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On the derived tensor product functors for
(DF)- and Fréchet spaces

by

Oğuz Varol (Wuppertal)

Abstract. For a (DF)-space E and a tensor norm α we investigate the derivatives
Torl

α(E, ·) of the tensor product functor E ⊗̃α · : FS → LS from the category of Fréchet
spaces to the category of linear spaces. Necessary and sufficient conditions for the vanish-
ing of Tor1α(E, F ), which is strongly related to the exactness of tensored sequences, are
presented and characterizations in the nuclear and (co-)echelon cases are given.

Introduction. Locally convex tensor products go back to A. Grothen-
dieck, who studied them in detail in the 1950’s ([5]). Their tremendous
importance is, inter alia, due to the fact that in many cases, spaces of oper-
ators, vector-valued functions etc. can be represented as tensor products. In
this language, surjectivity problems that commonly appear e.g. for vector-
valued partial differential operators with constant coefficients, correspond
to exactness properties of tensored sequences (see [12], [29] and [25]).

In the early 1970’s V. P. Palamodov laid the basis for the usage of
categorical and homological methods in functional analysis ([19]). Unfor-
tunately, tensor product functors and their derivatives were not mentioned
in that fundamental paper. While Ext1 for Fréchet spaces, whose vanishing
is equivalent to the splitting of so-called extensions, has been successfully
investigated since, first of all by D. Vogt ([26, 28]), the powerful apparatus
of homological algebra was completely avoided in studying the exactness of
tensored sequences.

This article is devoted to derivatives of tensor product functors from the
category of Fréchet spaces to the category of linear spaces, whose vanishing
is close to the exactness of tensored sequences.

In the first section we look at this problem by decomposing it into its
components: tensoring and completing. In this context one has to emphasize
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conditions which depend on the exact sequence considered and the space
which is being tensored. The first approach leads directly to the so-called
⊗-sequences of W. Kaballo and D. Vogt ([12]), while the second to π- and
ε-spaces as defined by R. Hollstein ([7–9]).

In the second section we will formulate and prove one of the central the-
orems of this paper. It states that in most applications, there is a close rela-
tion between the derivatives of so-called σ-stable functors, i.e., functors that
commute with the differentials of the proj-functor, and the proj1-functor.
The vanishing of proj1 was studied by many authors; in the first place one
has to mention V. P. Palamodov ([19]) and V. S. Retakh.

The third section gives first examples for derivatives of tensor product
functors and is followed by a technical section where we use well-known
methods of proj1-theory (see [1] resp. [4] and [13]) to deduce necessary and
sufficient conditions for the vanishing of Tor1. Here we will concentrate on
the important case where the tensored space is an (LB)-space. Interchange-
ability properties of (LB)-spaces with Banach spaces in the tensorial sense
turn out to be very fruitful for computations.

In [24] the author generalized and extended a classical and deep result of
A. Grothendieck, who characterized topological properties of the projective
tensor product of a coechelon space and an echelon space of type one ([5, II,
§4, no. 3, Theorem 1]). In the last section we shall formulate four standard
cases for Tor-theory, in analogy to the four standard cases in Ext-theory
([26], [4]), and give characterizations for the vanishing of Tor1 in all of them,
i.e., in nuclear and (co-)echelon cases.

1. Some basics from category theory and tensor products. We
expect the reader to be familiar with the concept of categories, functors
and natural transformations. Unless otherwise stated, we assume functors
to be covariant and locally convex spaces to be separated. BX will denote
the closed unit ball of a normed space X. For our general notation of locally
convex spaces and tensor products we refer to [17] and [10].

As mentioned in the introduction we wish to study the exactness of the
continuation of tensored sequences to their completion. For this purpose
we first repeat some of the needed categorical terms (see [19] and [31] for
details), and apply these in a first rudimentary step to our situation.

Definition 1.1. An additive category C is called semi-abelian if every
C-morphism f has a kernel and a cokernel and the induced C-morphism
f : coim(f) → im(f) is a bimorphism, i.e., a monomorphism (ker(f) = 0)
and an epimorphism (coker(f) = 0). If in addition every C-morphism f is a
homomorphism, i.e., f is an isomorphism, then C is called abelian. We say
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that a C-homomorphism is a monohomomorphism (epihomomorphism) if it
is a monomorphism (epimorphism, respectively).

We will deal primarily with the following examples: the category LS of
linear spaces and linear maps is abelian, whereas the category LCS of locally
convex spaces, which are not necessarily separated, and continuous linear
maps is semi-abelian. The category FS of Fréchet spaces and continuous lin-
ear maps is also semi-abelian. Monohomomorphisms (epihomomorphisms)
in LCS and FS are nothing else than topological embeddings (surjective
homomorphisms, respectively).

Now let C be a semi-abelian category. We say that a C-sequence

· · · → An−1 dn−1

→ An dn

→ An+1 → · · ·

is exact at An if dn−1 and dn are homomorphisms and im(dn−1) = ker(dn).
Furthermore we say that the sequence is exact if it is everywhere exact.

Definition 1.2. An additive functor R : C → D between semi-abelian
categories is called

(i) left exact if for all exact C-sequences 0 → F → G → H the
D-sequence 0 → R(F ) → R(G) → R(H) is exact,

(ii) exact if for all exact C-sequences 0 → F → G → H → 0 the D-se-
quence 0 → R(F ) → R(G) → R(H) → 0 is exact.

Example 1.3.

(i) It is well-known that projective and inductive spectra and their
limits play an important role in the structure theory of Fréchet-
and (DF)-spaces and in applications of Banach space theory to these
spaces. On the other hand, it will turn out that the projective limit
functor, or to be more precise, its first derivative, is one of our
main objects of study. A straightforward calculation shows that the
projective limit functor proj : LSN → LS,

F = (Fn, ̺n
n+1) 7→

{
x ∈

∞∏

n=1

Fn : ̺n
n+1(xn+1) = xn for all n

}
,

(fn)n 7→ (x 7→ (fn(x))n)

on the category of (countable) projective spectra of linear spaces is
left exact.

(ii) For a linear space E the tensor product functor E ⊗ · : LS → LS,
F 7→ E ⊗F , f 7→ idE ⊗ f , is exact (see for instance [10, Proposition
1.6.3 and its proof]).

(iii) The completion functor ˜ : LCS → LCS, F 7→ F̃ , f 7→ f̃ , is left

exact, where F̃ denotes the Hausdorff completion of F (see [19,
Proposition 10.3] for a nice homological proof).
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In connection with [19, Proposition 4.2] we obtain

Corollary 1.4. Let f : F → G and g : G → H be LCS-morphisms.

Then

(a) If g is a homomorphism, then ker(g̃) = k̃er(g).

(b) If f is a monohomomorphism, then im(f̃) = ĩm(f).
(c) The morphism g is a (mono-)homomorphism if and only if g̃ is a

(mono-)homomorphism.

If E = indN EN is a non-complete (LB)-space (these are always as-
sumed to be injective), the completion of the canonical epihomomorphism
g :

⊕
N EN → E, (xN )N 7→

∑
xN , is not surjective and therefore not an

epihomomorphism. However, in the metrizable case the behaviour of epi-
homomorphisms is good: Using [17, Lemma 3.9] it suffices to show that
the completed map is nearly open, i.e., the closure of the image of a neigh-
bourhood of zero is again a neighbourhood of zero, which is immediate.
Consequently, due to Example 1.3(iii) the completion of an exact sequence
of metrizable locally convex spaces is again topologically exact.

For a monomorphism f : F → G between locally convex spaces the map
f̃ in general does not remain a monomorphism:

Example 1.5. Let (X, ‖·‖) be an arbitrary infinite-dimensional Banach
space, (yn)n∈N a sequence of linearly independent elements in X of norm one,
Y := span({y1, y2, . . .}), and Z an algebraic complement of Y in X. Then

every x ∈ X has a unique representation as x = y + z with y =
∑N

n=1 λnyn

∈ Y , N ∈ N, λn ∈ K and z ∈ Z. Setting |||x||| :=
∑N

n=1 n|λn| + ‖z‖, we get
another norm on X, which satisfies ‖ · ‖ ≤ ||| · |||, but which is not equivalent
to ‖ · ‖. If f : (X, ||| · |||) → (X, ‖ · ‖) denotes the identity, an application of

the open mapping theorem shows that f̃ is an epihomomorphism but is not
injective.

We have already seen that in the purely algebraic case tensor product
functors behave very well (Example 1.3(ii)). Now, the central question is:
What changes if we consider locally convex spaces and endow the tensor
products with natural locally convex topologies like the projective or injec-
tive tensor norm topology and pass to the completion?

Let us summarize a few results regarding this question and the projective
tensor product. For the injective tensor product we refer to [10, Section 16.2]
and leave the corresponding statements to the reader.

Remark 1.6. Recall that for locally convex spaces E and F the projec-

tive tensor product topology π is the finest locally convex topology on E⊗F
such that the canonical map E × F → E ⊗ F is continuous. This space is
denoted by E ⊗π F and its completion by E ⊗̃π F . Using Corollary 1.4(a),
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Example 1.3(ii) and the fact that the projective tensor product respects epi-
homomorphisms ([10, Proposition 15.2.1]) we conclude: Let E be a locally

convex space and 0 → F
f
→ G

g
→ H → 0 an exact sequence of locally convex

spaces. Then in the sequence

0 → E ⊗̃π F
id⊗̃πf
−−→ E ⊗̃π G

id⊗̃πg
−−→ E ⊗̃π H → 0,

im(idE ⊗̃π f) is dense in ker(idE ⊗̃π g) and idE ⊗̃π g is a homomorphism.
It is well-known that in general idE ⊗̃π f is not a monohomomorphism

([10, Example 15.2.2]). The following example shows that idE ⊗̃π f is not
injective in general. Suppose E is a Banach space without the approximation

property (a.p.), i.e., there is a Banach space F such that the map iE,F :
E⊗̃πF → E⊗̃εF is not injective ([2, 5.6]). Consider the monohomomorphism
f : F → G := l∞(B◦

F ), x 7→ (x′ 7→ x′(x)), from F into the space of bounded
maps on the σ(F ′, F )-compact set B◦

F . As G has the a.p. the map iE,G is
injective and the assertion follows from the commutativity of the diagram

E ⊗̃π F E ⊗̃ε F

E ⊗̃π G E ⊗̃ε G

-
iE,F

?
idE⊗̃πf

?
idE⊗̃εf

-
iE,G

Furthermore the map idE ⊗̃π g has dense range, but is in general not sur-
jective: Consider a nuclear, non-splitting sequence of complete locally con-

vex spaces, for instance the Borel sequence 0 → J{0} → E([−1, 1])
g
→ ω → 0,

where g(f) := (f (n)(0))n∈N0 (cf. [17, Aufgabe 1, §30]). The map idH′ ⊗̃π g :
H ′ ⊗̃π G = L(H, G) → L(H, H) = H ′ ⊗̃π H is not surjective, as a lifting of
idH would be a right inverse of g.

At first sight there are now two obvious ways to achieve more exactness.
The first one is to make further assumptions on the exact sequence consid-
ered. This leads to the so-called ⊗-sequences of W. Kaballo and D. Vogt:

an exact sequence 0 → F
f
→ G

g
→ H → 0 of locally convex spaces is called

a ⊗-sequence if idE ⊗π f remains a monohomomorphism (or equivalently,
if idE ⊗ε g remains an epihomomorphism) for all locally convex spaces (or
equivalently for all Banach spaces) E. For instance, exact sequences of nu-
clear spaces are ⊗-sequences. For further equivalent conditions and examples
we refer to [12]. In this terminology [12, Satz 1.5] becomes

Corollary 1.7.

(a) Let 0 → F → G → H → 0 be a ⊗-sequence. Then the sequences 0 →
E ⊗̃π F → E ⊗̃π G → E ⊗̃π H and 0 → E ⊗̃ε F → E ⊗̃ε G → E ⊗̃ε H
are topologically exact for all locally convex spaces E.
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(b) If 0 → F → G → H → 0 is an exact sequence of Fréchet spaces,
then the following conditions are equivalent :

(i) 0 → F → G → H → 0 is a ⊗-sequence.

(ii) The E ⊗̃π ·-tensored sequence is exact for all Fréchet spaces

(Banach spaces) E.

(iii) The E ⊗̃ε ·-tensored sequence is exact for all Fréchet spaces

(Banach spaces) E.

Proof. (a) This follows from Example 1.3(ii), the fact that the projective
(resp. injective) tensor product respects epihomomorphisms (resp. monoho-
momorphisms), and Example 1.3(iii).

(b) The implications (i)⇒(ii) and (i)⇒(iii) are immediate from (a) and
the remarks after Corollary 1.4; the others follow from Corollary 1.4(c) and
Example 1.3(ii).

The second method to guarantee more exactness is to make assump-
tions on the space E. A locally convex space E is called an ε-space (resp.
a π-space) in the sense of R. Hollstein if for all epihomomorphisms g (resp.
monohomomorphisms f) of locally convex spaces (or equivalently, of Ba-
nach spaces) the map idE ⊗ε g (resp. idE ⊗π f) is again a homomorphism
([8]). In that paper R. Hollstein also showed that the ε-Banach spaces (resp.
π-Banach spaces) are exactly the L∞-spaces (resp. L1-spaces) (see [14] for
the notion of Lp-spaces). For instance, nuclear spaces are ε- and π-spaces.
We will consider further examples at a later point.

Arguing as in the proof of Corollary 1.7, we obtain

Corollary 1.8. If E is an ε-space (resp. a π-space), then the functor

E ⊗̃ε · : LCS → LCS (resp. E ⊗̃π · : LCS → LCS) is left exact. For a Fréchet

space E the converse is also true.

Though we mainly concentrate on the projective and injective tensor
product we will be able to translate without any additional effort some of our
results to the more general case of so-called tensor norm topologies. Based on
A. Grothendieck’s tensor norms, these were introduced by J. Harksen. For
details on the following see [2] and [6]. Roughly speaking, a tensor norm α
assigns to each pair of normed spaces a norm on their tensor product which
is reasonable in the sense that ε ≤ α ≤ π, and has the metric mapping

property, i.e., the operator norm of tensored maps is bounded above by the
product of the norms of the maps. Such a tensor norm induces in a natural
way a locally convex topology on the tensor product of two given locally
convex spaces by using their local Banach spaces.

2. Derived functors and their computation. As far as the author
knows, it was V. P. Palamodov who introduced (co-)homological methods
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to functional analysis. His fundamental work [19] is also the basis for our
considerations. For further literature on this subject see [31], [23] and [30].

Theorem 2.1. Let C be a semi-abelian category with enough injective
objects, i.e., for every object there is a monohomomorphism into an injective

object , and R : C → LS an additive functor. Then there is an associated

sequence Rl : C → LS, l ∈ N0, of additive functors (derived functors) such

that every exact C-sequence 0 → F → G → H → 0 induces a natural exact

LS-sequence, the so-called long exact (cohomology) sequence:

0 → R0(F ) → R0(G) → R0(H)
δ
→ R1(F ) → R1(G) → R1(H)

δ
→ R2(F ) → · · · .

The proof is as in [19, Proposition 2.1]. Note that V. P. Palamodov
assumes that the functor R is semi-injective, i.e., R takes monohomomor-
phisms to monohomomorphisms, but this is neither needed for the definition
of the derivatives nor for the deduction of the long exact sequence. Never-
theless, as it is of general interest regarding exactness, we will discuss this
property immediately after introducing the derivatives of tensor product
functors.

Let us briefly recall the definition of derivatives. Let F be a C-object

and 0 → F
ε
→ F 0 i0

→ F 1 i1
→ · · · an injective resolution of F , i.e., an exact

C-sequence with all F l injective. Applying the functor R and passing to
cohomology gives Rl(F ), i.e., Rl(F ) = kerR(il)/imR(il−1), where i−1 := 0.
This definition is, up to isomorphism, independent of the choice of resolution.

Theorem 2.1 clearly implies the next remark, which allows for an abstract
reformulation of the central question of Section 1.

Remark 2.2. Suppose R ≃ R0 and let F be a C-object. Then R is exact
on all short exact sequences starting with F if and only if R1(F ) = 0.

This easy fact was used by D. Vogt and others (see [26, 4]) to study
exactness properties of the functor L(E, ·) : FS → LS for Fréchet spaces E
by characterizing the vanishing of Ext1(E, F ), or equivalently the existence
of a splitting in any extension of E by F , in the so-called four standard cases
(nuclear and Köthe cases).

Next we introduce the derivatives of locally convex tensor product func-
tors.

Definition 2.3. For a locally convex space E and a tensor norm α we
consider the functor

E ⊗̃α · : FS → LS, F 7→ E ⊗̃α F, f 7→ idE ⊗̃α f,

and define Torl
α(E, ·) := (E ⊗̃α ·)l : FS → LS, l ∈ N0.
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Remark 2.4. The functor L(E, ·) is left exact and therefore semi-injec-
tive. For a locally convex space E the functor E ⊗̃ε · is also semi-injective
([10, Corollary 16.2.2]). For a π-space E the functor E ⊗̃π · is semi-injective,
which fails in the general case as Remark 1.6 shows. Generalizing the a.p. for
Banach spaces (see Remark 1.6), we get an interesting sufficient condition
for semi-injectivity. We say that a locally convex space E has the general

approximation property (g.a.p.) if for any locally convex space F the canon-
ical map E ⊗̃π F → E ⊗̃ε F is injective. Now let E be a locally convex space
with the g.a.p. and f : F → G a monohomomorphism between locally con-
vex spaces. As idE ⊗̃ε f is injective, the commutative diagram of Remark 1.6
implies the semi-injectivity of the functor E ⊗̃π ·. The g.a.p. always implies
the a.p.; this may be found in [3], together with other interesting results on
this property. If for all Banach spaces X and z ∈ E ⊗̃π X there is a compact
subset K ⊆ E with z ∈ Γ (K ⊗ BX), where the closure is taken in E ⊗̃π X,
the two notions coincide. By a well-known result of A. Grothendieck the
latter is true for Fréchet spaces E. If E = indN EN is an (LB)-space such
that

E ⊗̃π X = indN (EN ⊗̃π X)

for all Banach spaces X, the above condition is satisfied, again by Grothen-
dieck’s result. Interchangeability of tensor products with inductive limits in
the above sense is of central interest for us. We will study it at a later point.

For an additive functor R : FS → LS and a Fréchet space F we will
now develop a general method for computing the group R1(F ). Our central
tool will be the long exact sequence. A first step towards the computa-
tion is

Example 2.5. Consider the projective limit functor proj : LSN → LS
from Example 1.3(i). Then for a projective LS-spectrum F = (Fn, ̺n

m) we
have

proj0 F ∼= projF = ker(σ(F)), proj1 F = coker(σ(F)),

projl F = 0 for l ≥ 2,

where the linear map σ(F) = σ :
∏

n Fn →
∏

n Fn is given by x 7→
̺n

n+1(xn+1) − xn.
Moreover, if F = (Fn, ̺n

m) and G = (Gn, φn
m) are equivalent projective

spectra, i.e., there are sequences of natural numbers (kn)n, (ln)n with n ≤
ln ≤ kn ≤ ln+1 and linear maps un, vn such that un ◦ vn+1 = φln

ln+1
and

vn+1 ◦ un+1 = ̺kn

kn+1
, then we have projl F ∼= projl G for all l. Proofs for the

above can be found in [19] and [31].

Definition 2.6. A projective spectrum F = (Fn, ̺n
m) of Banach spaces

is called a fundamental system of Banach spaces for the Fréchet space projF
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if F is equivalent to a reduced projective spectrum of Banach spaces, or
equivalently, if for all n there is an m ≥ n such that for all k ≥ m one has
an inclusion ̺n

m(Fm) ⊆ ̺n
k(Fk), where the closure is taken in Fn.

For instance every nuclear Fréchet space has a fundamental system of lp-
spaces (1 ≤ p ≤ ∞), which can easily be seen using nuclear representations
of the connecting maps.

The following definition turns out to be very useful for computing right
derivatives:

Definition 2.7. We call an additive functor R : FS → LS σ-stable if
the functor commutes with countable products in the sense that the mor-
phism pF : R(

∏
n Fn) →

∏
n R(Fn) induced by the sequence of projections∏

n Fn → Fm is a natural isomorphism, and σ(R(F)) ◦ pF = pF ◦ R(σ(F))
for all projective FS-spectra F = (Fn, ̺n

m), where R(F) := (R(Fn), R(̺n
m)).

Example 2.8. For a locally convex space E and a tensor norm α the
functors L(E, ·), E ⊗̃α · : FS → LS are σ-stable.

Proof. We will give a proof for the tensor product functors. Due to [6,
Korollar 2.12] the functor E⊗̃α· commutes with (countable) products. As the
space E⊗α

∏
Fn is dense in E ⊗̃α

∏
Fn, an easy calculation with elementary

tensors gives the claim.

With the above definition we can formulate and prove our main theorem
for computing derivatives.

Theorem 2.9. Let R : FS → LS be a σ-stable functor. For all l ∈ N

and fundamental systems of Banach spaces F = (Fn, ̺n
m) for a Fréchet space

F we have an exact LS-sequence

0 → proj1 Rl−1(Fn) → Rl(F ) → projRl(Fn) → 0.

Proof. First we show that the derivatives Rl are also σ-stable. For this,
choose injective resolutions

0 → Fn
εn−→ F 0

n

i0n−→ F 1
n

i1n−−→ · · · ,

which induce an injective resolution

0 →
∏

Fn
(εn)n
−−→

∏
F 0

n

(i0n)n
−−→

∏
F 1

n

(i1n)n
−−→ · · ·

Further we find for all n ∈ N a unique (up to homotopy) morphism ((̺n
n+1)

l)l

which lifts ̺n
n+1, so that we can also consider the projective FS-spectra

F l := (F l
n, (̺n

n+1)
l), l ∈ N0. The central observation is that the unique (up

to homotopy) morphism (σl)l, lifting σ = σ(F),
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0
∏

Fn

∏
F 0

n

∏
F 1

n · · ·

0
∏

Fn

∏
F 0

n

∏
F 1

n · · ·

- -
(εn)n

?

σ

-
(i0n)n

p

p

p

p

p

p

p

p

p?

σ0

p

p

p

p

p

p

p

p

p?

σ1

-
(i1n)n

- -
(εn)n

-
(i0n)n

-
(i1n)n

is given by σ(F l): with σ(F−1) := σ(F), i−1
n := εn, F−1

n := Fn, we have

σ(F l) ◦ (il−1
n )n(x) = ((̺n

n+1)
l ◦ il−1

n+1(xn+1) − il−1
n (xn))n

= (il−1
n ◦ (̺n

n+1)
l−1(xn+1) − il−1

n (xn))n

= (il−1
n ((̺n

n+1)
l−1(xn+1) − xn))n = (il−1

n )n ◦ σ(F l−1)(x)

for all l ∈ N0 and x ∈
∏

F l−1
n . As R is σ-stable, we may consider the

following commutative diagram:
∏

R(F l−1
n )

∏
R(F l

n)
∏

R(F l+1
n )

R(
∏

F l−1
n ) R(

∏
F l

n) R(
∏

F l+1
n )

∏
R(F l−1

n )
∏

R(F l
n)

∏
R(F l+1

n )

R(
∏

F l−1
n ) R(

∏
F l

n) R(
∏

F l+1
n )

-

σ(R(Fl))

-

?

�
�

��3∼=

-

?

?

-
�

�
��3∼=

-

?

R(σ(Fl))
?

-
�

�
��3∼=

?

- -

�
�

��3∼=

--
�

�
��3∼=

--
�

�
��3∼=

for all l ∈ N0, where σ(F−1) := 0, i−1
n := 0 and F−1

n := 0. Passing to
cohomology gives the σ-stability of the Rl.

Next, consider the exact sequence (called the canonical sequence)

0 → F
̺
→

∏
Fn

σ
→

∏
Fn → 0,

where ̺(x) := (̺n(x))n (see [26]). Applying the long exact sequence to this
gives an exact LS-sequence

· · · → Rl−1
( ∏

Fn

)
Rl−1(σ)
−−→ Rl−1

( ∏
Fn

)
∆
−→ Rl(F )

Rl(̺)
−−→ Rl

( ∏
Fn

)

Rl(σ)
−−→ Rl

( ∏
Fn

)
→ · · · .

From this, the σ-stability of the derivatives, and Example 2.5, we get the
isomorphisms kerRl(̺) = im ∆ ∼= coim∆ ∼= cokerRl−1(σ) ∼= proj1 Rl−1(Fn)
and imRl(̺) = kerRl(σ) ∼= projRl(Fn). The exactness of the sequences
0 → kerRl(̺) → Rl(F ) → imRl(̺) → 0 implies the theorem.
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Remark 2.10. Another classical method for computing cohomology
groups is by means of spectral sequences. Especially the Grothendieck
spectral sequence (see [30, Theorem 5.8.3] and [19, Proposition 2.2] for
the semi-abelian version) can be used to compute the derivatives of com-

posed functors. Applying this spectral sequence to the composition FSN R
→

LSN proj
−→ LS and using the fact that R commutes with countable products

(so R takes free projective spectra to free spectra), as well as proj2 X = 0,
gives for all l ∈ N an exact LS-sequence

0 → proj1Rl−1(Fn) → (proj ◦R)l(F) → proj Rl(Fn) → 0.

This however leaves the group (proj ◦R)l(F) to be computed.

Theorem 2.9 becomes usable in cases of acyclicity:

Definition 2.11. We call a Fréchet space F

(a) R-acyclic if Rl(F ) = 0 for all l ≥ 1,
(b) locally R-acyclic if F has a fundamental system of R-acyclic Banach

spaces,
(c) locally injective (resp. locally projective) if F has a fundamental sys-

tem of injective (resp. projective) Banach spaces.

For instance, injective Fréchet spaces are R-acyclic. Consequently, locally
injective Fréchet spaces are locally R-acyclic. Nuclear Fréchet spaces and
quasinormable Köthe spaces are locally injective.

Remark 2.12. For R-acyclic Fréchet spaces F the identity R0(F ) =
R(F ) holds.

Proof. By a result of A. Grothendieck, for the definition of the derivatives
one may use R-acyclic resolutions instead of injective ones (cf. [30, Exercise
2.4.3]). Applying this to 0 → F → F → 0 → 0 → · · · gives the claim.

Corollary 2.13. Let R : FS → LS be a σ-stable functor and F a

Fréchet space with a fundamental system of Banach spaces F = (Fn, ̺n
m).

Then

(a) R1(F ) = 0 ⇒ proj1 R0(Fn) = 0.
(b) Rl(F ) = 0 for l ≥ 2 and R1(F ) = proj1 R(Fn) if F is locally R-

acyclic.

Proof. (a) and (b) follow from Theorem 2.9 and the above remark. Note
that projl depends only on the equivalence class of the projective spectrum
considered (Example 2.5).

3. First examples for derivatives of tensor product functors.

Before deducing necessary and sufficient conditions for the vanishing of
Tor1α(E, F ) in the next section and applying them to standard cases, we will
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give some simple examples which may contribute to a better understanding
of the subject.

Remark 3.1. Let E be a locally convex space with the a.p. Then the
functor E ⊗̃ε · : FS → LS is left exact. In particular, Tor0ε(E, F ) = E ⊗̃ε F
for any Fréchet space F .

Proof. First we may assume that E is complete as Ẽ also has the a.p.
and E ⊗̃ε · ≃ Ẽ ⊗̃ε ·. The assertion now follows from the coincidence of the
ε-tensor product functor with the ε-product functor (see [10, 18.1.8]).

For the projective tensor product the situation is quite different:

Example 3.2. Let K = R. Then l2 ⊗̃π l2 is a proper linear subspace of
Tor0π(l2, l2) and the functor l2 ⊗̃π · : FS → LS is not left exact.

Proof. Let 0 → l2
ε
→ F 0 i0

→ F 1 → · · · be an injective resolution of l2,
where the F l are injective Banach spaces. Consider the commutative dia-
gram

0 l2 ⊗̃π l2 l2 ⊗̃π F 0 l2 ⊗̃π F 1

l2 ⊗̃π coker(ε)

- -
idl2

⊗̃πε

H
H

HHjidl2
⊗̃πq

-
idl2

⊗̃πi0

�
�

��*

where q : F 0 → coker(ε) is the canonical map. Note that the functor l2 ⊗̃π ·
is semi-injective (Remark 2.4). By Example 1.3(ii) and Corollary 1.4(a) we
have

Tor0π(l2, l2) = ker(idl2 ⊗̃π i0) = ker(idl2 ⊗̃π q) = (ker(idl2 ⊗π q))∼

= (im(idl2 ⊗π ε))̃ = im(idl2 ⊗π ε)
l2⊗̃πF 0

.

So it suffices to show that idl2 ⊗̃πε does not have closed range or equivalently
is not a monohomomorphism. Assume the opposite. Let ϕ be the linear map
corresponding to the bilinear form (x, y) 7→ 〈x, y〉 on the space l2 ⊗̃π l2. By
assumption and the Hahn–Banach theorem we find a continuous extension
φ of ϕ to the space l2 ⊗̃π F 0. Setting P (y) = (x′ 7→ φ(x′ ⊗ y)) gives, by
the Riesz representation theorem, a continuous projection P from F 0 onto
l2 = l′2. Consequently, l2 is a complemented subspace of an injective Banach
space and therefore it is also injective, a contradiction.

Later we shall need the following result, which follows from Remark 2.2
and Corollary 1.8:

Proposition 3.3. Let E be an α-space, where α = π or ε. Then for

all exact FS-sequences 0 → F → G → H → 0 the tensored sequence

0 → E ⊗̃α F → E ⊗̃α G → E ⊗̃α H → 0 is topologically exact if and only if

Tor1α(E, F ) = 0.
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A similar argument gives

Proposition 3.4. A Fréchet space E is an α-space (α = π or ε) if and

only if Tor0α(E, ·) ≃ E ⊗̃α · and Tor1α(E, ·) = 0.

As a direct consequence of Proposition 3.4 and the fact that l1 has the
a.p. and is not an ε-space we get:

Example 3.5. There is a Fréchet space F (even a Banach space) with
Tor1π(l1, F ) = 0 6= Tor1ε(l1, F ).

Since l1 is a π-Banach space satisfying the a.p. and l∞ is not nuclear, we
have:

Example 3.6. Tor0π(l1, l∞) = l1 ⊗̃π l∞ 6= l1 ⊗̃ε l∞ = Tor0ε(l1, l∞). On the
other hand, l∞ is injective, so Tor1π(l1, l∞) = 0 = Tor1ε(l1, l∞).

Example 3.7. There are Fréchet spaces F with Tor1π(l1, F ) = 0 6=
Ext1(l∞, F ). Otherwise the functor L(l∞, ·) : FS → LS would be exact
and l∞ projective, which is not the case.

The following example is a reformulation of results of W. Kaballo and
D. Vogt:

Example 3.8. Let E = indN EN be a compact regular (LB)-space, i.e.,
every compact subset of E is localized in one step and compact there. Further
assume that each EN has the a.p. Then Tor1ε(E,L∞) = 0.

Proof. First note that E also has the a.p. ([10, Proposition 18.2.5]), so
the functor E ⊗̃ε · : FS → LS is left exact. The assertion now follows from
[12, 1.10] and the long exact sequence.

As a consequence of [11, 2.13], one obtains an example dual to Ex-
ample 3.8:

Example 3.9. Let E be a compact regular (LB)-space with L∞-steps.
Then Tor1ε(E, X) = 0 for all Banach spaces X.

4. Necessary and sufficient conditions for Tor1α(E, F ) = 0. Now let
us deduce necessary conditions for the vanishing of Tor1α(E, F ). In relevant
cases, Corollary 2.13 says that for a tensor norm α, a locally convex space
E and a Fréchet space F with a fundamental system of Banach spaces
(Fn, ̺n

m), Tor1α(E, F ) = 0 implies proj1 E⊗̃αFn = 0. Applying the theorem of
Palamodov–Retakh (see [19, Theorem 5.4]) we get first necessary conditions
for Tor1α(E, F ) = 0, provided that the assumptions of that theorem are
satisfied. In other words, we are interested in (bounded) Banach discs in
E ⊗̃α Fn. For the rest of the section we will assume (unless otherwise stated)
the following setup:
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Setting 4.1. Let α be a tensor norm, E = indN EN a complete (LB)-
space with connecting maps iN+1

N : EN →֒ EN+1, iN : EN →֒ E and without
loss of generality B1 := BE1 ⊆ B2 := BE2 ⊆ · · · a fundamental sequence of
closed and bounded subsets of E. We assume that E is a proper (LB)-space,
i.e. E is not a Banach space. For a Fréchet space F with a fundamental
system of Banach spaces (Fn, ̺n

m) let Un := BFn
, n ∈ N. We further assume

(a) Tor1α(E, F ) = 0 ⇒ proj1 E ⊗̃α Fn = 0

and for a possibly different fundamental system of Banach spaces one of the
conditions

(b1) indN (EN ⊗α Fn) = E ⊗α Fn and each Fn has the bounded ap-

proximation property (b.a.p.), i.e., there is an equicontinuous net
of finite-dimensional operators on Fn which converge pointwise
to idFn

,
(b2) indN (EN ⊗̃α Fn) = E ⊗̃α Fn and either all EN or all Fn have the

a.p.

Our ultimate goal is to deduce an evaluable necessary condition for the
vanishing of proj1 E ⊗̃α Fn of the following type:

For all n there is an N and an m ≥ n such that for all M ≥ N ,
k ≥ m and ε > 0 we can find a K ≥ M and an S > 0 such that for
all x′ ∈ E′ (x′ ∈ E′

K , respectively) we have

‖x′‖∗M̺n
m(Um) ⊆ S‖x′‖∗K̺n

k(Uk) + ε‖x′‖∗NUn,

where ‖x′‖∗L := supx∈BL
|x′(x)| (for L ≤ K, respectively).

First, note that we assume (LB)-spaces to be injective. The latter is always
satisfied in the case of the projective and injective tensor product, as the
following remark shows (for arbitrary tensor norms see [2, 21.7]).

Remark 4.2. Let α = π or α = ε and let X be a Banach space. For
α = π we require that each EN or X has the a.p. Then the maps EN ⊗̃αX →
E ⊗̃α X and EN ⊗̃α X → EN+1 ⊗̃α X are injective. Consequently, so also
are EN ⊗α X → E ⊗α X and EN ⊗α X → EN+1 ⊗α X.

Proof. Only for α = π is a proof needed. By assumption, the maps
EN ⊗̃π X → EN ⊗̃ε X are injective. The assertion is now immediate due to
commutative diagrams as in Remark 1.6.

Let us give some examples for Setting 4.1. Properties (b1) and (b2) are
studied further in [15, 16, 9, 21].

Example 4.3.

(1) For a nuclear Fréchet space F it suffices to consider the projective
tensor product (Proposition 5.5). As F is locally injective, Corol-
lary 2.13 gives Tor1π(E, F ) = proj1 E ⊗̃π Fn for all fundamental sys-
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tems of Banach spaces (Fn, ̺n
m) for F . On the other hand, F also has

fundamental systems of l1-spaces. Due to [18, Theorem 5] we have
indN (EN ⊗̃π l1) = E ⊗̃π l1 for all regular (LB)-spaces E. So (a) and
(b2) are satisfied.

(2) Let α = ε and let F be a Fréchet space with a fundamental system
consisting of L∞-spaces. A short calculation using [12, Satz 1.9(i)]
shows that Tor0ε(E,L∞) = E ⊗̃ε L∞. From this we get (a) and due
to [20, 11.4.45] we have indN (EN ⊗ε L∞) = E ⊗ε L∞. So (b1) also
holds. For compact regular (LB)-spaces E we even have (b2) ([7,
Corollary 4.4]).

(3) Let α be a tensor norm and E an (LB)-space with a partition of

unity. Then (b1) holds (see [6, Korollar 2.14] for the result and the
terminology).

The interchangeability condition (b2) is quite a strong one, but very
useful for computations, while (b1) is always true for the projective tensor
product ([10, 15.5.4]). Therefore we will work with Setting (a) and (b1) and
return to (b2) later.

By [20, Proposition 11.5.7] the space indN (EN ⊗α Fn) = E⊗α Fn is large

in E ⊗̃αFn for all n, i.e., every bounded subset of E ⊗̃αFn is contained in the

closure of a bounded subset of E ⊗α Fn. Consequently, (BEN⊗αFn

E⊗̃αFn
)n

is a fundamental sequence of bounded subsets of E ⊗̃α Fn.
Let Cn,1 := 1. As the maps iN+1

N ⊗α idFn
are continuous we inductively

find a sequence of constants Cn,N ≥ N with iN+1
N ⊗α idFn

(Cn,NBEN⊗αFn
) ⊆

Cn,N+1BEN+1⊗αFn
. Setting

Bn,N := Cn,NBEN⊗αFn

E⊗̃αFn

gives an increasing sequence of bounded Banach discs in E ⊗̃α Fn which
cover the whole space, such that for all N there exists an Ñ with the prop-
erty idE ⊗̃α ̺n

n+1(Bn+1,N) ⊆ B
n,Ñ

. The first assertions are clear from the
definitions while the last follows from

idE ⊗̃α ̺n
n+1(Bn+1,N) ⊆ idE ⊗̃α ̺n

n+1(Cn+1,NBEN⊗αFn+1)
E⊗̃αFn

(1)

= idEN
⊗α ̺n

n+1(Cn+1,NBEN⊗αFn+1)
E⊗̃αFn

⊆ CBEN⊗αFn

E⊗̃αFn ⊆ B
n,Ñ

for suitable C = C(N, n) > 0, Ñ = Ñ(n, N). We have thus verified the
assumptions of [19, Theorem 5.4] and so we obtain

Lemma 4.4. With the above terminology , proj1 E ⊗̃α Fn = 0 implies

(S̃2) For all n there is an N and an m ≥ n such that for all k ≥ m,

idE ⊗̃α ̺n
m(E ⊗̃α Fm) ⊆ idE ⊗̃α ̺n

k(E ⊗̃α Fk) + Bn,N .
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Next we want to refine (S̃2). We shall achieve this step by step with a
series of technical results (see also [26, 27]).

Lemma 4.5. (S̃2) implies

(S2) For all n there is an N and an m ≥ n such that for all M ≥ N
and k ≥ m we can find a K ≥ M and an S > 0 with

idE ⊗̃α ̺n
m(Bm,M ) ⊆ S(idE ⊗̃α ̺n

k(Bk,K) + Bn,N ).

Proof. This is a straightforward application of Grothendieck’s factoriza-
tion theorem (see [26, Lemma 2.2] or [27, Lemma 2.3]).

Lemma 4.6. (S2) implies the condition

(S′
2) For all n there is an N and an m ≥ n such that for all M ≥ N and

k ≥ m we can find a K ≥ M and an S > 0 such that for all x′ ∈ E′,

‖x′‖∗M̺n
m(Um) ⊆ S(‖x′‖∗K̺n

k(Uk) + ‖x′‖∗NUn),

where ‖x′‖∗L := supx∈BL
|x′(x)|.

Proof. We may assume x′ ∈ E′ \ {0}. By definition for all M ∈ N we
can find an x0 = x0(M) ∈ BM with ‖x′‖∗M ≤ 2x′(x0). For y ∈ Um we have

x0⊗αy ∈ BEM⊗αFm
and therefore x0⊗̃αy ∈ Cm,MBEM⊗αFm

E⊗̃αFm
= Bm,M .

Using (S2) we get

‖x′‖∗M̺n
m(Um) ⊆ 2x′(x0)̺

n
m(Um) ⊆ 2x′ ⊗̃α idFn

(x0 ⊗̃α ̺n
m(Um))(2)

⊆ 2x′ ⊗̃α idFn
(idE ⊗̃α ̺n

m(Bm,M ))

⊆ 2Sx′ ⊗̃α idFn
(idE ⊗̃α ̺n

k(Bk,K) + Bn,N )

= 2Sx′ ⊗̃α ̺n
k(Bk,K) + 2Sx′ ⊗̃α idFn

(Bn,N ).

Now we prove the inclusions

(i) x′ ⊗̃α idFn
(BEN⊗αFn

) ⊆ ‖x′‖∗NUn,

(ii) x′ ⊗̃α ̺n
k(BEK⊗αFk

E⊗̃αFk) ⊆ ‖x′‖∗K̺n
k(Uk).

Indeed, x′ ⊗̃α idFn
(BEN⊗αFn

) = x′|EN
⊗α idFn

(BEN⊗αFn
) is contained in

‖x′|EN
⊗α idFn

‖Un ⊆ ‖x′‖∗N · 1 · Un, which proves (i). Next, we consider the
maps ̺n

k : Fk → Fn and endow ̺n
k(Fk) with the quotient norm, so that

̺n
k(Uk) is the unit ball in ̺n

k(Fk) and ‖̺n
k : Fk → ̺n

k(Fk)‖ = 1. We obtain

x′ ⊗̃α ̺n
k(BEK⊗αFk

E⊗̃αFk) = (idK ⊗̃α ̺n
k) ◦ (x′ ⊗̃α idFk

)(BEK⊗αFk

E⊗̃αFk)

⊆ ̺n
k(‖x′‖∗K · 1 · Uk) = ‖x′‖∗K̺n

k(Uk),

which is (ii). Together, (i) and (ii) give

‖x′‖∗M̺n
m(Um) ⊆ 2Sx′ ⊗̃α ̺n

k(Bk,K) + 2Sx′ ⊗̃α idFn
(Bn,N )

= 2S(x′ ⊗̃α ̺n
k(Ck,KBEK⊗αFk

) + x′ ⊗̃α idFn
(Cn,NBEN⊗αFn

))
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⊆ 2S(Ck,K‖x′‖∗K̺n
k(Uk) + Cn,N‖x′‖∗NUn)

⊆ S̃(‖x′‖∗K̺n
k(Uk) + ‖x′‖∗NUn),

where S̃ = max{2SCk,K , 2SCn,N}, proving the claim.

The following condition (S′
2)0 is central to our further considerations.

Proposition 4.7. The condition

(S′
2)0 For all n there is an N and an m ≥ n such that for all M ≥ N ,

k ≥ m and ε > 0 there is a K ≥ M and an S > 0 such that for all

x′ ∈ E′ we have

‖x′‖∗M̺n
m(Um) ⊆ S‖x′‖∗K̺n

k(Uk) + ε‖x′‖∗NUn

is necessary for (S′
2).

Proof. First we deduce the following condition from (S′
2):

(Q) For all n there is an ñ ≥ n such that for all k ≥ ñ and ε > 0 we can

find an S̃ > 0 with

̺n
ñ(Uñ) ⊆ S̺̃n

k(Uk) + εUn.

Choose N and m ≥ n using (S′
2) and set ñ := m. As E is a proper

regular (LB)-space, E′
b is a proper Fréchet space. So there is an M ≥ N

with ‖ · ‖∗M ≁ ‖ · ‖∗N . Consequently,

inf
‖x′‖∗

M
6=0

‖x′‖∗N
‖x′‖∗M

= 0,

and we can find a sequence (x′
L)L in E′ with ‖x′

L‖
∗
M 6= 0 for all L and

limL→∞ ‖x′
L‖

∗
N/‖x′

L‖
∗
M = 0. Let k ≥ ñ and ε > 0 be arbitrary. Then (S′

2)
implies the existence of a K ≥ M and an S > 0 such that for all L we have

‖x′
L‖

∗
M̺n

ñ(Uñ) ⊆ S(‖x′
L‖

∗
K̺n

k(Uk) + ‖x′
L‖

∗
NUn).

Now we choose L in such a way that ‖x′
L‖

∗
N/‖x′

L‖
∗
M < ε/S. With S̃ :=

S‖x′
L‖

∗
K/‖x′

L‖
∗
M we get the condition (Q).

Next let us prove (S′
2)0. Let n be arbitrary. We choose ñ ≥ n according

to (Q) and apply (S′
2) to ñ, which gives an N and an m ≥ ñ. For given

M ≥ N , k ≥ m and ε > 0 the condition (S′
2) implies the existence of a

K ≥ M and an Ŝ > 0 such that for all x′ ∈ E′ we have

‖x′‖∗M̺ñ
m(Um) ⊆ Ŝ(‖x′‖∗K̺ñ

k(Uk) + ‖x′‖∗NUñ).(3)

Applying (Q) to k and ε/Ŝ gives an S̃ with ̺n
ñ(Uñ) ⊆ S̺̃n

k(Uk) + (ε/Ŝ)Un.
From this and (3) we get
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‖x′‖∗M̺n
m(Um) ⊆ Ŝ(‖x′‖∗K̺n

k(Uk) + ‖x′‖∗N̺n
ñ(Uñ))

⊆ Ŝ(‖x′‖∗K̺n
k(Uk) + ‖x′‖∗N (S̺̃n

k(Uk) + (ε/Ŝ)Un))

⊆ Ŝ(1 + S̃)‖x′‖∗K̺n
k(Uk) + ε‖x′‖∗NUn.

Setting S := Ŝ(1 + S̃) implies (S′
2)0.

The following result is of technical significance as it will allow us to
weaken our assumptions on the space E when proving that certain necessary
conditions are also sufficient.

Theorem 4.8. If F has a fundamental system of Banach spaces (Fn, ̺n
m)

such that the interchangeability property of Setting 4.1(b2) is satisfied , we

even get instead of (S′
2)0:

(SK′
2 )0 For all n there is an N and an m ≥ n such that for all M ≥ N ,

k ≥ m and ε > 0 we can find a K ≥ M and an S > 0 such that

for all x′ ∈ E′
K we have

‖x′‖∗M̺n
m(Um) ⊆ S‖x′‖∗K̺n

k(Uk) + ε‖x′‖∗NUn.

Here ‖x′‖∗L := supx∈BL
|x′(x)| for L ≤ K.

Proof. Using the theorem of Palamodov–Retakh we have obtained a
first necessary condition for the vanishing of proj1 E ⊗̃α Fn (Lemma 4.4).
As proj1 X does not change upon replacing X with an equivalent spec-
trum, we may assume that all Fn satisfy (b2). In particular indN EN ⊗̃α Fn

is again regular. So we may assume that the sequence (BEN ⊗̃αFn
)N =

(BEN⊗αFn

E⊗̃αFn
)N is an increasing fundamental sequence of bounded and

closed subsets of E ⊗̃α Fn.

In the following we will give the corresponding modifications for replacing
x′ ∈ E′ by x′ ∈ E′

K in (S′
2), respectively (S′

2)0. Nothing has to be changed

for Lemmas 4.4 and 4.5. Note that idE ⊗̃α ̺n
n+1(Bn+1,N) is contained in a

scalar multiple of Bn,N , which follows from (1). Therefore idE ⊗̃α ̺n
k(Bk,K)

is contained in a scalar multiple of Bn,K for all k, n, K. In the proof of
Lemma 4.6 one replaces x′ ∈ E′ \ {0} by x′ ∈ E′

K \ {0}. By the above, (2)
again makes sense. The rest of the proof is analogous. In order to deduce
(Q) in the proof of Proposition 4.7, one has to apply (SK′

2 ) to the sequence
(i′K(x′

L))L instead of (x′
L)L. Finally, in (3) one replaces x′ ∈ E′ by x′ ∈ E′

K .

In general, we will work with (SK′
2 )0 as a necessary condition for the

vanishing of Tor1α(E, F ) but we note that the better-known condition (S∗
2)0

is also necessary:

Corollary 4.9. If F has a fundamental system of Banach spaces

(Fn, ̺n
m) such that 4.1(b2) holds, then the condition



Derived tensor product functors 59

(S∗
2)0 For all n there is an N and an m ≥ n such that for all M ≥ N ,

k ≥ m and ε > 0 we can find a K ≥ M and an S > 0 such that

for all x′ ∈ E′
K and y′ ∈ F ′

n we have

‖x′‖∗M‖y′‖∗m ≤ max{S‖x′‖∗K‖y′‖∗k, ε‖x
′‖∗N‖y′‖∗n}

is necessary for Tor1α(E, F ) = 0. Here ‖y′‖∗l := supy∈Ul
|y′(̺n

l (y))| for

y′ ∈ F ′
n and l ≥ n.

Proof. As the conditions are invariant under replacement with equivalent
spectra, we may assume that (Fn, ̺n

m) is reduced. Consequently, the dual
spectrum is injective. We consider two cases:

(a) ‖x′‖∗N 6= 0. From (SK′
2 )0 and polarization with respect to 〈Fn, F ′

n〉,
using (A + B)◦ ⊇ 1

2(A◦ ∩ B◦) gives

1

2

(
1

S‖x′‖∗K
(̺n

k(Uk))
◦ ∩

1

ε‖x′‖∗N
U◦

n

)
⊆

1

‖x′‖∗M
(̺n

m(Um))◦.

This implies (S∗
2), as for y′ ∈ F ′

n \ {0} we have

(i) y′/‖y′‖∗n ∈ U◦
n, so

1

2

∥∥∥∥
1

ε‖x′‖∗N
·

y′

‖y′‖∗n

∥∥∥∥
∗

m

‖x′‖∗M ≤ 1;

(ii) y′/‖y′‖∗k ∈ (̺n
kUk)

◦, so

1

2

∥∥∥∥
1

S‖x′‖∗K
·

y′

‖y′‖∗k

∥∥∥∥
∗

m

‖x′‖∗M ≤ 1.

(b) ‖x′‖∗N = 0. The proof is analogous to (a) by omitting the terms with
‖x′‖∗N and considering the cases ‖x′‖∗M 6= 0 and ‖x′‖∗M = 0 separately.

For later purposes it is of interest what information about the pair (E, F )
can be deduced from the conditions (SK′

2 ) and (SK′
2 )0, respectively. We will

need some further definitions. We call a Fréchet space F countably normed

if there is a fundamental system of Banach spaces such that the connecting
maps are injective. For instance, a Köthe echelon space λp(A) is countably
normed if and only if it has a continuous norm if and only if there is an N
with aj,N > 0 for all j. On the other hand, we say that a Fréchet space F is
a quojection if F is isomorphic to a projective limit of Banach spaces with
surjective connecting maps. The proof of the following lemma is analogous
to [26, Lemma 3.2]:

Lemma 4.10. The condition

(SK′
2 ) For all n there is an N and an m ≥ n such that for all M ≥ N

and k ≥ m we can find a K ≥ M and an S > 0 such that for all

x′ ∈ E′
K we have

‖x′‖∗M̺n
m(Um) ⊆ S(‖x′‖∗K̺n

k(Uk) + ‖x′‖∗NUn)

implies that either E′
b is countably normed or F is a quojection.
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Now let us turn to sufficient conditions for the vanishing of Tor1α(E, F ).

Remark 4.11. Clearly (SK′
2 )0 implies

(SK′
3 )0 For all n there is an m ≥ n such that for all k ≥ m we can find an

N such that for all M ≥ N and ε > 0 there is a K ≥ M and an
S > 0 with

‖x′‖∗M̺n
m(Um) ⊆ S‖x′‖∗K̺n

k(Uk) + ε‖x′‖∗NUn

for all x′ ∈ E′
K .

The general strategy for showing that (SK′

3 )0 is also sufficient for the
vanishing of Tor1α(E, F ) in special cases is roughly the following: Using in-
formation about the spaces E and/or F we will deduce further conditions
from (SK′

3 )0 by polarization in order to decompose elementary tensors. To
be more precise, we wish to show that

(S⊗
3 )0 For all n there is an m ≥ n such that for all k ≥ m we can find an

N such that for all M ≥ N and ε > 0 there is a K ≥ M and an
S > 0 with

idE ⊗̃α ̺n
m(BEM

⊗ BFm
) ⊆ S idE ⊗̃α ̺n

k(BEK⊗̃αFk
) + εBEN ⊗̃αFn

is necessary for (SK′
3 )0. Another condition in this context is

(S⊗̃
3 )0 For all n there is an m ≥ n such that for all k ≥ m we can find an

N such that for all M ≥ N and ε > 0 there is an K ≥ M and an
S > 0 with

idE ⊗̃α ̺n
m(BEM ⊗̃αFm

) ⊆ S idE ⊗̃α ̺n
k(BEK⊗̃αFk

) + εBEN ⊗̃αFn
.

Lemma 4.12. For the projective tensor product , (S⊗
3 )0 always implies

(S⊗̃
3 )0. If F has a fundamental system of Banach spaces (Fn, ̺n

m) which

satisfies Setting 4.1(b2), we even get

(S3)0 For all n there is an m ≥ n such that for all k ≥ m there is an

N such that for all M ≥ N and ε > 0 there is a K ≥ M and an

S > 0 with

idE ⊗̃π ̺n
m(Bm,M ) ⊆ S idE ⊗̃π ̺n

k(Bk,K) + εBn,N .

Proof. We first remark that for all z ∈ BEM ⊗̃πFm
there are sequences

(λj)j ∈ l1 with ‖(λj)j‖1 ≤ 2, (xj)j ∈ BEM
and (yj)j ∈ BFm

such that z has
a representation z =

∑
j λj(xj ⊗ yj): By definition of the projective norm

there is a representation z =
∑∞

j=1 x̃j⊗ ỹj with
∑∞

j=1 ‖x̃j‖·‖ỹj‖ ≤ 2. Setting

λj := ‖x̃j‖ · ‖ỹj‖, xj := x̃j/‖x̃j‖ and yj := ỹj/‖ỹj‖ yields the assertion, by
cancelling zero summands.
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Now for z =
∑

j λj(xj ⊗ yj) ∈ BEM ⊗̃πFm
as above, from (S⊗

2 )0, we get

idE ⊗̃π ̺n
m(z) =

∑

j

λj(S idE ⊗̃π ̺n
k(wj) + εvj)

with (wj)j ∈ BN

EK⊗̃πFk
and (vj)j ∈ BN

EN ⊗̃πFn
. As (λj)j ∈ l1 and the se-

quences (wj)j, (vj)j are bounded, the sums
∑

j

λjwj ∈ 2BEK⊗̃πFk
and

∑

j

λjvj ∈ 2BEN ⊗̃πFn

converge. We conclude

idE ⊗̃π ̺n
m(z) = S idE ⊗̃π ̺n

k

( ∑

j

λjwj

)
+ ε

∑

j

λjvj

∈ 2S idE ⊗̃π ̺n
k(BEK⊗̃πFk

) + 2εBEN ⊗̃πFn
.

From this we get the first assertion. Setting 4.1(b2) says that we may assume
that Bm,M = Cm,MBEM ⊗̃πFm

, which completes the proof.

Let us summarize our results:

Theorem 4.13. The condition (S3)0 is sufficient for the vanishing of

proj1 E ⊗̃α Fn. If furthermore F is locally E ⊗̃α ·-acyclic we have 0 =
proj1 E ⊗̃α Fn = Tor1α(E, F ). In the case of α = π one may replace (S3)0 by

(S⊗
3 )0, provided that the interchangeability property of Setting 4.1(b2) holds.

Proof. The assertion follows from [31, Theorem 3.2.14], Corollary 2.13
and Lemma 4.12.

5. The standard cases. In analogy to Ext-theory (see [26] and [4]),
we will consider four so-called standard cases for Tor-theory, namely:

(I) F = λ∞(B), α = ε,
(II) E a nuclear (DF)-space, α an arbitrary tensor norm,

(III) F a nuclear Fréchet space, α an arbitrary tensor norm,
(IV) E = k1(A) a coechelon space of type one and α = π, or E = k0(A)

a coechelon space of type zero and α = ε.

First we present a result concerning the injective tensor product, which
can be deduced from Ext-theory and is based on an easy argument using
equivalent functors. It is well-known that for (DFM)-spaces E with the a.p.
the functors E ⊗̃ε · and L(E′

b, ·) : FS → LS are naturally equivalent. As a
consequence we obtain

Theorem 5.1. Let E be a (DFM )-space with the a.p. and F a Fréchet

space. Then:

(i) Torl
ε(E, F ) = Extl(E′

b, F ) for all l ≥ 0.
(ii) E ⊗̃ε · : FS → LS is left exact , in particular Tor0ε(E, F ) = E ⊗̃ε F .
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(iii) Tor1ε(E, F ) = 0 if and only if for all exact FS-sequences 0 → F →
G → H → 0 the E ⊗̃ε ·-tensored sequence 0 → E ⊗̃ε F → E ⊗̃ε G →
E ⊗̃ε H → 0 is (topologically) exact.

(iv) Torl
ε(E, F ) = 0 for quasinormable F = λ∞(B) and l ≥ 2.

(v) If E is proper and F = λ∞(B), then Tor1ε(E, F ) = 0 if and only if

the condition (SK′
3 )0 from Remark 4.11 holds.

Proof. As E ⊗̃ε · ≃ L(E′
b, ·) : FS → LS, their derivatives are also equiv-

alent (up to natural isomorphism). This implies (i) and (ii). For (iii) one
uses Remark 2.2, and for (iv) the fact that quasinormable Köthe spaces of
type infinity are locally injective (see [26]). If E is a proper (DFM)-space,
then its dual space E′

b is a proper Fréchet space and we get (iv) from an
analysis of [26, 4] and [13] (cf. also [31, Section 5.2]).

Remark 5.2. Note that in case (v), the assumption that E be a (DFM)-
space with the a.p. can be relinquished for appropriate F , such as nuclear
Fréchet spaces. On the other hand, for F = λ∞(B) we remark the fol-
lowing: Let E = indN EN be a compact regular (LB)-space and F quasi-
normable (note [26, Remark p. 167] and Example 4.3(2)). Now the identity
EM ⊗̃ε Fm = EM ⊗̃ε (l1(b

−1
j,m))′b = K(l1(b

−1
j,m), EM ) leads to the problem of

decomposing compact operators into sums of suitable compact operators. It
is not clear whether this is possible.

Next let us consider the case where E is a nuclear (DF)-space. This
is treated very similarly to the above, using arguments about equivalent
functors:

Remark 5.3. By a result of A. Grothendieck a locally convex space E
is nuclear if and only if the functors E ⊗̃π · and E ⊗̃ε · : FS → LS coincide.
In that case, all tensor norms α agree.

Now we can formulate and prove the main result concerning the case of
nuclear (DF)-spaces:

Theorem 5.4. For a nuclear (DF )-space E, a Fréchet space F with a

fundamental system of Banach spaces (Fn, ̺n
m) and a tensor norm α, one

has:

(i) Torl
α(E, F ) = Extl(E′

b, F ) for all l ≥ 0.
(ii) E ⊗̃α · : FS → LS is left exact , in particular Tor0α(E, F ) = E ⊗̃α F .

(iii) Tor1α(E, F ) = 0 if and only if for any short exact FS-sequence the

E ⊗̃α ·-tensored sequence is (topologically) exact.

(iv) Torl
α(E, F ) = 0 for l ≥ 2.

(v) If E is proper , then Tor1α(E, F ) = 0 if and only if the condition

(SK′
3 )0 is satisfied.
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Proof. By nuclearity we may assume that α = ε. It is well-known that
nuclear spaces have the a.p. and that the strong duals of nuclear (DF)-spaces
are nuclear Fréchet spaces.

First let us prove the assertion for complete spaces E. In this case, E
is a (DFM)-space with the a.p., so the functors E ⊗̃ε · and L(E′

b, ·) are
naturally equivalent. From this we get all the assertions as in the proof of
Theorem 5.1. For (ii) one may also use Corollary 1.8(a), and for (iv) the fact
that every Banach space is E ⊗̃α ·-acyclic (this follows for instance from E′

b

being locally projective).

It is well-known that for a nuclear (DF)-space E the completion Ẽ is

again a nuclear (DF)-space and that (DF)-spaces are large, so b(Ẽ′, Ẽ) =

b(E′, E). Summarizing, we have E ⊗̃ε · ≃ Ẽ ⊗̃ε · ≃ L(Ẽ′
b, ·) ≃ L(E′

b, ·), which
completes the proof.

Now let us consider the nuclear case in the Fréchet variable: For a lo-
cally convex space E, a nuclear Fréchet space F and a tensor norm α, the
condition Tor1α(E, F ) = 0 does not depend on the tensor norm: Let (Fn, ̺n

m)
be a fundamental system of Banach spaces for F such that the connecting
maps ̺n

n+1 : Fn+1 → Fn are nuclear. By [10, Proposition 17.3.8] the map

idE⊗̺̃n
n+1 : E ⊗̃α Fn+1 → E ⊗̃π Fn is continuous. An easy computation with

elementary tensors shows that the diagram

E ⊗̃π Fn E ⊗̃π Fn+1

E ⊗̃α Fn E ⊗̃α Fn+1

�
�

���

ĩd

�
idE⊗̃π̺n

n+1

�
�

���

ĩd

�
idE⊗̃α̺n

n+1
H

H
HHY idE⊗̺̃n

n+1

commutes. Hence the projective spectra (E ⊗̃α Fn, idE ⊗̃α ̺n
m) and (E ⊗̃π Fn,

idE ⊗̃π ̺n
m) are equivalent and by Example 2.5 we have proj1 E ⊗̃α Fn =

proj1 E ⊗̃π Fn. As F is nuclear, F has a fundamental system of injective
Banach spaces, and Corollary 2.13 implies:

Proposition 5.5. For a tensor norm α, a locally convex space E and

a nuclear Fréchet space F with a fundamental system of Banach spaces

(Fn, ̺n
m) the following holds for l ≥ 1:

Torl
α(E, F ) = projl E ⊗̃α Fn = projl E ⊗̃π Fn = Torl

π(E, F ).

With a similar argument we prove:

Remark 5.6. Let α be a tensor norm, H a distinguished Fréchet space
and F a nuclear Fréchet space. Then Tor1α(H ′

b, F ) = Ext1(H, F ).

Proof. By Proposition 5.5 we may assume that α = π. Let ‖ · ‖1 ≤
‖ · ‖2 ≤ · · · be a fundamental sequence of seminorms of H and (Fn, ̺n

m) a
fundamental system of l1-spaces for F with nuclear connecting maps. Then
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the map

L(H, Fn+1) = indN L(HN , Fn+1)
(̺n

n+1)∗
−−→ L(H, Fn) = indN L(HN , Fn)

factors through indN N (HN , Fn) = indN (H ′
N ⊗̃π Fn) = H ′

b ⊗̃π Fn (Example
4.3(1)) and the diagram

H ′
b ⊗̃π Fn H ′

b ⊗̃π Fn+1

L(H, Fn) L(H, Fn+1)

�
�

���

�
idH′⊗̃π̺n

n+1

�
�

���
�

(̺n
n+1)∗

H
H

HHY

commutes. Here N (X, Y ) denotes the space of nuclear maps from X
to Y , where X and Y are Banach spaces. Consequently, Tor1π(H ′

b, F ) =
proj1 H ′

b ⊗̃π Fn = proj1 L(H, Fn) = Ext1(H, F ).

Let us return to the general case; we may assume that α = π. Further
let E = indN EN be a proper, complete (LB)-space, B1 = BE1 ⊆ B2 =
BE2 ⊆ · · · a fundamental sequence of closed and bounded subsets of E,
and F a nuclear Fréchet space with a fundamental system of Banach spaces
(Fn, ̺n

m), Un := BFn
.

In the last section we showed that the condition (SK′
3 )0 is necessary for

Tor1π(E, F ) = 0 (use Theorem 4.8). The next key result is:

Proposition 5.7. In the above notation, the condition (SK′
3 )0 implies

proj1 E ⊗̃π Fn = 0.

Proof. We may assume that (Fn, ̺n
m) is reduced (as the conditions are

invariant with respect to equivalent projective spectra). By Example 4.3(i)
and Theorem 4.13 it suffices to show that the following condition holds:

(S⊗
3 )0 For all n there is an m ≥ n such that for all k ≥ m we can find an

N such that for all M ≥ N and ε > 0 there is a K ≥ M and an
S > 0 with

idE ⊗̃π ̺n
m(BEM

⊗ BFm
) ⊆ SidE ⊗̃π ̺n

k(BEK⊗̃πFk
) + εBEN ⊗̃πFn

.

From (SK′
3 )0 we first deduce the condition

(Pol) For all n there is an m ≥ n such that for all k ≥ m we can find an
N such that for all M ≥ N and ε > 0 there is a K ≥ M and an
S > 0 with

‖y′‖∗mBM ⊆ S‖y′‖∗kBK + ε‖y′‖∗nBN

for all y′ ∈ F ′
n, where ‖y′‖∗l := supy∈Ul

|y′(̺n
l (y))| for y′ ∈ F ′

n and
l ≥ n.

In analogy to Corollary 4.9, the corresponding condition
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(S∗
3)0 For all n there is an m ≥ n such that for all k ≥ m we can find an

N such that for all M ≥ N and ε > 0 there is a K ≥ M and an
S > 0 with

‖x′‖∗M‖y′‖∗m ≤ max{S‖x′‖∗K‖y′‖∗k, ε‖x
′‖∗N‖y′‖∗n}

for all x′ ∈ E′
K and y′ ∈ F ′

n

is necessary for (SK′
3 )0 to hold. Let y′ ∈ F ′

n\{0}, so ‖y′‖∗j 6= 0 for j = n, m, k.
In what follows we polarize with respect to the dual system 〈EK , E′

K〉. The
condition (S∗

3)0 gives

1

S‖y′‖∗k
B◦

K ∩
1

ε‖y′‖∗n
B◦

N ⊆
1

‖y′‖∗m
B◦

M .

With (A◦◦ ∩ B◦◦)◦ ⊆ A◦◦ + B◦◦ the bipolar theorem yields

‖y′‖∗mBM ⊆ ‖y′‖∗m(BM )◦◦ ⊆ S‖y′‖∗kBK + ε‖y′‖∗nBN
EK

EK

⊆ 2S‖y′‖∗kBK + ε‖y′‖∗nBN
EK

⊆ 2S‖y′‖∗kBK + ε‖y′‖∗n

(
BN +

S

ε

‖y′‖∗k
‖y′‖∗n

BK

)

⊆ 3S‖y′‖∗kBK + ε‖y′‖∗nBN .

The implication (SK′
3 )0 ⇒ (Pol) follows. We will proceed with the proof

after

Remark 5.8. If one considers the condition (S′
3)0 (see Lemma 4.7) in-

stead of (SK′
3 )0 one has to polarize with respect to the dual system 〈E, E′〉

and obtains

‖y′‖∗mBM ⊆ S‖y′‖∗kBK + ε‖y′‖∗nBN
E
.

In order to eliminate the closure operation one may require for instance E
to be a dual space or a retractive (LB)-space, i.e., an (LB)-space such that
for all bounded subsets B ⊆ E there is an L with B ⊆ EL and TE |B = TL|B
(set B := S‖y′‖∗kBK + ε‖y′‖∗nBN ).

As F is nuclear, F has a reduced projective spectrum (Fn, ̺n
m) consisting

of Hilbert spaces and nuclear connecting maps ̺n
n+1. Let 〈·, ·〉n denote the

inner product on Fn.

In what follows, we always assume that k ≥ m ≥ n + 2. As ̺n+1
k+1 :

Fk+1 → Fn+1 is nuclear, there is an orthonormal system (ej)j in Fk+1, an
orthonormal basis (fj)j in Fn+1 and a sequence (aj)j of positive numbers
such that for all y ∈ Fk+1 we have the representation

̺n+1
k+1(y) =

∑

j

aj〈y, ej〉k+1fj .
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In order to verify the condition (S⊗
3 )0 we need some general estimates related

to the nuclear maps ̺ν
ν+1 (see [26]); these are in particular Hilbert–Schmidt

operators. Below, ν1 denotes the nuclear and ν2 the Hilbert–Schmidt norm.
For ν ∈ N and any orthonormal system (gj)j in Fν+1 we get, for all x ∈ Fν+1

(using the estimates of Hölder and Bessel),
∑

j

|〈x, gj〉ν+1| · ‖̺
ν
ν+1(gj)‖ν ≤ ν2(̺

ν
ν+1)‖x‖ν+1.

Consequently, δν+1 : Fν+1 → l1, x 7→ (〈x, gj〉ν+1‖̺ν
ν+1(gj)‖ν)j , is a continu-

ous linear operator and therefore δν+1 ◦ ̺ν+1
ν+2 is again nuclear. As we have

an isometric isomorphism N (Fν+2, l1) = l1 ⊗̃π F ′
ν+2 = l1(F

′
ν+2), it follows

that ν1(δν+1 ◦ ̺ν+1
ν+2) equals the l1-sum of the sequence
(

sup
‖x‖ν+2≤1

|〈̺ν+1
ν+2(x), gj〉ν+1| · ‖̺

ν
ν+1(gj)‖ν

)
j
.

Thus there is a positive sequence (λ
(ν)
j )j ∈ l1 with

∑

j

λ
(ν)
j ≤ 2ν1(δν+1 ◦ ̺ν+1

ν+2) ≤ 2‖δν+1‖ν1(̺
ν+1
ν+2)(4)

≤ 2ν2(̺
ν
ν+1)ν1(̺

ν+1
ν+2) =: L(ν)

and

sup
‖x‖ν+2≤1

|〈̺ν+1
ν+2(x), gj〉ν+1| · ‖̺

ν
ν+1(gj)‖ν ≤ λ

(ν)
j for all j.(5)

Let γ
(ν)
j := (λ

(ν)
j )−1‖̺ν

ν+1(gj)‖ν . By (5) we get, for all x ∈ Fν+2,

sup
j

γ
(ν)
j |〈̺ν+1

ν+2(x), gj〉ν+1| ≤ ‖x‖ν+2.(6)

With y′j ∈ F ′
n+1, y′j(y) := 〈y, fj〉n+1, and using the nuclear representations

of ̺n+1
k+1 we have for all x ∈ Fk+2 the identity

y′j(̺
n+1
k+2(x)) = 〈̺n+1

k+1(̺
k+1
k+2(x)), fj〉n+1 = aj〈̺

k+1
k+2(x), ej〉k+1.

Setting ν = k and gj = ej in (6) gives

(7) sup
j

γ
(k)
j a−1

j ‖y′j‖
∗
k+2 = sup

j

sup
‖x‖k+2≤1

γ
(k)
j |〈̺k+1

k+2(x), ej〉k+1| ≤ 1.

Setting ν = n and gj = fj in (6) gives in an analogous manner

sup
j

γ
(n)
j ‖y′j‖

∗
n+2 ≤ 1.(8)

We now return to the proof of (S⊗
3 )0. Let A ∈ BEM

⊗ BFm
be given.

For j ∈ N we consider the continuous linear maps ϕj : EM ⊗π Fm → EM ,
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x ⊗ y 7→ 〈̺n+1
m (y), fj〉n+1x, and set Aj := ϕj(A) ∈ EM . Then for x′ ∈ E′

with ‖x′‖∗M ≤ 1 we conclude that

|x′(Aj)| = |x′(ϕj(A))| ≤ ‖ϕj(A)‖EM
≤ ‖ϕj‖ = sup

z∈BEM⊗πFm

‖ϕj(z)‖EM

≤ ‖y′j‖
∗
m.

Consequently, Aj ∈ ‖y′j‖
∗
mBM . Now let n in (S⊗

3 )0 be given. Applying (Pol)

to n + 2 we find an m ≥ n + 2 so that for given k ≥ m in (S⊗
3 )0 resp. for

k+2 ≥ m in (Pol) there is an N such that for all M ≥ N and ε > 0 in (S⊗
3 )0

resp. M ≥ N and ε̃ := ε/L(n) in (Pol) there are K ≥ M and S̃ > 0 such

that the above Aj can be written as Aj = Bj +Cj , where Bj ∈ S̃‖y′j‖
∗
k+2BK

and Cj ∈ ε̃‖y′j‖
∗
n+2BN .

Now define B ∈ EK ⊗̃π Fk and C ∈ EN ⊗̃π Fn by

B :=
1

L(k)S̃

∑

j

a−1
j Bj ⊗ ̺k

k+1(ej), C :=
1

L(n)ε̃

∑

j

Cj ⊗ ̺n
n+1(fj).

From the estimate

π(B) ≤
1

L(k)S̃

∑

j

a−1
j ‖Bj‖EK

‖̺k
k+1(ej)‖k

≤
1

L(k)S̃

∑

j

a−1
j S̃‖y′j‖

∗
k+2‖̺

k
k+1(ej)‖k

(4)

≤ sup
j

a−1
j ‖y′j‖

∗
k+2γ

(k)
j

(7)

≤ 1

we obtain absolute convergence of the sum B in EK ⊗̃π Fk (and therefore in
E ⊗̃π Fk), and B ∈ BEK⊗̃πFk

. Similarly we have

π(C) ≤
1

L(n)ε̃

∑

j

‖Cj‖EN
‖̺n

n+1(fj)‖n

≤
1

L(n)ε̃

∑

j

ε̃‖y′j‖
∗
n+2‖̺

n
n+1(fj)‖n

(4)

≤ sup
j

‖y′j‖
∗
n+2γ

(n)
j

(8)

≤ 1.

Finally, with S := L(k)S̃ and A = x ⊗ y we get the identity

S idE ⊗̃π ̺n
k(B) + εC

= idE ⊗̃π ̺n
k

( ∑

j

a−1
j Bj ⊗ ̺k

k+1(ej)
)

+
∑

j

Cj ⊗ ̺n
n+1(fj)

=
∑

j

a−1
j Bj ⊗ ̺n

n+1(̺
n+1
k+1(ej)) +

∑

j

Cj ⊗ ̺n
n+1(fj)
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=
∑

j

Bj ⊗ ̺n
n+1(fj) +

∑

j

Cj ⊗ ̺n
n+1(fj)

=
∑

j

Aj ⊗ ̺n
n+1(fj) =

∑

j

(〈̺n+1
m (y), fj〉j+1x) ⊗ ̺n

n+1(fj)

= x ⊗ ̺n
n+1

( ∑

j

〈̺n+1
m (y), fj〉j+1fj

)
= idE ⊗̃π ̺n

m(A),

which implies (S⊗
3 )0.

Let us summarize our results:

Theorem 5.9. Let E be a locally convex space, F a nuclear Fréchet

space and α a tensor norm. Then

(i) Torl
α(E, F ) = Torl

π(E, F ) for all l ≥ 1.

(ii) Tor0α(E, F ) = E ⊗̃α F for α = π and α = ε.
(iii) If Tor1α(E, F ) = 0 then for all exact nuclear FS-sequences 0 →

F → G → H → 0 the E ⊗̃α ·-tensored sequence 0 → E ⊗̃α F →
E ⊗̃α G → E ⊗̃α H → 0 is (topologically) exact.

(iv) Torl
α(E, F ) = 0 for l ≥ 2.

(v) If E is a proper , complete (LB)-space and (Fn, ̺n
m) a fundamen-

tal system of Banach spaces for the nuclear Fréchet space F , then

Tor1α(E, F ) = 0 if and only if the condition (SK′
3 )0 holds.

Proof. (i) follows from Proposition 5.5(iv).
(ii) Let (Fn, ̺n

m) be a fundamental system of injective Banach spaces.
From Torl

α(E,
∏

n Fn) =
∏

n Torl
α(E, Fn) = 0 for l ≥ 1 it follows that the

canonical resolution

0 → F →
∏

n

Fn →
∏

n

Fn → 0

of F is E ⊗̃α ·-acyclic. As F is nuclear, this sequence is a ⊗-sequence. There-
fore we get (ii) from Corollary 1.7(a).

(iii) By nuclearity we may assume that α = π. As F is nuclear, the
sequence considered is again a ⊗-sequence. By Corollary 1.7(a) we have to
prove surjectivity of the map E ⊗̃π G → E ⊗̃π H, which follows immediately
from the long exact sequence and (ii).

(iv) is a consequence of Corollary 2.13 and as F is locally injective, (v)
follows from Propositions 5.7 and 5.5.

The Tor-theory developed here, when applied to the last standard case,
gives new insight into some historical results. In [5, II, §4, no. 3, Theorem 1]
A. Grothendieck gave a comprehensive characterization of topological proper-
ties (tobemoreprecise, of the quasi-barrelledness) of the (complete) projective
tensor product of a (DF)-space with a Fréchet space in the case of Köthe co-
echelon spaces k1(A) and echelon spaces λ1(B). In [24] the author generalizes
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this result to arbitrary Fréchet spaces in place of Köthe spaces λ1(B), adding
homological conditions. In the same paper a corresponding theorem for the
injective tensor product is also given. As the proof in [24] shows, we get:

Theorem 5.10. Let E be either a coechelon space k1(A) of type one and

α = π, or a complete coechelon space k0(A) of type zero and α = ε, and let

F be a Fréchet space. Then:

(i) Tor0α(E, F ) = E ⊗̃α F .

(ii) Tor1α(E, F ) = 0 if and only if for all short exact FS-sequences the

E ⊗̃α ·-tensored sequence is (topologically) exact.

(iii) Torl
α(E, F ) = 0 for l ≥ 2.

(iv) If E is proper and (Fn, ̺n
m) a fundamental system of Banach spaces

for the Fréchet space F then Tor1α(E, F ) = 0 if and only if the

condition (SK′
3 )0 holds.

At this point we want to show that in acyclic situations the property
Tor1α(E, G) = 0 passes to quotients of G:

Remark 5.11. Let α be a tensor norm, E a locally convex space and G
a Fréchet space. Suppose further that Tor1α(E, G) = 0. In the cases below
we also have Tor1α(E, H) = 0 for every quotient H of G:

(a) E is a nuclear (DF)-space;
(b) F := ker(G → H) is locally E ⊗̃α ·-acyclic, for instance G nuclear;
(c) E = k1(A) and α = π;
(d) E = k0(A) complete and α = ε.

Proof. We have shown that in all cases we have Torl
α(E, F ) = 0 for

l ≥ 2. In cases (a), (c) and (d) even every Banach space is E ⊗̃α ·-acyclic.
Applying the long exact sequence to 0 → F → G → H → 0 gives the exact
LS-sequence · · · → Tor1α(E, G) → Tor1α(E, H) → Tor2α(E, F ) → · · · and
therefore Tor1α(E, H) = 0.

Theoretical applications of the Tor-theory established here such as the
characterization of quojections or the property (Ω) of D. Vogt and M. J.
Wagner can be found in [24], while practical applications such as the solu-
tions of (DF)-valued partial differential operators with constant coefficients
will be treated in [25], where we shall use a method of H. J. Petzsche ([22])
for decomposing elementary tensors.
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[4] L. Frerick and J. Wengenroth, A sufficient condition for vanishing of the derived
projective limit functor, Arch. Math. (Basel) 67 (1996), 296–301.

[5] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer.
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[20] P. Pérez Carreras and J. Bonet, Barrelled Locally Convex Spaces, North-Holland
Math. Stud. 131, North-Holland, Amsterdam, 1987.

[21] A. Peris, Quasinormable spaces and the problem of topologies of Grothendieck, Ann.
Acad. Sci. Fenn. Ser. A I Math. 19 (1994), 167–203.

[22] H.-J. Petzsche, Some results of Mittag-Leffler-type for vector valued functions and
spaces of class A, in: Functional Analysis: Surveys and Recent Results II (Pader-
born, 1979), North-Holland Math. Stud. 38, North-Holland, Amsterdam, 1980, 183–
204.

[23] J. J. Rotman, An Introduction to Homological Algebra, Pure Appl. Math. 85, Aca-
demic Press, New York, 1979.

[24] O. Varol, A generalization of a theorem of A. Grothendieck, Math. Nachr. 280
(2007), 313–325.

[25] —, A decomposition lemma for elementary tensors, Arch. Math. (Basel), to appear.

[26] D. Vogt, On the functors Ext1(E, F ) for Fréchet spaces, Studia Math. 85 (1987),
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