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Quasispetra of solvable Lie algebra homomorphismsinto Banah algebrasby
Anar Dosiev (Ankara)Abstrat. We propose a nonommutative holomorphi funtional alulus on ab-solutely onvex domains for a Banah algebra homomorphism π of a �nite-dimensionalsolvable Lie algebra g in terms of quasispetra σ(π). In partiular, we prove that the jointspetral radius of a ompat subset in a solvable operator Lie subalgebra oinides withthe geometri spetral radius with respet to a quasispetrum.1. Introdution. One of the entral topis of modern analysis is theonept of a funtion in several nonommuting variables or more generallya nonommutative funtion algebra. A motivation for suh nonommutativegeneralization is provided, for instane, by the funtional alulus problemfor a family of nonommuting operators. The aim of a funtional alulusis to obtain an operator realization of a (nonommutative) funtion alge-bra. More preisely, if there is a ontinuous algebra homomorphism from anonommutative funtion algebra A into the Banah algebra B(X) of allbounded linear operators on a omplex Banah spae X, suh that the non-ommuting variables in A an be sent to a given operator family in B(X),then we say that there is a funtional alulus with funtions from A in

B(X). Its original and simplest form is the holomorphi funtional alulusfor a single operator T ∈ B(X), whih an be expressed as a unital ontin-uous algebra homomorphism Γ : O(U) → B(X) from the Fréhet algebra
O(U) (furnished with the ompat-open topology) of holomorphi funtionson a domain U ⊆ C into the Banah algebra B(X) suh that Γ (z) = T . Thewell known Gelfand�Dunford�Riesz theorem (see for instane [14, 2.2.15℄,[15, 8.2.3℄) asserts that Γ exists if and only if σ(T ) ⊆ U , where σ(T ) is theusual spetrum of T .The multivariable version of this result is of great interest and it hasturned out to be more ompliated. The statement of the problem is the2000 Mathematis Subjet Classi�ation: Primary 47A60; Seondary 47A13, 17B30.Key words and phrases: quasispetra, solvable Lie algebra, funtional alulus, jointspetral radius. [13℄



14 A. Dosievfollowing. Let T = (T1, . . . , Tn) be an operator family in B(X) and let Ube a domain in C
n. Again by a holomorphi funtional alulus on U for Twe mean a ontinuous algebra homomorphism Γ : O(U)→ B(X) suh that

Γ (zi) = Ti for all i, 1 ≤ i ≤ n. Sine O(U) is a ommutative algebra, ithas a ommutative homomorphi image, in partiular, TiTj = TjTi for all
i, j. So, T must be a mutually ommuting operator family and holomorphifuntional alulus makes sense only for suh operator families. The problemhas been solved in [21℄ by J. Taylor. The key role in this matter is played,as in the one variable ase, by the (joint) spetrum σ(T ) of the operatorfamily T , whih is a nonempty ompat subset in C

n. More preisely, the(Taylor) spetrum σ(T ) is de�ned as the set of those λ ∈ C
n suh that theKoszul omplex Kos(X, T − λ) assoiated with the (ommutative) operatorfamily T − λ = (T1 − λ1, . . . , Tn − λn) is not exat [20℄. Taylor's theorem[20℄, [21℄ asserts that if σ(T ) ⊆ U then there is suh a alulus Γ , and thisondition is neessary if U is a domain of holomorphy. Note that the Taylorspetrum has a ompliated nature expressed in homologial terms.And what about an operator family T whih is not ommutative? Ob-viously, in this ase we annot use the algebras O(U) to have a �nonom-mutative holomorphi funtional alulus� for T . So, one has to hange thefuntion onept itself when developing a theory of funtions in nonommut-ing variables. Here a whole range of new possibilities appear [22℄. One of theapproahes is based on the well developed Lie algebra tehnique (see [21,Setion 7℄). Namely, we �x a �nite-dimensional Lie algebra g instead of C

nand try to treat funtions in elements of g as elements of some topologialompletions of the universal enveloping (or polynomial) algebra U(g). Evi-dently, the behavior of these ompletions depends of the variable spae g.For instane, as observed in [21, Setion 7℄, if the Lie algebra g is �very�nonommutative, namely if it is a semisimple Lie algebra, then the algebra
Og (the Arens�Mihael envelope [14, 5.2.21℄ of U(g)) of all entire funtionsin elements of g is a topologial diret produt of full matrix algebras, thatis, the struture of Og is quite far from the one of usual entire funtionsin several omplex variables. Moreover, in this ase there is no reasonablefuntional alulus (see [21, Setion 7℄).On the other hand, a satisfatory theory of holomorphi funtions innonommuting variables has been proposed for a solvable Lie algebra g in[8℄, [9℄, [11℄. Fix a �nite-dimensional solvable Lie algebra g. Let U be anabsolutely onvex domain in the dual spae g∗ and let ∆(g) ⊆ g∗ be thesubspae of Lie haraters, that is, those linear funtionals on g annihilat-ing [g, g]. The Arens�Mihael, Fréhet algebra Og(U) of onvergent powerseries or �holomorphi funtions� on U in elements of g was introdued in[6℄, [8℄. The nonommutative algebra Og(U) is a Hausdor�, Fréhet, multi-normed ompletion of the universal enveloping algebra U(g) of g, so there



Quasispetra of Lie algebra homomorphisms 15is a anonial algebra homomorphism ϕ : U(g) → Og(U) with dense range.Note that Og(U) redues to the algebra O(U) of usual holomorphi funtionson U in n omplex variables whenever g = C
n is a ommutative Lie algebra[8, 4.2℄. In the general ase, the algebra Og(U) is ommutative modulo itsJaobson radial RadOg(U) and the quotient algebra Og(U)/RadOg(U) istopologially isomorphi to O(Us) [8, Theorem 4.6℄, where Us = U ∩∆(g).The funtional alulus problem with respet to the �funtion� algebras

Og(U), where U runs over all absolutely onvex domains in g∗, is to determinea domain U so that a given Lie algebra homomorphism π : g → A into aBanah algebra A extends ontinuously to an algebra homomorphism π̃ :
Og(U)→ A, that is, π̃ · ϕ = π. The problem was solved only for a nilpotentLie algebra g in [8℄, in terms of Sªodkowski spetra of an operator family(A = B(X)). Namely, let π : g → B(X) be a representation of a nilpotentLie algebra g on a Banah spae X and let σ(π) be a Sªodkowski spetrumof π ([3℄; see [18℄ for the ommutative ase), whih is a ompat subset in
∆(g). Then π has a ontinuous extension π̃ : Og(U) → B(X) if and onlyif σ(π) ⊂ U . That is a version of (nonommutative) holomorphi funtionalalulus for absolutely onvex domains.A nonommutative spetral theory in the solvable Lie algebra frameworkstarted to develop independently of the funtional alulus, in [3℄, [13℄, [16℄and [7℄. It was established that some properties of the ommutative spetraltheory remain true in the solvable Lie algebra ase, but a omprehensivespetral theory remains to be developed in the nilpotent Lie algebra ase.How to introdue algebras Og(U) for other domains U and solve the rele-vant funtional alulus problem? One of the possible approahes is based onhomologial ideas and Taylor's program [21℄. These ideas were developed in[9℄�[12℄ and the funtional alulus problem was ompletely solved whenever
π(g) is a supernilpotent Lie subalgebra in B(X), that is, π([g, g]) onsists ofnilpotent operators.In ontrast to serious advanements in the nilpotent ase, almost noth-ing is known in the solvable Lie algebra ase. The main property of thefuntional alulus, the spetral mapping theorem, remains inexpliit in thisase. In this paper we propose a simple version of the funtional alulusin the solvable Lie algebra ase using the joint spetral radius tehnique.Namely, using the algebras Og(U) when U runs over all absolutely onvexdomains in the dual spae g∗ of a solvable Lie algebra g, we propose a fun-tional alulus in terms of quasispetra of a Lie algebra homomorphism intoa Banah algebra, whih extends the above mentioned result for the nilpo-tent ase. A quasispetrum (see De�nition 1) is a more general and simplernotion than Sªodkowski (in partiular, Taylor) spetrum, and it is not de-sribed in homologial terms. Roughly speaking, a quasispetrum σ(π) of aLie homomorphism π : g→ A into a Banah algebra A is a ompat subset



16 A. Dosievin g∗ with the following property:
̺(π(x)) = max{|λ(x)| : λ ∈ σ(π)}, x ∈ g,where ̺(π(x)) is the spetral radius of π(x) in A. Sine a Sªodkowski spe-trum has the projetion property [6℄, all Sªodkowski spetra are learly qua-sispetra. For other examples see Setion 3 below. As the main result weprove that a Lie algebra homomorphism π : g → A of a solvable Lie alge-bra g into a Banah algebra A has a ontinuous extension π̃ : Og(U) → Aif and only if σ(π) ⊂ U for a quasispetrum σ(π) of π. In partiular, weprove that the absolutely onvex hulls of all quasispetra oinide and thejoint spetral radius of a ompat subset in a �nite-dimensional solvable Liesubalgebra of a Banah algebra oinides with the geometri spetral radiusalulated by means of an arbitrary quasispetrum (see Corollary 5). Thatis the geometrial haraterization of the joint spetral radius.I wish to thank Yu. V. Turovski�� for useful disussions on the results ofthis note. I am also grateful to the referees for their attentive reading of thepaper.2. Preliminaries. All linear spaes onsidered are assumed to be om-plex and C denotes the �eld of omplex numbers. The inner produt inthe Eulidean spae C

n is denoted by 〈·, ·〉, thus 〈c, λ〉 =
∑n

i=1 ciλi for ve-tors c = (c1, . . . , cn) and λ = (λ1, . . . , λn) in C
n, where λi is the omplexonjugate of λi, 1 ≤ i ≤ n. In partiular, ‖c‖ = 〈c, c〉1/2 is the Eulideannorm of c. The set of all positive integers is denoted by N, and 2S is theset of all subsets of the set S. The unit ball of a normed spae X furnishedwith a norm p is denoted by Bp, and p∗ denotes the dual norm on thedual spae X∗. For a subset M ⊆ X, abcM denotes the absolutely onvexhull of M , that is, the set of all absolutely onvex ombinations ∑n

i=1 cimi,∑
|ci| ≤ 1, ci ∈ C, mi ∈ M . Consider a subset F ⊆ X∗ and a point x ∈ X.The subset {λ(x) : λ ∈ F} ⊆ C is denoted by F (x). The Banah spae of allontinuous omplex funtions on a ompat topologial spae K, furnishedwith the uniform norm ‖f‖∞ = sup{|f(x)| : x ∈ K}, is denoted by C(K),and the spae of all holomorphi funtions on an open subset U ⊆ C

n, fur-nished with the ompat-open topology, is denoted by O(U). The topologialinterior (respetively, boundary) of a subset K in a topologial spae Ω isdenoted by intK (respetively, ∂K).Let A be a (non)assoiative algebra. An algebra homomorphism λ : A
→ C is said to be a harater of A, and the set of all haraters of A isdenoted by ∆(A). Let A be a Banah (assoiative) algebra. We write spA(a)and ̺(a) for the spetrum and spetral radius of an element a ∈ A.Now let c = (c1, . . . , cn) ∈ C

n and let a = (a1, . . . , an) be an n-tuple in aBanah algebra A. The symbol 〈c, a〉A for the linear ombination ∑n
i=1 ciai



Quasispetra of Lie algebra homomorphisms 17in A will be useful in Setion 3. Note that if a = λ = (λ1, . . . , λn) is atuple in C then 〈c, λ〉C = 〈c, λ〉 is the inner produt of the vetors c and
λ = (λ1, . . . , λn) in C

n.2.1. The maximum formula for the joint spetral radius. Let A be aBanah algebra and let M ⊆ A. We set Mn = {m1 · · ·mn : mi ∈ M},
n ∈ N, and ‖M‖ = sup{‖m‖ : m ∈ M}, in partiular, if M ⊆ C then
|M | = sup{|z| : z ∈M}. The multipliative semigroup in A generated by Mis denoted by SG(M). By the very de�nition, SG(M) =

⋃
n∈N

Mn. If M isbounded, that is, ‖M‖ <∞, then the limit limn ‖M
n‖1/n exists and equals

infn ‖M
n‖1/n; we denote it by ̺|M | and all the joint spetral radius of M[17℄. (The onventional notation for the joint spetral radius is ̺(M), butwe want to avoid misunderstanding it for the image of the set M via themap ̺.)Reall the following maximum formula for the joint spetral radius provedby Yu. V. Turovski�� and V. S. Shulman in [23, Theorem 9℄.Theorem 1. Let A be a Banah algebra with a �nite-dimensional solv-able Lie subalgebra g suh that A oinides with the losed assoiative sub-algebra generated by g. Then A is ommutative modulo its Jaobson radial

RadA and
̺|M | = |̺(M)|for any preompat subset M ⊆ A.Note that this nontrivial result is based on the topologial radial teh-nique developed in [23℄.Remark 1. It is well known (see for instane [4, 1.3.3℄) that the spetralradius is a ontinuous seminorm on a ommutative Banah algebra. More-over, if A is a Banah algebra then spA(a) = spA/RadA(τ(a)) and therefore

̺(a) = ̺(τ(a)), where τ : A→ A/Rad A is the quotient map. Hene ̺ turnsout to be a ontinuous seminorm on a Banah algebra ommutative modulo
RadA. Using Theorem 1, we onlude that

̺|M | = |̺(M)| = sup{̺(m) : m ∈M} = sup{̺(τ(m)) : m ∈M}

= max{̺(τ(m)) : m ∈M} = max{̺(m) : m ∈M},whenever M is a ompat subset in the losed assoiative envelope A of g.2.2. Banah enveloping algebras. Let g be a �nite-dimensional omplexLie algebra, U(g) the universal enveloping algebra of g, and p a norm on g.The Lie algebra g furnished with the norm p is a Banah�Lie algebra, heneone an de�ne its Banah enveloping algebra A(p) [6℄, [8, Setion 2.1℄. Thelatter is a Hausdor� seminorm-ompletion of the enveloping algebra U(g)with respet to a ertain seminorm assoiated with p; onsequently, thereis a anonial algebra homomorphism ϕp : U(g) → A(p) with dense range.



18 A. DosievThe following assertion proved in [6℄ haraterizes the Banah envelopingalgebras.Lemma 1. Let p be a norm on g, A a Banah algebra, and π : g → Aa Lie algebra homomorphism with the bounded semigroup SG(π(Bp)). Thereexists a unique bounded algebra homomorphism π̃ : A(p) → A suh that
π̃ · ϕp = π.Remark 2. Note that SG(π(Bp)) is bounded whenever ̺|π(Bp)| < 1.Now let p and q be norms on g suh that p ≤ q. The anonial Lie algebrahomomorphism ϕp : g → A(p) has norm at most 1 whenever g is furnishedwith the norm q. By Lemma 1, there is a bounded algebra homomorphism
u : A(q)→ A(p), with ‖u‖ ≤ 1, extending the identity map on U(g).2.3. Absolutely onvex domains. The aim of this subsetion is to demon-strate a onnetion between inreasing norm sets on a �nite-dimensionallinear spae and absolutely onvex domains in its dual spae.Let L be a �nite-dimensional linear spae. A norm set pΛ = {pα}α∈Λde�ned on L is said to be saturated if pΛ ontains the maxima of all its �nitesubsets. A saturated norm set pΛ on L is alled inreasing if for eah α ∈ Λthere exists β ∈ Λ with pα(x) < pβ(x) for all x 6= 0 (we then write pα ≪ pβ).Note that pα ≪ pβ i� pα ≤ εαβpβ, where εαβ = sup{pα(x) : x ∈ Bpβ

} < 1.Inreasing norm sets pΛ = {pα}α∈Λ and qΩ = {qγ}γ∈Ω on L are said to beequivalent (pΛ ∼ qΩ) if for eah α ∈ Λ there is a β ∈ Ω with pα ≪ qβ andvie versa [8, 2.2℄.Let M ⊆ L and F ⊆ L∗. The set M̂F = {x ∈ L : |λ(x)| ≤ |λ(M)|, λ ∈ F}is alled the F -onvex hull of M in L. A domain U in L is said to be F -onvexif K̂F ⊂ U for eah ompat subset K ⊂ U with intK 6= ∅. Sine L∗∗ = L,it makes sense to onsider the M -onvex hull F̂M of a subset F ⊆ L∗. Forompleteness, we present a detailed proof of the following assertion (see [8,Lemma 4.1℄).Lemma 2. Let K be a ompat subset in L with intK 6= ∅. Then K̂L∗ =
abcK.Proof. By assumption Vε(x) ⊂ K for a ertain open ball Vε(x) of radius
ε entered at x ∈ intK. Then Vε(−x) = −Vε(x) ⊆ abcK and Vε(0) ⊆
2−1Vε(x) + 2−1Vε(−x) ⊆ abcK, so 0 ∈ int abcK. Thus abcK is a ompatabsorbing irled onvex set, so its Minkowski funtional p is a norm. As
abcK is a losed set, we onlude that abc K = Bp.Take x ∈ K̂L∗ . Then |λ(x)| ≤ |λ(K)| for allλ ∈ L∗. Sine K ⊆ Bp, itfollows that |λ(x)| ≤ |λ(Bp)| = p∗(λ). But L∗∗ = L and p∗∗ = p, therefore
p(x) ≤ 1, that is, x ∈ Bp = abcK. Therefore K̂L∗ ⊆ abcK.



Quasispetra of Lie algebra homomorphisms 19Conversely, take x =
∑

aixi ∈ abcK with xi ∈ K, ∑
|ai| ≤ 1. Then

|λ(x)| ≤
∑
|ai| |λ(xi)| ≤ |λ(K)|, λ ∈ L∗, whene x ∈ K̂L∗ . Thus abcK

⊆ K̂L∗ .Corollary 1. Let U be a domain in L. Then U is L∗-onvex i� abcK
⊂ D for all ompat subsets K ⊂ D, intK 6= ∅. Thus U is L∗-onvex i� Uis absolutely onvex.Now let pΛ = {pα}α∈Λ be an inreasing norm set on L, and let B∗

α = Bp∗α ,
α ∈ Λ, be the unit balls in the dual spae L∗. Assume that pα ≪ pβ and take
λ ∈ B∗

α. Then p∗β(λ) = |λ(Bpβ
)| ≤ sup{|λ(x)| : pα(x) ≤ εαβ} ≤ εαβp∗α(λ) ≤

εαβ < 1, that is, λ ∈ intB∗
β . Thus B∗

α ⊆ intB∗
β whenever pα ≪ pβ . Put

U =
⋃

α∈Λ B∗
α. Then U =

⋃
α∈Λ intB∗

α is a domain in L∗, for pΛ is aninreasing norm set. We say that U is the domain assoiated with the normset pΛ. By Corollary 1, the domain U assoiated with an inreasing normset pΛ is an absolutely onvex domain in L∗. Obviously, equivalent norm setshave the same assoiated domain in L∗. Moreover, if pΛ and qΩ are inreasingnorm sets with the same assoiated domain U then these norm sets must beequivalent, that is, pΛ ∼ qΩ. Indeed, if B∗′
γ is the unit ball in L∗ with respetto the dual norm q∗γ , γ ∈ Ω, then taking into aount that U =

⋃
α∈Λ B∗

α =⋃
γ∈Ω B∗′

γ and pΛ (respetively, qΩ) is a saturated set, we onlude that
B∗′

γ ⊆ intB∗
α for some α ∈ Λ. Further, by the maximum modulus priniple,we dedue that qγ(x) = q∗∗γ (x) = |x(B∗′

γ )| < |x(B∗
α)| = pα(x), x 6= 0, thatis, qγ ≪ pα. By analogy, for eah α ∈ Λ there is γ ∈ Ω suh that pα ≪ qγ ,so pΛ ∼ qΩ. Thus the equivalene lass [pΛ] of an inreasing norm set pΛhas the same assoiated domain U . Moreover, if U is an absolutely onvexdomain in L∗ then U is assoiated with a ertain inreasing norm set pΛon L [8, Lemma 4.2℄. Thus the following assertion is valid.Theorem 2. The orrespondene [pΛ] 7→ U is a bijetion between theequivalene lasses of inreasing norm sets on L and absolutely onvex do-mains in L∗.2.4. Holomorphi funtions. Let g be a �nite-dimensional Lie algebraand let U be an absolutely onvex domain in g∗. By Theorem 2, the do-main U is assoiated with a unique (up to equivalene) inreasing normset pΛ = {pα}α∈Λ on g. Consider the Banah enveloping algebras A(pα)with α ∈ Λ (see Subsetion 2.2). If pα ≪ pβ then we have a bounded al-gebra homomorphism uαβ : A(pβ) → A(pα), ‖uαβ‖ ≤ 1 (see Subsetion2.2) extending the identity map on the enveloping algebra U(g). Moreover,

uαβ · uβγ = uαγ whenever pα ≪ pβ ≪ pγ , due to the uniqueness propertyasserted in Lemma 1. Thus, we have a projetive system of Banah alge-bras A(pΛ) = {A(pα), uαβ : α, β ∈ Λ}; let lim←−A(pΛ) be its inverse limit.Sine the A(pα), α ∈ Λ, are assoiative algebras, lim←−A(pΛ) inherits the alge-



20 A. Dosievbrai struture and it beomes a Fréhet, Arens�Mihael algebra [14, 5.2.10℄.Note that the algebras lim←−A(pΛ) and lim←−A(qΩ) are topologially isomorphiwhenever pΛ ∼ qΩ [8, Lemma 2.6℄. Thus lim←−A(pΛ) depends only on thehoie of the equivalene lass [pΛ] or U (see Theorem 2). Thus the Fréhetalgebra Og(U) = lim←−A(pΛ) with the anonial dense algebra homomorphism
ϕ : U(g)→ Og(U) is well de�ned, and it is alled an algebra of power seriesor holomorphi funtions on U in elements of g. The following assertion wasproved in [8, Lemma 5.1℄.Lemma 3. Let g be a �nite-dimensional Lie algebra, U an absolutelyonvex domain in g∗ assoiated with a norm set pΛ = {pα}α∈Λ, and π :
g → A a Lie homomorphism into a Banah algebra A. Then π extendsto a ontinuous algebra homomorphism π̃ : Og(U) → A, π̃ · ϕ = π, i�
̺|π(Bpα)| < 1 for some α ∈ Λ.3. Quasispetra. In the following, g denotes a �nite-dimensional solv-able Lie algebra. Let π : g → A and π′ : g → B be Lie homomorphismsinto Banah algebras A and B. These homomorphisms are understood to beequal, π = π′, if A = B and π(x) = π′(x) for all x ∈ g. Let us introdue theset Bag of all Lie homomorphisms of g into Banah algebras and let Bsg beits subset omprising all representations of g on Banah spaes, that is, Liehomomorphisms like g→ B(X).Definition 1. Let Mg ⊆ Bag be a subset. A map σ : Mg → 2g

∗ issaid to be a quasispetrum on g with respet to Mg if σ(π) is a nonemptyompat subset in g∗ and̺
(π(x)) = |σ(π)(x)|, x ∈ g,for eah π ∈Mg. The set of all quasispetra on g with respet to the subset

Mg is denoted by Q(Mg).If g is a Lie subalgebra of a ertain Banah algebra A then σ(g) (σ ∈
Q(Mg)) denotes the quasispetrum σ(idg) of the identity homomorphism
idg : g→ A.Note that here we have followed the lassial approah (see for instane[19℄, [5℄) to determine a quasispetrum σ as a set-valued funtion de�ned onLie algebra homomorphisms into Banah algebras. In the ommutative aseit an be regarded as a set-valued funtion on �nite ommutative familiesin Banah algebras instead of Lie homomorphisms. Namely, assume that
g = C

n is a ommutative Lie algebra. Eah Lie algebra homomorphism π :
C

n→A is ompletely determined by the ommutative family a = (a1, . . . , an)in A, where ai = π(zi), 1 ≤ i ≤ n. So, one may use the notation σ(a) insteadof σ(π) for a quasispetrum. Moreover, eah linear funtional λ ∈ (Cn)∗ anbe identi�ed with a vetor (λ1, . . . , λn) ∈ C
n suh that λi = λ(zi) for all i.



Quasispetra of Lie algebra homomorphisms 21Using this identi�ation and De�nition 1, one an easily onlude that σ(a)is a nonempty ompat subset in C
n with the property(3.1) ̺(〈c, a〉A) = max{|〈c, λ〉| : λ ∈ σ(a)} = |〈c, σ(a)〉|for all c = (c1, . . . , cn) ∈ C

n, where 〈c, a〉A =
∑n

i=1 ciai ∈ A. Moreover, in(3.1) it su�es to onsider only those vetors c ∈ C
n with ∑n

i=1 |ci| ≤ 1. Inpartiular,(3.2) ̺(ai) = max{|λi| : λ = (λ1, . . . , λn) ∈ σ(a)}for all i.Lemma 4. Let σ(π) be a quasispetrum of a Lie homomorphism π : g→
A of g into a Banah algebra A. Then σ(π) ⊆ ∆(g).Proof. Note that π(g) is a solvable Lie subalgebra in A and the losedassoiative subalgebra B in A generated by π(g) is ommutative moduloits Jaobson radial RadB by Theorem 1, whene π([g, g]) = [π(g), π(g)] ⊆
RadB. Thus ̺(π(x)) = 0 for all x ∈ [g, g]. By De�nition 1, |λ(x)| ≤ ̺(π(x))for all λ ∈ σ(π), therefore λ(x) = 0 for λ ∈ σ(π), that is, λ([g, g]) = 0. Hene
λ ∈ ∆(g).Let us provide some examples of quasispetra.Proposition 1. Let Mg be a set of Lie homomorphisms of g into Ba-nah algebras (Mg ⊆ Bag) and let σ : Mg→ 2g

∗ be a map suh that σ(π) isa nonempty ompat subset in g∗ and
∂ sp(π(x)) ⊆ σ(π)(x) ⊆ sp(π(x))for all x ∈ g. Then σ is a quasispetrum on Mg, that is, σ ∈ Q(Mg). Inpartiular , all Cartan�Sªodkowski (and Cartan�Taylor) spetra Σ ∈ KS ([1℄,[11℄) are quasispetra on g with respet to the set Bsg of all Banah spaerepresentations of g, that is, KS ⊆ Q(Bsg). Moreover , if Σ is the Cartan�Taylor spetrum then σ = ∂Σ de�ned by σ(π) = ∂Σ(π) is a quasispetrum.Proof. Using the inlusions ∂ sp(π(x)) ⊆ σ(π)(x) ⊆ sp(π(x)), we deduethat

̺(π(x)) = max{|z| : z ∈ ∂ sp(π(x))} = max{|λ(x)| : λ ∈ σ(π)} = |σ(π)(x)|.By De�nition 1, σ ∈ Q(Mg).Now let Mg = Bsg and let Σ ∈ KS be a Cartan�Sªodkowski spetrum.Then
Σ(π)(x) = Σ(π(x)) ⊆ sp(π(x))due to the projetion property [1℄, [11℄. Moreover, ∂ sp(π(x)) ⊆ σap(π(x)) ⊆

Σ(π(x)), where σap(π(x)) is the approximate point spetrum of the operator
π(x). Consequently, Σ ∈ Q(Bsg).



22 A. DosievFinally, assume that Σ is the Cartan�Taylor spetrum [1℄ and let σ :
Bsg→ 2g

∗ , σ(π) = ∂Σ(π). Note that sp(π(x)) = Σ(π)(x) (see [1℄). Bearingin mind that the projetion map g∗ → C, λ 7→ λ(x), is open, we onludethat ∂ sp(π(x)) ⊆ σ(π)(x). It follows that σ ∈ Q(Bsg).Now let g = C
n be a ommutative Lie algebra. For a ommutative n-tuple a = (a1, . . . , an) in a Banah algebra A, let σ(a) ⊂ C

n be a nonemptyompat subset with the property
∂ sp(〈c, a〉A) ⊆ {|〈c, λ〉| : λ ∈ σ(a)} ⊆ sp(〈c, a〉A)for all c ∈ C

n with ∑n
i=1 |ci| ≤ 1. By Proposition 1, σ is a quasispetrum. Inpartiular, σ(a) ⊆

∏n
i=1 sp(ai).Conversely, let σ be any set-valued funtion de�ned on �nite ommutativetuples in Banah algebras with the properties:(i) σ(a) ⊂ C

n is a ompat nonempty subset for a ommutative n-tuple a;(ii) ∂ sp(a) ⊆ σ(a) ⊆ sp(a) for a singleton a;(iii) σ(〈c, a〉A) = 〈c, σ(a)〉 for all c ∈ C
n with ∑n

i=1 |ci| ≤ 1, and anyommutative n-tuple a.Then σ is a quasispetrum due to Proposition 1. Note that axiom (iii) isa simple version of the polynomial mapping property, that is, σ(p(a)) =
p(σ(a)) for all polynomial families p in n omplex variables. It is well known[18℄ that all Sªodkowski spetra σπ,k, σδ,k, k ≥ 0, have the polynomial map-ping property. Using it, we onlude that they are quasispetra with respetto the bounded linear operators. Indeed, it su�es (see [18℄) to verify (ii)only. But this is evident from the inlusions

∂ sp(a) ⊆ σap(a) = σπ,0(a) ⊆ σπ,k(a) ⊆ sp(a)and
∂ sp(a) = ∂ sp(a∗) ⊆ σap(a

∗) = σπ,0(a
∗) = σδ,0(a) ⊆ σδ,k(a) ⊆ sp(a)for an operator a and for all k ≥ 0.Finally, note that the topologial boundary of the Taylor spetrum sat-is�es axioms (i)�(iii), therefore it is a quasispetrum.Now let us demonstrate that the notion of quasispetrum is more generalthan the one of joint spetrum. Let π : g→ A be a representation of g intoa Banah algebra A, B the losure of the assoiative envelope of π(g) in A,and Sn the unit sphere with respet to the Eulidean norm ‖ · ‖ on g. Thespetral radius ̺ is a ontinuous seminorm on B (see Remark 1). It followsthat NSn = ̺(π(Sn)) is a ompat subset of the real line and therefore

|NSn | <∞. Further, there is a funtional λx ∈ g∗ with |λx(y)| ≤ ̺(π(y)) forall y ∈ g, and λx(x) = ̺(π(x)) for eah x ∈ Sn, thanks to the Hahn�Banah



Quasispetra of Lie algebra homomorphisms 23theorem. Then
‖λx‖ = |λx(Sn)| ≤ |NSn |for all x ∈ Sn. Consequently, {λx : x ∈ Sn} is a bounded set in g∗; let σ(π)be its losure.Proposition 2. The assignment π 7→ σ(π) is a quasispetrum on g withrespet to Bag.Proof. Clearly, σ(π) is a ompat subset in g∗. By De�nition 1, we haveto prove that ̺(π(y)) = |σ(π)(y)| for all y ∈ g. One an assume that y 6= 0,as otherwise the assertion is obvious. Take µ ∈ σ(π). Sine σ(π) is thelosure of {λx : x ∈ Sn}, it follows that |µ(y)| ≤ ̺(π(y)) for y ∈ g, whene

|σ(π)(y)| ≤ ̺(π(y)). Moreover,
̺(π(y)) = ‖y‖̺(π(y/‖y‖)) = ‖y‖λy/‖y‖(y/‖y‖) = λy/‖y‖(y).Taking into aount that λy/‖y‖ ∈ σ(π), we infer |σ(π)(y)| = ̺(π(y)). Thus

σ ∈ Q(Bag).Let us desribe the latter quasispetrum in the ommutative ase. Fix aommutative n-tuple in a Banah algebra A. By onstrution, to eah c ∈ Snthere orresponds c∗ ∈ C
n suh that(3.3) |〈c, c∗〉| = ̺(〈c, a〉A) and |〈t, c∗〉| ≤ ̺(〈t, a〉A)for all t ∈ C

n. The set {c∗ : c ∈ Sn} is bounded in C
n, therefore it has aompat losure denoted by σ(a), whih is a quasispetrum of a, as provedin Proposition 2.4. The funtional alulus. Now we prove the main result of thispaper on funtional alulus.Theorem 3. Let g be a �nite-dimensional solvable Lie algebra, Mg ⊆

Bag be a subset of Lie homomorphisms of g into Banah algebras, π : g→ Aa Lie homomorphism from Mg, U an absolutely onvex domain in g∗, and
σ ∈ Q(Mg). Then π extends to a ontinuous algebra homomorphism π̃ :
Og(U)→ A, π̃ · ϕ = π, i� σ(π) ⊂ U .Proof. By Theorem 2, the domain U is assoiated with a norm set pΛ =
{pα}α∈Λ on the Lie algebra g. Let Bpα be the unit ball in g with respet tothe norm pα. If the ontinuous algebra homomorphism π̃ : Og(U)→ A existsthen ̺|π(Bpα)| < 1 for some α ∈ Λ, by Lemma 3. Take λ ∈ σ(π) ⊆ ∆(g)(Lemma 4). If x ∈ Bpα then, by De�nition 1, we infer

|λ(x)| ≤ ̺(π(x)) ≤ ̺|π(Bpα)|.Therefore p∗α(λ) = |λ(Bpα)| < 1. Thus λ ∈ B∗
α, where B∗

α is the unit ball



24 A. Dosievwith respet to the norm p∗α. But U =
⋃

α∈Λ B∗
α (see Subsetion 2.3), so

λ ∈ U . Thus σ(π) ⊂ U .Conversely, assume that σ(π) ⊂ U . Note that σ(π) ⊂ intB∗
α for some

α ∈ Λ, for U =
⋃

α∈Λ intB∗
α, σ(π) is a ompat set by De�nition 1, and

pΛ is an inreasing norm set. Further, by Lemma 3, it su�es to prove that
̺|π(Bpα)| < 1. Take x ∈ Bpα . By De�nition 1 and the maximum moduluspriniple, we dedue that

̺(π(x)) = max{|λ(x)| : λ ∈ σ(π)} < max{|λ(x)| : λ ∈ B∗
α}

≤ max{p∗α(λ)pα(x) : λ ∈ B∗
α} ≤ pα(x) ≤ 1,that is, ̺(π(x)) < 1. But ̺|π(Bpα)| = |̺(π(Bpα))| = max{̺(y) : y ∈ π(Bpα)}by Theorem 1 and Remark 1. Consequently, ̺|π(Bpα)| < 1.Corollary 2. Let a = (a1, . . . , an) be a ommutative n-tuple in a Ba-nah algebra A, U an absolutely onvex domain in C

n, and σ(a) a quasis-petrum of a. There is a ontinuous algebra homomorphism Γ : O(U) → A(holomorphi funtional alulus) suh that Γ (zi) = ai, 1 ≤ i ≤ n, if andonly if σ(a) ⊂ U .Corollary 3. Let g be a solvable Lie algebra and let σ1, σ2 ∈ Qg(Mg).Then
abcσ1(π) = abcσ2(π)for all π ∈ Mg. In partiular , abcσ1(a) = abcσ2(a) for any ommutativetuple a and quasispetra σ1, σ2.Proof. Let π : g → A be a Lie homomorphism from Mg. By De�ni-tion 1, σ2(π) is a ompat set. If U is an absolutely onvex domain suhthat abcσ2(π) ⊂ U then using Theorem 3 we onlude that π extendsto a ontinuous algebra homomorphism π̃ : Og(U) → A. Aording againto Theorem 3, now with respet to the quasispetrum σ1, we infer that

σ1(π) ⊆ U . Thus σ1(π) ⊆ abcσ2(π). Similarly, σ2(π) ⊆ abcσ1(π). Conse-quently, abcσ1(π) = abcσ2(π).Corollary 3 is a nonommutative version of Theorem 8 in [5℄.Corollary 4. Let g be a solvable Lie algebra and let σ1, σ2 ∈ Qg(Mg).If q is a seminorm on g∗ then
q(σ1(π)) = q(σ2(π)).In partiular , if a is a ommutative n-tuple in a Banah algebra then

‖σ(a)‖ = max{‖c∗‖ : c ∈ Sn},where ‖ · ‖ is the Eulidean norm in C
n, and c∗ ∈ C

n orresponds to c ∈ Snwith the property (3.3).



Quasispetra of Lie algebra homomorphisms 25Proof. Using Corollary 3, we infer that
q(σ1(π)) = q(abcσ1(π)) = q(abcσ2(π)) = q(σ2(π)),that is, q(σ1(π)) = q(σ2(π)).5. The geometri spetral radius. In this setion we demonstratethat the joint spetral radius of a ompat subset in a �nite-dimensionalsolvable Lie subalgebra of a Banah algebra an be alulated by means ofquasispetra.Let again g be a �nite-dimensional solvable Lie algebra, Mg ⊆ Bag asubset of Lie homomorphisms of g into Banah algebras, π : g → A a Liehomomorphism from Mg, and σ ∈ Q(Mg). Consider a ontinuous map γ :

Ω → g ating from a ompat topologial spae Ω into g. We de�ne aquasispetrum of the map πγ : Ω → g by setting
σ(πγ) = {λγ : λ ∈ σ(π)}.Obviously, σ(πγ) is a subset of the Banah spae C(Ω), so one an de�nethe geometri spetral radius of the map πγ as in [2℄, by setting(5.1) rσ,∞(πγ) = ‖σ(πγ)‖∞.Let qγ be the seminorm on g∗ given by qγ(λ) = ‖λγ‖∞. Then rσ,∞(πγ) =

qγ(σ(π)). Using Corollary 4, we obtain
rσ1,∞(πγ) = rσ2,∞(πγ)for all σ1, σ2 ∈ Q(Mg). Thus the geometri spetral radius does not dependupon the quasispetrum σ ∈ Q(Mg). Therefore we set r∞(πγ) = rσ,∞(πγ).The following assertion exhibits a onnetion between the geometri andjoint spetral radii.Proposition 3. r∞(πγ) = |̺(πγ(Ω))| = ̺|πγ(Ω)|.Proof. By using (5.1) and De�nition 1, we dedue that

r∞(πγ) = sup{‖λγ‖∞ : λ ∈ σ(π)}= sup
λ∈σ(π)

sup
x∈γ(Ω)

|λ(x)|= sup
x∈γ(Ω)

sup
λ∈σ(π)

|λ(x)|

= sup
x∈γ(Ω)

|σ(π)(x)| = sup
x∈γ(Ω)

̺(π(x)) = |̺(πγ(Ω))|.But |̺(πγ(Ω))| = ̺|πγ(Ω)| by Theorem 1.Note that Proposition 3 was proved by D. Beltiµa in [2, Theorem 4.1(2)℄when A = B(X), π(g) onsists of ompat operators and σ = Σ is theCartan�Taylor spetrum (see Proposition 1).Corollary 5. Let A be a Banah algebra, g a �nite-dimensional solv-able Lie subalgebra in A, and M a ompat subset in g. If σ(g) a quasispe-trum of g then
̺|M | = max{|λ(M)| : λ ∈ σ(g)}.



26 A. DosievIn partiular , if M = a is a ommutative n-tuple in a Banah algebra thenthe above identity redues to the maximum formula
̺|a| = max{̺(ai) : 1 ≤ i ≤ n}.Proof. It su�es to apply Proposition 3 by assuming that Ω = M and γis the identity map. Note also that ‖λ|M‖∞ = |λ(M)| for all λ ∈ g∗.Now let a be a ommutative n-tuple. Using (3.2), we dedue that

̺|a| = max
λ∈σ(a)

|λ(a)| = max
λ∈σ(a)

max
i
|λi| = max

i
max

λ∈σ(a)
|λi| = max

i
̺(ai),that is, ̺|a| = maxi ̺(ai).Finally, using Proposition 2 and Corollary 5, we onlude that

̺|M | = sup{|λx(M)| : x ∈ S},where S is the unit sphere in g.
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