ε -Kronecker and I_0 sets in abelian groups, III: interpolation by measures on small sets

by

COLIN C. GRAHAM (Bowen Island, BC) and KATHRYN E. HARE (Waterloo)

Abstract. Let U be an open subset of a locally compact abelian group G and let E be a subset of its dual group Γ . We say E is $I_0(U)$ if every bounded sequence indexed by E can be interpolated by the Fourier transform of a discrete measure supported on U. We show that if $E \cdot \Delta$ is I_0 for all finite subsets Δ of a torsion-free Γ , then for each open $U \subset G$ there exists a finite set $F \subset E$ such that $E \setminus F$ is $I_0(U)$. When G is connected, F can be taken to be empty. We obtain a much stronger form of that for Hadamard sets and ε -Kronecker sets, and a slightly weaker general form when Γ has torsion. This extends previously known results for Sidon, ε -Kronecker, and Hadamard sets.

1. Introduction. This paper is a continuation of [4]. We refer the reader to that paper for further background and motivation. We give here only the absolute essentials from [4].

G denotes a locally compact abelian group and Γ its dual group. Group operations will be written multiplicatively, except for explicit elements of \mathbb{N} (non-negative integers), \mathbb{R} (real line), \mathbb{T} (circle group), and \mathbb{Z} (integers). The duality will be denoted $\langle x, \gamma \rangle$, $x \in G$, $\gamma \in \Gamma$ or by e^{ixy} in the case of the three classical groups.

Recall that an increasing sequence of real numbers $1 \le n_1 < n_2 < \cdots$ is an *Hadamard set* if there is a real number q > 1 such that $q \le n_{j+1}/n_j$ for all $j \ge 1$. We will call any such number q a "ratio" of the set.

We now define ε -Kronecker sets, I_0 sets, and the other classes of sets needed here. These are elaborations of the definitions given in [4].

DEFINITION. (1) Let $U \subseteq G$ and $E \subseteq \Gamma$. We say E is $I_0(U)$ if there is a constant K such that for every bounded, continuous function ϕ on E there

²⁰⁰⁰ Mathematics Subject Classification: Primary 42A55, 43A46; Secondary 43A05, 43A25.

Key words and phrases: associated sets, Bohr group, ε -Kronecker sets, ε -free sets, Hadamard sets, I_0 sets, Sidon sets.

The research of the authors is partially supported by NSERC. The first author thanks the University of Waterloo for its hospitality to him during a visit, when some of this work was done.

is a discrete measure μ supported on U such that ϕ is the restriction of the Fourier–Stieltjes transform of μ to E and $\|\mu\| \leq K \|\phi\|_{\ell^{\infty}(E)}$. The infimum of all such K is called the *interpolation constant* and is denoted K(E, U). The set is called I_0 if it is $I_0(G)$.

- (2) If E is $I_0(U)$, we say E has bounded $I_0(U)$ constants if the infimum of the interpolation constants $K(E \setminus F, U)$ as F varies over the finite subsets of E is bounded over all open subsets U of G (1).
- (3) Let $\varepsilon > 0$ be given. A set E is ε -Kronecker(U) if for every continuous $\phi : E \to \mathbb{T}$ there exists $x \in U$ such that

$$(1.0.1) |\langle x, \gamma \rangle - \phi(\gamma)| < \varepsilon \text{for all } \gamma \in E.$$

We say that a set E is ε -Kronecker if it is ε -Kronecker(G).

Summary of results. This paper addresses the question: if G is connected, is every I_0 set $I_0(U)$ for all open $U \subset G$? We show that some classes of I_0 sets are $I_0(U)$ for all open $U \subset G$. That is, these I_0 sets have the required interpolation using only discrete measures concentrated in arbitrarily small open sets U.

These classes include ε -Kronecker sets in the duals of compact connected groups (with bounded constants—Corollary 3.3), Hadamard sets (bounded constants—Theorem 3.10), and I_0 sets in the duals of compact connected groups having the property that $E \cdot \Delta$ is I_0 for all finite sets Δ (Theorem 4.4).

Our conclusion about the $I_0(U)$ property for general I_0 sets is rather unsatisfactory since Example 5.1 and Proposition 5.2 show that the assumption that $E \cdot \Delta$ is I_0 for all finite sets Δ is not necessary. At the present time we are unable to decide if $I_0 \Rightarrow I_0(U)$ for all open $U \subset G$, even in the case of $\Gamma = \mathbb{Z}$.

Background. The results here are motivated by work of Déchamps-Gondim [1] and Méla [15]. Déchamps-Gondim showed that every Sidon set E in a discrete torsion-free group is a Sidon(U) set ("U associated with E" in [1]): every bounded function on E is the restriction of the Fourier–Stieltjes transform of a (not necessarily discrete) measure supported on U. Obviously, $I_0(U)$ sets in discrete groups are Sidon(U). Much earlier, Weiss [20, Theorem 2] had proved that Hadamard sets are Sidon(U) (in a quantitative way) for all open intervals U.

Méla [15, Théorème 5] showed that Hadamard sets in \mathbb{R} are Sidon(U) for all open U with bounded constants and that each I_0 set in \mathbb{R} is a finite union of Sidon(U) sets each with bounded constants [15, Théorème 6] (Méla used the terminology "Sidon set of the first type").

⁽¹⁾ In the definition of bounded constants, we delete finite sets F because otherwise we would never have "bounded constants": for fixed $0 \neq m \in \mathbb{Z}$, the interpolation constants from $M_d((-\delta, \delta))$ to $\ell^{\infty}(\{0, m\})$ increase as $\delta \to 0^+$ (see [15, p. 31]).

See [1, 4, 5, 12, 14, 15, 17] and their references for further background. At several points we have the hypotheses that G is connected and locally connected. For a characterization of the connected, compact abelian groups that are locally connected, see [8, Theorem 8.36].

2. Notation and preliminary results

2.1. Notation for this paper. Let $U \subset G$, $E \subset \Gamma$, $N \geq 1$ and $\varepsilon > 0$. We write

(2.1.1)
$$D(N,U) = \left\{ \sum_{j=1}^{N} a_j \delta_{x_j} : |a_j| \le 1, x_j \in U, \ 1 \le j \le N \right\}$$

and

$$(2.1.2) \quad AP(E, N, U, \varepsilon)$$

$$= \{ \phi \in \mathbb{T}^E : \exists \mu \in D(N, U) \text{ with } \|\phi - \widehat{\mu}_{|E}\|_{\ell^{\infty}(E)} \le \varepsilon \}.$$

Then $AP(E, N, U, \varepsilon) \subset AP(E, N+1, U, \varepsilon)$ for all N.

Given $E \subset \Gamma$, we write $\ell^{\infty}(E)$ for the set of bounded functions on a set E and $B(\ell^{\infty}(E))$ for the unit ball of $\ell^{\infty}(E)$. If the mapping $\mu \mapsto \widehat{\mu}_{|E}$ sends $M_d(U)$ onto $\ell^{\infty}(E)$, then there is an interpolation constant C, the infimum of the numbers K such that for each $\phi \in B(\ell^{\infty}(E))$ there exists $\mu \in M_d(U)$ with $\|\mu\| \leq K$ and $\widehat{\mu}_{|E} = \phi$.

The Bohr compactification of Γ will be denoted by $\overline{\Gamma}$. The Bohr topology on $E \subset \Gamma$ is the restriction to E of the topology of $\overline{\Gamma}$. That is the topology of pointwise convergence on G.

If $f \in L^1(\Gamma)$, its Fourier transform is denoted by \widehat{f} and $\|\widehat{f}\|_A = \|f\|_1$, as usual. Similarly, $\widehat{\mu}$ denotes the Fourier–Stieltjes transform of a measure.

2.2. General preliminary results. An easy observation is this:

LEMMA 2.1. Let G be a locally compact abelian group, $U \subset G$ be open, and $E \subset \Gamma$. If E is $I_0(U)$, then

- (1) $E \cdot \gamma$ is $I_0(U)$ for every $\gamma \in \Gamma$, and
- (2) E is $I_0(U \cdot x)$ for every $x \in G$.

If $E \subset \Gamma$ is ε -Kronecker(U) then

(3) E is ε -Kronecker $(U \cdot x)$ for every $x \in G$.

With the notation of the preceding subsection, we give the following useful result, adapted from [6, Prop. 2.1].

PROPOSITION 2.2. Let G be a locally compact group, U a σ -compact subset of G and $E \subset \Gamma$. Consider the following properties:

- (1) E is $I_0(U)$.
- (2) For every $\phi \in B(\ell^{\infty}(E))$ there exists $\mu \in M_d(U)$ such that $\widehat{\mu}(\gamma) = \phi(\gamma)$ for all $\gamma \in E$.
- (3) There exists some $0 < \varepsilon < 1$ (equivalently, for every $0 < \varepsilon < 1$) and integer N such that for every $\phi \in B(\ell^{\infty}(E))$ there exists $\mu \in M_d(U)$ with $\|\mu\| \le N$ and $|\widehat{\mu}(\gamma) \phi(\gamma)| < \varepsilon$ for all $\gamma \in E$.
- (4) There exists some $0 < \varepsilon < 1$ (equivalently, for every $0 < \varepsilon < 1$) such that for every $\phi \in B(\ell^{\infty}(E))$ there exists $\mu \in M_d(U)$ with $|\widehat{\mu}(\gamma) \phi(\gamma)| < \varepsilon$ for all $\gamma \in E$.
- (5) There exists some $0 < \varepsilon < 1$ (equivalently, for every $0 < \varepsilon < 1$) and integer N such that for every $\phi \in B(\ell^{\infty}(E))$ there exists $\mu \in D(N, U^2)$ with $|\widehat{\mu}(\gamma) \phi(\gamma)| < \varepsilon$ for all $\gamma \in E$.

Then properties (1)–(3) are equivalent. Property (1) implies (4) implies (5) implies E is $I_0(U^2)$.

Finally.

(6) Under the conditions of property (3) one can show $K(E,U) \leq N/(1-\varepsilon)$.

We will need the following results.

LEMMA 2.3 ([10]). Let A, B be subsets of the connected, locally compact group G. Then the lower Haar measure m_* on G satisfies $m_*(A \cdot B) \ge m_*(A) + m_*(B)$, unless $m(G) \le m_*(A \cdot B)$ in which case $A \cdot B = G$.

Lemma 2.4. Let G be a compact connected group and U a Borel subset of G of non-zero Haar measure. Then there exists N > 0 such that $G = U^N$.

Proof. Because m(U)>0, U^2 has non-empty interior V (see [7, 20.17]). By Lemma 2.3, there exists an integer M such that $m(V^M)>1/2$. Then $m(V^{2M})=1$. That means V^{2M} is dense in G. Of course, V^{2M+1} contains the closure of V^{2M} , so $V^{2M+1}=G$. Hence, N=4M+1 will do.

LEMMA 2.5. Let G be a locally compact abelian group. Let $E \subset \Gamma$, $U \subset G$, $N \geq 1$ and $\varepsilon > 0$. Then $AP(E, N, U, \varepsilon)$ is closed in \mathbb{T}^E if U is compact and is an F_{σ} in \mathbb{T}^E if U is σ -compact.

Proof. The first assertion is [16, Appendix, Lemma 6]. The second follows from the first by writing

$$AP(E, N, U, \varepsilon) = \bigcup_{n} AP(E, N, U_n, \varepsilon),$$

where the U_n are compact subsets of U with $U_n \subset U_{n+1}$ for all n and $U = \bigcup U_n$.

Proof of Proposition 2.2. The equivalence of (1)–(2) is the closed graph theorem.

Clearly (1) implies (3) and (4).

The implication $(3)\Rightarrow(1)$ is an iteration argument as follows: let $\phi \in B(\ell^{\infty}(E))$. Choose $\mu_1 \in M_d(U)$ such that $\|\phi(\gamma) - \widehat{\mu}_1(\gamma)\|_{\infty} < \varepsilon$ for all $\gamma \in E$ and $\|\mu_1\| \leq N$. Now choose $\mu_2 \in M_d(U)$ such that

$$|\phi(\gamma) - \widehat{\mu}_1(\gamma) - \widehat{\mu}_2(\gamma)| < \varepsilon^2$$
 for all $\gamma \in E$

and $\|\mu_2\| \leq \varepsilon N$. Continuing in this way, we find $\mu = \sum \mu_j \in M_d(U)$ such that $\|\mu\| \leq N/(1-\varepsilon)$ and $\phi(\gamma) = \widehat{\mu}(\gamma), \ \gamma \in E$.

The claim (6) about the interpolation constant follows from the proof.

This iteration argument, applied finitely many times, also shows the equivalence of the statements "there exists some $0 < \varepsilon < 1$ " and "for every $0 < \varepsilon < 1$ ", at the cost of a larger constant N.

In (5) the condition $\mu \in D(N, U^2)$ ensures $\|\mu\| \leq N$; thus (5) implies that E is $I_0(U^2)$ (via (3)).

To prove (4) implies (5), we appeal to an argument similar to that given in [16, pp. 127 ff.]: Suppose that (4) holds for ε . Fix $\varepsilon_1 > 0$. We claim that we may assume that $\varepsilon < \varepsilon_1/4$. Choose any $\phi \in \mathbb{T}^E$. Then the hypothesis of (4) says that we can find $\mu_1 \in M_d(U)$ such that $\|\phi - \widehat{\mu}_{1|E}\|_{\infty} < \varepsilon$. Let $\phi_2 = \phi - \widehat{\mu}_{1|E}$. Then there exists $\mu_2 \in M_d(U)$ such that $|\phi_2(\gamma) - \widehat{\mu}_2(\gamma)| < \varepsilon^2$ for all $\gamma \in E$, so

$$|\phi(\gamma) - (\widehat{\mu}_1 + \widehat{\mu}_2)(\gamma)| < \varepsilon^2$$

for all $\gamma \in E$. Iterating in this way, we eventually find a $\nu \in M_d(U)$ such that

$$(2.2.1) |\phi(\gamma) - \widehat{\nu}(\gamma)| < \varepsilon^k < \varepsilon_1/4$$

for all $\gamma \in E$. This can be done for all $\phi \in \mathbb{T}^E$. Hence, we may assume that $\varepsilon < \varepsilon_1/4$.

By our hypothesis, $\bigcup_N \operatorname{AP}(E,N,U,\varepsilon) = \mathbb{T}^E$. By Lemma 2.5, the sets $\operatorname{AP}(E,N,U,\varepsilon)$ are Borel sets, so there exists an integer M such that $\operatorname{AP}(E,M,U,\varepsilon)$ has \mathbb{T}^E -Haar measure greater than 1/2. Therefore

$$AP(E, M, U, \varepsilon) \cdot AP(E, M, U, \varepsilon) = \mathbb{T}^{E}$$

by Lemma 2.3, that is, for each $\phi \in \mathbb{T}^E$ there exists $\phi_1, \phi_2 \in AP(E, M, U, \varepsilon)$ such that $\phi = \phi_1 \phi_2$. Let $\mu_j \in D(M, U)$ be such that

$$|\phi_j(\gamma) - \widehat{\mu}_j(\gamma)| \le \varepsilon$$
 for $j = 1, 2$ and all $\gamma \in E$.

Then

$$(2.2.2) |\phi - (\widehat{\mu}_1 \widehat{\mu}_2)| \le \varepsilon + \varepsilon (1 + \varepsilon) < 3\varepsilon < \varepsilon_1 \text{for all } \gamma \in E.$$

Hence, $AP(E, M^2, U^2, 3\varepsilon) = \mathbb{T}^E$. Since every element of $B(\ell^{\infty}(E))$ is the average of two elements of \mathbb{T}^E , (5) holds with $N = 2M^2$, and ε_1 .

REMARK 2.6. Item (3) implies that ε -Kronecker sets with $0 < \varepsilon < 1$ are I_0 (see [19]), but [4, Prop. 2·8] shows that the inequality can be weakened to $\varepsilon < \sqrt{2}$.

2.3. Preliminaries on $I_0(U)$ sets. The following was proved for Sidon sets in discrete groups Γ in [1, Lemme 6.5].

LEMMA 2.7. Let G be a connected locally compact abelian group with dual group Γ . Let $U \subset G$ be open. If $E \subset \Gamma$ is $I_0(U)$, $\lambda \in \Gamma$ and $W \subset G$ any neighbourhood of the identity, then $E \cup \{\lambda\}$ is $I_0(U \cdot W)$.

Proof. By Lemma 2.1(1) we may assume that λ is the identity **1** of Γ and U is a neighbourhood of **1**.

Let V be a neighbourhood of the identity of G such that $V \cdot V^{-1} \subset W$. Since E is an I_0 set, [5, Cor. 4·2] tells us that E does not cluster in the Bohr topology at any element of Γ and that $E \cup \{\mathbf{1}\}$ is also an I_0 set. Therefore, there exists a finitely supported measure $\mu \in M_d(G)$ such that $|\widehat{\mu}| < 1/100$ on E and $\widehat{\mu}(\mathbf{1}) = 1$. Suppose $\mu = \sum_{j=1}^{J} a_j \delta_{x_j}$. Then $\widehat{\mu}(\mathbf{1}) = \sum_{j} a_j = 1$.

Since G is connected and V is an open neighbourhood of the identity, $\bigcup_{N=1}^{\infty} V^N = G$. Therefore there exists an integer N such that $x_j \in V^N$ for all $1 \leq j \leq J$. That is, there exist $w_{j,k} \in V$ such that $x_j = \prod_{k=1}^{N} w_{j,k}$ for all j. Now, a continuity argument shows that for some $\varepsilon > 0$,

(2.3.1)
$$\sum_{j=1}^{J} \sum_{k=1}^{N} |\langle w_{j,k}, \gamma \rangle - \langle w_{j,k}, \mathbf{1} \rangle| \ge \varepsilon \quad \text{for } \gamma \in E.$$

Indeed, if (2.3.1) failed for all $\varepsilon > 0$, then μ could not be uniformly away from 1 on E. Thus, for $\gamma \in E$, (2.3.1) and the Cauchy–Schwarz inequality imply that

$$(2.3.2) \qquad \left[\sum_{j=1}^{J} \sum_{k=1}^{N} (\delta_{w_{j,k}} - \delta_{\mathbf{1}}) * (\delta_{w_{j,k}^{-1}} - \delta_{\mathbf{1}})\right] (\gamma) \ge \frac{\varepsilon^2}{JN}.$$

Let $\omega = \sum_{j=1}^{J} \sum_{k=1}^{N} (\delta_{w_{j,k}} - \delta_{\mathbf{1}}) * (\delta_{w_{j,k}^{-1}} - \delta_{\mathbf{1}})$. Then ω has Fourier–Stieltjes transform 0 at the identity of Γ , and transform at least ε^2/JN on E. Of course, ω is supported on $V \cdot V^{-1} \subset W$.

Since E is $I_0(U)$, there exists $\nu \in M_d(U)$ such that $\widehat{\nu} = 1/\widehat{\omega}$ on E. Therefore, $\tau = \omega * \nu \in M_d(U \cdot W)$, and

(2.3.3)
$$\widehat{\tau} = \begin{cases} 1 & \text{on } E, \\ 0 & \text{at } \mathbf{1}. \end{cases}$$

Hence, we can interpolate on $E \cup \{1\}$ with discrete measures from $U \cdot W$.

COROLLARY 2.8. Let G be a connected, locally compact abelian group with dual group $\widehat{\Gamma}$. Let $U \subset G$. If $E \subset \Gamma$ is $I_0(U)$, F is a finite subset of Γ and $W \subset G$ any neighbourhood of the identity, then $E \cup F$ is $I_0(U \cdot W)$.

Proof. This is a straightforward induction on the number of elements of F, using Lemma 2.7, where the V in the proof of Lemma 2.7 is replaced with a neighbourhood V_1 such that $(V_1 \cdot V_1^{-1})^{\#F} \subset W$.

LEMMA 2.9. Let G be a connected locally compact abelian group. Suppose that $E \subset \Gamma$ is such that for every open subset $U \subset G$, there exists a finite subset $F_U \subset E$ with $E \setminus F_U \in I_0(U)$. Then $E \in I_0(U)$ for all open $U \subset G$.

Proof. Fix the set U. We may assume that U is a neighbourhood of the identity. Choose $U_1 \subset U$ and a neighbourhood W of the identity $\mathbf{1}_G$ such that $U_1 \cdot W \subset U$. The assumptions tell us that there is a finite set $F \subset E$ such that $E \setminus F \in I_0(U_1)$. By Corollary 2.8, $E = (E \setminus F) \cup F \in I_0(U_1 \cdot W)$. Hence, $E \in I_0(U)$.

COROLLARY 2.10. Let G be a connected locally compact abelian group. Let E be a finite subset of its dual Γ . Then E is $I_0(U)$ for all open sets $U \subset G$.

In §3 we will need a strengthening of [4, proof of Prop. 2·8]. The proof of the version here follows that of [4], with some changes necessitated by the substitution of the set U for the group G.

PROPOSITION 2.11. Let Γ be a locally compact abelian group. Let $0 < \varepsilon < \sqrt{2}$. Let $E \subset \Gamma$ be an ε -Kronecker(U) set. Then $E \cup E^{-1}$ is $I_0(U \cup U^{-1})$. The $I_0(U \cup U^{-1})$ constant $K(E, U \cup U^{-1})$ depends only on ε and not on U.

Proof. Let $\phi_1: E \to [-1,1]$ be given. Let

$$\psi(\gamma) = \begin{cases} 1 & \text{if } \phi_1(\gamma) \ge 0, \\ -1 & \text{if } \phi_1(\gamma) < 0. \end{cases}$$

Let $x \in U$ be such that $|\widehat{\delta}_x(\gamma) - \psi(\gamma)| < \varepsilon$ on E. Let $\mu = \frac{1}{4}(\delta_x + \delta_{x^{-1}})$. Then $\widehat{\mu}(\gamma) \in \mathbb{R}$; in fact, there exists $0 < \delta < 1/2$ such that

$$\widehat{\mu}(\gamma) \in [\delta,1/2] \quad \text{if } \psi(\gamma) = 1 \quad \text{and} \quad \widehat{\mu}(\gamma) \in [-1/2,-\delta] \quad \text{if } \psi(\gamma) = -1.$$
 Hence,

(2.3.4)
$$|\widehat{\mu} - \phi_1| \le \max(1 - \delta, 1/2) = \lambda < 1$$
 on E .

Iterating, we find a real $\nu_1 \in M_d(U)$ with $\widehat{\nu}_1 = \phi_1$ on E. We note that

$$\widehat{\nu}_1(\gamma) = \widehat{\nu}_1(\gamma^{-1})$$

for all γ . Similarly, if $\phi_2: E \to [-1,1]$, by taking sums of measures of the form $(i/4)(\delta_y - \delta_{y^{-1}})$, we can find a purely imaginary $\nu_2 \in M_d(U)$ such that

 $\widehat{\nu}_2(\gamma) = \phi_2 \text{ on } E \text{ and }$

$$(2.3.6) \qquad \widehat{\nu_2(\gamma)} = -\widehat{\nu_2(\gamma^{-1})}$$

for all γ . Functions on $E \cup E^{-1}$ satisfying (2.3.5) are "Hermitian", and every function satisfying (2.3.6) is "anti-Hermitian". Of course, every ϕ : $E \cup -E \to \{z \in \mathbb{C} : |z| \leq 1\}$ can be written $\phi = \phi_1 + \phi_2$, where ϕ_1 is Hermitian and ϕ_2 is anti-Hermitian. Thus, every bounded real-valued ϕ on E is the Fourier–Stieltjes transform of a discrete measure concentrated on $U \cup U^{-1}$. Repeating this for bounded imaginary-valued ϕ , we see that $E \cup -E$ is indeed $I_0(U \cup U^{-1})$.

The statement about the interpolation constant K follows immediately from the above: $K(E \cup E^{-1}, (U \cup U^{-1})) \leq 8/(1-\lambda)$, where λ is given by (2.3.4).

3. Sets that are $I_0(U)$ with bounded constants

3.1. Bounded constants and unions of translates. There is a connection between being $I_0(U)$ with bounded constants and having $E \cdot \Delta$ being I_0 . Here is one direction. The other direction is in Theorem 4.4. Unfortunately, there is not an equivalence; see Example 5.1 and Proposition 5.2.

THEOREM 3.1. Let G be a connected compact abelian group and $E \subset \Gamma$. Suppose that E is $I_0(U)$ for all open U with bounded constants. Then $E \cdot \Delta$ is I_0 for all finite sets Δ .

Proof. Let K be a bound for the $I_0(U)$ constants for E. Fix $\gamma \neq \lambda \in \Gamma$. It will suffice to show that $E \cdot \gamma$ and $E \cdot \lambda$ have disjoint closures for all $\gamma \neq \lambda \in \Gamma$.

Let $x \in G$ be such that $z = \langle x, \lambda \gamma^{-1} \rangle \neq 1$. Let U be a neighbourhood of x such that

$$|\langle u, \lambda \gamma^{-1} \rangle - z| < \frac{|1 - z|}{10K}, \quad u \in U.$$

Let F be a finite subset of E such that for some $\nu \in M_d(U)$ we have $\|\nu\| \leq 2K$ and $\widehat{\nu} = 1$ on $(E \setminus F) \cdot \gamma$. Such a ν exists by our hypothesis and both parts of Lemma 2.1 (we have to translate both U and E). Then

$$|\widehat{\nu}(\omega\lambda) - z\widehat{\nu}(\omega\gamma)| < \|\nu\| |1 - z|/(10K) < \frac{|1 - z|}{5}$$
 for all $\omega \in E \setminus F$.

Hence, $|\widehat{\nu} - z| < |1 - z|/5$ on $(E \setminus F) \cdot \lambda$, so $(E \setminus F) \cdot \lambda$ and $(E \setminus F) \cdot \gamma$ have disjoint closures in $\overline{\Gamma}$. Now apply [4, Lemma 2·1] and [5, Cor. 4·2].

3.2. ε -Kronecker sets are ε -Kronecker(U)

Theorem 3.2. Let $0 < \varepsilon' < \varepsilon < 2$ and let E be a discrete ε' -Kronecker subset of the locally compact abelian group Γ whose dual group is σ -compact.

Then for each open $U \subset G$ there exists a finite set F such that $E \setminus F$ is ε -Kronecker(U).

We state and prove some corollaries before proving Theorem 3.2.

COROLLARY 3.3. Let $0 < \varepsilon < \sqrt{2}$. Suppose that G is connected. Let E be an ε -Kronecker set. Then $E \cup E^{-1}$ is $I_0(U)$ for all open $U \subset G$ with bounded constants.

Proof. This is immediate from Lemma 2.9, Proposition 2.11, and Theorem 3.2. \blacksquare

The next corollary follows from Theorems 3.2 and 3.1.

COROLLARY 3.4. Let $0 < \varepsilon < \sqrt{2}$. Suppose that G is connected. Let E be an ε -Kronecker set. Then $(E \cup E^{-1}) \cdot \Delta$ is I_0 for all finite sets $\Delta \subset \Gamma$.

Proof of Theorem 3.2. Let $U \subset G$ be open. For each precompact $V \subset G$, let

$$\Phi(V) = \{ \phi : E \to \mathbb{T} : \exists x \in V \text{ such that } |\phi(\gamma) - \langle \gamma, x \rangle| \le \varepsilon' \ \forall \gamma \in E \}.$$

We give \mathbb{T}^E the product topology. Then the closure of $\Phi(V)$ in \mathbb{T}^E is $\Phi(\overline{V})$. Indeed, suppose that $\phi_{\alpha} \in \Phi(V)$ and that $x_{\alpha} \in V$ satisfy $|\phi_{\alpha}(\gamma) - \langle \gamma, x_{\alpha} \rangle| \leq \varepsilon'$ for all $\gamma \in E$. Suppose also that $\phi_{\alpha} \to \phi$ pointwise on E (this being the topology on \mathbb{T}^E). Let $x \in G$ be an accumulation point of the x_{α} . Then clearly ϕ is in $\Phi(\overline{V})$.

We now assume that V is compact, has non-empty interior, and $V \subset U$. Then the σ -compactness of G implies there exist a countable number of translates $V \cdot x_j$ such that $\bigcup_j V \cdot x_j = G$. As E is ε' -Kronecker, $\bigcup \Phi(V \cdot x_j) = \mathbb{T}^E$. Because \mathbb{T}^E is a compact Hausdorff space, the Baire category theorem applies: there exists j such that $\Phi(V \cdot x_j)$ has interior in \mathbb{T}^E .

That means $\Phi(V \cdot x_j)$ contains a set of the form $(z_1, \ldots, z_n) \times \mathbb{T}^{E \setminus F}$ for some finite set F. In particular, for every $\phi : (E \setminus F) \to \mathbb{T}$ there exists $x \in V \cdot x_j \subset U \cdot x_j$ such that $|\phi(\gamma) - \langle \gamma, x \rangle| \leq \varepsilon'$ for all $\gamma \in E \setminus F$. Because $\varepsilon' < \varepsilon$, $E \setminus F$ is ε -Kronecker $(V \cdot x_j)$. By Lemma 2.1(3), $E \setminus F$ is ε -Kronecker(V), and therefore ε -Kronecker(U).

REMARK 3.5. A slightly sharper version of Corollary 3.4 appears in [4, Theorem 3·1(2)]: suppose that $0 < \varepsilon < \sqrt{2}$, that E is an ε -Kronecker subset of the discrete abelian group Γ , and $\gamma, \lambda \in \Gamma$, $\gamma \neq \lambda$. Then $\overline{E \cdot \gamma} \cap \overline{E \cdot \lambda} = E \cdot \gamma \cap E \cdot \lambda$, and this set is finite.

COROLLARY 3.6. Let G be compact, locally connected, and connected. Then Γ contains an infinite set that is $I_0(U)$ for all open U with bounded constants.

Proof. Every such group contains an infinite $\frac{1}{2}$ -Kronecker set [2, Lemma 3.2]. \blacksquare

We say that a subset X of a Banach space Y is w- ε -dense in Y if for every $y \in Y$ there exists $x \in X$ such that

$$(3.2.1) ||x - y|| \le \varepsilon.$$

It is obvious that if E is Hadamard and $m \in \mathbb{N}$, $m \neq 0$, then there exists a finite set Δ (of cardinality at most two) such that $(E \setminus \Delta) \cup \{m\}$ is Hadamard with the same ratio as E.

We have the following analogue for ε -Kronecker sets.

COROLLARY 3.7. Let $\varepsilon, \delta > 0$. Let $E \subset \Gamma$ be an ε -Kronecker set, where G is σ -compact. Suppose that $\gamma \in \Gamma$ is such that $\langle G, \gamma \rangle$ is w- δ -dense in \mathbb{T} . Then there exists a finite set $\Delta \subset \Gamma$ such that $(E \setminus \Delta) \cup \{\gamma\}$ is ε' -Kronecker for all $\varepsilon' > \varepsilon + \delta$.

Proof. Let $\tau = \frac{1}{4}(\varepsilon' - \varepsilon - \delta)$. Choose a finite subset $X \subset G$ such that $\langle X, \gamma \rangle$ is $\tau + \delta$ -dense in T. For each $x \in X$, choose a neighbourhood U_x of x such that $|\langle xu^{-1}, \gamma \rangle - 1| < \tau$ for all $u \in U_x$. For each $x \in X$, there exists a finite subset Δ_x such that $E \setminus \Delta_x$ is ε' -Kronecker (U_x) , by Theorem 3.2.

Let $\Delta = \bigcup_{x \in X} \Delta_x$. Then $(E \setminus \Delta) \cup \{\gamma\}$ has the required properties.

COROLLARY 3.8. Let $0 < \varepsilon < \varepsilon'$. Let $E \subset \Gamma$ be an ε -Kronecker set, G be σ -compact, and suppose that F is a finite ε -Kronecker set. Then there exists a finite set Δ such that $(E \setminus \Delta) \cup F$ is ε' -Kronecker.

We remark that we may perturb an ε -Kronecker set and still have such a set (less an initial segment and with slightly larger ε), rather like topological Sidon sets [1].

COROLLARY 3.9. Let G be a σ -compact abelian group. Suppose $0 \le \varepsilon < \varepsilon_1 < 2$, that $E \subset \Gamma$ is a discrete ε -Kronecker set, $\Delta \subset \Gamma$ is finite, and $\phi : E \to \Delta$ is any function. Then there exists a finite set $F \subset E$ such that $E' = \{ \gamma \phi(\gamma) : \gamma \in E \setminus F \}$ is ε_1 -Kronecker.

Proof. Let $U \subset G$ be an open neighbourhood of the identity such that $|\langle u, \delta \rangle - 1| < \varepsilon_1 - \varepsilon$ for all $u \in U$ and $\delta \in \Delta$. Choose a finite F so that $E \setminus F$ is ε -Kronecker(U). Then E' is ε ₁-Kronecker.

3.3. Hadamard sets. It has been known for a long time that if $E \subset \mathbb{R}$ is an Hadamard set, then $E \cup -E$ is I_0 . That was proved originally by Strzelecki [18]; other proofs can be found in [9, 11] and [15]. We note that some authors (e.g., [9, 21]) use "Hadamard" for symmetric subsets E such that $E \cap [0, \infty)$ is Hadamard in our sense.

THEOREM 3.10. Let $E \subset \mathbb{R}$ be Hadamard with ratio q. Then $E \cup -E$ is $I_0(U)$ for every open $U \subset \mathbb{R}$ with bounded constants.

COROLLARY 3.11. Let $E \subset \mathbb{N}$ be an Hadamard set. Then $(E \cup -E) + \Delta$ is I_0 for all finite sets $\Delta \subset \mathbb{Z}$.

In the proof of Theorem 3.10, we will use the sets D(N, U) as defined in (2.1.1).

LEMMA 3.12. Let G be a σ -compact locally compact abelian group. Let $E \subset \Gamma$ be I_0 and $0 < \varepsilon < 1$. Then there exists $N \ge 1$ and a compact set $U \subset G$ such that $D(N,U)^{\widehat{}}$ is w- ε -dense in $B(\ell^{\infty}(E))$.

For the term w- ε -dense see formula (3.2.1).

Proof. Let U_n be compact subsets of G such that $U_n \subset U_{n+1}$ for all $n \geq 1$ and $G = \bigcup U_n$. Because U_n is compact, $A_n = \operatorname{AP}(E, n, U_n, \varepsilon/3)$ is closed in \mathbb{T}^E . Because E is I_0 , $\bigcup A_n = \mathbb{T}^E$. Since \mathbb{T}^E is a compact abelian group and the A_n are increasing, some A_n must have Haar measure greater than 1/2. Then $A_n \cdot A_n = \mathbb{T}^E$ by Lemma 2.3. A computation shows that

(3.3.1)
$$A_n \cdot A_n \subset AP(E, n^2, U_n \cdot U_n, 2\varepsilon/3 + \varepsilon^2/9) \subset AP(E, n^2, U_n \cdot U_n, \varepsilon),$$

since $0 < \varepsilon < 1$. Since every element of $B(\ell^{\infty}(E))$ is the average of two elements of \mathbb{T}^E , $N = 2n^2$ and $U = U_n^2$ will do. \blacksquare

LEMMA 3.13. Let q > 1 and $\varepsilon < 1$. Then there exists an integer $N \ge 1$ and a compact set $U \subset \mathbb{R}$ such that for every Hadamard set E of ratio q, there exists a finite set $\Delta \subset E$ such that $D(N,U)^{\widehat{}}$ is w- ε -dense in $B_{\Delta} = B(\ell^{\infty}[(E \setminus \Delta) \cup -(E \setminus \Delta)])$.

Proof. Suppose otherwise. Then for every $n \geq 1$, there exists an Hadamard set E_n of ratio q such that $D(n, [-n, n])^{\hat{}}$ is not w- ε -dense in B_{Δ} for all finite sets Δ .

Because [-n, n] is compact, for each finite set Δ , there exists a finite subset $F_{n,\Delta} \subset E_n$ such that $D(n, [-n, n])^{\hat{}}$ is not w- ε -dense in B_{Δ} . [Otherwise, a limit argument shows that $D(n, [-n, n])^{\hat{}}$ was w- ε -dense in B_{Δ} .]

Let $F_1 \subset (0, \infty)$ be a finite Hadamard set of ratio q such that D(1, [-1, 1]) is not w- ε -dense in $B(\ell^{\infty}(F_1 \cup -F_1))$. Assume that $k \geq 1$ and that we have found finite, pairwise disjoint subsets F_1, \ldots, F_k of \mathbb{R} such that $\bigcup_{j=1}^k F_j$ is Hadamard with ratio q and D(k, [-k, k]) is not w- ε -dense in $B(\ell^{\infty}(\bigcup_{j=1}^k F_j \cup -F_j))$. Then we can find E_{k+1} as above.

Choose a finite subset $\Delta \subset E_{k+1}$ such that $(E_{k+1} \setminus \Delta) \cup \bigcup_{j=1}^k F_j$ is also Hadamard of ratio q. Now choose a finite subset F_{k+1} of E_{k+1} such that D(k+1,[-k-1,k+1]) is not w- ε -dense in $B(\ell^{\infty}(F_{k+1}\cup -F_{k+1}))$. Then $\bigcup_{j=1}^{\infty} F_j$ is such that for all $1 \leq k$, D(k,[-k,k]) is not w- ε -dense in

 $B(\ell^{\infty}(\bigcup_{j=1}^{\infty} F_j \cup -F_j))0$. That contradicts Lemma 3.12 and the I_0 property of the Hadamard set $\bigcup_{j=1}^{\infty} F_j \cup -F_j$.

Proof of Theorem 3.10. This is now easy. Let U and N be given by Lemma 3.13 for q and let $E \subset \mathbb{R}$ be Hadamard with ratio q. Let $V \subset \mathbb{R}$ be any neighbourhood of 0. Let t > 1 be such that $tU \subset V$. Let

$$F = \{t^{-1}\gamma : \gamma \in E \cup -E\}.$$

Then F is symmetric and $F \cap [0, \infty)$ is Hadamard with ratio q so $D(N, U)^{\hat{}}$ is ε -dense in $B(\ell^{\infty}(F \setminus \Delta))$ for some finite set Δ . Let

$$\Delta' = \{t\gamma : \gamma \in \Delta\}.$$

Then $D(N,V)^{\hat{}}$ is ε -dense in $B(\ell^{\infty}((E\cup -E)\setminus \Delta'))$. Thus, by Proposition 2.2(5) and Lemma 2.9, $E\cup -E$ is $I_0(U)$ for all open U with a constant that depends only on q.

- **4. More general** $I_0(U)$ **sets.** We show that if an I_0 set in a discrete abelian group has all finite unions of its translates being I_0 (and another condition necessary when G is not connected), then it is $I_0(U)$ for all open U.
- **4.1.** Preliminaries for general $I_0(U)$ sets. The following material is included for completeness.

DEFINITION ([12, 8.2]). Let X_0 be a subgroup of Γ . Then E is X_0 -subtransversal if each coset of X_0 intersects E in at most one point. The set E is almost X_0 -subtransversal if there is a finite subset Δ such that $E \setminus \Delta$ is X_0 -subtransversal.

REMARK 4.1. If the steps of E tend to infinity, then E is almost X_0 -subtransversal for every finite subgroup X_0 of Γ . Such is the case when E is an ε -Kronecker subset of a metrizable group and $0 < \varepsilon < \sqrt{2}$ (see [4, Theorem 3·1]). If G is connected, then Γ is torsion-free (and conversely), and therefore every subset of Γ is X_0 -subtransversal for the unique finite subgroup of Γ .

LEMMA 4.2 ([12, 8.9–8.10]). Let Γ be a discrete abelian group. If $E \subset \Gamma$ is a Sidon set, then there exists an integer $m \geq 1$ such that for any finite set $\Delta \subset \Gamma$, $E = F \cup \bigcup_i F_i$ where

- (1) F and the F_i are finite and pairwise disjoint,
- (2) $\#F_i \leq m \text{ for all } i, \text{ and }$
- (3) $F_i \cdot F_i^{-1} \cap \Delta = \emptyset$.

LEMMA 4.3 ([12, 8.15]). Let Γ be a discrete abelian group. Let m be a positive integer and $g \in L^1(G)$, $g \geq 0$. Then there exists $\delta > 0$ and a finite subgroup X_0 of Γ such that if χ_1, \ldots, χ_k is an X_0 -subtransversal subset of

 Γ with $2 \leq k \leq m$, then the determinant

$$\det[\widehat{g}(\chi_i \chi_j^{-1})]_{i,j=1}^k \ge \delta.$$

4.2. Sets that are $I_0(U)$

Theorem 4.4. Suppose that Γ is a discrete abelian group and $E \subset \Gamma$ is an I_0 set such that

- (1) $E \cdot \Delta$ is I_0 for all finite sets $\Delta \subset \Gamma$, and
- (2) E is almost X_0 -subtransversal for all finite subgroups $X_0 \subset \Gamma$.

Then for each open set $U \subset G$ there exists a finite set F such that $E \setminus F$ is $I_0(U)$.

Proof. By Lemma 2.1, we may assume that U is a neighbourhood of the identity of G.

Let W be a neighbourhood of the identity of G such that $W^2 \subset U$. We shall show that there is a finite set F such that for every $\phi \in B(\ell^{\infty}(E \setminus F))$ there exists $\mu \in M_d(W)$ such that

$$(4.2.1) |\widehat{\mu}(\gamma) - \phi(\gamma)| < \varepsilon/6 \text{for all } \gamma \in E \setminus F.$$

Then Proposition 2.2(4) implies $E \setminus F$ is $I_0(W^2)$.

Let C_1 be the I_0 constant of E. Let $g \in A(G) \subset L^1(G)$ be such that $g \geq 0$, Supp $g \subset W$ and $\widehat{g}(\mathbf{1}) = 1$.

Let m be given by Lemma 4.2 for E, which we may apply because I_0 sets are Sidon sets. Let X_0 and δ be given by Lemma 4.3 for E, m and g. Let $C_2 = \max(1, m!/\delta)$.

Let $0 < \varepsilon < 1/2$ be such that $C_1C_2\varepsilon ||g||_A < 1/24$. Choose a finite symmetric subset $\Delta \subset \Gamma$ such that $\mathbf{1} \in \Delta$ and

$$48C_1 C_2 \sum_{\chi \in \Gamma \setminus \Delta} |\widehat{g}(\chi)| < 1.$$

Let F_0 be a finite set such that $E \setminus F_0$ is X_0 -subtransversal and $(E \setminus F_0) \cap \Delta = \emptyset$. By Lemma 4.2,

$$E \setminus F_0 = F \cup \bigcup F_i,$$

where

 F, F_i are finite with $\#F_i \leq m$ for all i, and $F_i \cdot F_j^{-1} \cap \Delta = \emptyset$, $i \neq j$.

Let $E_0 = F_0 \cup F$, so $E \setminus E_0 = \bigcup F_i$ is X_0 -subtransversal and disjoint from Δ .

Let $\phi: E \to \{z: |z| \le 1\}$. It will suffice to find $\omega \in M_d(W)$ such that $|\widehat{\omega} - \phi| \le 1/6$ on $E \setminus E_0$, which easily implies that $E \setminus E_0$ is $I_0(W^2)$.

Fix i, let $F_i = \{\chi_{i,1}, \dots, \chi_{i,k}\}$, $k = \#F_i \leq m$, and consider the linear system

(4.2.2)
$$\sum_{s=1}^{k} x_s \widehat{g}(\chi_{i,r} \chi_{i,s}^{-1}) = \phi(\chi_{i,r}), \quad 1 \le r \le k.$$

If k = 1, then (4.2.2) reads $x_1\widehat{g}(\mathbf{1}) = \phi(\chi_{1,1})$ with

$$x_1 = \phi(\chi_{1,1})/1$$
, so $|x_1| \le 1$.

If $k \geq 2$ then Lemma 4.3 implies $\det[\widehat{g}(\chi_i \chi_j^{-1})] \geq \delta$. An application of Cramer's rule shows that there is a unique solution to the system (4.2.2) satisfying $|x_s| \leq m!/\delta \leq C_2$, $1 \leq s \leq k$. Define $\phi_1(\chi_{i,s}) = x_s$ on F_i for all i. Then, for each i,

$$\sum_{s} \phi_1(\chi_{i,s}) \widehat{g}(\chi_{i,r} \chi_{i,s}^{-1}) = \phi_1 * \widehat{g}(\chi_{i,r}) = \phi(\chi_{i,r}).$$

Define $\phi_1 = 0$ on E_0 . Then $\phi_1 \in \ell^{\infty}(E)$, $\|\phi_1\|_{\infty} \leq C_2$. Next, we claim that

$$(4.2.3) ((F_i \cdot \Delta) \setminus F_i) \cap (E \setminus E_0) = \emptyset.$$

Indeed, suppose that $\chi \in \chi_0 \cdot \Delta$, $\chi_0 \in F_i$, $\chi \notin F_i$, but $\chi \in E \setminus E_0$. Then $\chi \in F_j$ for some $j \neq i$ and so $(F_j \cdot F_i^{-1}) \cap \Delta \neq \emptyset$, and this is a contradiction, establishing (4.2.3).

Hence, $\bigcup ((F_i \cdot \Delta) \setminus F_i) \cap (E \setminus E_0) = \emptyset$. Because $\bigcup_i (F_i \cdot \Delta) \setminus F_i$ and $E \setminus E_0$ are both subsets of $E \cdot \Delta$, which is assumed to be an I_0 set, their closures in $\overline{\Gamma}$ must be disjoint. By the regularity of the topology on $\overline{\Gamma}$, there exists $\mu \in M_d(G)$ such that $|\widehat{\mu}| \leq \varepsilon$ on $\bigcup (F_i \cdot \Delta) \setminus F_i$, $|\widehat{\mu} - 1| < \varepsilon$ on $E \setminus E_0$, and $\sup |\widehat{\mu}| \leq 2$ everywhere. Also, because E is I_0 , there exists $\nu \in M_d(G)$ such that

$$\widehat{\nu} = \phi_1/\widehat{\mu} \text{ on } E \setminus E_0$$

and

$$\|\nu\| \le C_1 \left\| \frac{\phi_1}{\widehat{\mu}_{|E \setminus E_0}} \right\|_{\infty} \le \frac{C_1 \|\phi_1\|_{\infty}}{1 - \varepsilon} \le 2C_1 \|\phi_1\|_{\infty} \le 2C_1 C_2.$$

Now consider $\omega = g \cdot (\mu * \nu) \in M_d(W)$. Fix $\chi_0 \in E \setminus E_0$, say $\chi_0 = \chi_{i,r} \in F_i = \{\chi_{i,1}, \dots, \chi_{i,k}\}$, so i is also fixed. We have already observed that

$$\phi(\chi_0) = \phi(\chi_{i,r}) = \sum_s \phi_1(\chi_{i,s}) \widehat{g}(\chi_{i,r} \chi_{i,s}^{-1}) = \sum_s \widehat{\mu}(\chi_{i,s}) \widehat{\nu}(\chi_{i,s}) \widehat{g}(\chi_0 \chi_{i,s}^{-1})$$
$$= \sum_{\chi \in F} \widehat{\mu}(\chi) \widehat{\nu}(\chi) \widehat{g}(\chi_0 \chi^{-1}),$$

while

$$\widehat{g \cdot \mu * \nu}(\chi_0) = \sum_{\chi \in \Gamma} \widehat{g}(\chi_0 \chi^{-1}) \widehat{\mu}(\chi) \widehat{\nu}(\chi).$$

Thus

$$|\widehat{g \cdot \mu * \nu}(\chi_0) - \phi(\chi_0)| = \Big| \sum_{\chi \in \Gamma \setminus F_i} \widehat{g}(\chi_0 \chi^{-1}) \widehat{\mu}(\chi) \widehat{\nu}(\chi) \Big| \le S_1 + S_2,$$

where

$$S_{1} = \Big| \sum_{\chi \in \chi_{0} \Delta \setminus F_{i}} \widehat{g}(\chi_{0} \chi^{-1}) \widehat{\mu}(\chi) \widehat{\nu}(\chi) \Big|,$$

$$S_{2} = \Big| \sum_{\chi \in \Gamma \setminus (F_{i} \cup \chi_{0} \Delta)} \widehat{g}(\chi_{0} \chi^{-1}) \widehat{\mu}(\chi) \widehat{\nu}(\chi) \Big|.$$

Then

$$|S_{1}| \leq \sum_{\chi \in \chi_{0} \Delta \setminus F_{i}} |\widehat{g}(\chi_{0}\chi^{-1})| |\widehat{\mu}(\chi)| \|\nu\|$$

$$\leq \sum_{\chi \in F_{i} \cdot \Delta \setminus F_{i}} |\widehat{g}(\chi_{0}\chi^{-1})| \varepsilon \|\nu\| \leq \varepsilon \cdot 2C_{1}C_{2} \|g\|_{A} \leq \frac{1}{12},$$

$$|S_{2}| \leq \sum_{\chi \in \Gamma \setminus (F_{i} \cup \chi_{0} \Delta)} |\widehat{g}(\chi_{0}\chi^{-1})| \sup_{\lambda} |\widehat{\mu}(\lambda)| \|\nu\| \leq 4C_{1}C_{2} \sum_{\chi \in \Gamma \setminus \Delta} |\widehat{g}(\chi)| \leq \frac{1}{12}.$$

Therefore,

$$|\phi(\chi_0) - \widehat{g \cdot \mu * \nu}(\chi_0)| \le \frac{1}{6}$$
 for all $\chi_0 \in \bigcup F_i = E \setminus E_0$.

Hence, $E \setminus E_0$ satisfies (4.2.1), as claimed, so $E \setminus E_0$ is $I_0(U)$.

COROLLARY 4.5. Suppose that G is connected and that $E \subset \Gamma$ is an I_0 set such that $E \cdot \Delta$ is I_0 for all finite sets $\Delta \subset \Gamma$. Then E is $I_0(U)$ for all open sets $U \subset G$.

Proof. The connectedness of G means all subsets of Γ are X_0 -subtransversal for the unique finite subgroup of Γ . Now apply Theorem 4.4.

COROLLARY 4.6. If G is connected and $0 < \varepsilon < \sqrt{2}$, then any finite union of translates of ε -Kronecker sets is $I_0(U)$ for all open U.

REMARKS 4.7. (i) If E is $I_0(U)$ for all open U, then E is X_0 -subtransversal for all finite subgroups X_0 . Indeed, if G_0 is the annihilator of X_0 then G_0 is an open subgroup. If $a, b \in E$ and $ab^{-1} \in X_0$, then a, b coincide on G_0 , so cannot be separated by elements of G_0 . Hence E is not $I_0(G_0)$.

A similar argument can be made for E almost X_0 -subtransversal and $E \setminus F$ being $I_0(U)$.

- (ii) An I_0 set can satisfy the finite union of translates condition, yet not be $I_0(U)$ for all U. See Example 5.4.
- (iii) Proposition 5.2 (and Example 5.1) shows that hypothesis (1) of Theorem 4.4 is not a necessary condition for $I_0(U)$, but we do not have any ideas on how to weaken that hypothesis.

5. Some examples

5.1. The set of I_0 sets is not closed under unions of translates. We have shown that $E \cup E\gamma$ is I_0 when E is either an ε -Kronecker set (Corollary 3.4) or an Hadamard set (Corollary 3.11). That is false for more general I_0 sets, even for sets that are $I_0(U)$ for all open U:

EXAMPLE 5.1. Let $E_1 = \{10^j + 2j + 1\}$ and $E_2 = \{10^j\}$. Then E_1, E_2 have disjoint closures in $\overline{\mathbb{Z}}$ since $E_1 \subset 2\mathbb{Z} + 1$ and $E_2 \subset 2\mathbb{Z}$. Hence $E = E_1 \cup E_2$ is I_0 . But $E \cup (E+1)$ is not I_0 because it contains the union $\{10^j + 2j + 1\} \cup \{10^j + 1\}$; see [13, p. 178] or [4, Example 5·1]. Note that E is the union of two ε -Kronecker sets with $\varepsilon < 2\sin(\pi/8)$ and E is not an ε -Kronecker set for any $0 < \varepsilon < 1/2$. Also, $E - E \supset 2\mathbb{N} - 1$.

PROPOSITION 5.2. The set of Example 5.1 is $I_0(U)$ for all open sets $U \subset \mathbb{T}$, but not with bounded constants.

Proof. The "not with bounded constants" assertion follows from Theorem 3.1 and the assertion of Example 5.1. Fix an open set $W \subset \mathbb{T}$. Without loss of generality, we may assume that $W = (-\tau, \tau)$ for some $0 < \tau < \pi$, by Lemma 2.1.

Choose N such that $a = \pi/10^N \in (-\tau/4, \tau/4)$. Let $F = E \cap [0, 10^{N+1}]$, so F is a finite subset of E. Then δ_a has Fourier transform

$$\widehat{\delta_a}(m) = \begin{cases} e^{\pi i (10^{j-N} + (2j+1)10^{-N})} & \text{for } m = 10^j + 2j + 1 \in E_1, \\ e^{\pi i 10^{j-N}} & \text{for } m = 10^j \in E_2. \end{cases}$$

In $E \setminus F$,

$$\widehat{\delta_a}(m) = \begin{cases} e^{\pi i (2j+1)10^{-N}} & \text{for } m = 10^j + 2j + 1 \in E_1 \setminus F, \\ e^{2\pi i} & \text{for } m = 10^j \in E_2 \setminus F. \end{cases}$$

Now, $\inf_j |e^{\pi i(2j+1)/10^N} - 1| > 0$. Hence, $\nu = \delta_a - \delta_0$ has transform 0 on $E_2 \setminus F$ and transform bounded away from zero on $E_1 \setminus F$. Because E_1 is $I_0(U)$ for all open U, we can find a discrete measure μ supported on $[-\tau/4, \tau/4]$ such that $\widehat{\mu} = 1/\widehat{\nu}$ on E_1 . That is, there exists a discrete measure $\omega = \mu * \nu$ supported on $[-\tau/2, \tau/2]$ such that $\widehat{\omega} = 1$ on $E_1 \setminus F$ and $\widehat{\omega} = 0$ on $E_2 \setminus F$. Because E_1 and E_2 are both $I_0(U)$, it is now easy to show that E is $I_0(W)$.

5.2. An ε -Kronecker set not $I_0(U)$ for some U. In disconnected groups, ε -Kronecker does not necessarily imply $I_0(U)$ for all open U. Here is an example.

EXAMPLE 5.3. Let $G = Z_{43} \times \mathbb{T}$, where Z_{43} is the set of 43rd roots of unity. Let $E = \{(1,1), (0,1)\} \subset Z_{43} \times \mathbb{Z}$. Then it is easy to see that E is $\frac{1}{5}$ -Kronecker. On the other hand, E is not $I_0(\{0\} \times \mathbb{T})$.

5.3. $E \cdot \Delta$ can be I_0 for all finite Δ but not $I_0(U)$

EXAMPLE 5.4. Let $G = \mathbb{T} \times F$ where F is a finite group. Let $E' \subset \mathbb{Z}$ be an ε -Kronecker set and put $E = E' \times \{1\} \cup E' \times \{s\}$, $s \in \widehat{F}$, $s \neq 1_F$. Then $\mathbb{T} \times \{0\}$ is an open subgroup of G and E is not $I_0(\mathbb{T} \times \{0\})$ but $E \cdot \Delta$ is I_0 for all finite sets $\Delta \subset \Gamma = \mathbb{Z} \times \widehat{F}$ since $E \cdot \Delta$ is just a set of the form $E' \cdot \Delta'$ and E' is an ε -Kronecker set in \mathbb{Z} . So assumption (1) of Theorem 4.4 is satisfied, but not the conclusion. Of course assumption (2) of Theorem 4.4 fails.

References

- M. Déchamps-Gondim, Ensembles de Sidon topologiques, Ann. Inst. Fourier (Grenoble) 22 (1972), no. 3, 51–79.
- [2] J. Galindo and S. Hernández, The concept of boundedness and the Bohr compactification of a MAP Abelian group, Fund. Math. 159 (1999), 195–218.
- [3] B. N. Givens and K. Kunen, Chromatic numbers and Bohr topologies, Topology Appl. 131 (2003), 189–202.
- [4] C. C. Graham and K. E. Hare, ε-Kronecker and I₀ sets in abelian groups, I: arithmetic properties of ε-Kronecker sets, Math. Proc. Cambridge Philos. Soc., to appear.
- [5] C. C. Graham, K. E. Hare and T. W. Körner, ε-Kronecker and I₀ sets in abelian groups, II: sparseness of products of ε-Kronecker sets, ibid., to appear.
- [6] K. E. Hare and L. T. Ramsey, I₀ sets in non-abelian groups, ibid., 135 (2003), 81–98.
- [7] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, I, Springer, Berlin, 1963.
- [8] K. H. Hofmann and S. A. Morris, The Structure of Compact Groups, de Gruyter, Berlin, 1998.
- [9] J.-P. Kahane, Séries de Fourier Absolument Convergentes, Springer, Berlin, 1970.
- [10] J. H. B. Kemperman, On products of sets in a locally compact group, Fund. Math. 56 (1964), 51–68.
- [11] K. Kunen and W. Rudin, Lacunarity and the Bohr topology, Math. Proc. Cambridge Philos. Soc. 126 (1999), 117–137.
- [12] J. Lopez and K. Ross, Sidon Sets, Lecture Notes in Pure Appl. Math. 13, Dekker, New York, 1975.
- [13] J.-F. Méla, Sur les ensembles d'interpolation de C. Ryll-Nardzewski et de S. Hartman, Studia Math. 29 (1968), 167–193.
- [14] —, Sur certains ensembles exceptionnels en analyse de Fourier, Ann. Inst. Fourier (Grenoble) 18 (1968), 31–71.
- [15] —, Approximation diophantienne et ensembles lacunaires, Mém. Bull. Math. Soc. France 19 (1969), 26–54.
- [16] L. T. Ramsey, Comparisons of Sidon and I₀ sets, Colloq. Math. 70 (1996), 103–132.
- [17] K. A. Ross, Sur les compacts associés à un ensemble de Sidon, C. R. Acad. Sci. Paris Sér. A 275 (1972), 183–185.
- [18] E. Strzelecki, On a problem of interpolation by periodic and almost periodic functions, Colloq. Math. 11 (1963), 91–99.
- [19] N. Th. Varopoulos, Tensor algebras over discrete spaces, J. Funct. Anal. 3 (1969), 321–335.

- [20] M. Weiss, Concerning a theorem of Paley on lacunary power series, Acta Math. 102 (1959), 225–238.
- [21] A. Zygmund, Trigonometric Series I, Cambridge Univ. Press, Cambridge, 1959.

University of British Columbia Mailing address: RR#1-H-46 Bowen Island, BC, V0N 1G0 Canada E-mail: ccgraham@alum.mit.edu Department of Pure Mathematics University of Waterloo Waterloo, ON, N2L 3G1 Canada E-mail: kehare@uwaterloo.ca

Received October 19, 2004 Revised version April 13, 2005 (5520)