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Non-separable tree-like Banach spaces and
Rosenthal’s `1-theorem

by

Costas Poulios (Athens)

Abstract. We introduce and investigate a class of non-separable tree-like Banach
spaces. As a consequence, we prove that we cannot achieve a satisfactory extension of
Rosenthal’s `1-theorem to spaces of the type `1(κ) for κ an uncountable cardinal.

1. Introduction. Rosenthal’s `1-theorem [9] is one of the most remark-
able results in Banach space geometry. It provides a fundamental criterion
for the embedding of `1 into Banach spaces.

Theorem 1.1 (Rosenthal’s `1-theorem). Let (xn) be a bounded sequence
in the Banach space X and suppose that (xn) has no weakly Cauchy subse-
quence. Then (xn) contains a subsequence equivalent to the usual `1-basis.

A satisfactory extension of Theorem 1.1 to spaces of the type `1(κ), for κ
an uncountable cardinal, would be desirable, since it would provide a useful
criterion for the embedding of `1(κ) into Banach spaces. Naturally, therefore,
R. G. Haydon [7] posed the following problem: Let κ be an uncountable
cardinal. Suppose that X is a Banach space, and A is a bounded subset of
X of cardinality κ, which does not contain any weakly Cauchy sequence.
Can we deduce that A has a subset equivalent to the usual `1(κ)-basis?

Before the question was posed, Haydon [6] had already presented a coun-
terexample for the case κ = ω1. A completely different counterexample for
the same case had also been obtained by J. Hagler [3]. Finally, a complete
solution to the aforementioned problem was given by C. Gryllakis [2] who
proved that the answer is always negative with only one exception, namely
when both κ and cf(κ) are strong limit cardinals.

In this paper, we first introduce for any infinite cardinal κ a tree-like
Banach space Xκ. Our construction is motivated by the well-known James
Tree space (JT ) [8] and Hagler Tree space (HT ) [3]. We also study in detail
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various properties of the spaceXκ; we mostly focus on continuous functionals
defined on Xκ. As a consequence, we give a very simple answer to Haydon’s
problem.

Closing this introductory section, we recall some definitions for the sake
of completeness. A sequence (xn)n∈N in a Banach space X is weakly Cauchy
if the scalar sequence (f(xn))n∈N converges for every f in X∗. A subset
A ⊂ X with cardinality κ is equivalent to the usual `1(κ)-basis if there are
constants C1, C2 > 0 such that C1

∑n
i=1|ai| ≤ ‖

∑n
i=1 aixi‖ ≤ C2

∑n
i=1|ai|,

for any n ∈ N, any x1, . . . , xn ∈ A and any scalars a1, . . . , an. Given an
infinite cardinal κ, we let κ+ denote the successor of κ, i.e. κ+ is the small-
est cardinal greater than κ. We also define the cofinality of κ, denoted by
cf(κ), to be the smallest cardinal with the following property: there exist
cardinals {κi | i < cf(κ)} such that κi < κ for every ordinal i < cf(κ), and∑

i<cf(κ) κi = κ.

Finally, we should mention that this is not the first time non-separable
tree-like Banach spaces have been defined (e.g. see [1], [4] and [5]; our con-
struction is closer to the constructions of [4]).

2. The basic construction. Suppose that κ is an infinite cardinal.
Then we set

Γ = {0, 1}κ =
{
a : {ξ < κ} → {0, 1}

}
=
{

(aξ)ξ<κ | aξ = 0 or 1
}

D = {0, 1}<κ =
⋃{
{0, 1}η | Ord(η), η < κ

}
=
{

(aξ)ξ<η | η is an ordinal, η < κ, aξ = 0 or 1
}
.

The set D is called the (standard) tree. The elements s ∈ D are called nodes.
The elements of the set Γ = {0, 1}κ are called branches.

If s is a node and s ∈ {0, 1}η, we say that s is at the ηth level of D. We
denote the level of s by lev(s). The initial segment partial ordering on D,
denoted by ≤, is defined as follows: if s = (aξ)ξ<η1 and s′ = (bξ)ξ<η2 belong
to D then s ≤ s′ if and only if η1 ≤ η2 and aξ = bξ for any ξ < η1. We
also write s < s′ if s ≤ s′ and s 6= s′. By s ⊥ s′ we indicate that s, s′ are
incomparable, that is, neither s ≤ s′ nor s′ ≤ s. If s ≤ s′ we say s′ is a
follower of s. Further, the nodes s∪{0} and s∪{1} are called the successors
of s, that is, we reserve the word successor for immediate follower. However,
we observe that a node does not need to have an immediate predecessor.

A subset T of D is called a subtree if it is order isomorphic to {0, 1}<λ
for some cardinal λ ≤ κ. In this paper, we only use countable subtrees of D,
that is, subtrees which are order isomorphic to {0, 1}<ℵ0 . If T is countable,
we enumerate its elements as T = {t1, t2, . . .} where t1 is the minimum
element of T and for each m ∈ N, t2m, t2m+1 are the successors of tm (in the
tree T ).
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A linearly ordered subset I of D is called a segment if for every s < t < s′,
t is contained in I provided that s, s′ belong to I. Consider now a non-empty
segment I. Let η1 be the least ordinal such that there exists a node s ∈ I
with lev(s) = η1. Suppose further that there are an ordinal η and a node s′

at the ηth level such that s ≤ s′ for every s ∈ I. Let η2 be the least ordinal
with this property. Then we say that I is an η1-η2 segment. A segment is
called initial if η1 = 0, that is, ∅ ∈ I.

We next define admissible families of segments in the sense of Hagler [3].
Suppose that {Ij}rj=1 is a finite family of segments. This family is called
admissible if:

(1) there exist ordinals η1 < η2 such that Ij is an η1-η2 segment for each
j = 1, . . . , r;

(2) Ii ∩ Ij = ∅ provided that i 6= j.

Consider now the vector space c00(D) of finitely supported functions
x : D → R. For any segment I of D, we set I∗ : c00(D) → R with I∗(x) =∑

s∈I x(s). Then, for any x ∈ c00(D), we define the norm

‖x‖ = sup
[ r∑
j=1

|I∗j (x)|2
]1/2

where the supremum is taken over all finite, admissible families {Ij}rj=1 of
segments. The space Xκ is the completion of the normed space (c00(D), ‖·‖)
just defined.

For every node s ∈ D, we define es : D → R by es(t) = 1 if t = s and
es(t) = 0 otherwise. Clearly, ‖es‖ = 1 for any s ∈ D.

We come now to the final definition. Suppose that {si | i ∈ I} is a family
of nodes of the tree D. This family is called strongly incomparable (see [3]) if:

(1) si ⊥ sj provided that i 6= j;
(2) if {S1, . . . , Sr} is any admissible family of segments, then at most

two of the si’s, i ∈ I, are contained in S1 ∪ · · · ∪ Sr.

There is a standard way of constructing strongly incomparable families of
nodes. Suppose that (sξ)ξ<η is a set of nodes, where η < κ, such that
s0 < s1 < · · · . For any ordinal ξ < η, let tξ be the successor of sξ with
tξ ⊥ sξ+1. Then the family {tξ | ξ < η} is strongly incomparable.

Concerning strongly incomparable sets of nodes, we quote the following
proposition whose proof is straightforward.

Proposition 2.1. Suppose that {si | i ∈ I} is a strongly incomparable
set of nodes in the tree D. Then the family {esi | i ∈ I} is equivalent to the
usual basis of c0(I). More precisely, for any n ∈ N, any i1, . . . , in ∈ I and
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any scalars a1, . . . , an, we have

max
1≤k≤n

|ak| ≤
∥∥∥ n∑
k=1

akesik

∥∥∥ ≤ √2 max
1≤k≤n

|ak|.

3. The main results. Suppose that B = (aξ)ξ<κ ∈ Γ is any branch.
Then B can be naturally identified with a maximal segment of D, namely
B = {s0 < s1 < · · · < sη < · · · } where s0 = ∅ and sη = (aξ)ξ<η for any
ordinal η < κ. In Section 2, we defined the linear functional B∗ : c00(D)→ R
by setting B∗(x) =

∑
s∈B x(s). Clearly, ‖B∗‖ = 1. This functional can be

extended to a bounded functional on Xκ, having the same norm and denoted
again by B∗. Let also Γ ∗ denote the set of all functionals B∗ defined above.
Then Γ ∗ is a bounded subset of X∗κ of cardinality 2κ.

This section is devoted to the study of the family Γ ∗. We first prove the
following.

Theorem 3.1. Suppose that (Bn)n∈N is a sequence of branches such that
Bn 6= Bm for n 6= m. Then (B∗n)n∈N contains a subsequence equivalent to
the usual `1-basis.

Proof. Consider the set A of all ordinals η < κ which satisfy the follow-
ing: there are nodes ϕ 6= t with lev(ϕ) = lev(t) = η and there are positive
integers m1 6= m2 such that ϕ ∈ Bm1 and t ∈ Bm2 . Clearly A is a non-empty
set, so we can consider its least element, say η. Then η cannot be a limit
ordinal. Indeed, let ϕ = (aξ)ξ<η and t = (bξ)ξ<η be as above. Since ϕ 6= t,
there exists η1 < η with aη1 6= bη1 . We set ϕ̃ = (aξ)ξ<η1+1 and t̃ = (bξ)ξ<η1+1.
Then ϕ̃ 6= t̃, these nodes are at the same level and ϕ̃ ≤ ϕ, t̃ ≤ t. Hence,
ϕ̃ ∈ Bm1 and t̃ ∈ Bm2 . By the minimality of η, we conclude that η = η1 + 1.

Furthermore, the minimality of η also implies that there exists a node
s1 at level η1 so that s1 ∈ Bm for every m ∈ N, and the nodes ϕ, t at
level η = η1 + 1 are precisely the successors of s1. Now, we set ϕ1 = ϕ and
t1 = t. We may assume that there are infinitely many terms of the sequence
(Bm)m∈N which pass through the node ϕ1. Then we choose a branch Bl1
passing through the node t1 (clearly such a branch does exist). Bl1 is just
the first term of the desired subsequence.

We next set N1 = {m ∈ N | m > l1 and ϕ1 ∈ Bm}. Then N1 is an infinite
subset of N. Repeating the previous argument for the branches (Bm)m∈N1 ,
we find an ordinal η2 > η1+1 and a node s2 at the η2th level, with successors
ϕ2 and t2, such that

• all branches Bm, m ∈ N1, pass through s2;
• infinitely many branches of the sequence (Bm)m∈N1 pass through ϕ2

and the set {m ∈ N1 | t2 ∈ Bm} is non-empty.

We also choose a branch Bl2 so that t2 ∈ Bl2 .
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Continuing in the obvious manner, we inductively construct a sequence
s1 < s2 < · · · of nodes of D, with the successors of si denoted by ϕi and ti,
and a sequence l1 < l2 < · · · of positive integers such that:

(1) s1 < ϕ1 ≤ s2 < ϕ2 ≤ · · · ;
(2) si ∈ Blj for any j ≥ i, but the branches Blj , j > i, pass through ϕi

while the branch Bli passes through ti.

We prove now that (B∗lm)m∈N is equivalent to the usual `1-basis. Let

M ∈ N and a1, . . . , aM ∈ R be given. We set x =
∑M

i=1 sgn(ai)eti . Condi-
tion (1) of the above construction implies that the sequence (ti) is strongly
incomparable. Hence, ‖x‖ =

√
2 by Proposition 2.1. Furthermore, condition

(2) implies that ti ∈ Bli \
⋃
{Blj | j 6= i}, thus Blj (eti) = δij . Therefore∥∥∥ M∑

i=1

aiB
∗
li

∥∥∥ ≥ 1

‖x‖

∣∣∣ M∑
i=1

aiB
∗
li

(x)
∣∣∣ =

1√
2

∣∣∣ M∑
i=1

ai sgn(ai)
∣∣∣ =

1√
2

M∑
i=1

|ai|.

Hence 1√
2

∑M
i=1|ai| ≤ ‖

∑M
i=1 aiB

∗
li
‖. Since clearly ‖

∑M
i=1 aiB

∗
li
‖ ≤

∑M
i=1|ai|,

the proof is complete.

Corollary 3.2. The set Γ ∗ contains no weakly Cauchy sequence.

We pass now to the second result concerning the set of functionals {B∗ |
B ∈ Γ}.

Theorem 3.3. No subset of Γ ∗ is equivalent to the usual `1(κ
+)-basis.

For the proof we need to establish some lemmas. Before proceeding, let
us introduce some notation. First of all, if A is any set, then |A| denotes the
cardinality of A. Suppose now that ∆ ⊆ Γ is a set of branches. For any node
s ∈ D, we denote by ∆s the set of all branches B ∈ ∆ passing through s,
that is, ∆s = {B ∈ ∆ | s ∈ B}. We also set ∆c

s = ∆\∆s = {B ∈ ∆ | s /∈ B}.
Lemma 3.4. Let ∆ ⊆ Γ be a set of branches with |∆| = κ+. Then there

exists a node s ∈ D such that |∆s∪{0}| = |∆s∪{1}| = κ+.

Proof. Assume that the assertion is not true. Then for every node s ∈ D
there is a successor s ∪ {ε} of s, where ε = 0 or 1, such that |∆s∪{ε}| < κ+.
With this assumption and using transfinite induction we construct a branch
B = {sη}η<κ = {s0 < s1 < · · · } with |∆sη | = κ+ for any η < κ.

We start with s0 = ∅. Clearly, |∆∅| = |∆| = κ+. Suppose now that η is
an ordinal, η < κ, and we have defined the nodes {sξ}ξ<η with lev(sξ) = ξ
and |∆sξ | = κ+ for any ξ < η.

If η = η0 + 1, then by the inductive hypothesis we have |∆sη0
| = κ+.

Clearly, ∆sη0
= ∆sη0∪{0} ∪ ∆sη0∪{1}. Therefore, there exists a successor

sη0 ∪ {ε} (where ε = 0 or 1) of sη0 such that |∆sη0∪{ε}| = κ+. Let sη =

sη0 ∪ {ε}.
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If η is a limit ordinal, we set sη =
⋃
ξ<η sξ. Then sη is a node at the ηth

level of D. It remains to show that |∆sη | = κ+. Since ∆ = ∆sη ∪ ∆c
sη , it

suffices to prove that |∆c
sη | ≤ κ.

Let us consider a branch B belonging to ∆c
sη , that is, sη /∈ B. We also

denote by S the initial segment {sξ}ξ≤η. We consider now the set A contain-
ing all ordinals ξ ≤ η such that at the ξth level of D, the segments B and
S do not pass through the same node. The set A is non-empty as η ∈ A.
Therefore A has a minimum element, say ξ0. The minimality implies that
ξ0 cannot be a limit ordinal. Hence ξ0 = ξ + 1. Further, by the minimality
of ξ0, at level ξ we have sξ ∈ B and sξ ∈ S, while at level ξ + 1, sξ+1 ∈ S
and sξ+1 /∈ B. Consequently,

∆c
sη =

⋃
ξ<η

{B ∈ ∆ | sξ ∈ B and sξ+1 /∈ B} =
⋃
ξ<η

(∆sξ ∩∆
c
sξ+1

).

Observe that sξ+1 is a successor of sξ, |∆sξ | = |∆sξ+1
| = κ+ and ∆sξ ∩∆c

sξ+1

consists of all branches B ∈ ∆ which pass through the other successor of sξ.
By our assumption at the beginning of the proof, we have |∆sξ ∩∆c

sξ+1
| ≤ κ

and therefore |∆c
sη | ≤

∑
ξ<η κ = κ.

Thus a branch B = {sη}η<κ has been constructed with |∆sη | = κ+ for
any η < κ. To complete the proof, we only need to repeat our last argument.
Consider a branch B̃ ∈ ∆ with B̃ 6= B. Let ξ0 be the minimum ordinal such
that at the ξ0th level the branches B̃, B do not pass through the same node.
The minimality of ξ0 implies that ξ0 = ξ+1, sξ ∈ B̃ and sξ+1 /∈ B̃. Therefore

∆ ⊆ {B} ∪
⋃
ξ<κ

(∆sξ ∩∆
c
sξ+1

).

Since |∆sξ ∩ ∆c
sξ+1
| ≤ κ, it follows that |∆| ≤ κ and we have reached a

contradiction.

Lemma 3.5. Let ∆ ⊂ Γ be a set of branches with |∆| = κ+. Then there
exists a countable subtree T of D, T = {t1, t2, . . .}, such that:

(1) |∆tm | = κ+ for any node tm ∈ T ;
(2) for any tm ∈ T there exists a node sm ∈ D such that tm ≤ sm

and t2m, t2m+1 are the successors of sm (that is, when we look at the
tree D, the successors of tm remain the successors of some sm ∈ D).

Proof. Let t1 = ∅. By Lemma 3.4, there exists a node s1 ∈ D with
t1 ≤ s1 such that |∆s1∪{0}| = |∆s1∪{1}| = κ+. We set t2 = s1 ∪ {0} and
t3 = s1 ∪{1}. Then t2, t3 are the successors of t1 in T , and they are also the
successors of s1 when we look at the tree D.

Applying Lemma 3.4 to the family ∆s1∪{0} = ∆t2 we find a node s2 ∈ D
with t2 ≤ s2 such that |∆s2∪{0}| = |∆s2∪{1}| = κ+. Then the successors of
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t2 in T are the nodes t4 = s2 ∪ {0} and t5 = s2 ∪ {1}. We continue in the
obvious manner.

Proof of Theorem 3.3. Assume that ∆ ⊆ Γ is a set of branches with
|∆| = κ+, and ∆∗ = {B∗ | B ∈ ∆} is equivalent to the usual `1(κ

+)-
basis. Then there exists a constant δ > 0 such that for any n ∈ N, any
B1, . . . , Bn ∈ ∆ and any scalars a1, . . . , an,

δ

n∑
i=1

|ai| ≤
∥∥∥ n∑
i=1

aiB
∗
i

∥∥∥ ≤ n∑
i=1

|ai|.

Let T be the countable subtree of D given by Lemma 3.5 and let n ∈ N be
any positive integer. Then we choose branches B1, . . . , Bn and Bn+1, . . . , B2n

belonging to ∆ as follows. We work at the nth level of T , which consists
of the nodes t2n , t2n+1, . . . , t2n+1−1. If we consider the pair t2n , t2n+1, the
construction of T implies that these nodes are the successors of some node
of D. Therefore they belong to the same level of D, say level ξ1. Similarly
the nodes t2n+2, t2n+3 are placed at the same level of D, say ξ2, and so on.
Finally, let ξ2n−1 = lev(t2n+1−2) = lev(t2n+1−1). We may assume, without
loss of generality, that ξ1 = max{ξk | 1 ≤ k ≤ 2n−1}. Then we choose
branches B1 and Bn+1 of the family ∆ such that B1 passes through t2n

and Bn+1 passes through t2n+1 (such branches exist by Lemma 3.5). If ψ1

denotes the immediate predecessor of the nodes t2n , t2n+1 (in D), then the
branches B1, Bn+1 coincide up to the level of ψ1 and they separate each
other at the next level.

The nodes t2n , t2n+1 are followers of t2 in the tree T . We now forget the
followers of t2 and we repeat the previous procedure for the nodes belonging
to the nth level of T which are followers of t3. That is, we detect the pair,
say t2n+2k, t2n+2k+1, which is placed at the highest level of D (if this is not
unique, we simply choose one). Then we choose branches B2, Bn+2 belonging
to ∆ such that B2 passes through the left-hand node of the pair, i.e. t2n+2k,
and Bn+2 passes through the right-hand node t2n+2k+1. Let ψ2 denote the
immediate predecessor of t2n+2k, t2n+2k+1 in D. Then lev(ψ1) ≥ lev(ψ2). The
branches B2, Bn+2 coincide up to the level of ψ2. We also notice that the
branchesB1, B2 separate each other before the level of t2, t3 and this happens
for the branches Bn+1, Bn+2. The nodes t2n+2k, t2n+2k+1 are followers of
either t6 or t7. If t6 is a predecessor of t2n+2k, t2n+2k+1, then we forget the
followers of t6 and we continue with the nodes belonging to the nth level of
T which are followers of t7.

After n − 1 iterations of the previous argument, we find branches
B1, . . . , Bn−1 and Bn+1, . . . , B2n−1 belonging to the family ∆ and nodes
ψ1, . . . , ψn−1 of D. At this stage only one pair of nodes at the nth level of T
has been left. Let ψn be the immediate predecessor on D of these nodes. We
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choose Bn, B2n ∈ ∆ such that Bn passes through the left-hand node and
B2n passes through the right-hand node.

Now we observe that B1, . . . , Bn are pairwise disjoint below the level of
ψn and this also holds for Bn+1, . . . , B2n. Therefore, if η1 = lev(ψn) and
η2 = lev(ψ1), then:

(1) All segments Bi ∩ {s | lev(s) ≥ η2 + 1}, i = 1, . . . , 2n, are pairwise
disjoint.

(2) The segments Bi ∩ {s | η1 + 1 ≤ lev(s) ≤ η2} for i = 1, . . . , n are
pairwise disjoint. Hence they are admissible (η1+1)-(η2+1) segments.
Similarly, Bi ∩ {s | η1 + 1 ≤ lev(s) ≤ η2}, i = n+ 1, . . . , 2n, form an
admissible family.

(3) Bi∩{s | lev(s) ≤ η1} = Bn+i∩{s | lev(s) ≤ η1} for any i = 1, . . . , n.
Let us also denote Si = Bi ∩ {s | lev(s) ≤ η1}.

After the choice of (Bi)
2n
i=1 has been completed, our next purpose is to es-

timate the norm of the functional
∑2n

i=1 aiB
∗
i for any scalars a1, . . . , a2n and

to contradict the assumption that ∆∗ is equivalent to the usual `1(κ
+)-basis.

For this reason, we consider a finitely supported vector x =
∑

s∈D λses ∈ Xκ

with ‖x‖ ≤ 1. We can write x = x1 + x2 + x3, where x1 =
∑

lev(s)≤η1 λses,

x2 =
∑

η1+1≤lev(s)≤η2 λses and x3 =
∑

η2+1≤lev(s) λses. Clearly, ‖xj‖ ≤
‖x‖ = 1 for any j = 1, 2, 3. Then∣∣∣ 2n∑

i=1

aiB
∗
i (x)

∣∣∣ ≤ ∣∣∣ 2n∑
i=1

aiB
∗
i (x1)

∣∣∣+
∣∣∣ 2n∑
i=1

aiB
∗
i (x2)

∣∣∣+
∣∣∣ 2n∑
i=1

aiB
∗
i (x3)

∣∣∣.
Now we have∣∣∣ 2n∑

i=1

aiB
∗
i (x3)

∣∣∣ ≤ ( 2n∑
i=1

a2i

)1/2( 2n∑
i=1

|B∗i (x3)|2
)1/2

≤
( 2n∑
i=1

a2i

)1/2
,

∣∣∣ 2n∑
i=1

aiB
∗
i (x2)

∣∣∣ ≤ ( 2n∑
i=1

a2i

)1/2( n∑
i=1

|B∗i (x2)|2 +

2n∑
i=n+1

|B∗i (x2)|2
)1/2

≤
( 2n∑
i=1

a2i

)1/2
(2‖x2‖2)1/2 ≤

√
2
( 2n∑
i=1

a2i

)1/2
,

∣∣∣ 2n∑
i=1

aiB
∗
i (x1)

∣∣∣ =
∣∣∣ n∑
i=1

(aiB
∗
i (x1) + an+iB

∗
n+i(x1))

∣∣∣
=
∣∣∣ n∑
i=1

(ai + an+i)S
∗
i (x1)

∣∣∣ ≤ n∑
i=1

|ai + an+i| |S∗i (x1)|

≤
n∑
i=1

|ai + an+i|.
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Summarizing, for any finitely supported x ∈ Xκ with ‖x‖ ≤ 1 we have∣∣∣ 2n∑
i=1

aiB
∗
i (x)

∣∣∣ ≤ (
√

2 + 1)
( 2n∑
i=1

a2i

)1/2
+

n∑
i=1

|ai + an+i|.

Therefore, ‖
∑2n

i=1 aiB
∗
i ‖ ≤ (

√
2 + 1)(

∑2n
i=1 a

2
i )

1/2 +
∑n

i=1|ai + an+i|. On the
other hand, ∆∗ is equivalent to the usual `1(κ

+)-basis. It follows that

δ
2n∑
i=1

|ai| ≤ (
√

2 + 1)
( 2n∑
i=1

a2i

)1/2
+

n∑
i=1

|ai + an+i|.

If we choose a1 = · · · = an = 1 and an+1 = · · · = a2n = −1, then we obtain
δ ≤ (

√
2 + 1)/

√
2n for any n ∈ N, a contradiction.

4. The non-separable version of Rosenthal’s `1-theorem. In this
section, we show that we cannot achieve a satisfactory extension of Rosen-
thal’s `1-theorem to spaces of the type `1(κ) for κ an uncountable cardinal.
As mentioned in the introduction, this extension is possible in only one case,
namely when both κ and cf(κ) are strong limit cardinals. For the proof of
this result we refer to [2]; we shall discuss the other cases.

Suppose first that κ is not a strong limit cardinal. This means that there
exists a cardinal λ < κ with κ ≤ 2λ. We now consider the space Xλ and the
corresponding family of functionals Γ ∗ ⊂ X∗λ. Then Γ ∗ is a bounded subset
of X∗λ whose cardinality is equal to 2λ ≥ κ. Further, by Corollary 3.2, the
set Γ ∗ contains no weakly Cauchy sequence and, by Theorem 3.3, no subset
of Γ ∗ is equivalent to the usual `1(κ)-basis.

We next consider the case where κ is a strong limit cardinal but cf(κ)
is not. This case is not so simple as the previous one, but it is essentially
based on the arguments developed in Section 3.

Since cf(κ) is not strong limit, there exists a cardinal λ < cf(κ) with
cf(κ) ≤ 2λ. By the definition of cf(κ), there are cardinals {κi | i < cf(κ)}
such that κi < κ for any ordinal i < cf(κ), and κ =

∑
i<cf(κ) κi. We next

consider the space Xκ and we choose a family of branches A ⊂ Γ as follows.
We focus on the level λ of the tree D. This level consists of the nodes
{0, 1}λ = {(aξ)ξ<λ | aξ = 0 or 1}. Therefore, there are 2λ nodes at level λ.

Since cf(κ) ≤ 2λ, we can choose nodes {ti | i < cf(κ)} at level λ with ti 6= tj
provided that i 6= j. Now we observe that for any i < cf(κ), the set of all
branches passing through ti has cardinality 2κ. Hence, for any i < cf(κ), we
can choose a family of branches Ai ⊂ Γ such that |Ai| = κi and each branch
belonging to Ai passes through ti. Finally, let A =

⋃
i<cf(κ)Ai and let A∗ be

the family of the corresponding functionals, that is, A∗ = {B∗ | B ∈ A}.
Clearly, the choice of A implies that |A∗| = |A| =

∑
i<cf(κ) κi = κ.

Furthermore, by Corollary 3.2, A∗ contains no weakly Cauchy sequence. So,
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it remains to show that no subset of A∗ is equivalent to the usual `1(κ)-basis.
The proof follows the lines of the proof of Theorem 3.3. We describe briefly
the part corresponding to Lemma 3.4.

Lemma 4.1. Let ∆ be a subset of A with |∆| = κ. Then there exists a
node s ∈ D such that lev(s) < λ and |∆s∪{0}| = |∆s∪{1}| = κ. (Recall that
∆s = {B ∈ ∆ | s ∈ B}.)

Proof. Assuming that the assertion is not true, we construct an initial
segment S = {sη}η<λ = {s0 < s1 < · · · } such that |∆sη | = κ for any η < λ.
We start with s0 = ∅. If η = η0 + 1, then sη is one of the followers of sη0 . If
η is a limit ordinal, then we set sη =

⋃
ξ<η sξ. Clearly, sη is a node at the

ηth level of D. We next show that

∆c
sη =

⋃
ξ<η

(∆sξ ∩∆
c
sξ+1

).

Therefore,

|∆c
sη | =

∑
ξ<η

|∆sξ ∩∆
c
sξ+1
| < κ,

since |∆sξ ∩ ∆c
sξ+1
| < κ and η < λ < cf(κ). Hence |∆sη | = κ and this

completes the construction of S.
Finally, we set sλ =

⋃
ξ<λ sξ. Then sλ belongs to level λ and as previously

we show |∆sλ | = κ. However, the choice of A indicates that |∆s| < κ for any
node s at level λ, and we have reached a contradiction.

Using Lemma 4.1, we construct a countable subtree T = {t1, t2, . . .} of
D such that:

(1) |∆tm | = κ for any m = 1, 2, . . . (therefore, lev(tm) < λ);
(2) the successors t2m, t2m+1 of tm are the successors of some sm ∈ D.

Finally, we repeat the proof of Theorem 3.3 to show that no subset ∆∗ of
A∗ is equivalent to the usual `1(κ)-basis.

5. The structure of the subspaces of Xκ. The structure of subspaces
of the James Tree space (JT ) and the Hagler Tree space (HT ) has been
studied extensively, since it has provided answers to several questions about
Banach spaces. By analogy, the structure of subspaces of Xκ seems quite
interesting. This section is devoted to some remarks concerning this issue.

First of all, Xκ contains a lot of subspaces isomorphic to c0(κ). Indeed,
let B = {sη}η<κ be any branch and, for any η < κ, let tη be the successor
of sη with tη 6= sη+1. Then {tη | η < κ} is a strongly incomparable family
of nodes. By Proposition 2.1, the subspace span{etη | η < κ} is isomorphic
to c0(κ). Furthermore, it is easy to verify that for any ordinal η < κ the
subspace span{es | s ∈ {0, 1}η} is isometrically isomorphic to `2(2

η). The
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main properties of the spaces JT and HT suggest now the following problem
about subspaces of Xκ.

Problem 5.1. Is it true that no subspace of Xκ is isomorphic to `1(κ)?

Concerning the above problem, we prove a partial result. Assume that
B = {sη}η<κ is any branch of the tree D. Then we show that the subspace
generated by this branch, that is, span{esη}η<κ, does not contain any copy
of `1(κ).

For convenience, we first define a Banach space isometrically isomorphic
to the subspace generated by any branch. Let κ be an infinite cardinal. We
consider the vector space c00({η | η < κ}) consisting of all finitely supported
functions x : {η | η < κ} → R. For any such x, we set

‖x‖ = sup{|S∗(x)|}
where the supremum is taken over all segments S ⊆ {η | η < κ}. If Eκ
denotes the completion of the normed space just defined, then Eκ is isomet-
rically isomorphic to the subspace of Xκ generated by any branch.

As usual, for any ordinal η < κ, we consider the vector eη ∈ Eκ with
eη(ξ) = 1 if ξ = η and eη(ξ) = 0 otherwise. We now define some pro-
jections on the space Eκ. Let η be any ordinal, η < κ. We define Pη :
span{eξ}ξ<κ → span{eξ}ξ<η as follows: if x =

∑
ξ<κ x(ξ)eξ is finitely sup-

ported, then Pη(x) =
∑

ξ<η x(ξ)eξ. Clearly, Pη is a linear projection with
‖Pη‖ = 1. We can also extend Pη continuously to obtain a projection
Pη : Eκ → Eκ onto span{eξ}ξ<η with ‖Pη‖ = 1. We next prove the fol-
lowing.

Proposition 5.2. The space Eκ contains no isomorphic copy of `1(κ).

Proof. Suppose, on the contrary, that `1(κ) embeds isomorphically in-
to Eκ. Then we find a subset {xξ | ξ < κ} of Eκ which is equivalent to
the usual `1(κ)-basis. Without loss of generality, we may assume that xξ is
finitely supported and ‖xξ‖ = 1 for any ξ < κ.

We inductively construct a sequence (ym)∞m=0 belonging to span{eξ}ξ<κ
with the following properties:

(1) ‖ym‖ = 1 for each m;
(2) if Am ⊂ {ξ < κ} is the support of ym then maxAm < minAm+1 for

any m;
(3) (ym)∞m=0 is a block sequence of (xξ)ξ<κ, that is, there are ordinals

η0 < η1 < · · · such that ym ∈ span{xξ | ηm ≤ ξ < ηm+1}.
We start with y0 = x0, η0 = 0 and η1 = 1. Let ξ1 = maxA0 + 1. We claim
that there exists y ∈ span{xξ}ξ≥1, y 6= 0, such that Pξ1(y) = 0. Indeed, if we
assume that Pξ1(y) 6= 0 for all y ∈ span{xξ}ξ≥1, y 6= 0, then the linear oper-
ator Pξ1 : span{xξ}ξ≥1 → span{eξ}ξ<ξ1 is one-to-one. Since {xξ}ξ≥1 are lin-
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early independent, it follows that the (algebraic) dimension of span{eξ}ξ<ξ1
is κ, which is a contradiction. Therefore, there is y ∈ span{xξ}ξ≥1 such
that y 6= 0 and Pξ1(y) = 0. We set y1 = y/‖y‖. Since Pξ1(y) = 0, we have
maxA0 < minA1. Moreover, we can choose an ordinal η2 > η1 such that
y ∈ span{xξ | η1 ≤ ξ < η2}. Repeatedly applying the previous argument,
we construct the desired sequence (ym)∞m=0.

Since (xξ)ξ<κ is equivalent to the usual `1(κ)-basis, it is easy to verify
that (ym) is equivalent to the usual `1-basis. Furthermore, (ym) belongs
to span{eξ | ξ ∈

⋃∞
m=0Am}. The latter space is isometrically isomorphic

to Eℵ0 , which in turn is isomorphic to c0 (see [3]). That is, in a space
isomorphic to c0 we have found a copy of `1, which is a contradiction.
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