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Abstract. We give a complete description of the structure of surjective isometries
between the unitary groups of unital C∗-algebras. While any surjective isometry between
the unitary groups of von Neumann algebras can be extended to a real-linear Jordan ∗-
isomorphism between the relevant von Neumann algebras, this is not the case for general
unital C∗-algebras. We show that the unitary groups of two C∗-algebras are isomorphic as
metric groups if and only if the C∗-algebras are isomorphic in the sense that each of them
can be decomposed as the direct sum of two C∗-algebras with the first parts being linear
∗-algebra isomorphic and the second parts being conjugate-linear ∗-algebra isomorphic.
We emphasize that in this paper by an isometry we merely mean a distance preserving
transformation; we do not assume that it respects any algebraic operation.

1. Introduction. The study of linear isometries between Banach spaces
or Banach algebras has a long tradition dating back to the 1930’s. For an ex-
cellent comprehensive treatment of related results we refer to the two-volume
set [5, 6]. The most prominent results in this area are the Banach–Stone the-
orem, which describes the structure of linear surjective isometry between the
Banach algebras of all continuous functions on compact Hausdorff spaces,
and its non-commutative generalization, Kadison’s theorem [14], which de-
scribes the structure of a linear surjective isometry between general unital
C∗-algebras: it is a Jordan ∗-isomorphism followed by left multiplication
by a fixed unitary element. Recall that a Jordan ∗-isomorphism between
C∗-algebras is a complex-linear bijection which preserves the ∗-operation
and the power structure (and hence the Jordan structure). In this paper
a real-linear (resp. conjugate-linear) Jordan ∗-isomorphism is a real-linear
(resp. conjugate-linear) bijection which preserves the ∗-operation and the
power structure. We also mention a classical result of similar spirit which
also concerns isometries—the celebrated Mazur–Ulam theorem, stating that
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any surjective isometry between normed real-linear spaces is automatically
a real-linear isometry followed by a translation.

Recently, several attempts have been made to describe the structure
of isometries on non-linear substructures of Banach algebras including C∗-
algebras (cf. [18, 19, 8, 13]). Molnár [18] and Molnár and Nagy [20] obtained
a result concerning the structure of surjective Thompson isometries between
the sets of invertible positive operators on Hilbert spaces. Isometries on
quantum states were also considered [22, 21] (cf. [17, Section 2.4]).

The author, Hirasawa, Miura and Molnár [9] have developed a new tech-
nique for the study of isometries between substructures of the groups of
invertible elements in unital Banach algebras: a Mazur–Ulam theorem for
groups. Applying it, the author and Molnár gave a complete description of
the structure of a surjective isometry from the unitary group of one von
Neumann algebra onto the unitary group of another von Neumann algebra
and showed that it can be uniquely extended to an isometry between these
von Neumann algebras [11, 12]. The above mentioned result on Thompson
isometries was generalized to general unital C∗-algebras by applying the
Mazur–Ulam theorem for groups [12]. Another application of the theorem
concerns isometries on Lie groups [1].

Our primary aim in this paper is to substantially generalize the above
mentioned result on surjective isometries between the unitary groups of von
Neumann algebras, namely to generalize them to the setting of general uni-
tal C∗-algebras; we give a complete description of the structure of isometries
between the unitary groups of general unital C∗-algebras. In particular, we
show that a surjective isometry between the principal components of the
unitary groups of unital C∗-algebras can be extended to a direct sum of a
Jordan ∗-isomorphism and a conjugate-linear Jordan ∗-isomorphism. This
generalizes the above mentioned result for von Neumann algebras. On the
other hand, we also show that an isometry between the unitary groups need
not extend to an isometry between the underlying C∗-algebras in general.
Such an isometry always exists if the corresponding unitary groups are dis-
connected.

The problem of equivalence ofC∗-algebras with equivalent unitary groups
probably dates back at least to the study of isomorphic unitary groups by
Dye [4] and Sakai [23] in the 1950’s. Al-Rawashdeh, Booth and Giordano [2]
proved that within some classes of unital C∗-algebras, two algebras are
complex-linear ∗-algebra isomorphic or conjugate-linear ∗-algebra isomor-
phic if and only if their unitary groups are isomorphic as abstract groups
or topological groups. A simple example shows that this is not the case for
general unital C∗-algebras: there are unital commutative C∗-algebras which
are not isomorphic as real algebras while their unitary groups are isomorphic
as topological groups (cf. Example 6.1). Applying our main results we shed
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new light on this problem from a slightly different point of view. Let Aj be
a unital C∗-algebra and Uj the unitary group of Aj for j = 1, 2. Suppose
that φ : U1 → U2 is a group isomorphism and K is a positive constant such
that

1

K
‖u− v‖ ≤ ‖φ(u)− φ(v)‖ ≤ K‖u− v‖, u, v ∈ U1.

Does it follow that A1 is real-linear ∗-algebra isomorphic to A2? We give
a partial answer to this question. As an application of our main result
(Theorem 4.1) we show in Corollary 6.3 that if the unitary groups of two
C∗-algebras are isomorphic as metric groups, then the C∗-algebras are real-
linear ∗-algebra isomorphic; this is the case for K = 1. On the other hand,
as is shown in Example 6.1, it is not the case for K ≥ 3.

2. Preliminaries. To make the presentation complete, in this section
we recall the necessary definitions and briefly summarize the results of [9]
that we shall need in the proofs in Section 3. In Definitions 2.1, 2.2, and
Proposition 2.3, (Xj , dj) denotes a metric space, and Xj is a twisted sub-
group of a group Gj in the sense that

yx−1y ∈ Xj for all x, y ∈ Xj .

Definition 2.1 (Condition B(·, ·)). Let a, b ∈ Xj . We say that B(a, b)
holds for (Xj , dj) if:

(B1) For all x, y ∈ Xj we have

dj(bx
−1b, by−1b) = dj(x, y).

(B2) There exists a constant K > 1 such that

dj(bx
−1b, x) ≥ Kdj(x, b)

for all x ∈ La,b = {x ∈ Xj : dj(a, x) = dj(ba
−1b, x) = dj(a, b)}.

Definition 2.2 (Condition C1(·, ·)). Let a, b ∈ Xj . We say that C1(a, b)
holds for (Xj , dj) if:

(C1) For every x ∈ Xj we have ax−1b, bx−1a ∈ Xj .
(C2) dj(ax

−1b, ay−1b) = dj(x, y) for all x, y ∈ Xj .

Proposition 2.3. Let φ : X1 → X2 be a surjective isometry. Pick
a, b ∈ X1. Suppose that the condition B(a, b) holds for (X1, d1), and
C1(φ(a), φ(ba−1b)) holds for (X2, d2). Then

φ(ba−1b) = φ(b)(φ(a))−1φ(b).

Theorem 6 in [11] is an analogue of the Mazur–Ulam theorem for groups
of isometries and is stated only for self-maps of subgroups of full unitary
groups, but a similar statement for surjective isometries between any two
such subgroups acting on any two Banach spaces is possible. For a complex
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Banach space B we denote by Iso(B) the group of complex-linear isometries
from B onto itself. Proposition 2.4 below plays an important role in the proof
of Lemma 3.3, describing the algebraic structure of isometries between the
principal components of unitary groups.

Proposition 2.4. Let Bj be a complex Banach space and Gj be a sub-
group of Iso(Bj) equipped with the metric dj coming from the operator norm
for j = 1, 2. Suppose that φ : G1 → G2 is a surjective isometry, that is, φ is
just a distance preserving surjection. Then

(2.1) φ(V U−1V ) = φ(V )(φ(U))−1φ(V )

for all U, V ∈ G1 that satisfy d1(U, V ) < 1/2.

The proof is an application of Proposition 2.3, which is very similar to
the one of Theorem 6 given in [11], and is omitted.

Note that the assumption d1(U, V ) < 1/2 in Proposition 2.4 is essential:
see the example just after the proof of Theorem 6 in [11].

3. Isometries between the principal components. Let Aj be a
unital C∗-algebra. The real-linear space of all self-adjoint elements in Aj is
denoted by AjS . The principal component of the unitary group Uj of Aj is
denoted by U0

j . The principal component is a normal subgroup of Uj . The

quotient group Uj/U
0
j is denoted by Λj . We exhibit the form of isometries

(distance preserving maps without additional assumptions about respecting
any algebraic operations) between the principal components of the unitary
groups of two unital C∗-algebras.

Theorem 3.1. Let Aj be a unital C∗-algebra for j = 1, 2. Suppose that
φ is a map from U0

1 into U0
2 . The map φ is a surjective isometry if and only

if there exists a central projection p in A2 and a Jordan ∗-isomorphism J
from A1 onto A2 such that

(3.1) φ(a) = φ(1)(pJ(a) + (1− p)J(a)∗), a ∈ U0
1 .

The unitary group of a von Neumann algebra is connected, hence the
principal component of the unitary group is the unitary group itself. The-
orem 3.1 thus generalizes Corollary 3 in [12], which describes the structure
of surjective isometries between the unitary groups of von Neumann alge-
bras. The proof of Corollary 3 in [12] depends on the fact that the unitary
group of a von Neumann algebra consists precisely of the elements of the
form exp(ix) for self-adjoint elements x in the algebra. This is not the case
for the principal component of a general unital C∗-algebra (cf. [16, 4.6.9]),
hence the proof of [12, Corollary 3] does not work for Theorem 3.1.

To prove Theorem 3.1 we employ two lemmas. The first one concerns
the structure of the principal components of unitary groups.
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Lemma 3.2. We have

U0
j = {exp(ixn) · · · exp(ix1) exp(ix0) exp(ix1) · · · exp(ixn) :

n is a positive integer, xk ∈ AjS for 0 ≤ k ≤ n}.

Proof. Denote by Vj the right hand side above. Then 1 ∈ Vj by taking
n = 1 and x1 = x0 = 0. We claim that Vj is open and closed in Uj . Let

v = exp(ixn) · · · exp(ix1) exp(ix0) exp(ix1) · · · exp(ixn) ∈ Vj
be arbitrary. Suppose w ∈ Uj and ‖w− v‖ < 2. As exp(ixk) is a unitary for
each xk ∈ AjS , we have

‖exp(−ix0/2) exp(−ix1) · · · exp(−ixn)w exp(−ixn) · · · exp(−ix1) exp(−ix0/2)− 1‖ < 2.

We infer

σ(exp(−ix0/2) exp(−ix1) · · · exp(−ixn)w exp(−ixn) · · · exp(−ix1) exp(−ix0/2))

⊂ {z ∈ C : |z| = 1, z 6= −1},

where σ(·) denote the spectrum. Therefore there exists y ∈ AjS such that

exp(iy) = exp(−ix0/2) exp(−ix1) · · · exp(−ixn)w exp(−ixn) · · · exp(−ix1) exp(−ix0/2),

whence

w=exp(ixn) · · · exp(ix1) exp(ix0/2) exp(iy) exp(ix0/2) exp(ix1) · · · exp(ixn)

is in Vj . Now, for a general metric space (S, d), a subset K of S for which
there is a positive real number r (independent of the choice of an element s
of K) such that

{t ∈ S : d(t, s) < r} ⊂ K
for every s ∈ K, is open and closed in S. Thus in our case Vj is open and
closed in Uj .

We assert that Vj is connected. Let

exp(ixn) · · · exp(ix1) exp(ix0) exp(ix1) · · · exp(ixn) ∈ Vj .
For 0 ≤ t ≤ 1, put

at = exp(itxn) · · · exp(tix1) exp(itx0) exp(itx1) · · · exp(itxn).

Then at ∈ Vj , a0 = 1 and

a1 = exp(ixn) · · · exp(ix1) exp(ix0) exp(ix1) · · · exp(ixn).

Hence Vj is arcwise connected. Thus we conclude that Vj is a connected
component of Uj which contains 1, i.e., Vj = U0

j .

Suppose that φ : U0
1 → U0

2 is a surjective isometry. Then φ0 defined by
φ0(·) = (φ(1))−1φ(·) is a surjective isometry from U0

1 onto U0
2 with φ0(1) = 1.

The second lemma we employ in the proof of Theorem 3.1 is the following.
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Lemma 3.3. Let Aj be a unital C∗-algebra for j = 1, 2. Suppose that φ is
a map from U0

1 into U0
2 . If φ is a surjective isometry, then for any positive

integer n and any n+ 1 elements x0, x1, . . . , xn ∈ A1S,

(3.2) φ0(exp(ixn) . . . exp(ix1) exp(ix0) exp(ix1) . . . exp(ixn))

= φ0(exp(ixn)) · · ·φ0(exp(ix1))φ0(exp(ix0))φ0(exp(ix1)) · · ·φ0(exp(ixn)).

Proof. We apply the Mazur–Ulam theorem for groups (Proposition 2.4),
and then a one-parameter-group argument. Suppose that φ is a surjective
isometry. As already noted, φ0 is also an isometry from U0

1 onto U0
2 . We

prove (3.2) by induction on n.

Suppose that n = 1. Let x, x1 ∈ A1S . Choose any real numbers t1 and
t2 and set a1 = exp(ix1), a = exp(it1x) and b = exp(it2x). We shall prove

(3.3) φ0(a1baba1) = φ0(a1ba1)(φ0(a1a
−1a1))

−1φ0(a1ba1).

Select a positive integer m such that

exp(‖(t1 + t2)x‖/2m)− 1 < 1/2.

Clearly,

(3.4) ‖exp(i(t1 + t2)x/2
m)− 1‖ ≤ exp(‖(t1 + t2)x‖/2m)− 1 < 1/2.

For j = 0, 1, . . . , 2m+1 let

cj = a−1 exp(ij(t1 + t2)x/2
m).

Then c0 = a−1, c2m = b, c2m+1 = bab. It is easy to check by (3.4) that

‖a1cj+1a1 − a1cja1‖ < 1/2

for j = 0, 1, . . . , 2m+1−1. By the Gelfand–Naimark theorem any C∗-algebra
is isometrically ∗-isomorphic to a C∗-algebra of operators on a Hilbert space.
Hence we can apply Proposition 2.4 to infer that

(3.5) φ0(a1cj+1a1(a1cja1)
−1a1cj+1a1)

= φ0(a1cj+1a1)(φ0(a1cja1))
−1φ0(a1cj+1a1)

for all j = 0, 1, . . . , 2m+1 − 2. By a simple calculation we obtain

(a1cj+1a1)(a1cja1)
−1(a1cj+1a1) = a1cj+2a1

for every j = 0, 1, . . . , 2m+1 − 2. Applying the technical Lemma 7 in [11]

for the sequence {a1cja1}2
m+1

j=1 , we find that (3.5) implies that the inverted
Jordan product of a1c0a1, a1c2ma1 is also preserved:

φ0(a1c2ma1(a1c0a1)
−1a1c2ma1) = φ0(a1c2ma1)(φ0(a1c0a1))

−1φ0(a1c2ma1).
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Hence we obtain (3.3):

φ0(a1baba1) = φ0(a1c2ma1(a1c0a1)
−1a1c2ma1)

= φ0(a1c2ma1)(φ0(a1c0a1))
−1φ0(a1c2ma1)

= φ0(a1ba1)(φ0(a1a
−1a1))

−1φ0(a1ba1)

for any x, x1 and any t1, t2. In particular, putting x1 = 0, t1 = 0, we get

(3.6) φ0(b
2) = (φ0(b))

2

as φ0(1) = 1.

Define φ1 : U0
1 → U0

2 by φ1(c) = (φ0(a1))
−1φ0(c)(φ0(a1))

−1. As φ0 is
a surjective isometry we infer that φ1 is well defined and also a surjective
isometry. By (3.3) we have

(3.7) φ1(a1baba1) = (φ0(a1))
−1φ0(a1baba1)(φ0(a1))

−1

= (φ0(a1))
−1φ0(a1ba1)(φ0(a1a

−1a1))
−1φ0(a1ba1)(φ0(a1))

−1

=
(
(φ0(a1))

−1φ0(a1ba1)(φ0(a1))
−1)((φ0(a1))−1φ0(a1a−1a1)(φ0(a1))−1)−1

× (φ0(a1)
−1φ0(a1ba1)(φ0(a1))

−1)

= φ1(a1ba1)(φ1(a1a
−1a1))

−1φ1(a1ba1).

We infer from the definition of φ1 that

(3.8) φ1(a
2
1) = (φ0(a1))

−1φ0(a
2
1)(φ0(a1))

−1 = 1

as (3.6) also holds for x = x1 and t2 = 1, b = a1. Substituting t2 = 0 in
(3.7) we see by (3.8) that

(3.9)

φ1(a1aa1) =
(
(φ0(a1))

−1φ0(a1a
−1a1)(φ0(a1))

−1)−1 = (φ1(a1a
−1a1))

−1.

Substituting (3.9) in (3.7) we have

(3.10) φ1(a1baba1) = φ1(a1ba1)φ1(a1aa1)φ1(a1ba1).

One can easily deduce from (3.8)–(3.10) that

(3.11) φ1(a1b
la1) = (φ1(a1ba1))

l

for b, a1 ∈ U0
1 of the form b = exp(itx), a1 = exp(ix1) with any x, x1 ∈ A1S ,

t ∈ R, and for every integer l.

Define a map Sx : R→ U0
2 by

Sx(t) = φ1(a1 exp(itx)a1), t ∈ R.

We assert that Sx is a continuous one-parameter unitary group in A2. Since
φ1 is continuous, we only need to prove that Sx(t+ t′) = Sx(t)Sx(t′) for any
real t, t′. First select rational r and r′ such that r = n/m and r′ = n′/m′

with integers m,m′, n, n′. We compute, by (3.11),
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Sx(r + r′) = φ1

(
a1
(

exp
(
inm′+mn′

mm′ x
))
a1
)

= φ1

(
a1
(

exp
(
i 1
mm′ x

))
a1
)nm′+mn′

= φ1

(
a1
(

exp
(
i 1
mm′ x

))
a1
)nm′

φ1

(
a1
(

exp
(
i 1
mm′ x

))
a1
)mn′

= Sx(r)Sx(r′).

Since φ1 is continuous we obtain Sx(t+ t′) = Sx(t)Sx(t′) for all real t, t′.

As already mentioned, we may consider A1, A2 as unital C∗-algebras of
operators that act on Hilbert spaces H1, H2, respectively. Applying Stone’s
theorem (see [3, Chapter X, Section 5]) for the norm continuous one-
parameter unitary group (Sx(t))t∈R, we infer that there exists a unique
bounded self-adjoint operator y on H2 such that Sx(t) = exp(ity) for every
t ∈ R. Since the generator y can be obtained by differentiating exp(ity)
with respect to t, where the limit of difference quotients is taken in the
norm topology, it follows that y ∈ A2S . Defining f(x) = y we obtain a map
f : A1S → A2S for which

(3.12) φ1(a1(exp(itx))a1) = Sx(t) = exp(itf(x)), t ∈ R, x ∈ A1S .

We claim that f is surjective. Define ψ : U0
2 → U0

1 by

ψ(c) = a−11 φ−11 (c)a−11 .

Then ψ is clearly a surjective isometry. Let y ∈ A2S . Choose any real num-
bers t1 and t2 and set c = exp(it1y), d = exp(it2y). Select a positive integer
m such that

exp(‖(t1 + t2)y‖/2m)− 1 < 1/2.

For j = 0, 1, . . . , 2m+1 let

cj = c−1 exp(ij(t1 + t2)y/2
m).

Applying Proposition 2.4 as before we see that

ψ(cj+1c
−1
j cj+1) = ψ(cj+1)(ψ(cj))

−1ψ(cj+1)

for every j = 0, 1, . . . , 2m+1 − 2 and

ψ(dcd) = ψ(c2mc
−1
0 c2m) = ψ(c2m)(ψ(c0))

−1ψ(c2m)(3.13)

= ψ(d)(ψ(c−1))−1ψ(d).

Since ψ(1) = a−11 φ−11 (1)a−11 and φ1(a
2
1) = 1, we infer that ψ(1) = 1 and

hence ψ(c) = (ψ(c−1))−1 by substituting d = 1 in (3.13), so

ψ(dcd) = ψ(d)ψ(c)ψ(d).

Just as for Sx, we see that the map Ty : R → U0
1 defined by Ty(t) =

ψ(exp(ity)) is a one-parameter unitary group in A1 and there is a map
g : A2S → A1S with

ψ(exp(ity)) = Ty(t) = exp(itg(y)).
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Then

exp(itf(g(y))) = φ1(a1(exp(it(g(y))))a1)

= φ1(a1(ψ(exp(ity)))a1) = φ1(φ
−1
1 (exp(ity))) = exp(ity), t ∈ R.

It follows that f(g(y)) = y for every y ∈ A2S , which means that f is surjec-
tive.

We claim that f is an isometry. Let x, x′ ∈ A1S . Since φ1 is an isometry
and a1 is unitary we have∥∥∥∥exp(itf(x))− exp(itf(x′))

t

∥∥∥∥
=

∥∥∥∥φ1(a1(exp(itx))a1)− φ1(a1(exp(itx′))a1)

t

∥∥∥∥
=

∥∥∥∥a1(exp(itx))a1 − a1(exp(itx′))a1
t

∥∥∥∥ =

∥∥∥∥exp(itx)− exp(itx′)

t

∥∥∥∥.
Letting t→ 0, we obtain

exp(itx)− exp(itx′)

t
=

exp(itx)− 1

t
− exp(itx′)− 1

t
→ ix− ix′,

and similarly

exp(itf(x))− exp(itf(x′))

t
→ if(x)− if(x′).

Hence ‖f(x)−f(x′)‖ = ‖x−x′‖ for any x, x′ ∈ A1S . This shows that f is an
isometry. Since f(0) = 0 by (3.12) and (3.8), we infer that f is a surjective
real-linear isometry from A1S onto A2S , by the Mazur–Ulam theorem.

Consider the case where x1 = 0. Then φ1 = φ0 by the definition of φ1.
By (3.12) we have a surjective isometry f0 from A1S onto A2S such that

(3.14) φ0(exp itx) = φ1(exp itx) = exp(itf0(x)), t ∈ R, x ∈ A1S .

We claim f = f0 for any x1. Since

exp(ix1)− exp(−itx) = 0

for t = 1 and x = −x1, there exists ε > 0 such that

‖exp(ix1)− exp(−itx)‖ < 1/2

for all real t with |t− 1| < ε and x ∈ A1S with ‖x+x1‖ < ε. By Proposition
2.4 we observe that

φ0(exp(ix1) exp(itx) exp(ix1))

= φ0(exp(ix1))(φ0(exp(−itx)))−1φ0(exp(ix1)), |t− 1| < ε, ‖x+ x1‖ < ε.
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As φ0(1) = 1 we can easily deduce that

(3.15) φ0(exp(ix1) exp(itx) exp(ix1))

= φ0(exp(ix1))φ0(exp(itx))φ0(exp(ix1)), |t− 1| < ε, ‖x+ x1‖ < ε.

By (3.12) we have

(3.16) φ0(a1(exp(itx))a1) = φ0(a1) exp(itf(x))φ0(a1), t ∈ R, x ∈ A1S .

As a1 = exp(ix1) we infer from (3.14)–(3.16) that

(3.17) exp(itf0(x)) = φ0(exp(itx)) = exp(itf(x)),

|t− 1| < ε, ‖x+ x1‖ < ε.

In particular,

exp(if0(x)) = exp(if(x)), ‖x+ x1‖ < ε.

Differentiating both sides of (3.17) at t = 1 we get

if0(x) exp(if0(x)) = if(x) exp(if(x)), ‖x+ x1‖ < ε,

so that

f0(x) = f(x), ‖x+ x1‖ < ε.

Since f0 and f are surjective real-linear isometries from A1S onto A2S and
f0 = f on a connected open subset {x ∈ A1S : ‖x + x1‖ < ε} of A1S , we
infer that f0 = f on A1S . Then by (3.14) and (3.16),

φ0(exp(ix1) exp(ix) exp(ix1)) = φ0(exp(ix1)) exp(if0(x))φ0(exp(ix1))

= φ0(exp(ix1))φ0(exp(ix))φ0(exp(ix1))

for every x ∈ A1S . As x, x1 ∈ A1S are arbitrary, we conclude that (3.2) holds
for n = 1.

Suppose that (3.2) holds for n = k. We claim it also holds for n = k+ 1.
Let x, x1, . . . , xk+1 ∈ A1S . Choose any real numbers t1 and t2 and set a =
exp(it1x), b = exp(it2x), a1 = exp(ix1), . . . , ak+1 = exp(ixk+1). Define the
product

P = a1 · · · ak+1

and the reverse product

R = ak+1 · · · a1
just for the simplicity of fomulae. We claim

(3.18) φ0(RbabP) = φ0(RbP)(φ0(Ra
−1P))−1φ0(RbP).

Select a positive integer m such that

exp(‖(t1 + t2)x‖/2m)− 1 < 1/2,

and set

cj = a−1 exp(ij(t1 + t2)x/2
m).
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for j = 0, 1, . . . , 2m+1. Then c0 = a−1, c2m = b, c2m+1 = bab. It is also easy
to check that

‖Rcj+1P− RcjP‖ < 1/2

for every j = 0, 1, . . . , 2m+1 − 1 and

(Rcj+1P)(RcjP)−1(Rcj+1P) = Rcj+2P

for every j = 0, 1, . . . , 2m+1−2. Applying Proposition 2.4 and [11, Lemma 7]
as in the case of n = 1, we see that

φ0
(
(Rcj+1P)(RcjP)−1(Rcj+1P)

)
= φ0(Rcj+1P)(φ0(RcjP))−1φ0(Rcj+1P)

and

φ0(RbabP) = φ0
(
(Rc2mP)(Rc0P)−1(Rc2mP)

)
(3.19)

= φ0(Rc2mP)(φ0(Rc0P))−1φ0(Rc2mP)

= φ0(RbP)(φ0(Ra
−1P))−1φ0(RbP).

Define φk+1 : U0
1 → U0

2 by

φk+1(c) = (φ0(a1))
−1 · · · (φ0(ak+1))

−1φ0(c)(φ0(ak+1))
−1 · · · (φ0(a1))−1

for c ∈ U0
1 . Then by (3.19) we have

(3.20) φk+1(RbabP) = φk+1(RbP)(φk+1(Ra
−1P))−1φk+1(RbP).

By (3.6) and the induction hypothesis we obtain

φ0(RP) = φ0(ak+1) · · ·φ0(a2)φ0(a21)φ0(a2) · · ·φ0(ak+1)

= φ0(ak+1) · · ·φ0(a2)φ0(a1)φ0(a1)φ0(a2) · · ·φ0(ak+1),

so that

(3.21) φk+1(RP) = 1.

Substituting t2 = 0 (hence b = 0) in (3.20) we obtain

φk+1(RaP) = φk+1(RP)(φk+1(Ra
−1P))−1φk+1(RP)(3.22)

= (φk+1(Ra
−1P))−1.

Then by (3.20) we obtain

(3.23) φk+1(RbabP) = φk+1(RbP)φk+1(RaP)φk+1(RbP).

By (3.21)–(3.23) one can easily deduce that

φk+1(Rb
lP) = (φk+1(RbP))l

for b ∈ U0
1 of the form b = exp(itx) with any x ∈ A1S , t ∈ R and for any

integer l.

Define S
(k+1)
x : R→ U0

2 by

S(k+1)
x (t) = φk+1(R(exp(itx))P), t ∈ R.
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Similarly to the case where n = 1, we see that S
(k+1)
x is a continuous one-

parameter unitary group in A2 and there is a unique y ∈ A2S such that

S(k+1)
x (t) = exp(ity), t ∈ R.

Then the map fk+1 : A1S → A2S is defined by fk+1(x) = y, i.e.,

(3.24)

φk+1(R(exp(itx))P) = S(k+1)
x (t) = exp(itfk+1(x)), x ∈ A1S , t ∈ R,

hence

(3.25) φ0(R(exp(itx))P)

= φ0(ak+1) · · ·φ0(a1)(exp(itfk+1(x))φ0(a1) · · ·φ0(ak+1), x ∈ A1S , t ∈ R.

We prove that fk+1 is surjective. Define ψ : U0
2 → U0

1 by

ψ(c) = a−11 · · · a
−1
k+1φ

−1
k+1(c)a

−1
k+1 · · · a

−1
1 .

Since φk+1 is a surjective isometry, ψ is well defined and is a surjective
isometry from U0

2 onto U0
1 . Choose any y ∈ A2S and t1, t2 ∈ R. Set c =

exp(it1y), d = exp(it2y). Just as for n = 1, applying Proposition 2.4 and
[11, Lemma 7] we see that

ψ(dcd) = ψ(d)ψ(c)ψ(d).

We also see that the map T
(k+1)
y : R→ U0

1 defined by

T (k+1)
y (t) = ψ(exp(ity)), t ∈ R,

is continuous one-parameter unitary group in A1. Therefore there is a map
gk+1 : A2S → A1S with

ψ(exp(ity)) = T (k+1)
y (t) = exp(itgk+1(y)), y ∈ A2S , t ∈ R.

Then

exp(itfk+1(gk+1(y))) = φk+1(R(exp(itgk+1(y)))P)

= φk+1(R(ψ(exp(ity)))P)

= φk+1(φ
−1
k+1(exp(ity))) = exp(ity), y ∈ A2S , t ∈ R.

It follows that

fk+1(gk+1(y)) = y, y ∈ A2S ,

and so fk+1 is a surjection from A1S onto A2S .

We claim that fk+1 is an isometry. Let x, x′ ∈ A1S . Then as φk+1 is an
isometry and a1, . . . , ak+1 ∈ U0

1 , we have



Isometries of unitary groups 73∥∥∥∥exp(itfk+1(x))− exp(itfk+1(x
′))

t

∥∥∥∥
=

∥∥∥∥φk+1(R(exp(itx))P)− φk+1(R(exp(itx′))P)

t

∥∥∥∥
=

∥∥∥∥exp(itx)− exp(itx′)

t

∥∥∥∥.
Letting t→ 0 yields

‖fk+1(x)− fk+1(x
′)‖ = ‖x− x′‖.

Therefore fk+1 is a surjective isometry from A1S onto A2S . Since fk+1(0) = 0
by (3.24) and (3.21), we infer that fk+1 is a surjective real-linear isometry
from A1S onto A2S , by the Mazur–Ulam theorem.

If t = 1 and x = −2x1, then

a1(exp(itx))a1 = exp(ix1) exp(itx) exp(ix1) = 1.

Hence there exists an ε > 0 such that

‖a1(exp(itx))a1 − 1‖ < 2

for every t with |t − 1| < ε and every x ∈ A1S with ‖x + 2x1‖ < ε. Since
a1(exp(itx))a1 is unitary we infer that for every t with |t− 1| < ε and every
x ∈ A1S with ‖x+ 2x1‖ < ε there exists xt ∈ A1S such that

a1(exp(itx))a1 = exp(ixt).

Thus

R(exp(itx)P = ak+1 · · · a2(exp(ixt))a2 · · · ak+1.

By the induction assumption we infer that

φ0(R(exp(itx))P) = φ0(ak+1 · · · a2(exp(ixt))a2 · · · ak+1)

= φ0(ak+1) · · ·φ0(a2)φ0(exp(ixt))φ0(a2) · · ·φ0(ak+1).

We already know that (3.2) holds for n = 1, hence

φ0(exp(ixt)) = φ0(exp(ix1))φ0(exp(itx))φ0(exp(ix1)),

so

(3.26) φ0(R(exp(itx))P)

=φ0(exp(ixk+1))···φ0(exp(ix1))φ0(exp(itx))φ0(exp(ix1))···φ0(exp(ixk+1)),

|t−1|<ε, ‖x+2x1‖<ε.
Recall that the isometry f0 satisfies (3.14). Hence, by (3.25) and (3.26),

exp(itf0(x)) = φ0(exp(itx)) = exp(itfk+1(x)), |t− 1| < ε, ‖x+ 2x1‖ < ε.

As in the case where n = 1 we find that f0 = fk+1 on A1S . Then by (3.14)
and (3.25),
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φ0(exp(ixk+1)···exp(ix1)exp(ix)exp(ix1)···exp(ixk+1)

= φ0(exp(ixk+1))···φ0(exp(ix1)(exp(if0(x)))φ0(exp(ix1))···φ0(exp(ixk+1))

= φ0(exp(ixk+1))···φ0(exp(ix1)φ0(exp(ix))φ0(exp(ix1))···φ0(exp(ixk+1)).

As x, x1, . . . , xk+1 ∈ A1S are arbitrary, we conclude that (3.2) holds for
n = k + 1.

Proof of Theorem 3.1. Suppose that φ is a surjective isometry. Let
a ∈ U0

1 . Then by Lemma 3.2 there are a finite number of points x0, x1, . . . , xn
∈ A1S with

a = exp(ixn) · · · exp(ix1) exp(ix0) exp(ix1) · · · exp(ixn).

Recall that f0 is a surjective isometry from A1S onto A2S defined by (3.14).
The form of such an isometry is already known by [15, Theorem 2]: there
exists a central projection p ∈ A2 and a Jordan ∗-isomorphism J from
A1 onto A2 such that f0(x) = (2p − 1)J(x) for every x ∈ A1S . Looking
at this isometry we obtain the partial form of φ0. Since (p − (1 − p))n =
p+ (−1)n(1−p) for all positive integers n, we can compute in the same way
as in [12, Theorem 1] that

φ0(exp ix) = exp(if0(x)) = exp(i(2p− 1)J(x))

= exp(i(p− (1− p))J(x)) =
∞∑
n=0

((i(p− (1− p)))J(x))n

n!

=
∞∑
n=0

in(p− (1− p))nJ(x)n

n!
=
∞∑
n=0

in(p+ (−1)n(1− p))J(xn)

n!

= pJ

( ∞∑
n=0

(ix)n

n!

)
+ (1− p)J

( ∞∑
n=0

(−ix)n

n!

)
= pJ(exp(ix)) + (1− p)J(exp(ix))∗

for every x ∈ A1s. Then by (3.2) and the properties of Jordan ∗-algebras,

φ0(a)=φ0(exp(ixn))···φ0(exp(ix1))φ0(exp(ix0))φ0(exp(ix1))···φ0(exp(ixn))

=(pJ(exp(ixn))+(1−p)J(exp(ixn))∗)···(pJ(exp(ix1))+(1−p)J(exp(ix1))
∗)

×(pJ(exp(ix0))+(1−p)J(exp(ix0))
∗)

×(pJ(exp(ix1))+(1−p)J(exp(ix1))
∗)···(pJ(exp(ixn))+(1−p)J(exp(ixn))∗)

=pJ(exp(ixn)···exp(ix1)exp(ix0)exp(ix1)···exp(ixn))

+(1−p)J(exp(ixn)···exp(ix1)exp(ix0)exp(ix1)···exp(ixn))∗

=pJ(a)+(1−p)J(a)∗.
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Suppose conversely that (3.1) holds for a central projection p and a

Jordan ∗-isomorphism J . Define an extension φ̃ of φ by

φ̃(a) = φ(1)(pJ(a) + (1− p)J(a)∗), a ∈ A1.

One can easily check that φ̃ is a surjective isometry from A1 onto A2, by
using the properties of central projections and Jordan ∗-isomorphisms. Since
J(U1) = U2 [5, Lemma 6.2.4, Theorem 6.2.5] and U0

j is a connected compo-

nent of Uj for j = 1, 2, we have J(U0
1 ) = U0

2 . We infer that φ̃(U0
1 ) = U0

2 . As

φ̃|U0
1

= φ, we conclude that φ is a surjective isometry from U0
1 onto U0

2 .

Recall that Λj denotes the quotient group Uj/U
0
j for the unitary group

Uj of a unital C∗-algebra Aj and the principal component U0
j of Uj . For

a ∈ Uj , the coset {au : u ∈ U0
j } is denoted by [a].

Lemma 3.4. Let λ and λ′ be different elements in Λj. If a ∈ λ and
a′ ∈ λ′, then ‖a− a′‖ = 2.

Proof. Suppose that ‖a− a′‖ 6= 2. Then ‖a− a′‖ < 2, hence ‖a′−1a− 1‖
< 2. As in the proof of Lemma 3.2, we see that a = a′ exp(ix) for some
x ∈ AjS . This is a contradiction as a ∈ λ and λ 6= λ′.

Since U0
j is closed and open and connected, Uj can be written as the

disjoint union of the connected sets of the form uU0
j , where each u is taken

in a different coset in Λj ; hence the connected components of Uj are exactly
the cosets in Λj .

Corollary 3.5. Let Aj be a unital C∗-algebra and uj ∈ Uj for j = 1, 2.
Let φ: u1U

0
1 → u2U

0
2 . Then φ is a surjective isometry if and only if there

exists a central projection p ∈ A2, a Jordan ∗-isomorphism J and a u ∈
u2(pJ(u−11 ) + (1− p)J(u−11 )∗)U0

2 such that

(3.27) φ(a) = u(pJ(a) + (1− p)J(a)∗), a ∈ u1U0
1 .

Proof. Suppose that φ is of the form (3.27). Then the natural extension

defined by φ̃(a) = u(pJ(a) + (1− p)J(a)∗), a ∈ A1, is a surjective isometry
from A1 onto A2 since p is a central projection and J is a surjective isometry.
The map pJ + (1 − p)J∗ is also an isometry from A1 onto A2 and (pJ +
(1 − p)J∗)(U1) = U2 as J(U1) = U2. Thus (pJ + (1 − p)J∗)(u1U

0
1 ) is a

connected component of U2 which contains pJ(u1) + (1− p)J(u1)
∗. Hence

(pJ + (1− p)J∗)(u1U0
1 ) = (pJ(u1) + (1− p)J(u1)

∗)U0
2 .

As u ∈ u2(pJ(u−11 ) + (1−p)J(u−11 )∗)U0
2 and U0

2 is a normal subgroup of U2,
we have u ∈ u2U0

2 (pJ(u−11 ) + (1− p)J(u−11 )∗). Hence we infer that

u(pJ + (1− p)J∗)(u1U0
1 ) = u2U

0
2 .

Thus φ is a surjective isometry from u1U
0
1 onto u2U

0
2 .
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Suppose conversely that φ : u1U
0
1 → u2U

0
2 is a surjective isometry. Define

φ′ : U0
1 → U0

2 by φ′(v) = u−12 φ(u1v), v ∈ U0
1 . It is clear that φ′ is a surjective

isometry. Then by Theorem 3.1 there is a central projection p in A2 and a
Jordan ∗-isomorphism J ′ from A1 onto A2 such that

φ′(v) = u−12 φ(u1)(pJ
′(v) + (1− p)J ′(v)∗), v ∈ U0

1 ,

hence

φ(a) = φ(u1)(pJ
′(u−11 a) + (1− p)J ′(u−11 a)∗), a ∈ u1U0

1 .

Define J : A1 → A2 by

J(x) = pJ ′(u1)J
′(u−11 x) + (1− p)J ′(u−11 x)J ′(u1), x ∈ A1.

Then J(1) = 1 and J is complex-linear. Since J ′ is surjective, a simple
calculation shows that J is surjective. As every Jordan ∗-isomorphism is an
isometry, so is J ′. Since p is a central projection and J ′ is an isometry,

‖J(x)‖ = max{‖pJ ′(u1)J ′(u−11 x)‖, ‖(1− p)J ′(u−11 x)J ′(u1)‖}
= max{‖pJ ′(u−11 x)‖, ‖(1− p)J ′(u−11 x)‖}
= ‖pJ ′(u−11 x) + (1− p)J ′(u−11 x)‖ = ‖J ′(u−11 x)‖ = ‖x‖

for every x ∈ A1. By the theorem of Kadison [14], J is a Jordan ∗-isomor-
phism. Put

u = φ(u1)(pJ(u−11 ) + (1− p)J(u−11 )∗).

Since U0
2 is a normal subgroup of U2, and φ(u1) and u2 are in the same coset

of U2, we infer that

u ∈ u2(pJ(u−11 ) + (1− p)J(u−11 )∗)U0
2 .

As J(u1) = J ′(u1) we have

u(pJ(a) + (1− p)J(a)∗) = u(pJ ′(u1)J
′(u−11 a) + (1− p)(J ′(u−11 a)J ′(u))∗)

= u(pJ ′(u1)J
′(u−11 a) + (1− p)(J ′(u)∗J ′(u−11 a)∗)

= u(pJ ′(u1) + (1− p)J ′(u1)∗)(pJ ′(u−11 a) + (1− p)J ′(u−11 a)∗)

= φ(u1)(pJ
′(u−11 a) + (1− p)J ′(u−11 a)∗) = φ(a), a ∈ u1U0

1 .

Therefore (3.27) holds.

4. Isometries between unitary groups. Let Aj be a unital C∗-
algebra for j = 1, 2. Suppose that [φ] : Λ1 → Λ2 is a bijection, and
φλ : λ → [φ](λ) is a surjective isometry for each λ ∈ Λ1. Then φλ is of
the form (3.27). If φ : U1 → U2 is defined by

φ(a) = φλ(a), a ∈ λ, λ ∈ Λ1,

then φ is a surjective isometry by Lemma 3.4. We will show that any sur-
jective isometry from U1 onto U2 has this form, obtaining a complete de-
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scription of the surjective isometries between unitary groups. Note that the
corresponding result for commutative C∗-algebras has been proved in [12,
Theorem 7]. Observe that Theorem 1 in [12] gives a partial description of sur-
jective isometries between the unitary groups of unital C∗-algebras. Recall
that by an isometry we merely mean a distance preserving transformation.

Theorem 4.1. Let Aj be a unital C∗-algebra and Uj its unitary group,
j = 1, 2. Suppose that φ is a map from U1 into U2. Then φ is a surjective
isometry from U1 onto U2 if and only if the following hold. First, for each
λ ∈ Λ1 there exists a unitary uλ ∈ U2, a central projection pλ ∈ A2, and a
Jordan ∗-isomorphism Jλ from A1 onto A2 such that

(4.1) φ(a) = uλ(pλJλ(a) + (1− pλ)Jλ(a)∗), a ∈ λ.
Second, the map from Λ1 to Λ2 defined by [a] 7→ [φ(a)] is well defined and
bijective. In this case, uλ, pλ, and Jλ are unique for each λ ∈ Λ.

Proof. Assume first that φ is of the form (4.1) and the map [a] 7→ [φ(a)]
is well defined and bijective. One can easily check that for each λ in Λ1, the
natural extension φ̃λ of φλ defined by

φ̃λ(a) = uλ(pλJλ(a) + (1− pλ)Jλ(a)∗), a ∈ A1,

is a surjective isometry from A1 onto A2, by using the properties of central

projections and Jordan ∗-isomorphisms. Then φ̃λ|λ = φ|λ is a surjective
isometry from λ onto φ(λ) for every λ ∈ Λ. As [a] 7→ [φ(a)] is a bijection
from Λ1 onto Λ2 we infer that φ is a surjective isometry from U1 onto U2,
by Lemma 3.4.

Assume conversely that φ is a surjective isometry from U1 onto U2.
As the connected components of U1 are exactly the cosets in Λ1, the map
[a] 7→ [φ(a)], a ∈ U1, is a well defined bijective map from Λ1 onto Λ2. Let
λ ∈ Λ1. Then φ|λ is a surjective isometry from λ onto φ(λ). By Corollary
3.5 there exists a unitary uλ ∈ U2, a central projection pλ ∈ A2, a Jordan
∗-isomorphism Jλ such that

(4.2) φ(a) = uλ(pλJλ(a) + (1− pλ)Jλ(a)∗), a ∈ λ.
To prove the uniqueness of this representation, assume that λ ∈ Λ1 and

(4.3) uλ
(
pλJλ(a)+(1−pλ)Jλ(a)∗

)
= u′λ

(
p′λJ

′
λ(a)+(1−p′λ)J ′λ(a)∗

)
, a ∈ λ,

for uλ, u
′
λ ∈ U2, central projections pλ, p

′
λ, and Jordan ∗-isomorphisms Jλ, J

′
λ.

Multiplying (4.3) by the central element ipλ we have

uλ(ipλJλ(a)) = u′λ
(
ipλp

′
λJ
′
λ(a) + ipλ(1− p′λ)J ′λ(a)∗

)
for any a ∈ λ. Substituting ia instead of a in (4.3) and then multiplying by
pλ we obtain

uλ(ipλJλ(a)) = u′λ
(
ipλp

′
λJ
′
λ(a)− ipλ(1− p′λ)J ′λ(a)∗

)
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for any a∈λ. Hence pλ(1−p′λ)=0. In the same way we see that p′λ(1−pλ) = 0.
It follows that pλ = p′λ, and by (4.3),

uλ
(
pλJλ(a) + (1− pλ)Jλ(a)∗

)
= u′λ

(
pλJ

′
λ(a) + (1− pλ)J ′λ(a)∗

)
, a ∈ λ.

Let aλ ∈ λ. Then

(4.4) uλ
(
pλJλ(aλb) + (1− pλ)Jλ(aλb)

∗)
= u′λ

(
pλJ

′
λ(aλb) + (1− pλ)J ′λ(aλb)

∗), b ∈ U0
1 .

In particular,

(4.5) uλ
(
pλJλ(aλ) + (1− pλ)Jλ(aλ)∗

)
= u′λ

(
pλJ

′
λ(aλ) + (1− pλ)J ′λ(aλ)∗

)
.

Putting

J1(b) = pλJλ(a−1λ )Jλ(aλb) + (1− pλ)Jλ(aλb)Jλ(a−1λ ), b ∈ A1,

J ′1(b) = pλJ
′
λ(a−1λ )J ′λ(aλb) + (1− pλ)J ′λ(aλb)J

′
λ(a−1λ ), b ∈ A1,

as in the proof of Corollary 3.5 we see that J1 and J ′1 are Jordan ∗-isomor-
phisms from A1 onto A2 and

(4.6) uλ(pλJλ(aλb) + (1− pλ)Jλ(aλb)
∗)

= uλ(pλJλ(aλ) + (1− pλ)Jλ(aλ)∗)(pλJ1(b) + (1− pλ)J1(b)
∗), b ∈ A1,

and

(4.7) u′λ(pλJ
′
λ(aλb) + (1− pλ)J ′λ(aλb)

∗)

= u′λ(pλJ
′
λ(aλ) + (1− pλ)J ′λ(aλ)∗)(pλJ

′
1(b) + (1− pλ)J ′1(b)

∗), b ∈ A1.

Thus by (4.4), (4.6) and (4.7) we have

(4.8) uλ(pλJλ(aλ) + (1− pλ)Jλ(aλ)∗)(pλJ1(b) + (1− pλ)J1(b)
∗)

= u′λ(pλJ
′
λ(aλ) + (1− pλ)J ′λ(aλ)∗)(pλJ

′
1(b) + (1− pλ)J ′1(b)

∗), b ∈ U0
1 .

From (4.5) we infer

pλJ1(b) + (1− pλ)J1(b)
∗ = pλJ

′
1(b) + (1− pλ)J ′1(b)

∗, b ∈ U0
1 ,

and hence J1 = J ′1 on U0
1 . Furthermore, J1 = J ′1 on A1: To prove this, take

an arbitrary x in A1S . Then

n

(
exp

(
iJ1(x)

n

)
− 1

)
= n

(
J1

(
exp

(
ix

n

))
− 1

)
= n

(
J ′1

(
exp

(
ix

n

))
−1

)
=n

(
exp

(
iJ ′1(x)

n

)
−1

)
for exp(ix/n) ∈ U0

1 . Letting n → ∞ we obtain iJ1(x) = iJ ′1(x). Since
x ∈ A1S is arbitrary and J1, J

′
1 are complex-linear, we infer that J1 = J ′1

on A1.



Isometries of unitary groups 79

Putting b = a−1λ in (4.6)–(4.7) we get

1 =
(
pλJλ(aλ) + (1− pλ)Jλ(aλ)∗

)(
pλJ1(a

−1
λ ) + (1− pλ)J1(a

−1
λ )∗

)
,

1 =
(
pλJ

′
λ(aλ) + (1− pλ)J ′λ(aλ)∗

)(
pλJ

′
1(a
−1
λ ) + (1− pλ)J ′1(a

−1
λ )∗

)
.

As J1(a
−1
λ ) = J ′1(a

−1
λ ), we obtain

pλJλ(aλ) + (1− pλ)Jλ(aλ)∗ = pλJ
′
λ(aλ) + (1− pλ)J ′λ(aλ)∗,

hence Jλ(aλ) = J ′λ(aλ). From (4.5) we infer that uλ = u′λ. Hence by (4.6)
and (4.7) we have

pλJλ(aλb) + (1− pλ)Jλ(aλb)
∗ = pλJ

′
λ(aλb) + (1− pλ)J ′λ(aλb)

∗, b ∈ A1.

Therefore Jλ = J ′λ on A1. This completes the proof of the uniqueness of the
representation (4.2) of φ on each λ ∈ Λ.

5. Extensibility. In this section we exhibit a necessary and sufficient
condition so that the isometries between the unitary groups of two unital
C∗-algebras can be extended to isometries between these C∗-algebras. Note
that a corresponding result for commutative C∗-algebras is proved in [12,
Corollary 8]. Roughly speaking, a surjective isometry φ : U1 → U2 extends
to an isometry between the corresponding C∗-algebras if and only if uλ, pλ
and Jλ which appear in the representation (4.1) coincide with each other
for any λ ∈ Λ1. More precisely, we have the following.

Corollary 5.1. Let φ : U1 → U2 be a surjective isometry. Consider
the representation of φ given in Theorem 4.1, i.e., for every λ ∈ Λ1 take the
unitary uλ, the central projection pλ and the Jordan ∗-isomorphism Jλ such
that

(5.1) φ(a) = uλ(pλJλ(a) + (1− pλ)Jλ(a)∗), a ∈ λ.

The map φ can be extended to a surjective isometry from A1 onto A2 if and
only if all uλ’s coincide with φ(1) and all pλ’s as well as all Jλ’s coincide.
Moreover, denoting p = pλ and J = Jλ, the map

φ̃(a) = φ(1)(pJ(a) + (1− p)J(a)∗), a ∈ A1,

extends φ.

Proof. Suppose that φ extends to a surjective isometry φ̂ from A1

onto A2. Then by the celebrated Mazur–Ulam theorem φ̂0 = φ̂ − φ̂(0) is
real-linear. Applying (5.1) for λ = [1] we infer by a simple calculation that
for every positive integer n,
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φ̂0

(
n
(

exp
(

iy
n

)
− 1
))

= n
(
φ̂0

(
exp
(

iy
n

))
− φ̂0(1)

)
= n

(
φ
(

exp
(

iy
n

))
− φ(1)

)
= n

{
φ(1)

(
p[1]J[1]

(
exp
(

iy
n

))
+ (1− p[1])J[1]

(
exp
(

iy
n

))∗)
− φ(1)

}
= φ(1)

{
p[1]J[1]

(
n
(

exp
(

iy
n

)
− 1
))

+ (1− p[1])J[1]
(
n
(

exp
(

iy
n

)
− 1
))∗}

, y ∈ A1S .

As φ̂(i) = φ(i) = φ(1)(ip[1] − i(1− p[1])) we also have

φ̂0

(
ni

(
exp

(
ix

n

)
− 1

))
= φ(1)

{
p[1]J[1]

(
ni

(
exp

(
ix

n

)
−1

))
+(1−p[1])J[1]

(
ni

(
exp

(
ix

n

)
−1

))∗}
,

x ∈ A1S .

Letting n→∞ for each of the above equations we get

(5.2) φ̂0(iy) = φ(1){p[1]J[1](iy) + (1− p[1])J[1](iy)∗}, y ∈ A1S ,

and

−φ̂0(x) = φ̂(i2x) = φ(1){p[1]J[1](i2x) + (1− p[1])J[1](i2x)∗}(5.3)

= −φ(1){p[1]J[1](x) + (1− p[1])J[1](x)∗}, x ∈ A1S .

Since φ̂0 is real-linear we observe from (5.2) and (5.3) that

φ̂0(a) = φ(1)(p[1]J[1](a) + (1− p[1])J[1](a)∗), a ∈ A1.

It follows that φ̂(0) = 0 and

φ(1)(p[1]J[1](a) + (1− p[1])J[1](a)∗) = uλ(pλJλ(a) + (1− pλ)Jλ(a)∗), a ∈ λ,

for every λ ∈ Λ since φ̂ is an extension of φ. Due to Theorem 4.1 this
representation is unique for each λ ∈ Λ, we have φ(1) = uλ, p[1] = pλ, and
J[1] = Jλ for every λ ∈ Λ.

Conversely, assume φ(1) = uλ, p = pλ, J = Jλ for every λ ∈ Λ. Then the
map defined by

φ̃(a) = φ(1)(pJ(a) + (1− p)J(a)∗), a ∈ A1

clearly extends φ, and φ̃ is a surjective isometry since p is a central projec-
tion.

Corollary 5.2. Let Aj be a unital C∗-algebra such that Uj = U0
j ,

j = 1, 2. A map φ : U1 → U2 is a surjective isometry if and only if there is
a central projection p in A2 and a Jordan ∗-isomorphism J : A1 → A2 such
that

(5.4) φ(a) = φ(1)
(
pJ(a) + (1− p)J(a)∗

)
, a ∈ U1.
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The proof is straightforward from Theorem 3.1. Note that the unitary
group UM coincides with exp(iMs) for any von Neumann algebra M . Hence
UM = U0

M .

6. An application and a problem. We say that two unital C∗-
algebras A1 and A2 are real-linear (resp. complex-linear, conjugate-linear)
∗-algebra isomorphic if there is a real-linear (resp. complex-linear, conjugate-
linear) bijection from A1 onto A2 which preserves multiplication and the
∗-operation.

Al-Rawashdeh, Booth and Giordano [2] proved that two unital AH-
algebras of slow dimension growth and of real rank zero are complex-linear
∗-algebra isomorphic or conjugate-linear ∗-algebra isomorphic if and only if
their unitary groups are isomorphic as topological groups. They also showed
that two unital Kirchberg algebras are complex-linear ∗-algebra isomorphic
or conjugate-linear ∗-algebra isomorphic if and only if their unitary groups
are isomorphic as abstract groups.

In general there exists a pair of unital commutative C∗-algebras whose
unitary groups are topologically isomorphic while the C∗-algebras them-
selves are not isomorphic as real algebras. Let X be a compact Haus-
dorff space. We denote by C(X) (resp. CR(X)) the Banach algebra (resp.
real Banach algebra) of all complex-valued (resp. real-valued) continuous
functions on X. Then C(X) is a unital commutative C∗-algebra. By the
Gelfand–Naimark theorem any unital commutative C∗-algebra is isometri-
cally complex-linear ∗-algebra isomorphic to C(X) for some X. The unitary
group of C(X) is denoted by UC(X).

The following example is essentially due to Żelazko [24, Remark 7.8].

Example 6.1. Let X1 = [0, 1] be the closed unit interval and X2 =
{(x, y) ∈ R2 : x ∈ [0, 2/3], y = 0} ∪ {(x, y) ∈ R2 : x = 1/3, y ∈ [0, 1/3]}. Let
φ : UC(X1)→ UC(X2) be defined as

φ(f)(x, y) =


f(x), 0 ≤ x ≤ 2/3, y = 0,

f(1/3)

f(2/3)
f(y + 2/3), x = 1/3, 0 < y ≤ 1/3,

for every f ∈ UC(X1). By a simple calculation we have

(6.1) 1
3‖f − g‖ ≤ ‖φ(f)− φ(g)‖ ≤ 3‖f − g‖,

and hence φ and φ−1 are continuous group isomorphisms. On the other
hand, φ cannot be extended to a real-algebra isomorphism from C(X1)
onto C(X2). The reason is as follows. The maximal ideal space of C(Xj)
is homeomorphic to Xj for j = 1, 2 while X1 and X2 are not homeomorphic
to each other. Therefore C(X1) is not isomorphic to C(X2) as a real Ba-
nach algebra (cf. [10, Theorem 3.1]). Note that the first cohomotopy group
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on Xj is isomorphic to the first Čech cohomology group on Xj with in-
teger coefficients [7, 7.4. Corollary, p. 91] and it vanishes. It follows that
exp iCR(Xi) = UC(Xi) for i = 1, 2. Note also that the constant 3 in (6.1) is
the best possible in the sense that if 1

K ‖f − g‖ ≤ ‖φ(f)−φ(g)‖ ≤ K‖f − g‖
for all f, g ∈ C(X1), then K ≥ 3. The reason is as follows. Let 0 < θ ≤ π/3.
Choose f ∈ C(X1) such that f(X1) ⊂ {z = exp it : t ∈ R, |t| ≤ θ},
f(1/3) = exp iθ, f(2/3) = exp(−iθ), and f(1) = exp iθ. Put g = 1. Then
‖f − g‖ = |exp iθ− 1| and ‖φ(f)−φ(g)‖ = |exp 3iθ− 1|. The constant θ can
be arbitrarily small, hence K ≥ 3.

As a corollary of Theorem 3.1 we will prove the following (cf. [12]).

Corollary 6.2. Let Aj be a unital C∗-algebra for j = 1, 2. The follow-
ing are equivalent:

(1) A1 is Jordan ∗-isomorphic to A2,

(2) U1 is isometric to U2 as a metric space,

(3) U0
1 is isometric to U0

2 as a metric space.

Proof. Suppose that (1) holds. Let J : A1 → A2 be a Jordan ∗-isomor-
phism. Then J is a surjective isometry and J(U1) = U2 (cf. [5, Lemma 6.2.4,
Theorem 6.2.5]), hence U1 is isometric to U2, so (2) holds.

Suppose that (2) holds. Let φ : U1 → U2 be a surjective isometry. Then
φ0 defined by φ0(·) = (φ(1))−1φ(·) is also a surjective isometry from U1

onto U2 such that φ0(1) = 1. Hence φ0(U
0
1 ) = U0

2 as U0
j is the connected

component of Uj which contains 1, for j = 1, 2. Thus U0
1 is isometric to U0

2 ,
and (3) holds.

Suppose that (3) holds. We see at once that A1 is Jordan ∗-isomorphic
to A2 by Theorem 3.1, so (1) holds.

From Theorem 3.1 we will deduce the following.

Corollary 6.3. Let Aj be a unital C∗-algebra for j = 1, 2. The follow-
ing are equivalent:

(1) there exists a central projection p in A2 and a (complex-linear) Jor-
dan ∗-isomorphism J from A1 onto A2 such that pJ is multiplicative
and (1− p)J is anti-multiplicative,

(2) U1 is isometrically isomorphic to U2 as a metric group,
(3) U0

1 is isometrically isomorphic to U0
2 as a metric group.

Proof. Suppose that there exists a central projection p in A2 and a Jor-
dan ∗-isomorphism J from A1 onto A2 such that pJ is multiplicative and
(1−p)J is anti-multiplicative. Put φ̃ = pJ + (1−p)J∗. It is well known that

J(U1) = U2, hence φ̃(U1) = U2. As (1− p)J is anti-multiplicative and 1− p
is a central projection, we infer that (1 − p)J∗ is multiplicative. Thus φ̃ is
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an real-linear ∗-algebra isomorphism. Since p is a central projection and J
is an isometry we deduce that φ̃ is also an isometry. It follows that φ̃|U1 is
an isometrical isomorphism from U1 onto U2.

Suppose next that (2) holds and φ is an isometrical isomorphism from U1

onto U2. Then φ(1) = 1 ensures that φ(U0
1 ) = U0

2 , since U0
j is the connected

component which contains 1, and φ is an isometry. Thus U0
1 is isometrically

isomorphic to U0
2 .

Suppose that (3) holds and φ is an isometrical isomorphism from U0
1 onto

U0
2 . We claim (1) holds. As φ is a surjective isometry, Theorem 3.1 ensures

that there exists a central projection p in A2 and a Jordan ∗-isomorphism J
from A1 onto A2 such that φ(u) = pJ(u) + (1− p)(J(u))∗ for every u ∈ U0

1 .

Let φ̃ be defined by

φ̃(a) = pJ(a) + (1− p)(J(a))∗, a ∈ A1,

which is an extension of φ to A1. Let t be a non-zero real number and
x, y ∈ A1S . Since exp(itx), exp(ity) ∈ U0

1 , and φ̃ is real-linear, and

φ̃(exp(itx) exp(ity)) = φ(exp(itx) exp(ity))

= φ(exp(itx))φ(exp(ity)) = φ̃(exp(itx))φ̃(exp(ity)),

a calculation yields

φ̃

(
(exp(itx)− 1)(exp(ity)− 1)

t2

)
= φ̃

(
exp(itx)− 1

t

)
φ̃

(
exp(ity)− 1

t

)
.

Similarly,

φ̃

(
i(exp(itx)−1)(exp(ity)−1)

t2

)
= φ̃

(
i(exp(itx)−1)

t

)
φ̃

(
exp(ity)−1

t

)
,

φ̃

(
(exp(itx)−1)i(exp(ity)−1)

t2

)
= φ̃

(
exp(itx)−1

t

)
φ̃

(
i(exp(ity)−1)

t

)
,

φ̃

(
i(exp(itx)−1)i(exp(ity)−1)

t2

)
= φ̃

(
i(exp(itx)−1)

t

)
φ̃

(
i(exp(ity)−1)

t

)
.

Letting t→0 in the above four equations we get

φ̃(ixiy) = φ̃(ix)φ̃(iy),

φ̃(xiy) = φ̃(x)φ̃(iy),

φ̃(ixy) = φ̃(ix)φ̃(y),

φ̃(xy) = φ̃(x)φ̃(y).

Since φ̃ is real-linear, we obtain

φ̃(ab) = φ̃(a)φ̃(b), a, b ∈ A1.
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Thus pJ = pφ̃ and (1−p)J∗ = (1−p)φ̃ are multiplicative. Hence (1−p)J is
anti-multiplicative, for (1−p)J = (J∗(1−p)∗)∗ = ((1−p)J∗)∗. Consequently,
(1) holds.

Let Aj be a unital C∗-algebra for j = 1, 2. Suppose that φ : U0
1 → U0

2

is a surjective isometrical group isomorphism. As is shown in the proof of
Corollary 6.3, φ can be extended to a real-linear ∗-algebra isomorphism from
A1 onto A2. Note that a surjective isometrical group isomorphism from U1

onto U2 need not extend to an isometry from A1 onto A2. To give an example
let T be the unit circle in the complex plane and A1 = A2 = C(T). Then
Uj = {zn exp(if) : n ∈ Z, f ∈ CR(T)} and Λj = Z for j = 1, 2, where Z
denotes the additive group of all integers. Let φ : U1 → U2 be defined as
φ(zn exp(if)) = z−n exp(if) for every zn exp(if) ∈ U1. Then φ is a surjective
isometrical group isomorphism from U1 onto U2. But φ cannot be extended
to an isometry from A1 onto A2 by Corollary 5.1.

For a von Neumann algebra M the unitary group U coincides with the
principal component U0 of U . Hence every surjective isometrical group iso-
morphism between two unitary groups of von Neumann algebras can be ex-
tended to a real-linear ∗-algebra isomorphism between these von Neumann
algebras.

Corollary 6.4. Let Mj be a von Neumann algebra for j = 1, 2. The
following are equivalent:

(1) there exists a central projection p in M2 and a (complex-linear) Jor-
dan ∗-isomorphism J from M1 onto M2 such that pJ is multiplicative
and (1− p)J is anti-multiplicative,

(2) M1 is Jordan ∗-isomorphic to M2,
(3) U1 is isometric to U2 as a metric space,
(4) U1 is isometrically isomorphic to U2 as a metric group.

Proof. We have already proved that (2) and (3) are equivalent. (1) and
(4) are also equivalent by Corollary 6.3. It is apparent that (1) implies (2).

Suppose that (2) holds and J : M1 → M2 is a Jordan ∗-isomorphism.
Then by a theorem of Kadison [14, Theorem 10], J is a direct sum of a
multiplicative part and an anti-multiplicative part, that is, there is a central
projection p in M2 such that pJ is multiplicative and (1 − p)J is anti-
multiplicative; thus (1) holds.

Note that Sakai [23] proved that topological group isomorphisms between
twoAW ∗-factors are implemented by complex-linear ∗-algebra isomorphisms
or conjugate-linear ∗-algebra isomorphisms of the factors.

We conclude the paper with a problem: for which constant K, the exis-
tence of a group isomorphism φ : U1 → U2 (resp. U0

1 → U0
2 ) with
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1

K
‖a− b‖ ≤ ‖φ(a)− φ(b)‖ ≤ K‖a− b‖, a, b ∈ U1 (resp. U0

1 )

ensures that A1 is real-linear ∗-algebra isomorphic to A2? This is the case
for K = 1 by Corollary 6.3, but due to Example 6.1 it is not the case for
K ≥ 3. The author does not know whether the statement holds or not for
1 < K < 3 even if the C∗-algebras are commutative.
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