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A note on extensions of Peªzy«ski'sdeomposition method in Banah spaesbyElói Medina Galego (São Paulo)
Abstrat. Let X, Y, A and B be Banah spaes suh that X is isomorphi to Y ⊕Aand Y is isomorphi to X ⊕ B. In 1996, W. T. Gowers solved the Shroeder�Bernsteinproblem for Banah spaes by showing that X is not neessarily isomorphi to Y . In thepresent paper, we give a neessary and su�ient ondition on sextuples (p, q, r, s, u, v) in Nwith p+q ≥ 2, r+s ≥ 1 and u, v ∈ N

∗ for X to be isomorphi to Y whenever these spaessatisfy the following deomposition sheme:
{

Xu
∼ Xp

⊕ Y q,

Y v
∼ Ar

⊕ Bs.Namely, Ω = (p − u)(s − r − v) − q(r − s) is di�erent from zero and Ω divides p + q − uand v. In other words, we obtain an arithmeti haraterization of some extensions of thelassial Peªzy«ski deomposition method in Banah spaes. This result leads naturallyto several problems losely related to the Shroeder�Bernstein problem.1. Introdution. Let X and Y be Banah spaes. We write X ∼ Y if
X is isomorphi to Y , and X 6∼ Y otherwise. If n ∈ N

∗ = {1, 2, 3, . . .}, then
Xn denotes the sum of n opies of X, X ⊕· · ·⊕X. It will be useful to de�ne
X0 = {0}. We reall that Y is isomorphi to a omplemented subspae of Xif there exists a Banah spae A suh that X ∼ Y ⊕ A.Suppose now that X, Y , A and B are Banah spaes satisfying
(1.1)

{

X ∼ Y ⊕ A,

Y ∼ X ⊕ B.In 1996, W. T. Gowers [12℄ solved the so-alled Shroeder�Bernstein problemfor Banah spaes by showing that X is not neessarily isomorphi to Y .Moreover, this �rst solution was obtained by the onstrution of a Banah2000 Mathematis Subjet Classi�ation: Primary 46B03, 46B20.Key words and phrases: Peªzy«ski's deomposition method, Shroeder�Bernsteinproblem. [27℄ © Instytut Matematyzny PAN, 2007



28 E. M. Galegospae Z satisfying
(1.2) Z ∼ Z3 and Z 6∼ Z2.Gowers's solution opened two diretions of researh. The �rst is to look fornew solutions with some partiular properties (see [2℄�[6℄, [8℄, [13℄). Theseond is to ask what additional onditions on X, Y , A and B satisfying(1.1) ensure that X is isomorphi to Y (see [7℄, [9℄�[11℄).Conerning this last diretion, it is well known that Peªzy«ski's de-omposition method [1, p. 64℄, whih has played an important role in theisomorphi theory of lassial Banah spaes, states that X ∼ Y if thesespaes satisfy (1.1) and the following deomposition sheme:
(1.3)

{

X ∼ X2,

Y ∼ Y 2.Furthermore, in [10℄ a sextuple (p, q, r, s, u, v) in N with p + q + u ≥ 3,
(p, q) 6= (0, 0), r + s + t ≥ 3, (r, s) 6= (0, 0), u ≥ 1 and v ≥ 1 was said to bea Shroeder�Bernstein sextuple for Banah spaes (for short, SBs) if X ∼ Ywhenever the Banah spaes X and Y satisfy (1.1) for some Banah spaes
A and B and the following deomposition sheme holds:
(1.4)

{

Xu ∼ Xp ⊕ Y q,

Y v ∼ Xr ⊕ Y s.The number ♦ = (p − u)(s − v) − rq was alled the disriminant of thesextuple (p, q, r, s, u, v).We reall the following result on SBs obtained in [10, Corollary 4.2℄.Theorem 1.1. Let (p, q, r, s, u, v) be a sextuple in N with p + q + u ≥ 3,
(p, q) 6= (0, 0), r + s + v ≥ 3, (r, s) 6= (0, 0), u = 1 or v = 1 or (p, q) = (1, 0)or (r, s) = (0, 1), and with disriminant ♦. Then (p, q, r, s, u, v) is a SBs ifand only if ♦ is di�erent from zero and ♦ divides p + q − u and r + s − v.It is an open problem to omplete the haraterization of the sextuplesin N whih are SBs (see [10, Conjeture 4.3 and Problem 4.4℄). The presentwork is a ontinuation of [10℄ in the sense that we present new extensions ofPeªzy«ski's deomposition method in Banah spaes. This time, the startingpoint is the simple fat that from (1.1) we dedue that
(1.5) Y ∼ X ⊕ B ∼ Y ⊕ A ⊕ B.Adding A ⊕ B to both sides of (1.5) we have

Y ∼ Y ⊕ A ⊕ B ∼ Y ⊕ A2 ⊕ B2.Therefore by indution we onlude that
(1.6) Y ∼ Y ⊕ Am ⊕ Bm, ∀m ∈ N.



Extensions of Peªzy«ski's deomposition method 29So if we want to obtain the seond ondition of the deomposition sheme(1.3) from (1.1) it su�es to require the strong ondition Y ∼ Am ⊕ Bm,for some m ∈ N
∗. Hene aording to Peªzy«ski's deomposition method

X ∼ Y whenever there exist Banah spaes A and B satisfying (1.1) and
m ∈ N

∗ suh that the following deomposition sheme holds:
(1.7)

{

X ∼ X2,

Y ∼ Am ⊕ Bm.It is then natural to pose, in the spirit of [10℄, the following problem:Problem 1.2. Is it possible to desribe all deomposition shemes sim-ilar to (1.7) whih added to (1.1) also yield X ∼ Y ?In order to formulate Problem 1.2 more preisely we introdue the fol-lowing de�nition:Definition 1.3. A sextuple (p, q, r, s, u, v) in N, with p+q ≥ 2, r+s ≥ 1and u, v ∈ N
∗, is a strong Shroeder�Bernstein sextuple for Banah spaes(for short, SSBs) if X ∼ Y whenever there exist Banah spaes A and Bsatisfying (1.1) and the following deomposition sheme:

(1.8)

{

Xu ∼ Xp ⊕ Y q,

Y v ∼ Ar ⊕ Bs.We also say that Ω = (p−u)(s− r− v)− q(r− s) is the strong disriminantof the sextuple (p, q, r, s, u, v).Notie that by (1.7), (2, 0, m, m, 1, 1) is a SSBs for every m in N
∗. Fur-thermore, by using the Banah spae Z mentioned in (1.2) we see that

(1, 2, 2, 1, 1, 1) is not a SSBs. Indeed, take X = Z2, Y = Z and A = B = Z.Aording to (1.2), it follows that (1.1) is satis�ed, X 6∼ Y and also
{

X ∼ X ⊕ Y 2,

Y ∼ A2 ⊕ B.Problem 1.2 asks whether it is possible to determine all SSBs. The mainaim of this paper is to solve this problem. Indeed, we shall see that ertainfamilies of Banah spaes onstruted by W. T. Gowers and B. Maurey in1997 (see Remark 3.1) are large enough to provide the following harateri-zation of the SSBs in terms of their strong disriminants Ω.Theorem 1.4. A sextuple (p, q, r, s, u, v) in N with p + q ≥ 2, r + s ≥ 1and u, v ∈ N
∗ is a SSBs if and only if its strong disriminant Ω is di�erentfrom zero and Ω divides p + q − u and v.The proof of this theorem is quite long and it will be done by provingfour propositions: Propositions 2.2, 3.5, 3.6 and 3.7.



30 E. M. GalegoIn the last setion we also introdue the notion of tight Shroeder�Bern-stein sextuples for Banah spae and indiate their haraterization. We endthe paper by posing some problems related to the deomposition sheme(1.8): see Problems 4.3, 4.4 and 4.5.2. Su�ient ondition for a sextuple in N to be a SSBs. Thepurpose of this setion is to prove Proposition 2.2, whih is the su�ienypart of Theorem 1.4.Proposition 2.2. Let (p, q, r, s, u, v) be a sextuple in N with p + q ≥ 2,
r + s ≥ 1, u, v ∈ N

∗ and with strong disriminant Ω. If Ω is di�erent fromzero, and Ω divides p + q − u and v, then (p, q, r, s, u, v) is a SSBs.Proof. Let X, Y , A and B be Banah spaes satisfying (1.1) and (1.8).We will prove that X ∼ Y . Let d = s − r. Then by the de�nition of Ω,
(2.1) Ω = d(p + q − u) − (p − u)v.We distinguish �ve ases: d = 0; u = p; d > 0 and u > p; d > 0 and u < p;
d < 0.Case 1: d = 0. Then r = s ≥ 1 and Ω = (u − p)v. Adding Y to bothsides of the seond ondition of (1.8) and using (1.6) with m = r, we get

{

Y ∼ Y v+1,

Xu ∼ Y q ⊕ Xp.Sine the disriminant ♦ of the sextuple (v+1, 0, q, p, 1, u) is v(p−u) = −Ω,it follows by hypothesis that ♦ 6= 0 and ♦ divides (v+1)−1 = v and q+p−u.So Theorem 1.1 implies that X ∼ Y .Case 2: u = p. Then Ω = dq 6= 0 and dq divides q. Hene d = −1 or
d = 1.Subase 2.1: d = −1. Then r = s + 1. Therefore the seond onditionof (1.8) implies that
(2.2) Y v ∼ As+1 ⊕ Bs.Adding Y to both sides of (2.2), by (1.6) with m = s we see that
(2.3) Y v+1 ∼ Y ⊕ A ∼ X.On the other hand, adding Bp to both sides of the �rst ondition of (1.8),by (1.1) we dedue that

Y p ∼ (X ⊕ B)p ∼ Xp ⊕ Bp ∼ Xp ⊕ Y q ⊕ Bp ∼ (X ⊕ B)p ⊕ Y q ∼ Y p+q.Thus aording to (2.3) we onlude that
{

X ∼ Y v+1,

Y p ∼ Y p+q.



Extensions of Peªzy«ski's deomposition method 31Sine the disriminant ♦ of the sextuple (0, v + 1, 0, p + q, 1, p) is equal to
−q = Ω, we have ♦ 6= 0 and ♦ divides (v+1)−1 = v and q. Again Theorem1.1 implies that X ∼ Y .Subase 2.2: d = 1. Then s = r + 1. By the seond ondition of (1.8)we know that
(2.4) Y v ∼ Ar ⊕ Br+1.Adding X to both sides of (2.4), by the analogue of (1.6) for X with m = rwe infer that

Y v ⊕ X ∼ X ⊕ B ∼ Y.Hene again by the �rst ondition of (1.8) we obtain
{

Y ∼ Y v ⊕ X,

Xp ∼ Y q ⊕ Xp.Sine the disriminant ♦ of the sextuple (v, 1, q, p, 1, p) is −q = Ω, it followsthat ♦ 6= 0 and ♦ divides (v + 1) − 1 = v and q. One more Theorem 1.1implies that X ∼ Y .Before we onsider Cases 3 and 4 note that if d > 0, then adding Y toboth sides of the seond ondition of (1.8), by (1.6) with m = r we see that
(2.5) Y v+1 ∼ Y ⊕ Bd.Now adding Ad to both sides of (2.5), by (1.6) with m = d we get
(2.6) Y ∼ Y v+1 ⊕ Ad.Next adding Y ⊕ Ad to both sides of (2.6) we dedue that

Y ∼ Y v+1 ⊕ Ad ∼ Y 2v+1 ⊕ A2d.Therefore by indution we have
(2.7) Y ∼ Y iv+1 ⊕ Aid, ∀i ∈ N

∗.Case 3: d > 0 and u > p. In this ase, u ≥ p + q. Otherwise, u < p + qand by (2.1), Ω > v, whih is absurd, beause by hypothesis Ω divides v.There are two subases: Ω > 0 and Ω < 0.Subase 3.1: Ω > 0. Let m, n ∈ N be suh that p + q − u = −mΩ and
v = nΩ.Adding Bp to both sides of the �rst ondition of (1.8) we onlude that
Y p+q ∼ (X ⊕B)p⊕Y q ∼ Xu−p⊕Xp⊕Bp ∼ (Y ⊕A)u−p⊕Y p ∼ Y u⊕Au−p.Consequently,
(2.8) Y n(p+q) ∼ Y nu ⊕ An(u−p).



32 E. M. GalegoFix j ∈ N
∗ suh that jv + 1 > n(p + q). By (2.7) with i = j and (2.8) wehave

Y ∼ Y jv+1−n(p+q) ⊕ Y nu ⊕ An(u−p) ⊕ Ajd(2.9)

∼ Y jv+1−n(p+q−u) ⊕ Ajd+n(u−p).Moreover, by (2.7) with i = j + m, it follows that
(2.10) Y ∼ Y jv+1+mv ⊕ Ajd+md.By (2.1) and the hoie of m and n we obtain −n(p + q − u) = mv and
1+md = n(u−p). Hene, by using (2.10) in (2.9) we see that Y ∼ Y ⊕A ∼ X.Subase 3.2: Ω < 0. Pik m, n ∈ N suh that p + q − u = mΩ and
v = −nΩ. Proeeding as in Subase 3.1 we get (2.9) and (2.10). Observethat −n(p + q − u) = mv and 1 + n(u − p) = md. Thus by using (2.9) in(2.10) we dedue that Y ∼ Y ⊕ A ∼ X.Case 4: d > 0 and u < p. There are two subases: Ω > 0 and Ω < 0.Subase 4.1: Ω > 0. Let m, n ∈ N be suh that p + q − u = mΩ and
v = nΩ. Adding Au to both sides of the �rst ondition of (1.8) we infer that
Y u ∼ Xu⊕Au ∼ Xp−u⊕Xu⊕Au⊕Y q ∼ (Y ⊕A)p−u⊕Y u⊕Y q ∼ Y p+q⊕Ap−u.Consequently,
(2.11) Y nu ∼ Y n(p+q) ⊕ An(p−u).Fix j ∈ N

∗ suh that jv + 1 > nu. By (2.7) with i = j and (2.11) we have
Y ∼ Y jv+1−nu ⊕ Y n(p+q) ⊕ An(p−u) ⊕ Ajd(2.12)

∼ Y jv+1+n(p+q−u) ⊕ Ajd+n(p−u).Furthermore, by (2.7) with i = j + m, it follows that
(2.13) Y ∼ Y jv+1+mv ⊕ Ajd+md.Now notie that n(p + q − u) = mv and 1 + n(p− u) = md. Hene by using(2.12) in (2.13) we dedue that Y ∼ Y ⊕ A ∼ X.Subase 4.2: Ω < 0. Let m, n ∈ N be suh that p + q − u = −mΩ and
v = −nΩ. Similarly to Subase 4.1 we obtain (2.12) and (2.13). Note that
n(p + q − u) = mv and 1 + md = n(p − u). Therefore by using (2.13) in(2.12) we obtain Y ∼ Y ⊕ A ∼ X.Case 5: d < 0. In this ase observe that if u > p and u > p + q, thenby (2.1), Ω > v, whih is absurd. Further, if u < p, then again by (2.1),
Ω < −v, whih is also absurd. So u > p and u ≤ p + q. There are twosubases: Ω > 0 and Ω < 0.



Extensions of Peªzy«ski's deomposition method 33Subase 5.1: Ω > 0. Let m, n ∈ N be suh that p + q − u = mΩ and
v = nΩ. From the �rst ondition of (1.8) and (1.1) we dedue that

Xu ∼ Xp ⊕ (X ⊕ B)q ∼ Xp+q ⊕ Bq.Consequently,
(2.14) Xnu ∼ X(n(p+q) ⊕ Bnq.On the other hand, adding Y to both sides of the seond ondition of (1.8),by (1.6) with m = s we see that
(2.15) Y v+1 ∼ Y ⊕ A−d.Adding B−d to both sides of (2.15), by (1.6) with m = −d we infer

Y ∼ Y v+1 ⊕ B−d.Then we have
(2.16) X⊕B ∼ Y ∼ Y v+1⊕B−d ∼ (X⊕B)v+1⊕B−d ∼ Xv+1⊕B−d+v+1.Adding A to both sides of (2.16), by the analogue of (1.6) for X with m = 1we onlude that
(2.17) X ∼ Xv+1 ⊕ B−d+v.Next adding Xv ⊕ B−d+v to both sides of (2.17) we have

X ∼ Xv+1 ⊕ B−d+v ∼ X2v+1 ⊕ B2(−d+v).Therefore by indution we get
(2.18) X ∼ X iv+1 ⊕ Bi(−d+v), ∀i ∈ N

∗.Pik j ∈ N
∗ suh that jv+1 > nu. By (2.18) with i = j and (2.14) we obtain

X ∼ Y jv+1−nu ⊕ Xn(p+q) ⊕ Bnq ⊕ Bj(−d+v)(2.19)

∼ Xjv+1+n(p+q−u) ⊕ Bj(−d+v)+nq.Moreover, by (2.18) with i = j + m, it follows that
(2.20) X ∼ Xjv+1+mv ⊕ Bj(−d+v)+m(−d+v).Notie that n(p+q−u) = mv and 1 = md+n(u−p). So nq = mv+n(u−p) =
mv + (1 − md) = m(−d + v) + 1. Hene by using (2.19) in (2.20), it followsthat X ∼ X ⊕ B ∼ Y.Subase 5.2: Ω < 0. Let m, n ∈ N be suh that p + q − u = −mΩ and
v = −nΩ. Proeeding as in Subase 5.1 we obtain (2.19) and (2.20). Notethat n(p+q−u) = mv and 1 = −md−n(u−p). Thus nq = mv+n(u−p) =
mv − md − 1 = m(−d + v). Therefore by using (2.20) in (2.19) we see that
X ∼ X ⊕ B ∼ Y .3. Neessary ondition for a sextuple in N to be a SSBs. Ourtask in this setion is to prove the neessity part of Theorem 1.4. In order



34 E. M. Galegoto do this we prove Propositions 3.5, 3.6 and 3.7. We start by realling someBanah spaes introdued by W. T. Gowers and B. Maurey in 1997.Remark 3.1. In [13, p. 563℄ Banah spaes Xt were onstruted, forevery t ∈ N, t ≥ 2, having the following property: Xm
t ∼ Xn

t , with m, n ∈ N
∗,if and only if m ≡ n mod t.In order to prove our propositions we need three lemmas. They relate tothe Banah spaes Xt mentioned in Remark 3.1.Lemma 3.2. Let p, q, r, s, u, v ∈ N with p+q ≥ 2, r+s ≥ 1 and u, v ∈ N
∗and suppose that there exist i, j, t ∈ N

∗ with t ≥ 2 satisfying(a) t divides i(p − u) + jq;(b) t divides i(r − s) + j(s − r − v);() t does not divide j − i.Then (p, q, r, s, u, v) is not a SSBs.Proof. Let n ∈ N
∗ be suh that nt − j + i > 0 and nt − i + j > 0. Sine

j + (nt− j + i)− i = nt and i + (nt− i + j)− j = nt, by the property of Xumentioned in Remark 3.1 we have
{

X i
t ∼ Xj

t ⊕ Xnt−j+i
t ,

Xj
t ∼ X i

t ⊕ Xnt−i+j
t .From onditions (a) and (b) we dedue that

{

X iu
t ∼ X ip

t ⊕ Xjq
t ,

Xjv
t ∼ X

(nt−j+i)r
t ⊕ X

(nt−i+j)s
t .Further aording to ondition () we onlude that X i

t is not isomorphito Xj
t . Consequently, (p, q, r, s, u, v) is not a SSBs.Lemma 3.3. Let p, q, r, s, u, v ∈ N with p+q ≥ 2, r+s ≥ 1 and u, v ∈ N

∗and with strong disriminant Ω ≥ 2. Suppose that there exist integers α and
β satisfying(a) α(s − r − v) > βq;(b) β(p − u) > α(r − s);() Ω does not divide β(p + q − u) + αv.Then (p, q, r, s, u, v) is not a SSBs.Proof. Let t = Ω and onsider the linear system
(3.1)

{

i(p − u) + jq = αt,

i(r − s) + j(s − r − v) = βt.The only solution of (3.1) is i = α(s−r−v)−βq and j = β(p−u)+α(r−s). Itfollows from (a)�() that i, j > 0 and t does not divide j−i = β(p+q−u)+αv.



Extensions of Peªzy«ski's deomposition method 35Moreover, learly t divides i(p−u)+ jq and i(r−s)+ j(s−r−v). ThereforeLemma 3.2 implies that (p, q, r, s, u, v) is not a SSBs.Taking t = −Ω and proeeding as in the proof of Lemma 3.3 we obtain:Lemma 3.4. Let p, q, r, s, u, v ∈ N with p + q ≥ 2, r + s ≥ 1, u, v, t ∈ N
∗and with strong disriminant Ω ≤ −2. Suppose that there exist integers αand β satisfying(a) α(s − r − v) < βq;(b) β(p − u) < α(r − s);() Ω does not divide β(p + q − u) + αv.Then (p, q, r, s, u, v) is not a SSBs.Proposition 3.5. If a sextuple (p, q, r, s, u, v) in N with p + q ≥ 2,

r+s ≥ 1 and u, v ∈ N
∗ is a SSBs , then its strong disriminant Ω is di�erentfrom zero.Proof. Suppose that Ω = 0. We distinguish four ases: q = 0; p = u and

q > 0; p > u and q > 0; p < u and q > 0.Case 1: q = 0. Then p ≥ 2 and sine Ω = (p−u)(s− r− v) = 0, we get
p = u or s = r + v.Subase 1.1: p = u. Take n ∈ N

∗ suh that −nv = v + r− s− 2, i = n,
j = n+1 and t ∈ N satisfying −t = n(r−s)+(n+1)(s−r−v). Thus t ≥ 2,
t divides i(r − s) + j(s − r − v) and t does not divide j − i = 1. So Lemma3.2 implies that (p, q, r, s, u, v) is not a SSBs.Subase 1.2: s = r + v. By Remark 2.1 we have

{

X2
2 ∼ X2 ⊕ X2,

X2 ∼ X2
2 ⊕ X2,

{

X2v
2 ∼ X2p

2 ,

Xv
2 ∼ Xr

2 ⊕ Xr+v
2 .Sine X2

2 6∼ X2, it follows that (p, q, r, s, u, v) is not a SSBs.Case 2: p = u and q > 0. Hene Ω = −q(r− s) = 0 and r = s. Thus byRemark 3.1 we see that
{

X2 ∼ X2
2 ⊕ X2,

X2
2 ∼ X2 ⊕ X2,

{

Xp
2 ∼ Xp

2 ⊕ X2q
2 ,

X2v
2 ∼ Xr

2 ⊕ Xr
2 .Consequently, (p, q, r, s, u, v) is not a SSBs.Case 3: p > u and q > 0. Take i = p and j = p − u. So i(p − u) + jq =

(p − u)(p + q) and sine Ω = 0, it follows that i(r − s) + j(s − r − u) =
(r − s)(p + q). Furthermore, j − i = −u and p + q does not divide u. Thusit su�es to take t = p + q and apply Lemma 3.2 to see that (p, q, r, s, u, v)is not a SSBs.



36 E. M. GalegoCase 4: p < u and q > 0. Take i = q and j = u−p. Therefore i(p − u)+
jq = 0 and sine Ω = 0, we have i(r−s)+j(s−r−u) = 0. Moreover u 6= p+q.Otherwise from Ω = (p − u)(s − r − v) − q(r − s) = 0 we would onludethat qv = 0, whih is absurd. Now take t ∈ N, t ≥ 2, suh that t does notdivide j − i = u− p− q and apply Lemma 2.2 to dedue that (p, q, r, s, u, v)is not a SSBs.Proposition 3.6. If a sextuple (p, q, r, s, u, v) in N with p + q ≥ 2,
r + s ≥ 1, u, v ∈ N

∗ and with strong disriminant Ω di�erent from zero isa SSBs, then Ω divides p + q − u.Proof. Assume that Ω 6= 0 and Ω does not divide p+ q−u. We onsidertwo ases: Ω ≥ 2 and Ω ≤ −2.Case 1: Ω ≥ 2. We distinguish four subases: q = 0; p = u and q > 0;
p > u and q > 0; p < u and q > 0.Subase 1.1: q = 0. Then Ω = (p−u)(s−r−v) and hene p 6= u. Notethat in this subase (p, 0, r, s, u, v) is a SSBs if and only if (u, 0, r, s, p, v) is.Thus we an suppose p > u and therefore s− r− v > 0. Take α = p− u and
β = r−s+1. Sine (p−u)(r−s) < (p−u)(r−s+1) and β(p+q−u)+αv =
(p − u)(r − s + v) + p − u, it is enough to apply Lemma 3.3 to see that
(p, q, r, s, u, v) is not a SSBs.Subase 1.2: p = u and q > 0. Then Ω = −q(r − s). Take α = q and
β = s−r−v−1. Sine q(s−r−v−1) < q(s−r−v) and βq+αv = (s−r)q−q,Lemma 3.3 implies that (p, q, r, s, u, v) is not a SSBs.Subase 1.3: p > u and q > 0. By (2.1), (r− s)/(p−u) < (s− r− v)/q.Let m ∈ N

∗ be suh that
r − s

p − u
<

s − r − v

q
−

1

qm
,and take α = qm and β = m(s − r − v) − 1. Therefore (r − s)/(p − u) <

β/α < (s − r − v)/q and β(p + q − u) + αv = mΩ − (p + q − u). Again byLemma 3.3, (p, q, r, s, u, v) is not a SSBs.Subase 1.4: p < u and q > 0. By (2.1), (s−r−v)/q < (r−s)/(p−u).Fix m ∈ N
∗ suh that

s − r − v

q
+

1

qm
<

r − s

p − u
,and take α = qm and β = m(s − r − v) + 1. Hene (s − r − v)/q < β/α <

(r−s)/(p−u) and β(p+q−u)+αv = mΩ+(p+q−u). One more aordingto Lemma 3.3, (p, q, r, s, u, v) is not a SSBs.Case 2: Ω ≤ −2. We distinguish four subases: q = 0; p = v and q > 0;
p > v and q > 0; p < v and q > 0.



Extensions of Peªzy«ski's deomposition method 37Subase 2.1: q = 0. Then Ω = (p−u)(s−r−v) and as in Subase 1.1 wemay assume that p > u. So s−r−v < 0. Take α = p−u and β = r−s−1. Sine
(p−u)(r−s−v), (p−u)(r−s) and β(p−u)+αv = (r−s+v)(p−u)−(p−u),Lemma 3.3 shows that (p, q, r, s, u, v) is not a SSBs.Subase 2.2: p = u and q > 0. Then Ω = −q(r − s). Take α = q and
β = s−r−v+1. Sine q(s−r−v) < q(s−r−v+1) and βq+αv = (s−r)q+q,it follows from Lemma 3.3 that (p, q, r, s, u, v) is not a SSBs.Subase 2.3: p > u and q > 0. By (2.1), (s−r−v)/q < (r−s)/(p−u).Pik m ∈ N

∗ suh that
s − r − v

q
+

1

qm
<

r − s

p − u
,and take α = qm and β = m(s− r−v)+1. Therefore (s− r−v)/q < β/α <

(r − s)/(p − u) and β(p + q − u) + αv = mΩ + (p + q − u). Consequently,Lemma 3.3 implies that (p, q, r, s, u, v) is not a SSBs.Subase 2.4: p < u and q > 0. By (2.1), (r−s)/(p−u) < (s−r−v)/q.Let m ∈ N
∗ be suh that

r − s

p − u
<

s − r − v

q
−

1

qm
,and take α = qm and β = m(s − r − v) − 1. Thus (r − s)/(p − u) < β/α <

(s− r − v)/q and β(p + q − u) + αv = mΩ − (p + q − u). It su�es to applyLemma 3.3 to see that (p, q, r, s, u, v) is not a SSBs and omplete the proofof the proposition.Proposition 3.7. If a sextuple (p, q, r, s, u, v) in N with p + q ≥ 2,
r + s ≥ 1, u, v ∈ N

∗ and strong disriminant Ω di�erent fom zero is a SSBs,then Ω divides v.Proof. Assume that Ω 6= 0 and Ω does not divide v. We also onsidertwo ases: Ω ≥ 2 and Ω ≤ −2.Case 1: Ω ≥ 2. We distinguish �ve subases: r = s; s = r + v; r > s;
r < s and s < r + v; r < s and s > r + v.Subase 1.1: r = s. Then Ω = −(p − u)v and p < u. Take α = 1 − qand β = −v. Sine −qv < (−q + 1)v and β(p + q − u) + αv = −v(p− u) + v,Lemma 3.4 implies that (p, q, r, s, u, v) is not a SSBs.Subase 1.2: s = r + v. Then Ω = −q(r − s) and r − s < 0. Take
α = u + 1 − p and β = s − r. Sine (p − u − 1)(r − s) > (p − u)(r − s) and
βq + αv = qv + v, Lemma 3.4 shows that (p, q, r, s, u, v) is not a SSBs.Subase 1.3: r > s. Then s < r + v and by (2.1), (p − u)/(r − s) <
q/(s − r − v). Let m ∈ N

∗ be suh that
p − u

r − s
<

q

s − r − v
+

1

m(s − r − v)
,



38 E. M. Galegoand take α = qm − 1 and β = m(s − r − u). Hene q/(s − r − v) < α/β <
(p− u)/(r − s), and β(p + q − v) + αv = mΩ + v. Consequently, Lemma 3.3implies that (p, q, r, s, u, v) is not a SSBs.Subase 1.4: r < s and s < r+v. By (2.1), q/(s−r−v) < (p−v)/(r−s).Fix m ∈ N

∗ suh that
q

s − r − u
−

1

m(s − r − u)
<

p − v

r − s
,and take α = qm+1 and β = m(s−r−u). Note that q/(s−r−v) < α/β <

(p− v)/(r − s), and β(p + q − v) + αt = m[(p− v)(s− r − u)− (r − s)]− v.Again by Lemma 3.3, (p, q, r, s, u, v) is not a SSBs.Subase 1.5: r < s and s > r+v. By (2.1), (p−u)/(r−s) < q/(s−r−v).Pik m ∈ N
∗ suh that

p − u

r − s
<

q

s − r − v
−

1

m(s − r − v)
,and take α = qm − 1 and β = m(s − r − u). Observe that q/(s − r − v) <

α/β < (p−u)/(r− s), and β(p+ q− v) +αv = mΩ − v. One again Lemma3.3 implies that (p, q, r, s, u, v) is not a SSBs.Case 2: Ω ≤ 2. We distinguish �ve subases: r = s; s = r + v; r > s;
r < s and s < r + v; r < s and s > r + v.Subase 2.1: r = s. Then Ω = −(p − u)v and p > u. Take α = q + 1and β = −v. Sine (−q − 1)v < −qv and β(p + q − u) + αv = −v(p− u) + v,by Lemma 3.4, (p, q, r, s, u, v) is not a SSBs.Subase 2.2: s = r + v. Then Ω = −q(r − s) and r − s > 0. Take
α = p − u + 1 and β = r − s. Sine (p − u)(r − s) < (p − u + 1)(r − s) and
βq + αv = −qv + v, Lemma 3.4 implies that (p, q, r, s, u, v) is not a SSBs.Subase 2.3: r > s. Then s < r + v and by (2.1), q/(s − r − v) <
(p − u)/(r − s). Let m ∈ N

∗ be suh that
q

s − r − v
−

1

m(s − r − v)
<

p − u

r − s
,and take α = qm − 1 and β = m(s − r − v). Notie that q/(s − r − v) <

α/β < (p − u)/(r − s, and β(p + q − u) + αv = −mΩ − v. Consequently,Lemma 3.4 implies that (p, q, r, s, u, v) is not a SSBs.Subase 2.4: r < s and s < r+v. By (2.1), (p−u)/(r−s) < q/(s−r−v).Pik m ∈ N
∗ suh that

p − u

r − s
<

q

s − r − v
+

1

m(s − r − v)
,



Extensions of Peªzy«ski's deomposition method 39and take α = qm − 1 and β = m(s − r − u). Thus q/(s − r − v) < α/β <
(p − u)/(r − s), and β(p + q − v) + αv = mΩ + v. Again by Lemma 3.3,
(p, q, r, s, u, v) is not a SSBs.Subase 2.5: r < s and s > r+v. By (2.1), q/(s−r−v) < (p−u)/(r−s).Fix m ∈ N

∗ suh that
q

s − r − v
<

1

m(s − r − v)
+

p − u

m(r − s)
,and take α = qm+1 and β = m(s−r−u). Therefore q/(s−r−v) < α/β <

(p − u)/(r − s), and β(p + q − v) + αv = mΩ + v. One again Lemma 3.4implies that (p, q, r, s, u, v) is not a SSBs, and the proposition is proved.4. Some remarks and problems. Taking into aount the analogueof (1.6) for X we are led toDefinition 4.1. A sextuple (p, q, r, s, u, v) in N with p+q ≥ 1, r+s ≥ 1and u, v ∈ N
∗ is a tight Shroeder�Bernstein sextuple for Banah spaes(for short, TSBs) if X ∼ Y whenever there exist Banah spaes A and Bsatisfying (1.1) and the following deomposition sheme:

{

Xu ∼ Ap ⊕ Bq,

Y v ∼ Ar ⊕ Bs.We also say that Θ = (p − q − u)(s − r − v) − (q − p)(r − s) is the tightdisriminant of the sextuple (p, q, r, s, u, v).Similarly to Theorem 1.4, we an prove:Theorem 4.2. A sextuple (p, q, r, s, u, v) in N with p + q ≥ 1, r + s ≥ 1and u, v ∈ N
∗ is a TSBs if and only its tight disriminant Θ is di�erent fromzero and Θ divides u and v.This result was proved in [11, Theorem 1.3℄ for the ase u = v = 1.However, note that if we replae B by X or A by Y or still Y by A inthe seond ondition of (1.8) some problems arise naturally, for example:Problem 4.3. Give non-isomorphi Banah spaes X and Y suh thatthere exist Banah spaes A and B satisfying (1.1) and

{

X2 ∼ X ⊕ Y,

Y ∼ A ⊕ X.Problem 4.4. Give non-isomorphi Banah spaes X and Y suh thatthere exist Banah spaes A and B satisfying (1.1) and
{

X2 ∼ X ⊕ Y,

Y ∼ Y ⊕ B2.



40 E. M. GalegoProblem 4.5. Give non-isomorphi Banah spaes X and Y suh thatthere exist Banah spaes A and B satisfying (1.1) and
{

X2 ∼ X ⊕ Y,

A2 ∼ A ⊕ B.
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