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Quasispe
tra of solvable Lie algebra homomorphismsinto Bana
h algebrasby
Anar Dosiev (Ankara)Abstra
t. We propose a non
ommutative holomorphi
 fun
tional 
al
ulus on ab-solutely 
onvex domains for a Bana
h algebra homomorphism π of a �nite-dimensionalsolvable Lie algebra g in terms of quasispe
tra σ(π). In parti
ular, we prove that the jointspe
tral radius of a 
ompa
t subset in a solvable operator Lie subalgebra 
oin
ides withthe geometri
 spe
tral radius with respe
t to a quasispe
trum.1. Introdu
tion. One of the 
entral topi
s of modern analysis is the
on
ept of a fun
tion in several non
ommuting variables or more generallya non
ommutative fun
tion algebra. A motivation for su
h non
ommutativegeneralization is provided, for instan
e, by the fun
tional 
al
ulus problemfor a family of non
ommuting operators. The aim of a fun
tional 
al
ulusis to obtain an operator realization of a (non
ommutative) fun
tion alge-bra. More pre
isely, if there is a 
ontinuous algebra homomorphism from anon
ommutative fun
tion algebra A into the Bana
h algebra B(X) of allbounded linear operators on a 
omplex Bana
h spa
e X, su
h that the non-
ommuting variables in A 
an be sent to a given operator family in B(X),then we say that there is a fun
tional 
al
ulus with fun
tions from A in

B(X). Its original and simplest form is the holomorphi
 fun
tional 
al
ulusfor a single operator T ∈ B(X), whi
h 
an be expressed as a unital 
ontin-uous algebra homomorphism Γ : O(U) → B(X) from the Fré
het algebra
O(U) (furnished with the 
ompa
t-open topology) of holomorphi
 fun
tionson a domain U ⊆ C into the Bana
h algebra B(X) su
h that Γ (z) = T . Thewell known Gelfand�Dunford�Riesz theorem (see for instan
e [14, 2.2.15℄,[15, 8.2.3℄) asserts that Γ exists if and only if σ(T ) ⊆ U , where σ(T ) is theusual spe
trum of T .The multivariable version of this result is of great interest and it hasturned out to be more 
ompli
ated. The statement of the problem is the2000 Mathemati
s Subje
t Classi�
ation: Primary 47A60; Se
ondary 47A13, 17B30.Key words and phrases: quasispe
tra, solvable Lie algebra, fun
tional 
al
ulus, jointspe
tral radius. [13℄



14 A. Dosievfollowing. Let T = (T1, . . . , Tn) be an operator family in B(X) and let Ube a domain in C
n. Again by a holomorphi
 fun
tional 
al
ulus on U for Twe mean a 
ontinuous algebra homomorphism Γ : O(U)→ B(X) su
h that

Γ (zi) = Ti for all i, 1 ≤ i ≤ n. Sin
e O(U) is a 
ommutative algebra, ithas a 
ommutative homomorphi
 image, in parti
ular, TiTj = TjTi for all
i, j. So, T must be a mutually 
ommuting operator family and holomorphi
fun
tional 
al
ulus makes sense only for su
h operator families. The problemhas been solved in [21℄ by J. Taylor. The key role in this matter is played,as in the one variable 
ase, by the (joint) spe
trum σ(T ) of the operatorfamily T , whi
h is a nonempty 
ompa
t subset in C

n. More pre
isely, the(Taylor) spe
trum σ(T ) is de�ned as the set of those λ ∈ C
n su
h that theKoszul 
omplex Kos(X, T − λ) asso
iated with the (
ommutative) operatorfamily T − λ = (T1 − λ1, . . . , Tn − λn) is not exa
t [20℄. Taylor's theorem[20℄, [21℄ asserts that if σ(T ) ⊆ U then there is su
h a 
al
ulus Γ , and this
ondition is ne
essary if U is a domain of holomorphy. Note that the Taylorspe
trum has a 
ompli
ated nature expressed in homologi
al terms.And what about an operator family T whi
h is not 
ommutative? Ob-viously, in this 
ase we 
annot use the algebras O(U) to have a �non
om-mutative holomorphi
 fun
tional 
al
ulus� for T . So, one has to 
hange thefun
tion 
on
ept itself when developing a theory of fun
tions in non
ommut-ing variables. Here a whole range of new possibilities appear [22℄. One of theapproa
hes is based on the well developed Lie algebra te
hnique (see [21,Se
tion 7℄). Namely, we �x a �nite-dimensional Lie algebra g instead of C

nand try to treat fun
tions in elements of g as elements of some topologi
al
ompletions of the universal enveloping (or polynomial) algebra U(g). Evi-dently, the behavior of these 
ompletions depends of the variable spa
e g.For instan
e, as observed in [21, Se
tion 7℄, if the Lie algebra g is �very�non
ommutative, namely if it is a semisimple Lie algebra, then the algebra
Og (the Arens�Mi
hael envelope [14, 5.2.21℄ of U(g)) of all entire fun
tionsin elements of g is a topologi
al dire
t produ
t of full matrix algebras, thatis, the stru
ture of Og is quite far from the one of usual entire fun
tionsin several 
omplex variables. Moreover, in this 
ase there is no reasonablefun
tional 
al
ulus (see [21, Se
tion 7℄).On the other hand, a satisfa
tory theory of holomorphi
 fun
tions innon
ommuting variables has been proposed for a solvable Lie algebra g in[8℄, [9℄, [11℄. Fix a �nite-dimensional solvable Lie algebra g. Let U be anabsolutely 
onvex domain in the dual spa
e g∗ and let ∆(g) ⊆ g∗ be thesubspa
e of Lie 
hara
ters, that is, those linear fun
tionals on g annihilat-ing [g, g]. The Arens�Mi
hael, Fré
het algebra Og(U) of 
onvergent powerseries or �holomorphi
 fun
tions� on U in elements of g was introdu
ed in[6℄, [8℄. The non
ommutative algebra Og(U) is a Hausdor�, Fré
het, multi-normed 
ompletion of the universal enveloping algebra U(g) of g, so there



Quasispe
tra of Lie algebra homomorphisms 15is a 
anoni
al algebra homomorphism ϕ : U(g) → Og(U) with dense range.Note that Og(U) redu
es to the algebra O(U) of usual holomorphi
 fun
tionson U in n 
omplex variables whenever g = C
n is a 
ommutative Lie algebra[8, 4.2℄. In the general 
ase, the algebra Og(U) is 
ommutative modulo itsJa
obson radi
al RadOg(U) and the quotient algebra Og(U)/RadOg(U) istopologi
ally isomorphi
 to O(Us) [8, Theorem 4.6℄, where Us = U ∩∆(g).The fun
tional 
al
ulus problem with respe
t to the �fun
tion� algebras

Og(U), where U runs over all absolutely 
onvex domains in g∗, is to determinea domain U so that a given Lie algebra homomorphism π : g → A into aBana
h algebra A extends 
ontinuously to an algebra homomorphism π̃ :
Og(U)→ A, that is, π̃ · ϕ = π. The problem was solved only for a nilpotentLie algebra g in [8℄, in terms of Sªodkowski spe
tra of an operator family(A = B(X)). Namely, let π : g → B(X) be a representation of a nilpotentLie algebra g on a Bana
h spa
e X and let σ(π) be a Sªodkowski spe
trumof π ([3℄; see [18℄ for the 
ommutative 
ase), whi
h is a 
ompa
t subset in
∆(g). Then π has a 
ontinuous extension π̃ : Og(U) → B(X) if and onlyif σ(π) ⊂ U . That is a version of (non
ommutative) holomorphi
 fun
tional
al
ulus for absolutely 
onvex domains.A non
ommutative spe
tral theory in the solvable Lie algebra frameworkstarted to develop independently of the fun
tional 
al
ulus, in [3℄, [13℄, [16℄and [7℄. It was established that some properties of the 
ommutative spe
traltheory remain true in the solvable Lie algebra 
ase, but a 
omprehensivespe
tral theory remains to be developed in the nilpotent Lie algebra 
ase.How to introdu
e algebras Og(U) for other domains U and solve the rele-vant fun
tional 
al
ulus problem? One of the possible approa
hes is based onhomologi
al ideas and Taylor's program [21℄. These ideas were developed in[9℄�[12℄ and the fun
tional 
al
ulus problem was 
ompletely solved whenever
π(g) is a supernilpotent Lie subalgebra in B(X), that is, π([g, g]) 
onsists ofnilpotent operators.In 
ontrast to serious advan
ements in the nilpotent 
ase, almost noth-ing is known in the solvable Lie algebra 
ase. The main property of thefun
tional 
al
ulus, the spe
tral mapping theorem, remains inexpli
it in this
ase. In this paper we propose a simple version of the fun
tional 
al
ulusin the solvable Lie algebra 
ase using the joint spe
tral radius te
hnique.Namely, using the algebras Og(U) when U runs over all absolutely 
onvexdomains in the dual spa
e g∗ of a solvable Lie algebra g, we propose a fun
-tional 
al
ulus in terms of quasispe
tra of a Lie algebra homomorphism intoa Bana
h algebra, whi
h extends the above mentioned result for the nilpo-tent 
ase. A quasispe
trum (see De�nition 1) is a more general and simplernotion than Sªodkowski (in parti
ular, Taylor) spe
trum, and it is not de-s
ribed in homologi
al terms. Roughly speaking, a quasispe
trum σ(π) of aLie homomorphism π : g→ A into a Bana
h algebra A is a 
ompa
t subset



16 A. Dosievin g∗ with the following property:
̺(π(x)) = max{|λ(x)| : λ ∈ σ(π)}, x ∈ g,where ̺(π(x)) is the spe
tral radius of π(x) in A. Sin
e a Sªodkowski spe
-trum has the proje
tion property [6℄, all Sªodkowski spe
tra are 
learly qua-sispe
tra. For other examples see Se
tion 3 below. As the main result weprove that a Lie algebra homomorphism π : g → A of a solvable Lie alge-bra g into a Bana
h algebra A has a 
ontinuous extension π̃ : Og(U) → Aif and only if σ(π) ⊂ U for a quasispe
trum σ(π) of π. In parti
ular, weprove that the absolutely 
onvex hulls of all quasispe
tra 
oin
ide and thejoint spe
tral radius of a 
ompa
t subset in a �nite-dimensional solvable Liesubalgebra of a Bana
h algebra 
oin
ides with the geometri
 spe
tral radius
al
ulated by means of an arbitrary quasispe
trum (see Corollary 5). Thatis the geometri
al 
hara
terization of the joint spe
tral radius.I wish to thank Yu. V. Turovski�� for useful dis
ussions on the results ofthis note. I am also grateful to the referees for their attentive reading of thepaper.2. Preliminaries. All linear spa
es 
onsidered are assumed to be 
om-plex and C denotes the �eld of 
omplex numbers. The inner produ
t inthe Eu
lidean spa
e C

n is denoted by 〈·, ·〉, thus 〈c, λ〉 =
∑n

i=1 ciλi for ve
-tors c = (c1, . . . , cn) and λ = (λ1, . . . , λn) in C
n, where λi is the 
omplex
onjugate of λi, 1 ≤ i ≤ n. In parti
ular, ‖c‖ = 〈c, c〉1/2 is the Eu
lideannorm of c. The set of all positive integers is denoted by N, and 2S is theset of all subsets of the set S. The unit ball of a normed spa
e X furnishedwith a norm p is denoted by Bp, and p∗ denotes the dual norm on thedual spa
e X∗. For a subset M ⊆ X, abcM denotes the absolutely 
onvexhull of M , that is, the set of all absolutely 
onvex 
ombinations ∑n

i=1 cimi,∑
|ci| ≤ 1, ci ∈ C, mi ∈ M . Consider a subset F ⊆ X∗ and a point x ∈ X.The subset {λ(x) : λ ∈ F} ⊆ C is denoted by F (x). The Bana
h spa
e of all
ontinuous 
omplex fun
tions on a 
ompa
t topologi
al spa
e K, furnishedwith the uniform norm ‖f‖∞ = sup{|f(x)| : x ∈ K}, is denoted by C(K),and the spa
e of all holomorphi
 fun
tions on an open subset U ⊆ C

n, fur-nished with the 
ompa
t-open topology, is denoted by O(U). The topologi
alinterior (respe
tively, boundary) of a subset K in a topologi
al spa
e Ω isdenoted by intK (respe
tively, ∂K).Let A be a (non)asso
iative algebra. An algebra homomorphism λ : A
→ C is said to be a 
hara
ter of A, and the set of all 
hara
ters of A isdenoted by ∆(A). Let A be a Bana
h (asso
iative) algebra. We write spA(a)and ̺(a) for the spe
trum and spe
tral radius of an element a ∈ A.Now let c = (c1, . . . , cn) ∈ C

n and let a = (a1, . . . , an) be an n-tuple in aBana
h algebra A. The symbol 〈c, a〉A for the linear 
ombination ∑n
i=1 ciai



Quasispe
tra of Lie algebra homomorphisms 17in A will be useful in Se
tion 3. Note that if a = λ = (λ1, . . . , λn) is atuple in C then 〈c, λ〉C = 〈c, λ〉 is the inner produ
t of the ve
tors c and
λ = (λ1, . . . , λn) in C

n.2.1. The maximum formula for the joint spe
tral radius. Let A be aBana
h algebra and let M ⊆ A. We set Mn = {m1 · · ·mn : mi ∈ M},
n ∈ N, and ‖M‖ = sup{‖m‖ : m ∈ M}, in parti
ular, if M ⊆ C then
|M | = sup{|z| : z ∈M}. The multipli
ative semigroup in A generated by Mis denoted by SG(M). By the very de�nition, SG(M) =

⋃
n∈N

Mn. If M isbounded, that is, ‖M‖ <∞, then the limit limn ‖M
n‖1/n exists and equals

infn ‖M
n‖1/n; we denote it by ̺|M | and 
all the joint spe
tral radius of M[17℄. (The 
onventional notation for the joint spe
tral radius is ̺(M), butwe want to avoid misunderstanding it for the image of the set M via themap ̺.)Re
all the following maximum formula for the joint spe
tral radius provedby Yu. V. Turovski�� and V. S. Shulman in [23, Theorem 9℄.Theorem 1. Let A be a Bana
h algebra with a �nite-dimensional solv-able Lie subalgebra g su
h that A 
oin
ides with the 
losed asso
iative sub-algebra generated by g. Then A is 
ommutative modulo its Ja
obson radi
al

RadA and
̺|M | = |̺(M)|for any pre
ompa
t subset M ⊆ A.Note that this nontrivial result is based on the topologi
al radi
al te
h-nique developed in [23℄.Remark 1. It is well known (see for instan
e [4, 1.3.3℄) that the spe
tralradius is a 
ontinuous seminorm on a 
ommutative Bana
h algebra. More-over, if A is a Bana
h algebra then spA(a) = spA/RadA(τ(a)) and therefore

̺(a) = ̺(τ(a)), where τ : A→ A/Rad A is the quotient map. Hen
e ̺ turnsout to be a 
ontinuous seminorm on a Bana
h algebra 
ommutative modulo
RadA. Using Theorem 1, we 
on
lude that

̺|M | = |̺(M)| = sup{̺(m) : m ∈M} = sup{̺(τ(m)) : m ∈M}

= max{̺(τ(m)) : m ∈M} = max{̺(m) : m ∈M},whenever M is a 
ompa
t subset in the 
losed asso
iative envelope A of g.2.2. Bana
h enveloping algebras. Let g be a �nite-dimensional 
omplexLie algebra, U(g) the universal enveloping algebra of g, and p a norm on g.The Lie algebra g furnished with the norm p is a Bana
h�Lie algebra, hen
eone 
an de�ne its Bana
h enveloping algebra A(p) [6℄, [8, Se
tion 2.1℄. Thelatter is a Hausdor� seminorm-
ompletion of the enveloping algebra U(g)with respe
t to a 
ertain seminorm asso
iated with p; 
onsequently, thereis a 
anoni
al algebra homomorphism ϕp : U(g) → A(p) with dense range.



18 A. DosievThe following assertion proved in [6℄ 
hara
terizes the Bana
h envelopingalgebras.Lemma 1. Let p be a norm on g, A a Bana
h algebra, and π : g → Aa Lie algebra homomorphism with the bounded semigroup SG(π(Bp)). Thereexists a unique bounded algebra homomorphism π̃ : A(p) → A su
h that
π̃ · ϕp = π.Remark 2. Note that SG(π(Bp)) is bounded whenever ̺|π(Bp)| < 1.Now let p and q be norms on g su
h that p ≤ q. The 
anoni
al Lie algebrahomomorphism ϕp : g → A(p) has norm at most 1 whenever g is furnishedwith the norm q. By Lemma 1, there is a bounded algebra homomorphism
u : A(q)→ A(p), with ‖u‖ ≤ 1, extending the identity map on U(g).2.3. Absolutely 
onvex domains. The aim of this subse
tion is to demon-strate a 
onne
tion between in
reasing norm sets on a �nite-dimensionallinear spa
e and absolutely 
onvex domains in its dual spa
e.Let L be a �nite-dimensional linear spa
e. A norm set pΛ = {pα}α∈Λde�ned on L is said to be saturated if pΛ 
ontains the maxima of all its �nitesubsets. A saturated norm set pΛ on L is 
alled in
reasing if for ea
h α ∈ Λthere exists β ∈ Λ with pα(x) < pβ(x) for all x 6= 0 (we then write pα ≪ pβ).Note that pα ≪ pβ i� pα ≤ εαβpβ, where εαβ = sup{pα(x) : x ∈ Bpβ

} < 1.In
reasing norm sets pΛ = {pα}α∈Λ and qΩ = {qγ}γ∈Ω on L are said to beequivalent (pΛ ∼ qΩ) if for ea
h α ∈ Λ there is a β ∈ Ω with pα ≪ qβ andvi
e versa [8, 2.2℄.Let M ⊆ L and F ⊆ L∗. The set M̂F = {x ∈ L : |λ(x)| ≤ |λ(M)|, λ ∈ F}is 
alled the F -
onvex hull of M in L. A domain U in L is said to be F -
onvexif K̂F ⊂ U for ea
h 
ompa
t subset K ⊂ U with intK 6= ∅. Sin
e L∗∗ = L,it makes sense to 
onsider the M -
onvex hull F̂M of a subset F ⊆ L∗. For
ompleteness, we present a detailed proof of the following assertion (see [8,Lemma 4.1℄).Lemma 2. Let K be a 
ompa
t subset in L with intK 6= ∅. Then K̂L∗ =
abcK.Proof. By assumption Vε(x) ⊂ K for a 
ertain open ball Vε(x) of radius
ε 
entered at x ∈ intK. Then Vε(−x) = −Vε(x) ⊆ abcK and Vε(0) ⊆
2−1Vε(x) + 2−1Vε(−x) ⊆ abcK, so 0 ∈ int abcK. Thus abcK is a 
ompa
tabsorbing 
ir
led 
onvex set, so its Minkowski fun
tional p is a norm. As
abcK is a 
losed set, we 
on
lude that abc K = Bp.Take x ∈ K̂L∗ . Then |λ(x)| ≤ |λ(K)| for allλ ∈ L∗. Sin
e K ⊆ Bp, itfollows that |λ(x)| ≤ |λ(Bp)| = p∗(λ). But L∗∗ = L and p∗∗ = p, therefore
p(x) ≤ 1, that is, x ∈ Bp = abcK. Therefore K̂L∗ ⊆ abcK.



Quasispe
tra of Lie algebra homomorphisms 19Conversely, take x =
∑

aixi ∈ abcK with xi ∈ K, ∑
|ai| ≤ 1. Then

|λ(x)| ≤
∑
|ai| |λ(xi)| ≤ |λ(K)|, λ ∈ L∗, when
e x ∈ K̂L∗ . Thus abcK

⊆ K̂L∗ .Corollary 1. Let U be a domain in L. Then U is L∗-
onvex i� abcK
⊂ D for all 
ompa
t subsets K ⊂ D, intK 6= ∅. Thus U is L∗-
onvex i� Uis absolutely 
onvex.Now let pΛ = {pα}α∈Λ be an in
reasing norm set on L, and let B∗

α = Bp∗α ,
α ∈ Λ, be the unit balls in the dual spa
e L∗. Assume that pα ≪ pβ and take
λ ∈ B∗

α. Then p∗β(λ) = |λ(Bpβ
)| ≤ sup{|λ(x)| : pα(x) ≤ εαβ} ≤ εαβp∗α(λ) ≤

εαβ < 1, that is, λ ∈ intB∗
β . Thus B∗

α ⊆ intB∗
β whenever pα ≪ pβ . Put

U =
⋃

α∈Λ B∗
α. Then U =

⋃
α∈Λ intB∗

α is a domain in L∗, for pΛ is anin
reasing norm set. We say that U is the domain asso
iated with the normset pΛ. By Corollary 1, the domain U asso
iated with an in
reasing normset pΛ is an absolutely 
onvex domain in L∗. Obviously, equivalent norm setshave the same asso
iated domain in L∗. Moreover, if pΛ and qΩ are in
reasingnorm sets with the same asso
iated domain U then these norm sets must beequivalent, that is, pΛ ∼ qΩ. Indeed, if B∗′
γ is the unit ball in L∗ with respe
tto the dual norm q∗γ , γ ∈ Ω, then taking into a

ount that U =

⋃
α∈Λ B∗

α =⋃
γ∈Ω B∗′

γ and pΛ (respe
tively, qΩ) is a saturated set, we 
on
lude that
B∗′

γ ⊆ intB∗
α for some α ∈ Λ. Further, by the maximum modulus prin
iple,we dedu
e that qγ(x) = q∗∗γ (x) = |x(B∗′

γ )| < |x(B∗
α)| = pα(x), x 6= 0, thatis, qγ ≪ pα. By analogy, for ea
h α ∈ Λ there is γ ∈ Ω su
h that pα ≪ qγ ,so pΛ ∼ qΩ. Thus the equivalen
e 
lass [pΛ] of an in
reasing norm set pΛhas the same asso
iated domain U . Moreover, if U is an absolutely 
onvexdomain in L∗ then U is asso
iated with a 
ertain in
reasing norm set pΛon L [8, Lemma 4.2℄. Thus the following assertion is valid.Theorem 2. The 
orresponden
e [pΛ] 7→ U is a bije
tion between theequivalen
e 
lasses of in
reasing norm sets on L and absolutely 
onvex do-mains in L∗.2.4. Holomorphi
 fun
tions. Let g be a �nite-dimensional Lie algebraand let U be an absolutely 
onvex domain in g∗. By Theorem 2, the do-main U is asso
iated with a unique (up to equivalen
e) in
reasing normset pΛ = {pα}α∈Λ on g. Consider the Bana
h enveloping algebras A(pα)with α ∈ Λ (see Subse
tion 2.2). If pα ≪ pβ then we have a bounded al-gebra homomorphism uαβ : A(pβ) → A(pα), ‖uαβ‖ ≤ 1 (see Subse
tion2.2) extending the identity map on the enveloping algebra U(g). Moreover,

uαβ · uβγ = uαγ whenever pα ≪ pβ ≪ pγ , due to the uniqueness propertyasserted in Lemma 1. Thus, we have a proje
tive system of Bana
h alge-bras A(pΛ) = {A(pα), uαβ : α, β ∈ Λ}; let lim←−A(pΛ) be its inverse limit.Sin
e the A(pα), α ∈ Λ, are asso
iative algebras, lim←−A(pΛ) inherits the alge-
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 stru
ture and it be
omes a Fré
het, Arens�Mi
hael algebra [14, 5.2.10℄.Note that the algebras lim←−A(pΛ) and lim←−A(qΩ) are topologi
ally isomorphi
whenever pΛ ∼ qΩ [8, Lemma 2.6℄. Thus lim←−A(pΛ) depends only on the
hoi
e of the equivalen
e 
lass [pΛ] or U (see Theorem 2). Thus the Fré
hetalgebra Og(U) = lim←−A(pΛ) with the 
anoni
al dense algebra homomorphism
ϕ : U(g)→ Og(U) is well de�ned, and it is 
alled an algebra of power seriesor holomorphi
 fun
tions on U in elements of g. The following assertion wasproved in [8, Lemma 5.1℄.Lemma 3. Let g be a �nite-dimensional Lie algebra, U an absolutely
onvex domain in g∗ asso
iated with a norm set pΛ = {pα}α∈Λ, and π :
g → A a Lie homomorphism into a Bana
h algebra A. Then π extendsto a 
ontinuous algebra homomorphism π̃ : Og(U) → A, π̃ · ϕ = π, i�
̺|π(Bpα)| < 1 for some α ∈ Λ.3. Quasispe
tra. In the following, g denotes a �nite-dimensional solv-able Lie algebra. Let π : g → A and π′ : g → B be Lie homomorphismsinto Bana
h algebras A and B. These homomorphisms are understood to beequal, π = π′, if A = B and π(x) = π′(x) for all x ∈ g. Let us introdu
e theset Bag of all Lie homomorphisms of g into Bana
h algebras and let Bsg beits subset 
omprising all representations of g on Bana
h spa
es, that is, Liehomomorphisms like g→ B(X).Definition 1. Let Mg ⊆ Bag be a subset. A map σ : Mg → 2g

∗ issaid to be a quasispe
trum on g with respe
t to Mg if σ(π) is a nonempty
ompa
t subset in g∗ and̺
(π(x)) = |σ(π)(x)|, x ∈ g,for ea
h π ∈Mg. The set of all quasispe
tra on g with respe
t to the subset

Mg is denoted by Q(Mg).If g is a Lie subalgebra of a 
ertain Bana
h algebra A then σ(g) (σ ∈
Q(Mg)) denotes the quasispe
trum σ(idg) of the identity homomorphism
idg : g→ A.Note that here we have followed the 
lassi
al approa
h (see for instan
e[19℄, [5℄) to determine a quasispe
trum σ as a set-valued fun
tion de�ned onLie algebra homomorphisms into Bana
h algebras. In the 
ommutative 
aseit 
an be regarded as a set-valued fun
tion on �nite 
ommutative familiesin Bana
h algebras instead of Lie homomorphisms. Namely, assume that
g = C

n is a 
ommutative Lie algebra. Ea
h Lie algebra homomorphism π :
C

n→A is 
ompletely determined by the 
ommutative family a = (a1, . . . , an)in A, where ai = π(zi), 1 ≤ i ≤ n. So, one may use the notation σ(a) insteadof σ(π) for a quasispe
trum. Moreover, ea
h linear fun
tional λ ∈ (Cn)∗ 
anbe identi�ed with a ve
tor (λ1, . . . , λn) ∈ C
n su
h that λi = λ(zi) for all i.
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tra of Lie algebra homomorphisms 21Using this identi�
ation and De�nition 1, one 
an easily 
on
lude that σ(a)is a nonempty 
ompa
t subset in C
n with the property(3.1) ̺(〈c, a〉A) = max{|〈c, λ〉| : λ ∈ σ(a)} = |〈c, σ(a)〉|for all c = (c1, . . . , cn) ∈ C

n, where 〈c, a〉A =
∑n

i=1 ciai ∈ A. Moreover, in(3.1) it su�
es to 
onsider only those ve
tors c ∈ C
n with ∑n

i=1 |ci| ≤ 1. Inparti
ular,(3.2) ̺(ai) = max{|λi| : λ = (λ1, . . . , λn) ∈ σ(a)}for all i.Lemma 4. Let σ(π) be a quasispe
trum of a Lie homomorphism π : g→
A of g into a Bana
h algebra A. Then σ(π) ⊆ ∆(g).Proof. Note that π(g) is a solvable Lie subalgebra in A and the 
losedasso
iative subalgebra B in A generated by π(g) is 
ommutative moduloits Ja
obson radi
al RadB by Theorem 1, when
e π([g, g]) = [π(g), π(g)] ⊆
RadB. Thus ̺(π(x)) = 0 for all x ∈ [g, g]. By De�nition 1, |λ(x)| ≤ ̺(π(x))for all λ ∈ σ(π), therefore λ(x) = 0 for λ ∈ σ(π), that is, λ([g, g]) = 0. Hen
e
λ ∈ ∆(g).Let us provide some examples of quasispe
tra.Proposition 1. Let Mg be a set of Lie homomorphisms of g into Ba-na
h algebras (Mg ⊆ Bag) and let σ : Mg→ 2g

∗ be a map su
h that σ(π) isa nonempty 
ompa
t subset in g∗ and
∂ sp(π(x)) ⊆ σ(π)(x) ⊆ sp(π(x))for all x ∈ g. Then σ is a quasispe
trum on Mg, that is, σ ∈ Q(Mg). Inparti
ular , all Cartan�Sªodkowski (and Cartan�Taylor) spe
tra Σ ∈ KS ([1℄,[11℄) are quasispe
tra on g with respe
t to the set Bsg of all Bana
h spa
erepresentations of g, that is, KS ⊆ Q(Bsg). Moreover , if Σ is the Cartan�Taylor spe
trum then σ = ∂Σ de�ned by σ(π) = ∂Σ(π) is a quasispe
trum.Proof. Using the in
lusions ∂ sp(π(x)) ⊆ σ(π)(x) ⊆ sp(π(x)), we dedu
ethat

̺(π(x)) = max{|z| : z ∈ ∂ sp(π(x))} = max{|λ(x)| : λ ∈ σ(π)} = |σ(π)(x)|.By De�nition 1, σ ∈ Q(Mg).Now let Mg = Bsg and let Σ ∈ KS be a Cartan�Sªodkowski spe
trum.Then
Σ(π)(x) = Σ(π(x)) ⊆ sp(π(x))due to the proje
tion property [1℄, [11℄. Moreover, ∂ sp(π(x)) ⊆ σap(π(x)) ⊆

Σ(π(x)), where σap(π(x)) is the approximate point spe
trum of the operator
π(x). Consequently, Σ ∈ Q(Bsg).



22 A. DosievFinally, assume that Σ is the Cartan�Taylor spe
trum [1℄ and let σ :
Bsg→ 2g

∗ , σ(π) = ∂Σ(π). Note that sp(π(x)) = Σ(π)(x) (see [1℄). Bearingin mind that the proje
tion map g∗ → C, λ 7→ λ(x), is open, we 
on
ludethat ∂ sp(π(x)) ⊆ σ(π)(x). It follows that σ ∈ Q(Bsg).Now let g = C
n be a 
ommutative Lie algebra. For a 
ommutative n-tuple a = (a1, . . . , an) in a Bana
h algebra A, let σ(a) ⊂ C

n be a nonempty
ompa
t subset with the property
∂ sp(〈c, a〉A) ⊆ {|〈c, λ〉| : λ ∈ σ(a)} ⊆ sp(〈c, a〉A)for all c ∈ C

n with ∑n
i=1 |ci| ≤ 1. By Proposition 1, σ is a quasispe
trum. Inparti
ular, σ(a) ⊆

∏n
i=1 sp(ai).Conversely, let σ be any set-valued fun
tion de�ned on �nite 
ommutativetuples in Bana
h algebras with the properties:(i) σ(a) ⊂ C

n is a 
ompa
t nonempty subset for a 
ommutative n-tuple a;(ii) ∂ sp(a) ⊆ σ(a) ⊆ sp(a) for a singleton a;(iii) σ(〈c, a〉A) = 〈c, σ(a)〉 for all c ∈ C
n with ∑n

i=1 |ci| ≤ 1, and any
ommutative n-tuple a.Then σ is a quasispe
trum due to Proposition 1. Note that axiom (iii) isa simple version of the polynomial mapping property, that is, σ(p(a)) =
p(σ(a)) for all polynomial families p in n 
omplex variables. It is well known[18℄ that all Sªodkowski spe
tra σπ,k, σδ,k, k ≥ 0, have the polynomial map-ping property. Using it, we 
on
lude that they are quasispe
tra with respe
tto the bounded linear operators. Indeed, it su�
es (see [18℄) to verify (ii)only. But this is evident from the in
lusions

∂ sp(a) ⊆ σap(a) = σπ,0(a) ⊆ σπ,k(a) ⊆ sp(a)and
∂ sp(a) = ∂ sp(a∗) ⊆ σap(a

∗) = σπ,0(a
∗) = σδ,0(a) ⊆ σδ,k(a) ⊆ sp(a)for an operator a and for all k ≥ 0.Finally, note that the topologi
al boundary of the Taylor spe
trum sat-is�es axioms (i)�(iii), therefore it is a quasispe
trum.Now let us demonstrate that the notion of quasispe
trum is more generalthan the one of joint spe
trum. Let π : g→ A be a representation of g intoa Bana
h algebra A, B the 
losure of the asso
iative envelope of π(g) in A,and Sn the unit sphere with respe
t to the Eu
lidean norm ‖ · ‖ on g. Thespe
tral radius ̺ is a 
ontinuous seminorm on B (see Remark 1). It followsthat NSn = ̺(π(Sn)) is a 
ompa
t subset of the real line and therefore

|NSn | <∞. Further, there is a fun
tional λx ∈ g∗ with |λx(y)| ≤ ̺(π(y)) forall y ∈ g, and λx(x) = ̺(π(x)) for ea
h x ∈ Sn, thanks to the Hahn�Bana
h
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‖λx‖ = |λx(Sn)| ≤ |NSn |for all x ∈ Sn. Consequently, {λx : x ∈ Sn} is a bounded set in g∗; let σ(π)be its 
losure.Proposition 2. The assignment π 7→ σ(π) is a quasispe
trum on g withrespe
t to Bag.Proof. Clearly, σ(π) is a 
ompa
t subset in g∗. By De�nition 1, we haveto prove that ̺(π(y)) = |σ(π)(y)| for all y ∈ g. One 
an assume that y 6= 0,as otherwise the assertion is obvious. Take µ ∈ σ(π). Sin
e σ(π) is the
losure of {λx : x ∈ Sn}, it follows that |µ(y)| ≤ ̺(π(y)) for y ∈ g, when
e

|σ(π)(y)| ≤ ̺(π(y)). Moreover,
̺(π(y)) = ‖y‖̺(π(y/‖y‖)) = ‖y‖λy/‖y‖(y/‖y‖) = λy/‖y‖(y).Taking into a

ount that λy/‖y‖ ∈ σ(π), we infer |σ(π)(y)| = ̺(π(y)). Thus

σ ∈ Q(Bag).Let us des
ribe the latter quasispe
trum in the 
ommutative 
ase. Fix a
ommutative n-tuple in a Bana
h algebra A. By 
onstru
tion, to ea
h c ∈ Snthere 
orresponds c∗ ∈ C
n su
h that(3.3) |〈c, c∗〉| = ̺(〈c, a〉A) and |〈t, c∗〉| ≤ ̺(〈t, a〉A)for all t ∈ C

n. The set {c∗ : c ∈ Sn} is bounded in C
n, therefore it has a
ompa
t 
losure denoted by σ(a), whi
h is a quasispe
trum of a, as provedin Proposition 2.4. The fun
tional 
al
ulus. Now we prove the main result of thispaper on fun
tional 
al
ulus.Theorem 3. Let g be a �nite-dimensional solvable Lie algebra, Mg ⊆

Bag be a subset of Lie homomorphisms of g into Bana
h algebras, π : g→ Aa Lie homomorphism from Mg, U an absolutely 
onvex domain in g∗, and
σ ∈ Q(Mg). Then π extends to a 
ontinuous algebra homomorphism π̃ :
Og(U)→ A, π̃ · ϕ = π, i� σ(π) ⊂ U .Proof. By Theorem 2, the domain U is asso
iated with a norm set pΛ =
{pα}α∈Λ on the Lie algebra g. Let Bpα be the unit ball in g with respe
t tothe norm pα. If the 
ontinuous algebra homomorphism π̃ : Og(U)→ A existsthen ̺|π(Bpα)| < 1 for some α ∈ Λ, by Lemma 3. Take λ ∈ σ(π) ⊆ ∆(g)(Lemma 4). If x ∈ Bpα then, by De�nition 1, we infer

|λ(x)| ≤ ̺(π(x)) ≤ ̺|π(Bpα)|.Therefore p∗α(λ) = |λ(Bpα)| < 1. Thus λ ∈ B∗
α, where B∗

α is the unit ball
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t to the norm p∗α. But U =
⋃

α∈Λ B∗
α (see Subse
tion 2.3), so

λ ∈ U . Thus σ(π) ⊂ U .Conversely, assume that σ(π) ⊂ U . Note that σ(π) ⊂ intB∗
α for some

α ∈ Λ, for U =
⋃

α∈Λ intB∗
α, σ(π) is a 
ompa
t set by De�nition 1, and

pΛ is an in
reasing norm set. Further, by Lemma 3, it su�
es to prove that
̺|π(Bpα)| < 1. Take x ∈ Bpα . By De�nition 1 and the maximum modulusprin
iple, we dedu
e that

̺(π(x)) = max{|λ(x)| : λ ∈ σ(π)} < max{|λ(x)| : λ ∈ B∗
α}

≤ max{p∗α(λ)pα(x) : λ ∈ B∗
α} ≤ pα(x) ≤ 1,that is, ̺(π(x)) < 1. But ̺|π(Bpα)| = |̺(π(Bpα))| = max{̺(y) : y ∈ π(Bpα)}by Theorem 1 and Remark 1. Consequently, ̺|π(Bpα)| < 1.Corollary 2. Let a = (a1, . . . , an) be a 
ommutative n-tuple in a Ba-na
h algebra A, U an absolutely 
onvex domain in C

n, and σ(a) a quasis-pe
trum of a. There is a 
ontinuous algebra homomorphism Γ : O(U) → A(holomorphi
 fun
tional 
al
ulus) su
h that Γ (zi) = ai, 1 ≤ i ≤ n, if andonly if σ(a) ⊂ U .Corollary 3. Let g be a solvable Lie algebra and let σ1, σ2 ∈ Qg(Mg).Then
abcσ1(π) = abcσ2(π)for all π ∈ Mg. In parti
ular , abcσ1(a) = abcσ2(a) for any 
ommutativetuple a and quasispe
tra σ1, σ2.Proof. Let π : g → A be a Lie homomorphism from Mg. By De�ni-tion 1, σ2(π) is a 
ompa
t set. If U is an absolutely 
onvex domain su
hthat abcσ2(π) ⊂ U then using Theorem 3 we 
on
lude that π extendsto a 
ontinuous algebra homomorphism π̃ : Og(U) → A. A

ording againto Theorem 3, now with respe
t to the quasispe
trum σ1, we infer that

σ1(π) ⊆ U . Thus σ1(π) ⊆ abcσ2(π). Similarly, σ2(π) ⊆ abcσ1(π). Conse-quently, abcσ1(π) = abcσ2(π).Corollary 3 is a non
ommutative version of Theorem 8 in [5℄.Corollary 4. Let g be a solvable Lie algebra and let σ1, σ2 ∈ Qg(Mg).If q is a seminorm on g∗ then
q(σ1(π)) = q(σ2(π)).In parti
ular , if a is a 
ommutative n-tuple in a Bana
h algebra then

‖σ(a)‖ = max{‖c∗‖ : c ∈ Sn},where ‖ · ‖ is the Eu
lidean norm in C
n, and c∗ ∈ C

n 
orresponds to c ∈ Snwith the property (3.3).
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tra of Lie algebra homomorphisms 25Proof. Using Corollary 3, we infer that
q(σ1(π)) = q(abcσ1(π)) = q(abcσ2(π)) = q(σ2(π)),that is, q(σ1(π)) = q(σ2(π)).5. The geometri
 spe
tral radius. In this se
tion we demonstratethat the joint spe
tral radius of a 
ompa
t subset in a �nite-dimensionalsolvable Lie subalgebra of a Bana
h algebra 
an be 
al
ulated by means ofquasispe
tra.Let again g be a �nite-dimensional solvable Lie algebra, Mg ⊆ Bag asubset of Lie homomorphisms of g into Bana
h algebras, π : g → A a Liehomomorphism from Mg, and σ ∈ Q(Mg). Consider a 
ontinuous map γ :

Ω → g a
ting from a 
ompa
t topologi
al spa
e Ω into g. We de�ne aquasispe
trum of the map πγ : Ω → g by setting
σ(πγ) = {λγ : λ ∈ σ(π)}.Obviously, σ(πγ) is a subset of the Bana
h spa
e C(Ω), so one 
an de�nethe geometri
 spe
tral radius of the map πγ as in [2℄, by setting(5.1) rσ,∞(πγ) = ‖σ(πγ)‖∞.Let qγ be the seminorm on g∗ given by qγ(λ) = ‖λγ‖∞. Then rσ,∞(πγ) =

qγ(σ(π)). Using Corollary 4, we obtain
rσ1,∞(πγ) = rσ2,∞(πγ)for all σ1, σ2 ∈ Q(Mg). Thus the geometri
 spe
tral radius does not dependupon the quasispe
trum σ ∈ Q(Mg). Therefore we set r∞(πγ) = rσ,∞(πγ).The following assertion exhibits a 
onne
tion between the geometri
 andjoint spe
tral radii.Proposition 3. r∞(πγ) = |̺(πγ(Ω))| = ̺|πγ(Ω)|.Proof. By using (5.1) and De�nition 1, we dedu
e that

r∞(πγ) = sup{‖λγ‖∞ : λ ∈ σ(π)}= sup
λ∈σ(π)

sup
x∈γ(Ω)

|λ(x)|= sup
x∈γ(Ω)

sup
λ∈σ(π)

|λ(x)|

= sup
x∈γ(Ω)

|σ(π)(x)| = sup
x∈γ(Ω)

̺(π(x)) = |̺(πγ(Ω))|.But |̺(πγ(Ω))| = ̺|πγ(Ω)| by Theorem 1.Note that Proposition 3 was proved by D. Beltiµa in [2, Theorem 4.1(2)℄when A = B(X), π(g) 
onsists of 
ompa
t operators and σ = Σ is theCartan�Taylor spe
trum (see Proposition 1).Corollary 5. Let A be a Bana
h algebra, g a �nite-dimensional solv-able Lie subalgebra in A, and M a 
ompa
t subset in g. If σ(g) a quasispe
-trum of g then
̺|M | = max{|λ(M)| : λ ∈ σ(g)}.
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ular , if M = a is a 
ommutative n-tuple in a Bana
h algebra thenthe above identity redu
es to the maximum formula
̺|a| = max{̺(ai) : 1 ≤ i ≤ n}.Proof. It su�
es to apply Proposition 3 by assuming that Ω = M and γis the identity map. Note also that ‖λ|M‖∞ = |λ(M)| for all λ ∈ g∗.Now let a be a 
ommutative n-tuple. Using (3.2), we dedu
e that

̺|a| = max
λ∈σ(a)

|λ(a)| = max
λ∈σ(a)

max
i
|λi| = max

i
max

λ∈σ(a)
|λi| = max

i
̺(ai),that is, ̺|a| = maxi ̺(ai).Finally, using Proposition 2 and Corollary 5, we 
on
lude that

̺|M | = sup{|λx(M)| : x ∈ S},where S is the unit sphere in g.
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