G

�

G

f(t)g(t−1s)h(s) dt ds =
�

G

�

G

f(t)g(s)h(ts) ds dt

≤ 2‖f‖1Nϕ(g)Nψ(h) <∞.
Since f ∗ g has σ-compact support, f ∗ g ∈ Lϕ(G), by [RR, Proposition
IV.4.1].

For two Banach spaces X and Y , we denote by X ⊗̂ Y their projective
tensor product, and by L(X,Y ) the space of all bounded linear operators
from X into Y . We write L(X) in place of L(X,X). The projective tensor
norm on X ⊗̂ Y will be denoted by ‖ · ‖∧.

Let A be a Banach algebra, let X be a Banach A-bimodule, and let Y
be a left Banach A-module. Then X ⊗̂ Y becomes a left A-module with the
following action:

a · (x⊗ y) = ax⊗ y (a ∈ A, x ∈ X, y ∈ Y ).

Then clearly the closed linear span of the set

{xa⊗ y − x⊗ ay : a ∈ A, x ∈ X, y ∈ Y },
denoted by E, in X ⊗̂ Y is a closed submodule of X ⊗̂ Y . Now X ⊗̂A Y :=
(X ⊗̂ Y )/E is a Banach left A-module; for more details see [D, Section 2.6].

For two Banach spaces X and Y , the mapping Φ : L(X,Y ∗)→ (X ⊗̂Y )∗

defined by

〈x⊗ y, Φ(T )〉 = 〈y, T (x)〉 (x ∈ X, y ∈ Y, T ∈ L(X,Y ∗)),

is an isometric isomorphism. In particular, if X is a reflexive Banach space,
then (X ⊗̂ X∗)∗ ∼= L(X) [D, Proposition A.3.70]. Here X∗ denotes the
topological dual space of X equipped with its dual Banach norm.

Finally, let us recall that if X is a Banach left A-module, then X∗ is a
right Banach A-module under the dual module action defined by 〈x∗ ·a, x〉 =
〈x∗, ax〉 for x∗ ∈ X∗, x ∈ X, and a ∈ A.

3. The multiplier space HomLϕ(G)(L
ϕ(G), X∗). In this section, among

other things, we characterize the multiplier space HomLϕ(G)(L
ϕ(G), X∗) as

the dual of a natural space, namely, the closed linear span of Lϕ(G)X.

Throughout this section, ϕ will denote a finite Young function with
ϕ′(0) > 0.

Let X be a left Lϕ(G)-submodule of Lψ(G) which is a Banach space
with the norm ‖ · ‖X satisfying Nψ(·) ≤ ‖ · ‖X . We will show in this sec-
tion that HomLϕ(G)(L

ϕ(G), X∗) is a dual Banach space and characterize its
predual in terms of elements in Lϕ(G) and X. To see this we note that
for every u ∈ Lϕ(G) and x ∈ X, ux is a bounded linear functional on
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HomLϕ(G)(L
ϕ(G), X∗) defined by

〈ux, T 〉 = 〈x, T (u)〉 for T ∈ HomLϕ(G)(L
ϕ(G), X∗)

with ‖ux‖ ≤ Nϕ(u)‖x‖X . We denote by Lϕ(G) •X the norm closed linear
span of Lϕ(G)X := {ux : u ∈ Lϕ(G) and x ∈ X} in HomLϕ(G)(L

ϕ(G), X∗)∗.
So each element of Lϕ(G) • X becomes a bounded linear functional on
HomLϕ(G)(L

ϕ(G), X∗).

The following two results are parallel to Theorems 2.2 and 2.3 of [M].

Theorem 3.1. Let G be a locally compact group and ϕ a finite Young
function with ϕ′(0) > 0. If (X, ‖ · ‖X) is a left Banach Lϕ(G)-submodule of
Lψ(G), then HomLϕ(G)(L

ϕ(G), X∗) = (Lϕ(G) •X)∗.

Proof. Define Ψ : Lϕ(G) ⊗̂ X → Lϕ(G) • X by Ψ(
∑∞

i=1 ui ⊗ xi) =∑∞
i=1 uixi, where ui ∈ Lϕ(G), xi ∈ X and

∑∞
i=1Nϕ(ui)‖xi‖X < ∞.

Then Ψ is well defined: in fact, if
∑∞

i=1 ui ⊗ xi = 0 in Lϕ(G) ⊗̂ X, then
〈T,
∑∞

i=1 ui ⊗ xi〉 = 0 for all T ∈ L(Lϕ(G), X∗). Therefore
∑∞

i=1 uixi = 0 in
HomLϕ(G)(L

ϕ(G), X∗)∗. It also follows that∥∥∥Ψ( ∞∑
i=1

ui ⊗ xi
)∥∥∥ ≤ ∞∑

i=1

Nϕ(ui)‖xi‖X .

So Ψ(
∑∞

i=1 ui ⊗ xi) ∈ Lϕ(G) •X and ‖Ψ‖ ≤ 1. Hence, we have the adjoint
operator Ψ∗ : (Lϕ(G)•X)∗ → (Lϕ(G)⊗̂X)∗ with ‖Ψ∗‖ ≤ 1. As (Lϕ(G)⊗̂X)∗

= L(Lϕ(G), X∗), for each T ∈ (Lϕ(G) • X)∗, Ψ∗(T ) : Lϕ(G) → X∗ is a
bounded linear operator.

We will show that Ψ∗(T ) ∈ HomLϕ(G)(L
ϕ(G), X∗). Let u, v ∈ Lϕ(G) and

x ∈ X. Then

〈Ψ∗(T )(uv), x〉 = 〈Ψ∗(T ), uv ⊗ x〉 = 〈T, Ψ(uv ⊗ x)〉 = 〈T, (uv)x〉
= 〈T, u(vx)〉 = 〈T, Ψ(u⊗ vx)〉 = 〈Ψ∗(T ), u⊗ vx〉
= 〈Ψ∗(T )(u), vx〉 = 〈Ψ∗(T )(u) · v, x〉.

Hence Ψ∗(T )(uv) = Ψ∗(T )(u) · v for all u, v ∈ Lϕ(G). Thus Ψ∗(T ) ∈
HomLϕ(G)(L

ϕ(G), X∗).

We know that the restriction of any T ∈ HomLϕ(G)(L
ϕ(G), X∗) to

Lϕ(G) • X is in (Lϕ(G) • X)∗. Also for every T ∈ HomLϕ(G)(L
ϕ(G), X∗)

we have 〈
Ψ∗(T ),

∞∑
i=1

ui ⊗ xi
〉

=
〈
T,

∞∑
i=1

uixi

〉
=

∞∑
i=1

〈T, uixi〉

=

∞∑
i=1

〈T (ui), xi〉 =
〈
T,

∞∑
i=1

ui ⊗ xi
〉
,
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and so Ψ∗(T ) = T . Since the image of Ψ contains Lϕ(G)X, by [Ru, p. 99,
Corollary] or [S, Proposition 26.20], Ψ∗ is one-to-one. An application of the
Hahn–Banach theorem shows Ψ∗ : (Lϕ(G) • X)∗ → HomLϕ(G)(L

ϕ(G), X∗)
is a surjective isometry.

Proposition 3.2. Let G be a locally compact group and ϕ a finite Young
function with ϕ′(0) > 0. Then ξ ∈ Lϕ(G) • X if and only if there exist
sequences (ui) ⊆ Lϕ(G) and (xi) ⊆ X such that

∑∞
i=1Nϕ(ui)‖xi‖X < ∞

with ξ =
∑∞

i=1 uixi and

‖ξ‖ = inf
{ ∞∑
i=1

Nϕ(ui)‖xi‖X : ξ =
∞∑
i=1

uixi,
∞∑
i=1

Nϕ(ui)‖xi‖X <∞
}
.

Proof. By definition, each element of the form
∑∞

i=1 uixi as in (the proof
of) Theorem 3.1 lies in Lϕ(G) •X.

For the converse, let A be the closed subspace of Lϕ(G)⊗̂X generated by
uv⊗x−u⊗vx for u, v ∈ Lϕ(G), x ∈ X. Then an element T ∈ L(Lϕ(G), X∗)
is in HomLϕ(G)(L

ϕ(G), X∗) if and only if T = 0 on A.

Let B : (Lϕ(G) ⊗̂X)/A→ Lϕ(G) •X be defined by

B
( ∞∑
i=1

ui ⊗ xi + A
)

=
∞∑
i=1

uixi.

It is clear that B is well defined and ‖B‖ ≤ 1. Also ((Lϕ(G) ⊗̂ X)/A)∗ =
A⊥ = HomLϕ(G)(L

ϕ(G), X∗) and HomLϕ(G)(L
ϕ(G), X∗) = (Lϕ(G) • X)∗

imply that B∗ : (Lϕ(G) •X)∗ → ((Lϕ(G) ⊗̂X)/A)∗ is one-to-one and onto.
So, B is surjective by [Ru, Theorem 4.15] and one-to-one by [Ru, p. 99,
Corollary]. This proves the first part of the proposition.

For the second part, let ξ ∈ Lϕ(G) •X and ε > 0 be given. Then there
are sequences (ui) ⊆ Lϕ(G) and (xi) ⊆ X such that

∑∞
i=1Nϕ(xi)‖xi‖X

< ∞ and ξ =
∑∞

i=1 uixi. Let η =
∑∞

i=1 ui ⊗ xi + A be in (Lϕ(G) ⊗̂X)/A.
Since 〈T, η〉 = 〈T, ξ〉 for all T ∈ HomLϕ(G)(L

ϕ(G), X∗), we have ‖η‖
= ‖ξ‖. Thus there exist pi ∈ Lϕ(G) and qi ∈ X, for any i ≥ 1, such
that

∑∞
i=1Nϕ(pi)‖qi‖X < ‖ξ‖+ ε and η =

∑∞
i=1 pi⊗ qi+A by the definition

of the quotient norm. Thus ξ =
∑∞

i=1 piqi on HomLϕ(G)(L
ϕ(G), X∗), which

was to be shown.

It is natural to consider relations between Lϕ(G) •X and X. Since X∗

is a Banach right Lϕ(G)-module, we can consider the mapping

ι : X∗ → HomLϕ(G)(L
ϕ(G), X∗), ι(f) = Lf ,

where Lf : Lϕ(G)→ X∗ is left multiplication by f , i.e., Lf (u) = f ·u for all
u ∈ Lϕ(G). Then it is easily seen that ι is an embedding with ‖ι(f)‖ ≤ ‖f‖,
and so we can assume that X∗ ⊆ HomLϕ(G)(L

ϕ(G), X∗).
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Now consider the conjugate map ι∗ : (Lϕ(G) •X)∗∗ → X∗∗ which is the
restriction map with ‖ι∗‖ ≤ 1. Also for each u ∈ Lϕ(G), x ∈ X and f ∈ X∗,
〈ι∗(ux), f〉 = 〈ux, ι(f)〉 = 〈ux,Lf 〉 = 〈x,Lf (u)〉 = 〈x, f · u〉 = 〈ux, f〉.

Therefore, ι∗(Lϕ(G) •X) ⊆ X.

The following result is a direct consequence of well known results about
adjoints of linear maps; see for example Theorems 4.12, 4.14 and 4.15 in [Ru].

Proposition 3.3. Let G be a locally compact group and ϕ a finite Young
function with ϕ′(0) > 0. Then the restriction map ι∗ : Lϕ(G) •X → X is a
bijection if and only if X∗ is homeomorphic to HomLϕ(G)(L

ϕ(G), X∗).

We denote by LUC(G) the space of all bounded left uniformly continuous
functions on G. Then LUC(G) is a Banach L1(G)-bimodule for which the
left and right module actions are given by

ϕf = f ∗ ϕ̌, fϕ =
1

∆
ϕ̌ ∗ f

for all f ∈ LUC(G) and ϕ ∈ L1(G), where ∆ denotes the modular func-
tion of G. Thus, LUC(G)∗ is a Banach L1(G)-bimodule. Let us remark that
L1(G) LUC(G) = LUC(G); for more details see Section 32.45 in [HR]. The
following corollary is a direct consequence of [Ri1, Theorem 4.4] and Propo-
sition 3.3. We point out that this result has been proved before in [La,
Theorem 1].

Corollary 3.4. For any locally compact group G,

HomL1(G)(L
1(G),LUC(G)∗) = LUC(G)∗.

Let ϕ be a ∆2-regular Young function and f ∈ Lϕ(G). Then, using
Hölder’s inequality [RR, Proposition III.3.1], f can be viewed as an element
of X∗. Now define the linear map Lf : Lϕ(G)→ Lϕ(G) by Lf (g) = f ∗ g for
each g ∈ Lϕ(G). If X is a Banach left Lϕ(G)-module with module action
f � g = g ∗ f̌ , then by this definition, Lϕ(G) ⊆ HomLϕ(G)(L

ϕ(G), X∗). We
are interested in when Lϕ(G) is w∗-dense in HomLϕ(G)(L

ϕ(G), X∗). For this

reason, let f ∈ Lϕ(G) and g ∈ X. Then the function g ∗ f̌ belongs to
Lψ(G), with Nψ(g ∗ f̌) ≤ 2Nϕ(f)‖g‖X . Since the mapping (f, g) 7→ g ∗ f̌
from Lϕ(G) × X into Lψ(G) is bilinear and continuous, there is a unique
continuous linear mapping Φ : Lϕ(G)⊗̂X → Lψ(G) satisfying Φ(f⊗g) = g∗f̌
for all f ∈ Lϕ(G) and g ∈ X.

Definition 3.5. Let Aϕ(X) denote the range of the mapping

Φ : Lϕ(G) ⊗̂X → Lψ(G), Φ(f ⊗ g) = g ∗ f̌ .

We endow Aϕ(X) with the quotient norm from Lϕ(G)⊗̂X. Then Aϕ(X)
becomes a Banach space, and ξ ∈ Aϕ(X) if and only if there are sequences
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(fi) ⊆ Lϕ(G) and (gi) ⊆ X such that ξ =
∑∞

i=1 gi∗f̌i with
∑∞

i=1Nϕ(gi)‖gi‖X
<∞.

We conclude this section with the following result that characterizes the
w∗-denseness of Lϕ(G) in HomLϕ(G)(L

ϕ(G), X∗).

Theorem 3.6. Let G be a locally compact group and let ϕ a finite Young
function with ϕ′(0) > 0. Then Lϕ(G) is w∗-dense in HomLϕ(G)(L

ϕ(G), X∗)
if and only if Aϕ(X) is isometrically isomorphic to Lϕ(G) •X.

Proof. Let Lϕ(G) be w∗-dense in HomLϕ(G)(L
ϕ(G), X∗). Define the map-

ping Θ : Lϕ(G) •X → Aϕ(X) by

Θ
( ∞∑
i=1

figi

)
=
∞∑
i=1

gi ∗ f̌i.

Since Lϕ(G) separates the points of Lϕ(G) •X [H, Corollary 3, p. 68], and
for any h ∈ Lϕ(G), (fi) ⊆ Lϕ(G) and (gi) ⊆ X,〈

Lh,

∞∑
i=1

figi

〉
=

∞∑
i=1

〈Lh(fi), gi〉 =

∞∑
i=1

〈h ∗ fi, gi〉

=

∞∑
i=1

〈h, gi ∗ f̌i〉 =
〈
h,

∞∑
i=1

gi ∗ f̌i
〉
,

Θ is a linear isomorphism. Also, by Proposition 3.2 it is an isometry.

Conversely, let Aϕ(X) be homeomorphic to Lϕ(G) • X. Since Lϕ(G)
separates the points of Aϕ(X), again by [H, Corollary 3, p. 68], Lϕ(G) is
w∗-dense in HomLϕ(G)(L

ϕ(G), X∗).

4. Cvϕ(G), the space of convolutors of Mϕ(G). In this section we
deal with operators on Mϕ(G) which commute with certain functions, and
show that the dual of Aϕ(G), defined below, can be identified with the space
of such operators.

Throughout this section we will assume that (ϕ,ψ) is a complementary
pair of N -functions.

We commence with a definition.

Definition 4.1. An operator T ∈ L(Mϕ(G)) is termed a convolutor if

T (f ∗ g) = T (f) ∗ g whenever f, g ∈ Cc(G).

The space of all convolutors is denoted by Cvϕ(G), and is a closed sub-
space of L(Mϕ(G)).
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Let K(G) be the set of all compact subsets of G with nonvoid interiors
which contain the identity element e of G. Given K in K(G), we define

Ǎϕ,K(G) =
{
u ∈ Cc(G) : u =

∞∑
n=1

gn ∗ f̌n, (fn) ⊆Mϕ(K),

(gn) ⊆Mψ(K),

∞∑
n=1

Nϕ(fn)Nψ(gn) <∞
}
.

The norm of u in Ǎϕ,K(G) is defined by

‖u‖Ǎϕ,K = inf
{ ∞∑
n=1

Nϕ(fn)Nψ(gn) : u =

∞∑
n=1

gn ∗ f̌n
}
.

We now define

Ǎϕ(G) =
⋃

K∈K(G)

Ǎϕ,K(G),

and endow u ∈ Ǎϕ(G) with the norm

‖u‖Ǎϕ = inf{‖u‖Ǎϕ,K : u ∈ Ǎϕ,K(G), K ∈ K(G)}.

The following two lemmas are needed to prove our main theorem in this
section.

Lemma 4.2. Let G be a locally compact group and ϕ be an N -function.
If T ∈ Cvϕ(G), then there exists a net (eα) ⊆ Cc(G) with ‖eα‖1 = 1 such
that if we set Tα(f) = T (eα ∗ f) for every f ∈Mϕ(G), then

(i) ‖Tα‖ ≤ ‖T‖ for each α,
(ii) limαNϕ(Tα(f)− T (f)) = 0 for each f ∈ Cc(G).

Proof. By [R2, Proposition 1] we may choose a net (eα) ⊆ Cc(G) with
‖eα‖1 = 1 for any α such that limαNϕ(eα∗f−f) = 0 whenever f ∈Mϕ(G).
Since Tα ∈ Cvϕ(G), we have Nϕ(Tα(f)) ≤ ‖T‖Nϕ(f) for any f ∈ Mϕ(G),
and so ‖Tα‖ ≤ ‖T‖. Moreover,

lim
α
Nϕ(Tα(f)− T (f)) = lim

α
Nϕ(T (eα ∗ f − f))

≤ ‖T‖ lim
α
Nϕ(eα ∗ f − f) = 0.

For K ∈ K(G) we write C(K) for the space of complex-valued continuous
functions on K.

Lemma 4.3. Let G be a locally compact group and let (ϕ,ψ) be a com-
plementary pair of N -functions. Then Ǎϕ(G) is a normed algebra under
pointwise multiplication.

Proof. Let u, v ∈ Ǎϕ(G). Then there exist subsets K,F ∈ K(G) and
sequences (fn), (gn) ⊆ C(K) and (hn), (ln) ⊆ C(F ) such that u ∈ Ǎϕ,K(G)
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and v∈Ǎϕ,F (G) with representations u=
∑∞

n=1 gn ∗ f̌n and v=
∑∞

n=1 hn ∗ ľn.
For y ∈ G and n,m ∈ N define functions F(n,m)y and G(n,m)y on G by

F(n,m)y(x) = fn(x)lm(xy) and G(n,m)y(x) = gn(x)hm(xy).

Then F(n,m)y, G(n,m)y ∈ Cc(G) and the map y 7→ G(n,m)y ∗ F̌(n,m)y from G

into Ǎϕ,K∪F (G) is continuous and vanishes outside the compact subset

C(n,m) = (supp fn)−1 supp lm ∩ (supp gn)−1 supphm

of G. Indeed, for y0, y ∈ G such that y−1
0 y ∈ U , where U is a symmetric

neighborhood of identity,

‖G(n,m)y ∗ F̌(n,m)y −G(n,m)y0 ∗ F̌(n,m)y0‖Ǎϕ,K∪F (G)

≤ Nϕ(F(n,m)y − F(n,m)y0)
(
Nψ(G(n,m)y −G(n,m)y0) +Nψ(G(n,m)y0)

)
+Nϕ(F(n,m)y0)Nψ(G(n,m)y −G(n,m)y0),

and

Nϕ(F(n,m)y − F(n,m)y0) ≤ ‖Rylm −Ry0 lm‖∞Nϕ(fn),

where Ry denotes right translation, i.e., Ry(f)(x) = f(xy) for x, y ∈ G.
Thus by [F, Theorem A3.1], the vector valued integral

H =
�

C(n,m)

G(n,m)y ∗ F̌(n,m)y dy =
�

G

G(n,m)y ∗ F̌(n,m)y dy

exists and defines an element of Ǎϕ,K∪F (G). Moreover,

u(s)v(s) =
∞∑
n=1

gn ∗ f̌n(s)
∞∑
m=1

hm ∗ ľm(s)

=

∞∑
n=1

�

G

gn(x)f̌n(x−1s) dx

∞∑
m=1

�

G

hm(y)ľm(y−1s) dy

=

∞∑
n,m=1

�

G

�

G

gn(x)f̌n(x−1s)hm(xy)ľm(y−1x−1s) dy dx

=
∞∑

n,m=1

�

G

�

G

gn(x)hm(xy)f̌n(x−1s)ľm(y−1x−1s) dx dy

=
∞∑

n,m=1

�

G

G(n,m)y ∗ F̌(n,m)y (s) dy =
∞∑

n,m=1

( �
G

G(n,m)y ∗ F̌(n,m)y dy
)

(s).

It follows that uv∈Ǎϕ,K∪F (G). Moreover, if we put F(n,m)(y)=Nϕ(F(n,m)y)
and G(n,m)(y) = Nψ(G(n,m)y), then
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‖uv‖Ǎϕ,K∪F (G) ≤
∞∑

n,m=1

�

G

Nϕ(F(n,m)y)Nψ(G(n,m)y) dy

≤ 2

∞∑
n,m=1

Nϕ(F(n,m))Nψ(G(n,m)) ≤ 2

∞∑
n,m=1

‖F(n,m)‖ϕ‖G(n,m)‖ψ

≤ 32

∞∑
n=1

Nϕ(fn)Nψ(gn)
∞∑
m=1

Nϕ(lm)Nψ(hm).

Therefore,

‖uv‖Ǎϕ,K∪F (G) ≤ 32‖u‖Ǎϕ,K(G)‖v‖Ǎϕ,F (G).

The following is the main theorem of this section, which extends [C,
Theorem 2]. For the proof we use some ideas from [C].

Theorem 4.4. If G is a locally compact group and ϕ is a ∆2-regular
N -function, then the dual of Ǎϕ(G) can be identified with Cvϕ(G).

Proof. Let T ∈ Cvϕ(G). If h ∈ Ǎϕ(G), then there is a set K in K(G)
with h =

∑∞
n=1 gn ∗ f̌n such that all fn and gn are supported inside K. Set

ΦT (h) =
∞∑
n=1

〈Tfn, gn〉.

Then

|ΦT (h)| =
∣∣∣ ∞∑
n=1

〈Tfn, gn〉
∣∣∣ ≤ 2

∞∑
n=1

Nϕ(Tfn)Nψ(gn)

≤ 2‖T‖
∞∑
n=1

Nϕ(fn)Nψ(gn) <∞.

It is apparent that ΦT is linear. To show that ΦT (h) is independent of the
representation of h, it suffices to show that ΦT (h) = 0 whenever h = 0.
Suppose that K ∈ K(G) and h ∈ Ǎϕ,K(G) with h =

∑∞
n=1 gn ∗ f̌n = 0. By

Lemma 4.2, there exists a net (eα) ⊆ Cc(G) such that

T (eα ∗ f) = (Teα) ∗ f = Tαf (f ∈Mϕ(G)).

For each α we have
∞∑
n=1

|〈Tαfn, gn〉| ≤ 2

∞∑
n=1

Nϕ(Tαfn)Nψ(gn) ≤ 2‖T‖
∞∑
n=1

Nϕ(fn)Nψ(gn) <∞.

Hence the series
∑∞

n=1〈Tαfn, gn〉 converges in the supremum norm, uni-
formly with respect to each α, and thus

lim
α

∞∑
n=1

〈Tαfn, gn〉 =
∞∑
n=1

lim
α
〈Tαfn, gn〉 =

∞∑
n=1

〈Tfn, gn〉.
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We also have
∞∑
n=1

〈Tαfn, gn〉 =
∞∑
n=1

〈(Teα) ∗ fn, gn〉 =
∞∑
n=1

〈χK1 · Teα, gn ∗ f̌n〉

=
〈
χK1 · Teα,

∞∑
n=1

gn ∗ f̌n
〉

= 0,

where K1 = KK−1. Thus ΦT is a well defined linear form on Ǎϕ(G) and
‖ΦT ‖ ≤ 2‖T‖. Furthermore, we have

‖T‖ = sup{Nϕ(Tf) : f ∈ Cc(G), Nϕ(f) ≤ 1}
≤ sup{|〈Tf, g〉| : f, g ∈ Cc(G), Nϕ(f) ≤ 1, Nψ(g) ≤ 1}
≤ sup{|ΦT (h)| : h = g ∗ f̌ , ‖h‖Ǎϕ ≤ 1} ≤ ‖ΦT ‖.

Hence, ‖T‖ ≤ ‖ΦT ‖ ≤ 2‖T‖.
To complete the proof we must show that Φ is onto. Let F ∈ Ǎϕ(G)∗

and f ∈ Cc(G). For each g ∈ Cc(G) define Ff (g) = F (g ∗ f̌). Then

|Ff (g)| = |F (g ∗ f̌)| ≤ ‖F‖Nϕ(f)Nψ(g).

Hence, Ff defines a continuous linear form on Cc(G) considered as a sub-
space of Mψ(G). Since Cc(G) is dense in Mψ(G) and Mψ(G)∗ = Lϕ(G) =
Mϕ(G), there exists a unique function T (f) ∈Mϕ(G) such that

Ff (g) = F (g ∗ f̌) = 〈Tf, g〉 for each g ∈ Cc(G),

and we have

Nϕ(Tf) ≤ ‖F‖Nϕ(f) for each f ∈ Cc(G).

Since Cc(G) is dense in Mϕ(G), T can be extended to a continuous linear
mapping on Mϕ(G) with ‖T‖ ≤ ‖F‖. Furthermore, for each f, g ∈ Cc(G)
and h ∈ Lψ(G) we have

〈(Tf) ∗ g, h〉 = 〈Tf, h ∗ ǧ〉 = Ff (h ∗ ǧ) = F (h ∗ ǧ ∗ f̌) = 〈T (f ∗ g), h〉.
Since h ∈ Lψ(G) is arbitrary, we get T ∈ Cvϕ(G).

By Lemma 4.3 and Theorem 4.4 we have:

Corollary 4.5. Let Aϕ(G) be the norm completion of Ǎϕ(G). Then
Cvϕ(G) is the dual of Aϕ(G), and Aϕ(G) is a Banach algebra under point-
wise multiplication.

We denote by C0(G) the Banach space of all continuous functions on
G vanishing at infinity. Since Cc(G) is dense in both Mψ(G) and Mϕ(G),
for any functions f ∈ Mϕ(G) and g ∈ Mψ(G), the function g ∗ f̌ belongs
to C0(G) with ‖g ∗ f̌‖∞ ≤ 2Nϕ(f)Nψ(g). Let Aϕ(G) be the range of the
mapping

Mϕ(G) ⊗̂Mψ(G)→ C0(G), f ⊗ g 7→ g ∗ f̌ ,



Multipliers and convolutors of Orlicz spaces 31

equipped with the quotient norm. Then Aϕ(G) becomes a Banach space and
similar to Proposition 3.1.6 of [De], one can see that

Aϕ(G) =
{
u ∈ C0(G) : u =

∞∑
n=1

gn ∗ f̌n, (fn), (gn) ⊆ Cc(G),

∞∑
n=1

Nϕ(fn)Nψ(gn) <∞
}
,

and

‖u‖Aϕ = inf
{ ∞∑
n=1

Nϕ(fn)Nψ(gn) : u =

∞∑
n=1

gn ∗ f̌n
}
.

Since Cc(G) is dense in Mϕ(G) and Mψ(G), the algebraic tensor product
Cc(G)⊗Cc(G) is dense in Mϕ(G) ⊗̂Mψ(G). It follows that Aϕ(G)∩Cc(G)
is dense in Aϕ(G).

Proposition 4.6. Let G be a locally compact group and ϕ a Young
function. Then Ǎϕ(G) is dense in Aϕ(G).

Proof. Let Λ be a base for the neighborhoods of e, the identity element
of G, consisting of compact sets. For each V ∈ Λ, set eV = 1

λ(V )χV . Then

similar to [R2, Proposition 1] one can show that {eV : V ∈ Λ} is an approx-
imate identity for Mψ(G), when Λ is partially ordered downwards by set
inclusion. Now let u ∈ Aϕ(G) with representation u =

∑∞
n=1 gn ∗ f̌n, where

(fn), (gn) ⊆ Cc(G). Given ε > 0, there exists a natural number n0 ∈ N such
that

∞∑
n=n0+1

Nϕ(fn)Nψ(gn) < ε/2.

Also if we put h =
∑n0

n=1 gn ∗ f̌n, then there is a V ∈ Λ such that

‖eV ∗ h− h‖Aϕ ≤
n0∑
n=1

Nϕ(fn)Nψ(eV ∗ gn − gn) < ε/2.

Consequently,

‖eV ∗ h− u‖Aϕ ≤ ‖eV ∗ h− h‖Aϕ + ‖u− h‖Aϕ < ε.

For the notion of amenability of a locally compact group we refer the
reader to [P]. Let us remark that a locally compact group G is amenable if
and only if it satisfies Leptin’s condition: for each ε > 0 and any compact
subset K ⊆ G, there exists a measurable subset U ⊆ G such that 0 <
λ(U) <∞ and λ(KU) < (1 + ε)λ(U); see [P, Theorem 7.3].

Lemma 4.7. Let G be an amenable locally compact group, K a compact
subset of G and ϕ an N -function. Then for every ε > 0 there exist 0 ≤
f ∈ Mϕ(G) and 0 ≤ g ∈ Mψ(G) such that u = g ∗ f̌ ∈ Aϕ(G) ∩ Cc(G),
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‖u‖Aϕ < 1 + ε and u = 1 on K, where ψ is the complementary N -function
to ϕ.

Proof. Take a compact neighborhood V of e, and let

u(x) =
1

λ(V )
(χKV ∗ χ̌V )(x) =

λ(xV ∩KV )

λ(V )
.

Then u ∈ Aϕ(G) and 0 ≤ u ≤ 1. If x ∈ K, then λ(xV ∩KV ) = λ(xV ) =
λ(V ), so that u(x) = 1, whereas if x /∈ KV V −1, then xV ∩ KV = ∅ and
hence u(x) = 0. Thus suppu ⊆ KV V −1 which is compact. Now, since G
is amenable, by Leptin’s condition we may choose V in such a way that
λ(KV ) < (1 + ε)λ(V ). Let f = 1

λ(V )χV , g = χKV and u = g ∗ f̌ . Then

‖u‖Aϕ ≤
1

λ(V )
Nψ(χKV )Nϕ(χV )

=
1

λ(V )

[
ψ−1

(
1

λ(KV )

)]−1 [
ϕ−1

(
1

λ(V )

)]−1

≤ 1

λ(V )

[
ψ−1

(
1

(1 + ε)λ(V )

)]−1 [
ϕ−1

(
1

(1 + ε)λ(V )

)]−1

< 1 + ε.

As an immediate consequence of Theorem 4.4 we have the following.

Corollary 4.8. If G is an amenable locally compact group and ϕ a ∆2-
regular N -function, then Cvϕ(G) can be identified with the dual of Aϕ(G).

Proof. It is sufficient to show that the norms on Ǎϕ(G) and Aϕ(G) are
equivalent on the dense subspace Ǎϕ(G). It is clear that ‖v‖Aϕ ≤ ‖v‖Ǎϕ for

all v ∈ Ǎϕ(G).
On the other hand, let v ∈ Ǎϕ(G) with K = supp(v). Given ε > 0, by

Lemma 4.7, there exists u ∈ Cc(G) such that u = 1 on K and ‖u‖Aϕ < 1+ε.
Thus, v = vu and

‖v‖Ǎϕ = ‖uv‖Ǎϕ ≤ 32(1 + ε)‖v‖Aϕ ,

as the proof of Lemma 4.3. Hence ‖v‖Aϕ ≤ ‖v‖Ǎϕ ≤ 32‖v‖Aϕ .
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