Non-separable tree-like Banach spaces and Rosenthal's ℓ_{1}-theorem

by
Costas Poulios (Athens)

Abstract

We introduce and investigate a class of non-separable tree-like Banach spaces. As a consequence, we prove that we cannot achieve a satisfactory extension of Rosenthal's ℓ_{1}-theorem to spaces of the type $\ell_{1}(\kappa)$ for κ an uncountable cardinal.

1. Introduction. Rosenthal's ℓ_{1}-theorem [9] is one of the most remarkable results in Banach space geometry. It provides a fundamental criterion for the embedding of ℓ_{1} into Banach spaces.

Theorem 1.1 (Rosenthal's ℓ_{1}-theorem). Let $\left(x_{n}\right)$ be a bounded sequence in the Banach space X and suppose that $\left(x_{n}\right)$ has no weakly Cauchy subsequence. Then $\left(x_{n}\right)$ contains a subsequence equivalent to the usual ℓ_{1}-basis.

A satisfactory extension of Theorem 1.1 to spaces of the type $\ell_{1}(\kappa)$, for κ an uncountable cardinal, would be desirable, since it would provide a useful criterion for the embedding of $\ell_{1}(\kappa)$ into Banach spaces. Naturally, therefore, R. G. Haydon [7] posed the following problem: Let κ be an uncountable cardinal. Suppose that X is a Banach space, and A is a bounded subset of X of cardinality κ, which does not contain any weakly Cauchy sequence. Can we deduce that A has a subset equivalent to the usual $\ell_{1}(\kappa)$-basis?

Before the question was posed, Haydon [6] had already presented a counterexample for the case $\kappa=\omega_{1}$. A completely different counterexample for the same case had also been obtained by J. Hagler [3]. Finally, a complete solution to the aforementioned problem was given by C. Gryllakis [2] who proved that the answer is always negative with only one exception, namely when both κ and $\operatorname{cf}(\kappa)$ are strong limit cardinals.

In this paper, we first introduce for any infinite cardinal κ a tree-like Banach space X_{κ}. Our construction is motivated by the well-known James Tree space $(J T)$ [8] and Hagler Tree space $(H T)$ [3]. We also study in detail

2010 Mathematics Subject Classification: Primary 46B25, 46B26.
Key words and phrases: non-separable tree-like Banach spaces, Rosenthal's ℓ_{1}-theorem, uncountable cardinal.
various properties of the space X_{κ}; we mostly focus on continuous functionals defined on X_{κ}. As a consequence, we give a very simple answer to Haydon's problem.

Closing this introductory section, we recall some definitions for the sake of completeness. A sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in a Banach space X is weakly Cauchy if the scalar sequence $\left(f\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ converges for every f in X^{*}. A subset $A \subset X$ with cardinality κ is equivalent to the usual $\ell_{1}(\kappa)$-basis if there are constants $C_{1}, C_{2}>0$ such that $C_{1} \sum_{i=1}^{n}\left|a_{i}\right| \leq\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\| \leq C_{2} \sum_{i=1}^{n}\left|a_{i}\right|$, for any $n \in \mathbb{N}$, any $x_{1}, \ldots, x_{n} \in A$ and any scalars a_{1}, \ldots, a_{n}. Given an infinite cardinal κ, we let κ^{+}denote the successor of κ, i.e. κ^{+}is the smallest cardinal greater than κ. We also define the cofinality of κ, denoted by $\operatorname{cf}(\kappa)$, to be the smallest cardinal with the following property: there exist cardinals $\left\{\kappa_{i} \mid i<\operatorname{cf}(\kappa)\right\}$ such that $\kappa_{i}<\kappa$ for every ordinal $i<\operatorname{cf}(\kappa)$, and $\sum_{i<\operatorname{cf}(\kappa)} \kappa_{i}=\kappa$.

Finally, we should mention that this is not the first time non-separable tree-like Banach spaces have been defined (e.g. see [1], 4] and [5]; our construction is closer to the constructions of [4]).
2. The basic construction. Suppose that κ is an infinite cardinal. Then we set

$$
\begin{aligned}
\Gamma=\{0,1\}^{\kappa} & =\{a:\{\xi<\kappa\} \rightarrow\{0,1\}\}=\left\{\left(a_{\xi}\right)_{\xi<\kappa} \mid a_{\xi}=0 \text { or } 1\right\} \\
\mathcal{D}=\{0,1\}^{<\kappa} & =\bigcup\left\{\{0,1\}^{\eta} \mid \operatorname{Ord}(\eta), \eta<\kappa\right\} \\
& =\left\{\left(a_{\xi}\right)_{\xi<\eta} \mid \eta \text { is an ordinal, } \eta<\kappa, a_{\xi}=0 \text { or } 1\right\}
\end{aligned}
$$

The set \mathcal{D} is called the (standard) tree. The elements $s \in \mathcal{D}$ are called nodes. The elements of the set $\Gamma=\{0,1\}^{\kappa}$ are called branches.

If s is a node and $s \in\{0,1\}^{\eta}$, we say that s is at the η th level of \mathcal{D}. We denote the level of s by $\operatorname{lev}(s)$. The initial segment partial ordering on \mathcal{D}, denoted by \leq, is defined as follows: if $s=\left(a_{\xi}\right)_{\xi<\eta_{1}}$ and $s^{\prime}=\left(b_{\xi}\right)_{\xi<\eta_{2}}$ belong to \mathcal{D} then $s \leq s^{\prime}$ if and only if $\eta_{1} \leq \eta_{2}$ and $a_{\xi}=b_{\xi}$ for any $\xi<\eta_{1}$. We also write $s<s^{\prime}$ if $s \leq s^{\prime}$ and $s \neq s^{\prime}$. By $s \perp s^{\prime}$ we indicate that s, s^{\prime} are incomparable, that is, neither $s \leq s^{\prime}$ nor $s^{\prime} \leq s$. If $s \leq s^{\prime}$ we say s^{\prime} is a follower of s. Further, the nodes $s \cup\{0\}$ and $s \cup\{1\}$ are called the successors of s, that is, we reserve the word successor for immediate follower. However, we observe that a node does not need to have an immediate predecessor.

A subset T of \mathcal{D} is called a subtree if it is order isomorphic to $\{0,1\}<\lambda$ for some cardinal $\lambda \leq \kappa$. In this paper, we only use countable subtrees of \mathcal{D}, that is, subtrees which are order isomorphic to $\{0,1\}^{<\aleph_{0}}$. If T is countable, we enumerate its elements as $T=\left\{t_{1}, t_{2}, \ldots\right\}$ where t_{1} is the minimum element of T and for each $m \in \mathbb{N}, t_{2 m}, t_{2 m+1}$ are the successors of t_{m} (in the tree T).

A linearly ordered subset \mathcal{I} of \mathcal{D} is called a segment if for every $s<t<s^{\prime}$, t is contained in \mathcal{I} provided that s, s^{\prime} belong to \mathcal{I}. Consider now a non-empty segment \mathcal{I}. Let η_{1} be the least ordinal such that there exists a node $s \in \mathcal{I}$ with $\operatorname{lev}(s)=\eta_{1}$. Suppose further that there are an ordinal η and a node s^{\prime} at the η th level such that $s \leq s^{\prime}$ for every $s \in \mathcal{I}$. Let η_{2} be the least ordinal with this property. Then we say that \mathcal{I} is an $\eta_{1}-\eta_{2}$ segment. A segment is called initial if $\eta_{1}=0$, that is, $\emptyset \in \mathcal{I}$.

We next define admissible families of segments in the sense of Hagler [3]. Suppose that $\left\{\mathcal{I}_{j}\right\}_{j=1}^{r}$ is a finite family of segments. This family is called admissible if:
(1) there exist ordinals $\eta_{1}<\eta_{2}$ such that \mathcal{I}_{j} is an $\eta_{1}-\eta_{2}$ segment for each $j=1, \ldots, r$
(2) $\mathcal{I}_{i} \cap \mathcal{I}_{j}=\emptyset$ provided that $i \neq j$.

Consider now the vector space $c_{00}(\mathcal{D})$ of finitely supported functions $x: \mathcal{D} \rightarrow \mathbb{R}$. For any segment \mathcal{I} of \mathcal{D}, we set $\mathcal{I}^{*}: c_{00}(\mathcal{D}) \rightarrow \mathbb{R}$ with $\mathcal{I}^{*}(x)=$ $\sum_{s \in \mathcal{I}} x(s)$. Then, for any $x \in c_{00}(\mathcal{D})$, we define the norm

$$
\|x\|=\sup \left[\sum_{j=1}^{r}\left|\mathcal{I}_{j}^{*}(x)\right|^{2}\right]^{1 / 2}
$$

where the supremum is taken over all finite, admissible families $\left\{\mathcal{I}_{j}\right\}_{j=1}^{r}$ of segments. The space X_{κ} is the completion of the normed space $\left(c_{00}(\mathcal{D}),\|\cdot\|\right)$ just defined.

For every node $s \in \mathcal{D}$, we define $e_{s}: \mathcal{D} \rightarrow \mathbb{R}$ by $e_{s}(t)=1$ if $t=s$ and $e_{s}(t)=0$ otherwise. Clearly, $\left\|e_{s}\right\|=1$ for any $s \in \mathcal{D}$.

We come now to the final definition. Suppose that $\left\{s_{i} \mid i \in I\right\}$ is a family of nodes of the tree \mathcal{D}. This family is called strongly incomparable (see [3]) if:
(1) $s_{i} \perp s_{j}$ provided that $i \neq j$;
(2) if $\left\{S_{1}, \ldots, S_{r}\right\}$ is any admissible family of segments, then at most two of the s_{i} 's, $i \in I$, are contained in $S_{1} \cup \cdots \cup S_{r}$.

There is a standard way of constructing strongly incomparable families of nodes. Suppose that $\left(s_{\xi}\right)_{\xi<\eta}$ is a set of nodes, where $\eta<\kappa$, such that $s_{0}<s_{1}<\cdots$. For any ordinal $\xi<\eta$, let t_{ξ} be the successor of s_{ξ} with $t_{\xi} \perp s_{\xi+1}$. Then the family $\left\{t_{\xi} \mid \xi<\eta\right\}$ is strongly incomparable.

Concerning strongly incomparable sets of nodes, we quote the following proposition whose proof is straightforward.

Proposition 2.1. Suppose that $\left\{s_{i} \mid i \in I\right\}$ is a strongly incomparable set of nodes in the tree \mathcal{D}. Then the family $\left\{e_{s_{i}} \mid i \in I\right\}$ is equivalent to the usual basis of $c_{0}(I)$. More precisely, for any $n \in \mathbb{N}$, any $i_{1}, \ldots, i_{n} \in I$ and
any scalars a_{1}, \ldots, a_{n}, we have

$$
\max _{1 \leq k \leq n}\left|a_{k}\right| \leq\left\|\sum_{k=1}^{n} a_{k} e_{s_{i_{k}}}\right\| \leq \sqrt{2} \max _{1 \leq k \leq n}\left|a_{k}\right|
$$

3. The main results. Suppose that $B=\left(a_{\xi}\right)_{\xi<\kappa} \in \Gamma$ is any branch. Then B can be naturally identified with a maximal segment of \mathcal{D}, namely $B=\left\{s_{0}<s_{1}<\cdots<s_{\eta}<\cdots\right\}$ where $s_{0}=\emptyset$ and $s_{\eta}=\left(a_{\xi}\right)_{\xi<\eta}$ for any ordinal $\eta<\kappa$. In Section 2 , we defined the linear functional $B^{*}: c_{00}(\mathcal{D}) \rightarrow \mathbb{R}$ by setting $B^{*}(x)=\sum_{s \in B} x(s)$. Clearly, $\left\|B^{*}\right\|=1$. This functional can be extended to a bounded functional on X_{κ}, having the same norm and denoted again by B^{*}. Let also Γ^{*} denote the set of all functionals B^{*} defined above. Then Γ^{*} is a bounded subset of X_{κ}^{*} of cardinality 2^{κ}.

This section is devoted to the study of the family Γ^{*}. We first prove the following.

Theorem 3.1. Suppose that $\left(B_{n}\right)_{n \in \mathbb{N}}$ is a sequence of branches such that $B_{n} \neq B_{m}$ for $n \neq m$. Then $\left(B_{n}^{*}\right)_{n \in \mathbb{N}}$ contains a subsequence equivalent to the usual ℓ_{1}-basis.

Proof. Consider the set \mathcal{A} of all ordinals $\eta<\kappa$ which satisfy the following: there are nodes $\varphi \neq t$ with $\operatorname{lev}(\varphi)=\operatorname{lev}(t)=\eta$ and there are positive integers $m_{1} \neq m_{2}$ such that $\varphi \in B_{m_{1}}$ and $t \in B_{m_{2}}$. Clearly \mathcal{A} is a non-empty set, so we can consider its least element, say η. Then η cannot be a limit ordinal. Indeed, let $\varphi=\left(a_{\xi}\right)_{\xi<\eta}$ and $t=\left(b_{\xi}\right)_{\xi<\eta}$ be as above. Since $\varphi \neq t$, there exists $\eta_{1}<\eta$ with $a_{\eta_{1}} \neq b_{\eta_{1}}$. We set $\tilde{\varphi}=\left(a_{\xi}\right)_{\xi<\eta_{1}+1}$ and $\tilde{t}=\left(b_{\xi}\right)_{\xi<\eta_{1}+1}$. Then $\tilde{\varphi} \neq \tilde{t}$, these nodes are at the same level and $\tilde{\varphi} \leq \varphi, \tilde{t} \leq t$. Hence, $\tilde{\varphi} \in B_{m_{1}}$ and $\tilde{t} \in B_{m_{2}}$. By the minimality of η, we conclude that $\eta=\eta_{1}+1$.

Furthermore, the minimality of η also implies that there exists a node s_{1} at level η_{1} so that $s_{1} \in B_{m}$ for every $m \in \mathbb{N}$, and the nodes φ, t at level $\eta=\eta_{1}+1$ are precisely the successors of s_{1}. Now, we set $\varphi_{1}=\varphi$ and $t_{1}=t$. We may assume that there are infinitely many terms of the sequence $\left(B_{m}\right)_{m \in \mathbb{N}}$ which pass through the node φ_{1}. Then we choose a branch $B_{l_{1}}$ passing through the node t_{1} (clearly such a branch does exist). $B_{l_{1}}$ is just the first term of the desired subsequence.

We next set $N_{1}=\left\{m \in \mathbb{N} \mid m>l_{1}\right.$ and $\left.\varphi_{1} \in B_{m}\right\}$. Then N_{1} is an infinite subset of \mathbb{N}. Repeating the previous argument for the branches $\left(B_{m}\right)_{m \in N_{1}}$, we find an ordinal $\eta_{2}>\eta_{1}+1$ and a node s_{2} at the η_{2} th level, with successors φ_{2} and t_{2}, such that

- all branches $B_{m}, m \in N_{1}$, pass through s_{2};
- infinitely many branches of the sequence $\left(B_{m}\right)_{m \in N_{1}}$ pass through φ_{2} and the set $\left\{m \in N_{1} \mid t_{2} \in B_{m}\right\}$ is non-empty.
We also choose a branch $B_{l_{2}}$ so that $t_{2} \in B_{l_{2}}$.

Continuing in the obvious manner, we inductively construct a sequence $s_{1}<s_{2}<\cdots$ of nodes of \mathcal{D}, with the successors of s_{i} denoted by φ_{i} and t_{i}, and a sequence $l_{1}<l_{2}<\cdots$ of positive integers such that:
(1) $s_{1}<\varphi_{1} \leq s_{2}<\varphi_{2} \leq \cdots$;
(2) $s_{i} \in B_{l_{j}}$ for any $j \geq i$, but the branches $B_{l_{j}}, j>i$, pass through φ_{i} while the branch $B_{l_{i}}$ passes through t_{i}.

We prove now that $\left(B_{l_{m}}^{*}\right)_{m \in \mathbb{N}}$ is equivalent to the usual ℓ_{1}-basis. Let $M \in \mathbb{N}$ and $a_{1}, \ldots, a_{M} \in \mathbb{R}$ be given. We set $x=\sum_{i=1}^{M} \operatorname{sgn}\left(a_{i}\right) e_{t_{i}}$. Condition (1) of the above construction implies that the sequence $\left(t_{i}\right)$ is strongly incomparable. Hence, $\|x\|=\sqrt{2}$ by Proposition 2.1. Furthermore, condition (2) implies that $t_{i} \in B_{l_{i}} \backslash \bigcup\left\{B_{l_{j}} \mid j \neq i\right\}$, thus $\overline{B_{l_{j}}}\left(e_{t_{i}}\right)=\delta_{i j}$. Therefore

$$
\left\|\sum_{i=1}^{M} a_{i} B_{l_{i}}^{*}\right\| \geq \frac{1}{\|x\|}\left|\sum_{i=1}^{M} a_{i} B_{l_{i}}^{*}(x)\right|=\frac{1}{\sqrt{2}}\left|\sum_{i=1}^{M} a_{i} \operatorname{sgn}\left(a_{i}\right)\right|=\frac{1}{\sqrt{2}} \sum_{i=1}^{M}\left|a_{i}\right| .
$$

Hence $\frac{1}{\sqrt{2}} \sum_{i=1}^{M}\left|a_{i}\right| \leq\left\|\sum_{i=1}^{M} a_{i} B_{l_{i}}^{*}\right\|$. Since clearly $\left\|\sum_{i=1}^{M} a_{i} B_{l_{i}}^{*}\right\| \leq \sum_{i=1}^{M}\left|a_{i}\right|$, the proof is complete.

Corollary 3.2. The set Γ^{*} contains no weakly Cauchy sequence.
We pass now to the second result concerning the set of functionals $\left\{B^{*} \mid\right.$ $B \in \Gamma\}$.

Theorem 3.3. No subset of Γ^{*} is equivalent to the usual $\ell_{1}\left(\kappa^{+}\right)$-basis.
For the proof we need to establish some lemmas. Before proceeding, let us introduce some notation. First of all, if A is any set, then $|A|$ denotes the cardinality of A. Suppose now that $\Delta \subseteq \Gamma$ is a set of branches. For any node $s \in \mathcal{D}$, we denote by Δ_{s} the set of all branches $B \in \Delta$ passing through s, that is, $\Delta_{s}=\{B \in \Delta \mid s \in B\}$. We also set $\Delta_{s}^{c}=\Delta \backslash \Delta_{s}=\{B \in \Delta \mid s \notin B\}$.

Lemma 3.4. Let $\Delta \subseteq \Gamma$ be a set of branches with $|\Delta|=\kappa^{+}$. Then there exists a node $s \in \mathcal{D}$ such that $\left|\Delta_{s \cup\{0\}}\right|=\left|\Delta_{s \cup\{1\}}\right|=\kappa^{+}$.

Proof. Assume that the assertion is not true. Then for every node $s \in \mathcal{D}$ there is a successor $s \cup\{\epsilon\}$ of s, where $\epsilon=0$ or 1 , such that $\left|\Delta_{s \cup\{\epsilon\}}\right|<\kappa^{+}$. With this assumption and using transfinite induction we construct a branch $B=\left\{s_{\eta}\right\}_{\eta<\kappa}=\left\{s_{0}<s_{1}<\cdots\right\}$ with $\left|\Delta_{s_{\eta}}\right|=\kappa^{+}$for any $\eta<\kappa$.

We start with $s_{0}=\emptyset$. Clearly, $\left|\Delta_{\emptyset}\right|=|\Delta|=\kappa^{+}$. Suppose now that η is an ordinal, $\eta<\kappa$, and we have defined the nodes $\left\{s_{\xi}\right\}_{\xi<\eta}$ with $\operatorname{lev}\left(s_{\xi}\right)=\xi$ and $\left|\Delta_{s_{\xi}}\right|=\kappa^{+}$for any $\xi<\eta$.

If $\eta=\eta_{0}+1$, then by the inductive hypothesis we have $\left|\Delta_{s_{\eta_{0}}}\right|=\kappa^{+}$. Clearly, $\Delta_{s_{\eta_{0}}}=\Delta_{s_{\eta_{0}} \cup\{0\}} \cup \Delta_{s_{\eta_{0}} \cup\{1\}}$. Therefore, there exists a successor $s_{\eta_{0}} \cup\{\epsilon\}$ (where $\epsilon=0$ or 1) of $s_{\eta_{0}}$ such that $\left|\Delta_{s_{\eta_{0}} \cup\{\epsilon\}}\right|=\kappa^{+}$. Let $s_{\eta}=$ $s_{\eta_{0}} \cup\{\epsilon\}$.

If η is a limit ordinal, we set $s_{\eta}=\bigcup_{\xi<\eta} s_{\xi}$. Then s_{η} is a node at the η th level of \mathcal{D}. It remains to show that $\left|\Delta_{s_{\eta}}\right|=\kappa^{+}$. Since $\Delta=\Delta_{s_{\eta}} \cup \Delta_{s_{\eta}}^{c}$, it suffices to prove that $\left|\Delta_{s_{\eta}}^{c}\right| \leq \kappa$.

Let us consider a branch B belonging to $\Delta_{s_{\eta}}^{c}$, that is, $s_{\eta} \notin B$. We also denote by S the initial segment $\left\{s_{\xi}\right\}_{\xi \leq \eta}$. We consider now the set \mathcal{A} containing all ordinals $\xi \leq \eta$ such that at the ξ th level of \mathcal{D}, the segments B and S do not pass through the same node. The set \mathcal{A} is non-empty as $\eta \in \mathcal{A}$. Therefore \mathcal{A} has a minimum element, say ξ_{0}. The minimality implies that ξ_{0} cannot be a limit ordinal. Hence $\xi_{0}=\xi+1$. Further, by the minimality of ξ_{0}, at level ξ we have $s_{\xi} \in B$ and $s_{\xi} \in S$, while at level $\xi+1, s_{\xi+1} \in S$ and $s_{\xi+1} \notin B$. Consequently,

$$
\Delta_{s_{\eta}}^{c}=\bigcup_{\xi<\eta}\left\{B \in \Delta \mid s_{\xi} \in B \text { and } s_{\xi+1} \notin B\right\}=\bigcup_{\xi<\eta}\left(\Delta_{s_{\xi}} \cap \Delta_{s_{\xi+1}}^{c}\right)
$$

Observe that $s_{\xi+1}$ is a successor of $s_{\xi},\left|\Delta_{s_{\xi}}\right|=\left|\Delta_{s_{\xi+1}}\right|=\kappa^{+}$and $\Delta_{s_{\xi}} \cap \Delta_{s_{\xi+1}}^{c}$ consists of all branches $B \in \Delta$ which pass through the other successor of s_{ξ}. By our assumption at the beginning of the proof, we have $\left|\Delta_{s_{\xi}} \cap \Delta_{s_{\xi+1}}^{c}\right| \leq \kappa$ and therefore $\left|\Delta_{s_{\eta}}^{c}\right| \leq \sum_{\xi<\eta} \kappa=\kappa$.

Thus a branch $B=\left\{s_{\eta}\right\}_{\eta<\kappa}$ has been constructed with $\left|\Delta_{s_{\eta}}\right|=\kappa^{+}$for any $\eta<\kappa$. To complete the proof, we only need to repeat our last argument. Consider a branch $\tilde{B} \in \Delta$ with $\tilde{B} \neq B$. Let ξ_{0} be the minimum ordinal such that at the ξ_{0} th level the branches \tilde{B}, B do not pass through the same node. The minimality of ξ_{0} implies that $\xi_{0}=\xi+1, s_{\xi} \in \tilde{B}$ and $s_{\xi+1} \notin \tilde{B}$. Therefore

$$
\Delta \subseteq\{B\} \cup \bigcup_{\xi<\kappa}\left(\Delta_{s_{\xi}} \cap \Delta_{s_{\xi+1}}^{c}\right)
$$

Since $\left|\Delta_{s_{\xi}} \cap \Delta_{s_{\xi+1}}^{c}\right| \leq \kappa$, it follows that $|\Delta| \leq \kappa$ and we have reached a contradiction.

Lemma 3.5. Let $\Delta \subset \Gamma$ be a set of branches with $|\Delta|=\kappa^{+}$. Then there exists a countable subtree T of $\mathcal{D}, T=\left\{t_{1}, t_{2}, \ldots\right\}$, such that:
(1) $\left|\Delta_{t_{m}}\right|=\kappa^{+}$for any node $t_{m} \in T$;
(2) for any $t_{m} \in T$ there exists a node $s_{m} \in \mathcal{D}$ such that $t_{m} \leq s_{m}$ and $t_{2 m}, t_{2 m+1}$ are the successors of s_{m} (that is, when we look at the tree \mathcal{D}, the successors of t_{m} remain the successors of some $s_{m} \in \mathcal{D}$).

Proof. Let $t_{1}=\emptyset$. By Lemma 3.4, there exists a node $s_{1} \in \mathcal{D}$ with $t_{1} \leq s_{1}$ such that $\left|\Delta_{s_{1} \cup\{0\}}\right|=\left|\Delta_{s_{1} \cup\{1\}}\right|=\kappa^{+}$. We set $t_{2}=s_{1} \cup\{0\}$ and $t_{3}=s_{1} \cup\{1\}$. Then t_{2}, t_{3} are the successors of t_{1} in T, and they are also the successors of s_{1} when we look at the tree \mathcal{D}.

Applying Lemma 3.4 to the family $\Delta_{s_{1} \cup\{0\}}=\Delta_{t_{2}}$ we find a node $s_{2} \in \mathcal{D}$ with $t_{2} \leq s_{2}$ such that $\left|\Delta_{s_{2} \cup\{0\}}\right|=\left|\Delta_{s_{2} \cup\{1\}}\right|=\kappa^{+}$. Then the successors of
t_{2} in T are the nodes $t_{4}=s_{2} \cup\{0\}$ and $t_{5}=s_{2} \cup\{1\}$. We continue in the obvious manner.

Proof of Theorem 3.3. Assume that $\Delta \subseteq \Gamma$ is a set of branches with $|\Delta|=\kappa^{+}$, and $\Delta^{*}=\left\{B^{*} \mid B \in \Delta\right\}$ is equivalent to the usual $\ell_{1}\left(\kappa^{+}\right)$basis. Then there exists a constant $\delta>0$ such that for any $n \in \mathbb{N}$, any $B_{1}, \ldots, B_{n} \in \Delta$ and any scalars a_{1}, \ldots, a_{n},

$$
\delta \sum_{i=1}^{n}\left|a_{i}\right| \leq\left\|\sum_{i=1}^{n} a_{i} B_{i}^{*}\right\| \leq \sum_{i=1}^{n}\left|a_{i}\right| .
$$

Let T be the countable subtree of \mathcal{D} given by Lemma 3.5 and let $n \in \mathbb{N}$ be any positive integer. Then we choose branches B_{1}, \ldots, B_{n} and $B_{n+1}, \ldots, B_{2 n}$ belonging to Δ as follows. We work at the nth level of T, which consists of the nodes $t_{2^{n}}, t_{2^{n}+1}, \ldots, t_{2^{n+1}-1}$. If we consider the pair $t_{2^{n}}, t_{2^{n}+1}$, the construction of T implies that these nodes are the successors of some node of \mathcal{D}. Therefore they belong to the same level of \mathcal{D}, say level ξ_{1}. Similarly the nodes $t_{2^{n}+2}, t_{2^{n}+3}$ are placed at the same level of \mathcal{D}, say ξ_{2}, and so on. Finally, let $\xi_{2^{n-1}}=\operatorname{lev}\left(t_{2^{n+1}-2}\right)=\operatorname{lev}\left(t_{2^{n+1}-1}\right)$. We may assume, without loss of generality, that $\xi_{1}=\max \left\{\xi_{k} \mid 1 \leq k \leq 2^{n-1}\right\}$. Then we choose branches B_{1} and B_{n+1} of the family Δ such that B_{1} passes through $t_{2^{n}}$ and B_{n+1} passes through $t_{2^{n}+1}$ (such branches exist by Lemma 3.5). If ψ_{1} denotes the immediate predecessor of the nodes $t_{2^{n}}, t_{2^{n}+1}$ (in \mathcal{D}), then the branches B_{1}, B_{n+1} coincide up to the level of ψ_{1} and they separate each other at the next level.

The nodes $t_{2^{n}}, t_{2^{n}+1}$ are followers of t_{2} in the tree T. We now forget the followers of t_{2} and we repeat the previous procedure for the nodes belonging to the nth level of T which are followers of t_{3}. That is, we detect the pair, say $t_{2^{n}+2 k}, t_{2^{n}+2 k+1}$, which is placed at the highest level of \mathcal{D} (if this is not unique, we simply choose one). Then we choose branches B_{2}, B_{n+2} belonging to Δ such that B_{2} passes through the left-hand node of the pair, i.e. $t_{2^{n}+2 k}$, and B_{n+2} passes through the right-hand node $t_{2^{n}+2 k+1}$. Let ψ_{2} denote the immediate predecessor of $t_{2^{n}+2 k}, t_{2^{n}+2 k+1}$ in \mathcal{D}. Then $\operatorname{lev}\left(\psi_{1}\right) \geq \operatorname{lev}\left(\psi_{2}\right)$. The branches B_{2}, B_{n+2} coincide up to the level of ψ_{2}. We also notice that the branches B_{1}, B_{2} separate each other before the level of t_{2}, t_{3} and this happens for the branches B_{n+1}, B_{n+2}. The nodes $t_{2^{n}+2 k}, t_{2^{n}+2 k+1}$ are followers of either t_{6} or t_{7}. If t_{6} is a predecessor of $t_{2^{n}+2 k}, t_{2^{n}+2 k+1}$, then we forget the followers of t_{6} and we continue with the nodes belonging to the nth level of T which are followers of t_{7}.

After $n-1$ iterations of the previous argument, we find branches B_{1}, \ldots, B_{n-1} and $B_{n+1}, \ldots, B_{2 n-1}$ belonging to the family Δ and nodes $\psi_{1}, \ldots, \psi_{n-1}$ of \mathcal{D}. At this stage only one pair of nodes at the nth level of T has been left. Let ψ_{n} be the immediate predecessor on \mathcal{D} of these nodes. We
choose $B_{n}, B_{2 n} \in \Delta$ such that B_{n} passes through the left-hand node and $B_{2 n}$ passes through the right-hand node.

Now we observe that B_{1}, \ldots, B_{n} are pairwise disjoint below the level of ψ_{n} and this also holds for $B_{n+1}, \ldots, B_{2 n}$. Therefore, if $\eta_{1}=\operatorname{lev}\left(\psi_{n}\right)$ and $\eta_{2}=\operatorname{lev}\left(\psi_{1}\right)$, then:
(1) All segments $B_{i} \cap\left\{s \mid \operatorname{lev}(s) \geq \eta_{2}+1\right\}, i=1, \ldots, 2 n$, are pairwise disjoint.
(2) The segments $B_{i} \cap\left\{s \mid \eta_{1}+1 \leq \operatorname{lev}(s) \leq \eta_{2}\right\}$ for $i=1, \ldots, n$ are pairwise disjoint. Hence they are admissible $\left(\eta_{1}+1\right)-\left(\eta_{2}+1\right)$ segments. Similarly, $B_{i} \cap\left\{s \mid \eta_{1}+1 \leq \operatorname{lev}(s) \leq \eta_{2}\right\}, i=n+1, \ldots, 2 n$, form an admissible family.
(3) $B_{i} \cap\left\{s \mid \operatorname{lev}(s) \leq \eta_{1}\right\}=B_{n+i} \cap\left\{s \mid \operatorname{lev}(s) \leq \eta_{1}\right\}$ for any $i=1, \ldots, n$. Let us also denote $S_{i}=B_{i} \cap\left\{s \mid \operatorname{lev}(s) \leq \eta_{1}\right\}$.
After the choice of $\left(B_{i}\right)_{i=1}^{2 n}$ has been completed, our next purpose is to estimate the norm of the functional $\sum_{i=1}^{2 n} a_{i} B_{i}^{*}$ for any scalars $a_{1}, \ldots, a_{2 n}$ and to contradict the assumption that Δ^{*} is equivalent to the usual $\ell_{1}\left(\kappa^{+}\right)$-basis. For this reason, we consider a finitely supported vector $x=\sum_{s \in \mathcal{D}} \lambda_{s} e_{s} \in X_{\kappa}$ with $\|x\| \leq 1$. We can write $x=x_{1}+x_{2}+x_{3}$, where $x_{1}=\sum_{\operatorname{lev}(s) \leq \eta_{1}} \lambda_{s} e_{s}$, $x_{2}=\sum_{\eta_{1}+1 \leq \operatorname{lev}(s) \leq \eta_{2}} \lambda_{s} e_{s}$ and $x_{3}=\sum_{\eta_{2}+1 \leq \operatorname{lev}(s)} \lambda_{s} e_{s}$. Clearly, $\left\|x_{j}\right\| \leq$ $\|x\|=1$ for any $j=1,2,3$. Then

$$
\left|\sum_{i=1}^{2 n} a_{i} B_{i}^{*}(x)\right| \leq\left|\sum_{i=1}^{2 n} a_{i} B_{i}^{*}\left(x_{1}\right)\right|+\left|\sum_{i=1}^{2 n} a_{i} B_{i}^{*}\left(x_{2}\right)\right|+\left|\sum_{i=1}^{2 n} a_{i} B_{i}^{*}\left(x_{3}\right)\right|
$$

Now we have

$$
\begin{aligned}
\left|\sum_{i=1}^{2 n} a_{i} B_{i}^{*}\left(x_{3}\right)\right| & \leq\left(\sum_{i=1}^{2 n} a_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{2 n}\left|B_{i}^{*}\left(x_{3}\right)\right|^{2}\right)^{1 / 2} \leq\left(\sum_{i=1}^{2 n} a_{i}^{2}\right)^{1 / 2} \\
\left|\sum_{i=1}^{2 n} a_{i} B_{i}^{*}\left(x_{2}\right)\right| & \leq\left(\sum_{i=1}^{2 n} a_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n}\left|B_{i}^{*}\left(x_{2}\right)\right|^{2}+\sum_{i=n+1}^{2 n}\left|B_{i}^{*}\left(x_{2}\right)\right|^{2}\right)^{1 / 2} \\
& \leq\left(\sum_{i=1}^{2 n} a_{i}^{2}\right)^{1 / 2}\left(2\left\|x_{2}\right\|^{2}\right)^{1 / 2} \leq \sqrt{2}\left(\sum_{i=1}^{2 n} a_{i}^{2}\right)^{1 / 2} \\
\left|\sum_{i=1}^{2 n} a_{i} B_{i}^{*}\left(x_{1}\right)\right| & =\left|\sum_{i=1}^{n}\left(a_{i} B_{i}^{*}\left(x_{1}\right)+a_{n+i} B_{n+i}^{*}\left(x_{1}\right)\right)\right| \\
& =\left|\sum_{i=1}^{n}\left(a_{i}+a_{n+i}\right) S_{i}^{*}\left(x_{1}\right)\right| \leq \sum_{i=1}^{n}\left|a_{i}+a_{n+i}\right|\left|S_{i}^{*}\left(x_{1}\right)\right| \\
& \leq \sum_{i=1}^{n}\left|a_{i}+a_{n+i}\right|
\end{aligned}
$$

Summarizing, for any finitely supported $x \in X_{\kappa}$ with $\|x\| \leq 1$ we have

$$
\left|\sum_{i=1}^{2 n} a_{i} B_{i}^{*}(x)\right| \leq(\sqrt{2}+1)\left(\sum_{i=1}^{2 n} a_{i}^{2}\right)^{1 / 2}+\sum_{i=1}^{n}\left|a_{i}+a_{n+i}\right| .
$$

Therefore, $\left\|\sum_{i=1}^{2 n} a_{i} B_{i}^{*}\right\| \leq(\sqrt{2}+1)\left(\sum_{i=1}^{2 n} a_{i}^{2}\right)^{1 / 2}+\sum_{i=1}^{n}\left|a_{i}+a_{n+i}\right|$. On the other hand, Δ^{*} is equivalent to the usual $\ell_{1}\left(\kappa^{+}\right)$-basis. It follows that

$$
\delta \sum_{i=1}^{2 n}\left|a_{i}\right| \leq(\sqrt{2}+1)\left(\sum_{i=1}^{2 n} a_{i}^{2}\right)^{1 / 2}+\sum_{i=1}^{n}\left|a_{i}+a_{n+i}\right|
$$

If we choose $a_{1}=\cdots=a_{n}=1$ and $a_{n+1}=\cdots=a_{2 n}=-1$, then we obtain $\delta \leq(\sqrt{2}+1) / \sqrt{2 n}$ for any $n \in \mathbb{N}$, a contradiction.
4. The non-separable version of Rosenthal's ℓ_{1}-theorem. In this section, we show that we cannot achieve a satisfactory extension of Rosenthal's ℓ_{1}-theorem to spaces of the type $\ell_{1}(\kappa)$ for κ an uncountable cardinal. As mentioned in the introduction, this extension is possible in only one case, namely when both κ and $\operatorname{cf}(\kappa)$ are strong limit cardinals. For the proof of this result we refer to [2]; we shall discuss the other cases.

Suppose first that κ is not a strong limit cardinal. This means that there exists a cardinal $\lambda<\kappa$ with $\kappa \leq 2^{\lambda}$. We now consider the space X_{λ} and the corresponding family of functionals $\Gamma^{*} \subset X_{\lambda}^{*}$. Then Γ^{*} is a bounded subset of X_{λ}^{*} whose cardinality is equal to $2^{\lambda} \geq \kappa$. Further, by Corollary 3.2 , the set Γ^{*} contains no weakly Cauchy sequence and, by Theorem 3.3, no subset of Γ^{*} is equivalent to the usual $\ell_{1}(\kappa)$-basis.

We next consider the case where κ is a strong limit cardinal but $\operatorname{cf}(\kappa)$ is not. This case is not so simple as the previous one, but it is essentially based on the arguments developed in Section 3 .

Since $\operatorname{cf}(\kappa)$ is not strong limit, there exists a cardinal $\lambda<\operatorname{cf}(\kappa)$ with $\operatorname{cf}(\kappa) \leq 2^{\lambda}$. By the definition of $\operatorname{cf}(\kappa)$, there are cardinals $\left\{\kappa_{i} \mid i<\operatorname{cf}(\kappa)\right\}$ such that $\kappa_{i}<\kappa$ for any ordinal $i<\operatorname{cf}(\kappa)$, and $\kappa=\sum_{i<\operatorname{cf}(\kappa)} \kappa_{i}$. We next consider the space X_{κ} and we choose a family of branches $A \subset \Gamma$ as follows. We focus on the level λ of the tree \mathcal{D}. This level consists of the nodes $\{0,1\}^{\lambda}=\left\{\left(a_{\xi}\right)_{\xi<\lambda} \mid a_{\xi}=0\right.$ or 1$\}$. Therefore, there are 2^{λ} nodes at level λ. Since $\operatorname{cf}(\kappa) \leq 2^{\lambda}$, we can choose nodes $\left\{t_{i} \mid i<\operatorname{cf}(\kappa)\right\}$ at level λ with $t_{i} \neq t_{j}$ provided that $i \neq j$. Now we observe that for any $i<\operatorname{cf}(\kappa)$, the set of all branches passing through t_{i} has cardinality 2^{κ}. Hence, for any $i<\operatorname{cf}(\kappa)$, we can choose a family of branches $A_{i} \subset \Gamma$ such that $\left|A_{i}\right|=\kappa_{i}$ and each branch belonging to A_{i} passes through t_{i}. Finally, let $A=\bigcup_{i<\mathrm{cf}(\kappa)} A_{i}$ and let A^{*} be the family of the corresponding functionals, that is, $A^{*}=\left\{B^{*} \mid B \in A\right\}$.

Clearly, the choice of A implies that $\left|A^{*}\right|=|A|=\sum_{i<\operatorname{cf}(\kappa)} \kappa_{i}=\kappa$. Furthermore, by Corollary 3.2, A^{*} contains no weakly Cauchy sequence. So,
it remains to show that no subset of A^{*} is equivalent to the usual $\ell_{1}(\kappa)$-basis. The proof follows the lines of the proof of Theorem 3.3. We describe briefly the part corresponding to Lemma 3.4 .

Lemma 4.1. Let Δ be a subset of A with $|\Delta|=\kappa$. Then there exists a node $s \in \mathcal{D}$ such that $\operatorname{lev}(s)<\lambda$ and $\left|\Delta_{s \cup\{0\}}\right|=\left|\Delta_{s \cup\{1\}}\right|=\kappa$. (Recall that $\Delta_{s}=\{B \in \Delta \mid s \in B\}$.)

Proof. Assuming that the assertion is not true, we construct an initial segment $S=\left\{s_{\eta}\right\}_{\eta<\lambda}=\left\{s_{0}<s_{1}<\cdots\right\}$ such that $\left|\Delta_{s_{\eta}}\right|=\kappa$ for any $\eta<\lambda$. We start with $s_{0}=\emptyset$. If $\eta=\eta_{0}+1$, then s_{η} is one of the followers of $s_{\eta_{0}}$. If η is a limit ordinal, then we set $s_{\eta}=\bigcup_{\xi<\eta} s_{\xi}$. Clearly, s_{η} is a node at the η th level of \mathcal{D}. We next show that

$$
\Delta_{s_{\eta}}^{c}=\bigcup_{\xi<\eta}\left(\Delta_{s_{\xi}} \cap \Delta_{s_{\xi+1}}^{c}\right)
$$

Therefore,

$$
\left|\Delta_{s_{\eta}}^{c}\right|=\sum_{\xi<\eta}\left|\Delta_{s_{\xi}} \cap \Delta_{s_{\xi+1}}^{c}\right|<\kappa
$$

since $\left|\Delta_{s_{\xi}} \cap \Delta_{s_{\xi+1}}^{c}\right|<\kappa$ and $\eta<\lambda<\operatorname{cf}(\kappa)$. Hence $\left|\Delta_{s_{\eta}}\right|=\kappa$ and this completes the construction of S.

Finally, we set $s_{\lambda}=\bigcup_{\xi<\lambda} s_{\xi}$. Then s_{λ} belongs to level λ and as previously we show $\left|\Delta_{s_{\lambda}}\right|=\kappa$. However, the choice of A indicates that $\left|\Delta_{s}\right|<\kappa$ for any node s at level λ, and we have reached a contradiction.

Using Lemma 4.1, we construct a countable subtree $T=\left\{t_{1}, t_{2}, \ldots\right\}$ of \mathcal{D} such that:
(1) $\left|\Delta_{t_{m}}\right|=\kappa$ for any $m=1,2, \ldots$ (therefore, $\operatorname{lev}\left(t_{m}\right)<\lambda$);
(2) the successors $t_{2 m}, t_{2 m+1}$ of t_{m} are the successors of some $s_{m} \in \mathcal{D}$.

Finally, we repeat the proof of Theorem 3.3 to show that no subset Δ^{*} of A^{*} is equivalent to the usual $\ell_{1}(\kappa)$-basis.
5. The structure of the subspaces of X_{κ}. The structure of subspaces of the James Tree space $(J T)$ and the Hagler Tree space $(H T)$ has been studied extensively, since it has provided answers to several questions about Banach spaces. By analogy, the structure of subspaces of X_{κ} seems quite interesting. This section is devoted to some remarks concerning this issue.

First of all, X_{κ} contains a lot of subspaces isomorphic to $c_{0}(\kappa)$. Indeed, let $B=\left\{s_{\eta}\right\}_{\eta<\kappa}$ be any branch and, for any $\eta<\kappa$, let t_{η} be the successor of s_{η} with $t_{\eta} \neq s_{\eta+1}$. Then $\left\{t_{\eta} \mid \eta<\kappa\right\}$ is a strongly incomparable family of nodes. By Proposition 2.1, the subspace $\overline{\operatorname{span}}\left\{e_{t_{\eta}} \mid \eta<\kappa\right\}$ is isomorphic to $c_{0}(\kappa)$. Furthermore, it is easy to verify that for any ordinal $\eta<\kappa$ the subspace $\overline{\operatorname{span}}\left\{e_{s} \mid s \in\{0,1\}^{\eta}\right\}$ is isometrically isomorphic to $\ell_{2}\left(2^{\eta}\right)$. The
main properties of the spaces $J T$ and $H T$ suggest now the following problem about subspaces of X_{κ}.

Problem 5.1. Is it true that no subspace of X_{κ} is isomorphic to $\ell_{1}(\kappa)$?
Concerning the above problem, we prove a partial result. Assume that $B=\left\{s_{\eta}\right\}_{\eta<\kappa}$ is any branch of the tree \mathcal{D}. Then we show that the subspace generated by this branch, that is, $\overline{\operatorname{span}}\left\{e_{s_{\eta}}\right\}_{\eta<\kappa}$, does not contain any copy of $\ell_{1}(\kappa)$.

For convenience, we first define a Banach space isometrically isomorphic to the subspace generated by any branch. Let κ be an infinite cardinal. We consider the vector space $c_{00}(\{\eta \mid \eta<\kappa\})$ consisting of all finitely supported functions $x:\{\eta \mid \eta<\kappa\} \rightarrow \mathbb{R}$. For any such x, we set

$$
\|x\|=\sup \left\{\left|S^{*}(x)\right|\right\}
$$

where the supremum is taken over all segments $S \subseteq\{\eta \mid \eta<\kappa\}$. If E_{κ} denotes the completion of the normed space just defined, then E_{κ} is isometrically isomorphic to the subspace of X_{κ} generated by any branch.

As usual, for any ordinal $\eta<\kappa$, we consider the vector $e_{\eta} \in E_{\kappa}$ with $e_{\eta}(\xi)=1$ if $\xi=\eta$ and $e_{\eta}(\xi)=0$ otherwise. We now define some projections on the space E_{κ}. Let η be any ordinal, $\eta<\kappa$. We define P_{η} : $\operatorname{span}\left\{e_{\xi}\right\}_{\xi<\kappa} \rightarrow \operatorname{span}\left\{e_{\xi}\right\}_{\xi<\eta}$ as follows: if $x=\sum_{\xi<\kappa} x(\xi) e_{\xi}$ is finitely supported, then $P_{\eta}(x)=\sum_{\xi<\eta} x(\xi) e_{\xi}$. Clearly, P_{η} is a linear projection with $\left\|P_{\eta}\right\|=1$. We can also extend P_{η} continuously to obtain a projection $P_{\eta}: E_{\kappa} \rightarrow E_{\kappa}$ onto $\overline{\operatorname{span}}\left\{e_{\xi}\right\}_{\xi<\eta}$ with $\left\|P_{\eta}\right\|=1$. We next prove the following.

Proposition 5.2. The space E_{κ} contains no isomorphic copy of $\ell_{1}(\kappa)$.
Proof. Suppose, on the contrary, that $\ell_{1}(\kappa)$ embeds isomorphically into E_{κ}. Then we find a subset $\left\{x_{\xi} \mid \xi<\kappa\right\}$ of E_{κ} which is equivalent to the usual $\ell_{1}(\kappa)$-basis. Without loss of generality, we may assume that x_{ξ} is finitely supported and $\left\|x_{\xi}\right\|=1$ for any $\xi<\kappa$.

We inductively construct a sequence $\left(y_{m}\right)_{m=0}^{\infty}$ belonging to $\operatorname{span}\left\{e_{\xi}\right\}_{\xi<\kappa}$ with the following properties:
(1) $\left\|y_{m}\right\|=1$ for each m;
(2) if $A_{m} \subset\{\xi<\kappa\}$ is the support of y_{m} then $\max A_{m}<\min A_{m+1}$ for any m;
(3) $\left(y_{m}\right)_{m=0}^{\infty}$ is a block sequence of $\left(x_{\xi}\right)_{\xi<\kappa}$, that is, there are ordinals $\eta_{0}<\eta_{1}<\cdots$ such that $y_{m} \in \operatorname{span}\left\{x_{\xi} \mid \eta_{m} \leq \xi<\eta_{m+1}\right\}$.
We start with $y_{0}=x_{0}, \eta_{0}=0$ and $\eta_{1}=1$. Let $\xi_{1}=\max A_{0}+1$. We claim that there exists $y \in \operatorname{span}\left\{x_{\xi}\right\}_{\xi \geq 1}, y \neq 0$, such that $P_{\xi_{1}}(y)=0$. Indeed, if we assume that $P_{\xi_{1}}(y) \neq 0$ for all $y \in \operatorname{span}\left\{x_{\xi}\right\}_{\xi \geq 1}, y \neq 0$, then the linear operator $P_{\xi_{1}}: \operatorname{span}\left\{x_{\xi}\right\}_{\xi \geq 1} \rightarrow \operatorname{span}\left\{e_{\xi}\right\}_{\xi<\xi_{1}}$ is one-to-one. Since $\left\{x_{\xi}\right\}_{\xi \geq 1}$ are lin-
early independent, it follows that the (algebraic) dimension of $\operatorname{span}\left\{e_{\xi}\right\}_{\xi<\xi_{1}}$ is κ, which is a contradiction. Therefore, there is $y \in \operatorname{span}\left\{x_{\xi}\right\}_{\xi \geq 1}$ such that $y \neq 0$ and $P_{\xi_{1}}(y)=0$. We set $y_{1}=y /\|y\|$. Since $P_{\xi_{1}}(y)=0$, we have $\max A_{0}<\min A_{1}$. Moreover, we can choose an ordinal $\eta_{2}>\eta_{1}$ such that $y \in \operatorname{span}\left\{x_{\xi} \mid \eta_{1} \leq \xi<\eta_{2}\right\}$. Repeatedly applying the previous argument, we construct the desired sequence $\left(y_{m}\right)_{m=0}^{\infty}$.

Since $\left(x_{\xi}\right)_{\xi<\kappa}$ is equivalent to the usual $\ell_{1}(\kappa)$-basis, it is easy to verify that $\left(y_{m}\right)$ is equivalent to the usual ℓ_{1}-basis. Furthermore, $\left(y_{m}\right)$ belongs to $\operatorname{span}\left\{e_{\xi} \mid \xi \in \bigcup_{m=0}^{\infty} A_{m}\right\}$. The latter space is isometrically isomorphic to $E_{\aleph_{0}}$, which in turn is isomorphic to c_{0} (see [3]). That is, in a space isomorphic to c_{0} we have found a copy of ℓ_{1}, which is a contradiction.

References

[1] R. E. Brackebusch, James space on general trees, J. Funct. Anal. 79 (1988), 446-475.
[2] C. Gryllakis, On the non-separable version of the ℓ^{1}-theorem of Rosenthal, Bull. London Math. Soc. 19 (1987), 253-258.
[3] J. Hagler, A counterexample to several questions about Banach spaces, Studia Math. 60 (1977), 289-308.
[4] J. Hagler, Nonseparable"James tree" analogues of the continuous functions on the Cantor set, Studia Math. 61 (1977), 41-53.
[5] J. Hagler and E. Odell, A Banach space not containing ℓ_{1} whose dual ball is not weak* sequentially compact, Illinois J. Math. 22 (1978), 290-294.
[6] R. G. Haydon, On Banach spaces which contain $\ell^{1}(\tau)$ and types of measures on compact spaces, Israel J. Math. 28 (1977), 313-324.
[7] R. G. Haydon, Non-separable Banach spaces, in: Functional Analysis: Surveys and Recent Results II, K. D. Bierstedt and B. Fuchssteiner (eds.), North-Holland, Amsterdam, 1980, 19-30.
[8] R. C. James, A separable somewhat reflexive Banach space with non-separable dual, Bull. Amer. Math. Soc. 80 (1974), 738-743.
[9] H. P. Rosenthal, A characterization of Banach spaces containing ℓ^{1}, Proc. Nat. Acad. Sci. USA 71 (1974), 2411-2413.

Costas Poulios

Department of Mathematics
National and Kapodistrian University of Athens
15784 Athens, Greece
E-mail: k-poulios@math.uoa.gr

