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Quasispectra of solvable Lie algebra homomorphisms
into Banach algebras

by

ANAR DoOSIEV (Ankara)

Abstract. We propose a noncommutative holomorphic functional calculus on ab-
solutely convex domains for a Banach algebra homomorphism 7 of a finite-dimensional
solvable Lie algebra g in terms of quasispectra o (7). In particular, we prove that the joint
spectral radius of a compact subset in a solvable operator Lie subalgebra coincides with
the geometric spectral radius with respect to a quasispectrum.

1. Introduction. One of the central topics of modern analysis is the
concept of a function in several noncommuting variables or more generally
a noncommutative function algebra. A motivation for such noncommutative
generalization is provided, for instance, by the functional calculus problem
for a family of noncommuting operators. The aim of a functional calculus
is to obtain an operator realization of a (noncommutative) function alge-
bra. More precisely, if there is a continuous algebra homomorphism from a
noncommutative function algebra A into the Banach algebra B(X) of all
bounded linear operators on a complex Banach space X, such that the non-
commuting variables in A can be sent to a given operator family in B(X),
then we say that there is a functional calculus with functions from A in
B(X). Its original and simplest form is the holomorphic functional calculus
for a single operator T' € B(X), which can be expressed as a unital contin-
uous algebra homomorphism I" : O(U) — B(X) from the Fréchet algebra
O(U) (furnished with the compact-open topology) of holomorphic functions
on a domain U C C into the Banach algebra B(X) such that I'(z) = T. The
well known Gelfand-Dunford-Riesz theorem (see for instance [14, 2.2.15],
[15, 8.2.3]) asserts that I" exists if and only if o(T") C U, where o(T) is the
usual spectrum of 7.

The multivariable version of this result is of great interest and it has
turned out to be more complicated. The statement of the problem is the
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following. Let T' = (T1,...,T,) be an operator family in B(X) and let U
be a domain in C". Again by a holomorphic functional calculus on U for T
we mean a continuous algebra homomorphism I" : O(U) — B(X) such that
I'(z) =T, for all i, 1 < ¢ < n. Since O(U) is a commutative algebra, it
has a commutative homomorphic image, in particular, T;T; = TjT; for all
1, j. So, T must be a mutually commuting operator family and holomorphic
functional calculus makes sense only for such operator families. The problem
has been solved in [21] by J. Taylor. The key role in this matter is played,
as in the one variable case, by the (joint) spectrum o(T') of the operator
family 7', which is a nonempty compact subset in C™. More precisely, the
(Taylor) spectrum o(7T) is defined as the set of those A € C" such that the
Koszul complex Kos(X,T — ) associated with the (commutative) operator
family T'— A = (Th — A1, ..., T, — Ap) is not exact [20]. Taylor’s theorem
[20], [21] asserts that if o(T") C U then there is such a calculus I', and this
condition is necessary if U is a domain of holomorphy. Note that the Taylor
spectrum has a complicated nature expressed in homological terms.

And what about an operator family 7" which is not commutative? Ob-
viously, in this case we cannot use the algebras O(U) to have a “noncom-
mutative holomorphic functional calculus” for T'. So, one has to change the
function concept itself when developing a theory of functions in noncommut-
ing variables. Here a whole range of new possibilities appear [22]. One of the
approaches is based on the well developed Lie algebra technique (see |21,
Section 7]). Namely, we fix a finite-dimensional Lie algebra g instead of C™
and try to treat functions in elements of g as elements of some topological
completions of the universal enveloping (or polynomial) algebra U(g). Evi-
dently, the behavior of these completions depends of the variable space g.
For instance, as observed in [21, Section 7], if the Lie algebra g is “very”
noncommutative, namely if it is a semisimple Lie algebra, then the algebra
Oy (the Arens-Michael envelope [14, 5.2.21] of U(g)) of all entire functions
in elements of g is a topological direct product of full matrix algebras, that
is, the structure of Oy is quite far from the one of usual entire functions
in several complex variables. Moreover, in this case there is no reasonable
functional calculus (see [21, Section 7]).

On the other hand, a satisfactory theory of holomorphic functions in
noncommuting variables has been proposed for a solvable Lie algebra g in
[8], [9], [11]. Fix a finite-dimensional solvable Lie algebra g. Let U be an
absolutely convex domain in the dual space g* and let A(g) C g* be the
subspace of Lie characters, that is, those linear functionals on g annihilat-
ing [g, g]. The Arens-Michael, Fréchet algebra Og4(U) of convergent power
series or “holomorphic functions” on U in elements of g was introduced in
[6], [8]. The noncommutative algebra O4(U) is a Hausdorff, Fréchet, multi-
normed completion of the universal enveloping algebra U(g) of g, so there
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is a canonical algebra homomorphism ¢ : U(g) — O4(U) with dense range.
Note that Og(U) reduces to the algebra O(U) of usual holomorphic functions
on U in n complex variables whenever g = C" is a commutative Lie algebra
[8, 4.2]. In the general case, the algebra O4(U) is commutative modulo its
Jacobson radical Rad O4(U) and the quotient algebra Og(U)/Rad Oy4(U) is
topologically isomorphic to O(Us) [8, Theorem 4.6], where Us = U N A(g).

The functional calculus problem with respect to the “function” algebras
O4(U), where U runs over all absolutely convex domains in g*, is to determine
a domain U so that a given Lie algebra homomorphism 7 : g — A into a
Banach algebra A extends continuously to an algebra homomorphism 7 :
O4(U) — A, that is, 7 - ¢ = m. The problem was solved only for a nilpotent
Lie algebra g in [8], in terms of Stodkowski spectra of an operator family
(A = B(X)). Namely, let 7 : g — B(X) be a representation of a nilpotent
Lie algebra g on a Banach space X and let o(7) be a Stodkowski spectrum
of m ([3]; see [18] for the commutative case), which is a compact subset in
A(g). Then 7 has a continuous extension 7 : Og(U) — B(X) if and only
if o(m) C U. That is a version of (noncommutative) holomorphic functional
calculus for absolutely convex domains.

A noncommutative spectral theory in the solvable Lie algebra framework
started to develop independently of the functional calculus, in [3], [13], [16]
and [7]. It was established that some properties of the commutative spectral
theory remain true in the solvable Lie algebra case, but a comprehensive
spectral theory remains to be developed in the nilpotent Lie algebra case.

How to introduce algebras Og(U) for other domains U and solve the rele-
vant functional calculus problem? One of the possible approaches is based on
homological ideas and Taylor’s program [21]. These ideas were developed in
[9]-[12] and the functional calculus problem was completely solved whenever
7(g) is a supernilpotent Lie subalgebra in B(X), that is, 7([g, g]) consists of
nilpotent operators.

In contrast to serious advancements in the nilpotent case, almost noth-
ing is known in the solvable Lie algebra case. The main property of the
functional calculus, the spectral mapping theorem, remains inexplicit in this
case. In this paper we propose a simple version of the functional calculus
in the solvable Lie algebra case using the joint spectral radius technique.
Namely, using the algebras O4(U) when U runs over all absolutely convex
domains in the dual space g* of a solvable Lie algebra g, we propose a func-
tional calculus in terms of quasispectra of a Lie algebra homomorphism into
a Banach algebra, which extends the above mentioned result for the nilpo-
tent case. A quasispectrum (see Definition 1) is a more general and simpler
notion than Stodkowski (in particular, Taylor) spectrum, and it is not de-
scribed in homological terms. Roughly speaking, a quasispectrum o(7) of a
Lie homomorphism 7 : g — A into a Banach algebra A is a compact subset
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in g* with the following property:
o(m(z)) = max{|A(z)| : A€ o(m)}, =z €,

where o(7(z)) is the spectral radius of m(z) in A. Since a Stodkowski spec-
trum has the projection property [6], all Stodkowski spectra are clearly qua-
sispectra. For other examples see Section 3 below. As the main result we
prove that a Lie algebra homomorphism 7 : g — A of a solvable Lie alge-
bra g into a Banach algebra A has a continuous extension 7 : Og(U) — A
if and only if o(w) C U for a quasispectrum o(7) of 7. In particular, we
prove that the absolutely convex hulls of all quasispectra coincide and the
joint spectral radius of a compact subset in a finite-dimensional solvable Lie
subalgebra of a Banach algebra coincides with the geometric spectral radius
calculated by means of an arbitrary quasispectrum (see Corollary 5). That
is the geometrical characterization of the joint spectral radius.

I wish to thank Yu. V. Turovskil for useful discussions on the results of
this note. I am also grateful to the referees for their attentive reading of the

paper.

2. Preliminaries. All linear spaces considered are assumed to be com-
plex and C denotes the field of complex numbers. The inner product in
the Euclidean space C" is denoted by (-, ), thus (¢, A\) = >_I' | ¢;\; for vec-
tors ¢ = (c1,...,¢,) and A = (A1,...,\,) in C", where ); is the complex
conjugate of \;, 1 < i < n. In particular, |c|| = (¢, ¢)'/? is the Euclidean
norm of ¢. The set of all positive integers is denoted by N, and 29 is the
set of all subsets of the set .S. The unit ball of a normed space X furnished
with a norm p is denoted by B,, and p* denotes the dual norm on the
dual space X*. For a subset M C X, abc M denotes the absolutely convex
hull of M, that is, the set of all absolutely convex combinations Y . ; ¢;m;,
d7leil <1, ¢, € C, m; € M. Consider a subset FF C X* and a point = € X.
The subset {A(z) : A € F'} C C is denoted by F'(z). The Banach space of all
continuous complex functions on a compact topological space K, furnished
with the uniform norm || f||oc = sup{|f(z)| : z € K}, is denoted by C(K),
and the space of all holomorphic functions on an open subset U C C", fur-
nished with the compact-open topology, is denoted by O(U). The topological
interior (respectively, boundary) of a subset K in a topological space {2 is
denoted by int K (respectively, 0K).

Let A be a (non)associative algebra. An algebra homomorphism A : A
— C 1is said to be a character of A, and the set of all characters of A is
denoted by A(A). Let A be a Banach (associative) algebra. We write sp 4(a)
and p(a) for the spectrum and spectral radius of an element a € A.

Now let ¢ = (¢1,...,¢,) € C" and let a = (a1, ...,ay,) be an n-tuple in a
Banach algebra A. The symbol (c,a) 4 for the linear combination ) " | c;a;



Quasispectra of Lie algebra homomorphisms 17

in A will be useful in Section 3. Note that if a = A = (A1,...,A,) is a
tuple in C then (¢, A\)c = (¢, A) is the inner product of the vectors ¢ and
A= (A1,...,A\y) in C™.

2.1. The maximum formula for the joint spectral radius. Let A be a
Banach algebra and let M C A. We set M"™ = {my---m, : m; € M},
n € N, and ||M|| = sup{||m|| : m € M}, in particular, if M C C then
|M| = sup{|z| : z € M}. The multiplicative semigroup in A generated by M
is denoted by SG(M). By the very definition, SG(M) = {J,,cy M". If M is
bounded, that is, | M| < oo, then the limit lim,, || M™|'/" exists and equals
inf,, | M™||'/™; we denote it by o|M| and call the joint spectral radius of M
[17]. (The conventional notation for the joint spectral radius is o(M), but
we want to avoid misunderstanding it for the image of the set M via the
map o.)

Recall the following maximum formula for the joint spectral radius proved
by Yu. V. Turovskii and V. S. Shulman in [23, Theorem 9.

THEOREM 1. Let A be a Banach algebra with a finite-dimensional solv-
able Lie subalgebra g such that A coincides with the closed associative sub-
algebra generated by g. Then A is commutative modulo its Jacobson radical
Rad A and

o| M| = |o(M)]|

for any precompact subset M C A.

Note that this nontrivial result is based on the topological radical tech-
nique developed in [23].

REMARK 1. It is well known (see for instance [4, 1.3.3]) that the spectral
radius is a continuous seminorm on a commutative Banach algebra. More-
over, if A is a Banach algebra then sp4(a) = sp4/raq a(7(a)) and therefore
o(a) = o(7(a)), where 7 : A — A/Rad A is the quotient map. Hence p turns
out to be a continuous seminorm on a Banach algebra commutative modulo
Rad A. Using Theorem 1, we conclude that

o|M| = |o(M)| = sup{o(m) : m € M} = sup{e(7(m)) : m € M}
= max{o(7(m)) : m € M} = max{o(m) : m € M},
whenever M is a compact subset in the closed associative envelope A of g.

2.2. Banach enveloping algebras. Let g be a finite-dimensional complex
Lie algebra, U(g) the universal enveloping algebra of g, and p a norm on g.
The Lie algebra g furnished with the norm p is a Banach-Lie algebra, hence
one can define its Banach enveloping algebra A(p) [6], [8, Section 2.1]. The
latter is a Hausdorff seminorm-completion of the enveloping algebra U(g)
with respect to a certain seminorm associated with p; consequently, there
is a canonical algebra homomorphism ¢, : U(g) — A(p) with dense range.
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The following assertion proved in [6] characterizes the Banach enveloping
algebras.

LEMMA 1. Let p be a norm on g, A a Banach algebra, and m: g — A
a Lie algebra homomorphism with the bounded semigroup SG(m(By)). There
exists a unique bounded algebra homomorphism m : A(p) — A such that
T Qp=T.

REMARK 2. Note that SG(7(B))) is bounded whenever p|7(B))| < 1.

Now let p and g be norms on g such that p < g. The canonical Lie algebra
homomorphism ¢, : g — A(p) has norm at most 1 whenever g is furnished
with the norm ¢. By Lemma 1, there is a bounded algebra homomorphism
u: A(q) — A(p), with ||u|| < 1, extending the identity map on U(g).

2.3. Absolutely convex domains. The aim of this subsection is to demon-
strate a connection between increasing norm sets on a finite-dimensional
linear space and absolutely convex domains in its dual space.

Let L be a finite-dimensional linear space. A norm set pq = {pa}aca
defined on L is said to be saturated if p4 contains the maxima of all its finite
subsets. A saturated norm set py on L is called increasing if for each o € A
there exists 5 € A with po () < pg(z) for all z # 0 (we then write p, < pg).
Note that p, < pg iff po < eapps, Where eqp = sup{pa(z) : z € Bp,} < 1.
Increasing norm sets py = {pa}tacaand go = {gy},en on L are said to be
equivalent (pa ~ qg) if for each o € A there is a § € 2 with p, < g3 and
vice versa [8, 2.2].

Let M C Land F C L*. Theset My = {z € L : |A(z)] < |]A\(M)|, A € F}
is called the F'-convex hull of M in L. A domain U in L is said to be F'-convez
if K C U for each compact subset K C U with int K # (). Since L** = L,
it makes sense to consider the M-convex hull ﬁM of a subset F' C L*. For
completeness, we present a detailed proof of the following assertion (see [8,
Lemma 4.1]).

LEMMA 2. Let K be a compact subset in L with int K # (). Then I?L* =
abc K.

Proof. By assumption V.(z) C K for a certain open ball V.(z) of radius
e centered at z € int K. Then V.(—z) = —V.(x) C abc K and V.(0) C
27 W, (x) + 271V, (—z) C abc K, so 0 € int abc K. Thus abc K is a compact
absorbing circled convex set, so its Minkowski functional p is a norm. As
abc K is a closed set, we conclude that abc K = B,,.

Take € Ky-. Then |A(z)| < |A(K)| for all\ € L*. Since K C B,, it
follows that [A(z)| < |A(Bp)| = p*(A\). But L** = L and p** = p, therefore
p(z) <1, that is, # € B, = abc K. Therefore K- C abc K.
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Conversely, take x = Y a;x; € abc K with z; € K, Y |a;| < 1. Then
IA(z)| < D lail [Mai)| < |AMK)|, A € L*, whence x € Kp». Thus abc K
CKi«. m

COROLLARY 1. Let U be a domain in L. Then U is L*-convex iff abc K
C D for all compact subsets K C D, int K # (). Thus U is L*-convez iff U
s absolutely convex.

Now let p4 = {Pa}taea be an increasing norm set on L, and let B}, = B,
a € A, be the unit balls in the dual space L*. Assume that p, < pg and take
A € By, Then pi(A) = [A(Byy)| < sup{|A(@)] : pa(z) < €ap} < cappa(N) <
€ap < 1, that is, A € int BE. Thus B}, C int BZ; whenever p, < pg. Put
U = Usea Bi- Then U = J e int By, is a domain in L*, for ps is an
increasing norm set. We say that U is the domain associated with the norm
set pp. By Corollary 1, the domain U associated with an increasing norm
set p4 is an absolutely convex domain in L*. Obviously, equivalent norm sets
have the same associated domain in L*. Moreover, if p4 and g, are increasing
norm sets with the same associated domain U then these norm sets must be
equivalent, that is, py ~ gp. Indeed, if B:‘;’ is the unit ball in L* with respect
to the dual norm g3, v € {2, then taking into account that U = J,c, B =
Uveg By and py (respectively, qp) is a saturated set, we conclude that
B:‘;’ C int B} for some a € A. Further, by the maximum modulus principle,
we deduce that ¢, () = ¢*(z) = [2(B))| < |#(B})| = pa(z), ® # 0, that
is, ¢y < po. By analogy, for each a € A there is v € {2 such that p, < ¢,
so pA ~ ¢gn. Thus the equivalence class [p4]| of an increasing norm set py
has the same associated domain U. Moreover, if U is an absolutely convex
domain in L* then U is associated with a certain increasing norm set pju
on L [8, Lemma 4.2]. Thus the following assertion is valid.

THEOREM 2. The correspondence [pa] — U is a bijection between the
equivalence classes of increasing norm sets on L and absolutely convex do-
mains in L*.

2.4. Holomorphic functions. Let g be a finite-dimensional Lie algebra
and let U be an absolutely convex domain in g*. By Theorem 2, the do-
main U is associated with a unique (up to equivalence) increasing norm
set p4 = {Pa}aca on g. Consider the Banach enveloping algebras A(pa)
with a € A (see Subsection 2.2). If p, < ps then we have a bounded al-
gebra homomorphism uag : A(pg) — A(pa), ||uagl] < 1 (see Subsection
2.2) extending the identity map on the enveloping algebra U(g). Moreover,
UaB " Ugy = U Whenever p, < pg < p,, due to the uniqueness property
asserted in Lemma 1. Thus, we have a projective system of Banach alge-
bras A(pa) = {A(Pa) Uap : @, B € A}; let imRA(p,) be its inverse limit.
Since the A(pa), o € A, are associative algebras, lim(p,) inherits the alge-



20 A. Dosiev

braic structure and it becomes a Fréchet, Arens—Michael algebra [14, 5.2.10].
Note that the algebras lim(p4) and lim 2(gy;) are topologically isomorphic
whenever py ~ ¢p [8, Lemma 2.6]. Thus @ﬂ(p/l) depends only on the
choice of the equivalence class [ps] or U (see Theorem 2). Thus the Fréchet
algebra Og4(U) = lim2A(p,) with the canonical dense algebra homomorphism
@ :U(g) — Og(U) is well defined, and it is called an algebra of power series
or holomorphic functions on U in elements of g. The following assertion was
proved in [8, Lemma 5.1].

LEMMA 3. Let g be a finite-dimenstonal Lie algebra, U an absolutely
conver domain in g* associated with a norm set pp = {pataca, and 7 :
g — A a Lie homomorphism into a Banach algebra A. Then 7 extends
to a continuous algebra homomorphism 7 : Og(U) — A, @ - ¢ = 7, iff
olm(Byp,)| <1 for some o € A.

3. Quasispectra. In the following, g denotes a finite-dimensional solv-
able Lie algebra. Let 7 : ¢ — A and 7’ : ¢ — B be Lie homomorphisms
into Banach algebras A and B. These homomorphisms are understood to be
equal, m = 7/, if A= B and 7(z) = 7’(z) for all x € g. Let us introduce the
set Bag of all Lie homomorphisms of g into Banach algebras and let Bsg be
its subset comprising all representations of g on Banach spaces, that is, Lie
homomorphisms like g — B(X).

DEFINITION 1. Let My C Bag be a subset. A map o : My — 20" ig
said to be a quasispectrum on g with respect to My if o(7) is a nonempty
compact subset in g* and

o(m(x)) = [o(m)(z)], = €g,
for each m € M. The set of all quasispectra on g with respect to the subset
M, is denoted by Q(My).

If g is a Lie subalgebra of a certain Banach algebra A then o(g) (o €
Q(My)) denotes the quasispectrum o(idg) of the identity homomorphism
idg: g — A.

Note that here we have followed the classical approach (see for instance
[19], [5]) to determine a quasispectrum o as a set-valued function defined on
Lie algebra homomorphisms into Banach algebras. In the commutative case
it can be regarded as a set-valued function on finite commutative families
in Banach algebras instead of Lie homomorphisms. Namely, assume that
g = C" is a commutative Lie algebra. Each Lie algebra homomorphism 7 :
C™— A is completely determined by the commutative family a = (a1, ..., ay)
in A, where a; = 7(2;), 1 <14 < n. So, one may use the notation o(a) instead
of o(m) for a quasispectrum. Moreover, each linear functional A € (C"*)* can
be identified with a vector (A,...,A,;) € C" such that \; = A(z;) for all 4.
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Using this identification and Definition 1, one can easily conclude that o(a)
is a nonempty compact subset in C" with the property

(3.1) o({c, a)a) = max{[{c,\)| : A € (a)} = |(c, o (a))]

for all ¢ = (c1,...,¢,) € C", where (c,a)a = Y i cia; € A. Moreover, in
(3.1) it suffices to consider only those vectors ¢ € C" with Y " | [¢;] < 1. In
particular,

(3.2) o(a;) = max{|\| : A= (A1,...,\n) €0(a)}
for all 4.

LEMMA 4. Let o(n) be a quasispectrum of a Lie homomorphism 7 : g —
A of g into a Banach algebra A. Then o(m) C A(g).

Proof. Note that m(g) is a solvable Lie subalgebra in A and the closed
associative subalgebra B in A generated by 7(g) is commutative modulo
its Jacobson radical Rad B by Theorem 1, whence 7([g, g]) = [7(g),7(g)] C
Rad B. Thus o(w(z)) = 0 for all z € [g, g]. By Definition 1, |A(z)| < o(7(x))
for all A € o(m), therefore A(z) = 0 for A € o(7), that is, A([g, g]) = 0. Hence
A€ A(g) L]

Let us provide some examples of quasispectra.

PROPOSITION 1. Let My be a set of Lie homomorphisms of g into Ba-
nach algebras (Mg C Bag) and let o : My — 2% be a map such that o(r) is
a nonempty compact subset in g* and

dsp(m(x)) € o(m)(x) S sp(m(x))
for all x € g. Then o is a quasispectrum on My, that is, o € Q(My). In
particular, all Cartan—Stodkowski (and Cartan—Taylor) spectra X € K& ([1],
[11]) are quasispectra on g with respect to the set Bsgy of all Banach space

representations of g, that is, RS C Q(Bsgy). Moreover, if X is the Cartan—
Taylor spectrum then o = 0X defined by o(m) = 0X () is a quasispectrum.

Proof. Using the inclusions dsp(m(z)) C o(7)(x) C sp(w(z)), we deduce
that

o(m(z)) = max{|z| : z € Isp(m(z))} = max{[A(z)] : A € o(m)} = |o(7)(2)]
By Definition 1, o € Q(9My).

Now let My = Bs, and let X' € A6 be a Cartan—Stodkowski spectrum.
Then

X(m)(x) = X(w(z)) C sp(n(x))

due to the projection property [1], [11]. Moreover, dsp(m(x)) C oap(m(z)) C
Y (m(z)), where oap(m(x)) is the approximate point spectrum of the operator
m(z). Consequently, X' € Q(Bsg).
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Finally, assume that X' is the Cartan—Taylor spectrum [1| and let o :
Bsg — 29, o(m) = 0X(m). Note that sp(r(z)) = X(m)(x) (see [1]). Bearing
in mind that the projection map g* — C, A — A(x), is open, we conclude
that dsp(m(x)) C o(m)(z). It follows that o € Q(Bsy). =

Now let g = C” be a commutative Lie algebra. For a commutative n-
tuple a = (a1, ...,a,) in a Banach algebra A, let o(a) C C" be a nonempty
compact subset with the property

Osp({e,a)a) S {|{e,N)] : A € o(a)} C sp((c. a)a)

for all ¢ € C™ with > | |¢;| < 1. By Proposition 1, ¢ is a quasispectrum. In
particular, o(a) C [];, sp(a;)-

Conversely, let o be any set-valued function defined on finite commutative
tuples in Banach algebras with the properties:

(i) o(a) C C™ is a compact nonempty subset for a commutative n-
tuple a;
(ii) 9sp(a) C o(a) C sp(a) for a singleton a;

(iii) o({c,a)a) = (c,o(a)) for all ¢ € C" with >_" , |¢;| < 1, and any
commutative n-tuple a.

Then o is a quasispectrum due to Proposition 1. Note that axiom (iii) is
a simple version of the polynomial mapping property, that is, o(p(a)) =
p(o(a)) for all polynomial families p in n complex variables. It is well known
[18] that all Stodkowski spectra oy i, 05k, k > 0, have the polynomial map-
ping property. Using it, we conclude that they are quasispectra with respect
to the bounded linear operators. Indeed, it suffices (see [18]) to verify (ii)
only. But this is evident from the inclusions

asp(a) C Uap(a) = UW,D(G’) - Uw,k(a) - Sp(a)
and
dsp(a) = dsp(a”) C oap(a”™) = oro(a”) = g50(a) C osx(a) C sp(a)
for an operator a and for all £ > 0.

Finally, note that the topological boundary of the Taylor spectrum sat-
isfies axioms (i)—(iii), therefore it is a quasispectrum.

Now let us demonstrate that the notion of quasispectrum is more general
than the one of joint spectrum. Let 7 : g — A be a representation of g into
a Banach algebra A, B the closure of the associative envelope of m(g) in A,
and S™ the unit sphere with respect to the Euclidean norm || - || on g. The
spectral radius g is a continuous seminorm on B (see Remark 1). It follows
that Ngn = o(m(S™)) is a compact subset of the real line and therefore

|Ngn| < oo. Further, there is a functional A, € g* with |A,;(y)| < o(7(y)) for
all y € g, and A\;(z) = o(n(x)) for each x € S™, thanks to the Hahn—Banach
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theorem. Then
Azl = [Ax(S™)| < |Ngn|

for all z € S™. Consequently, {\; : x € S} is a bounded set in g*; let o(7)
be its closure.

PROPOSITION 2. The assignment w — o () is a quasispectrum on g with
respect to Bag.

Proof. Clearly, o(m) is a compact subset in g*. By Definition 1, we have
to prove that o(7(y)) = |o(m)(y)| for all y € g. One can assume that y # 0,
as otherwise the assertion is obvious. Take p € o(w). Since o(rw) is the
closure of {\; : z € S™}, it follows that |u(y)| < o(w(y)) for y € g, whence
lo(m)(y)| < o(7(y)). Moreover,

o(m(y)) = llylle(m(y/Ilyll)) = NyllAy 1y @/ Myl = Ay ()-

Taking into account that A, /|, € o(7), we infer |o(7)(y)| = o(7(y)). Thus

oS Q(‘Bag). n

y/llyl

Let us describe the latter quasispectrum in the commutative case. Fix a
commutative n-tuple in a Banach algebra A. By construction, to each ¢ € S
there corresponds ¢, € C™ such that

(3-3) [{e,e)| = e((c,a)a) and [t 2] < o((t, a)4)

for all ¢ € C". The set {c, : ¢ € S™} is bounded in C", therefore it has a
compact closure denoted by o(a), which is a quasispectrum of a, as proved
in Proposition 2.

4. The functional calculus. Now we prove the main result of this
paper on functional calculus.

THEOREM 3. Let g be a finite-dimensional solvable Lie algebra, My C
Bagy be a subset of Lie homomorphisms of g into Banach algebras, m: g — A
a Lie homomorphism from Mg, U an absolutely convexr domain in g*, and
o € QMy). Then 7 extends to a continuous algebra homomorphism 7 :

O,U)—= A, m-po=m, iffo(r) CU.

Proof. By Theorem 2, the domain U is associated with a norm set p4 =
{Pa}taca on the Lie algebra g. Let B, be the unit ball in g with respect to
the norm p, . If the continuous algebra homomorphism 7 : Og(U) — A exists
then o|m(B,,)| < 1 for some o € A, by Lemma 3. Take X\ € o(m) C A(g)
(Lemma 4). If z € B, then, by Definition 1, we infer

[A(2)] < o(m(x)) < olm(Bp,)l
Therefore p} () = [A(Bp,)| < 1. Thus A\ € B}, where B}, is the unit ball

a
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with respect to the norm p}. But U = (J,c, B, (see Subsection 2.3), so
A€ U. Thus o(m) C U.

Conversely, assume that o(7) C U. Note that o(7) C int B} for some
a € A for U = |J,c,int By, o(r) is a compact set by Definition 1, and
pA is an increasing norm set. Further, by Lemma 3, it suffices to prove that
o|m(Byp,)| < 1. Take x € B,,. By Definition 1 and the maximum modulus
principle, we deduce that

o(m(z)) = max{|\(z)|: A € o(m)} < max{|A(z)|: \ € B}
< max{pg(A)pa(z) : A € By} < palz) <1,

that is, o(7(z)) < 1. But g|n(Bp, )| = |o(7(By,))| = max{o(y) : y € ©(By,)}
by Theorem 1 and Remark 1. Consequently, o|m(B,,)| < 1. =

COROLLARY 2. Let a = (ai,...,a,) be a commutative n-tuple in a Ba-
nach algebra A, U an absolutely convexr domain in C", and o(a) a quasis-
pectrum of a. There is a continuous algebra homomorphism I" : O(U) — A
(holomorphic functional calculus) such that I'(z;) = a;, 1 < i < n, if and
only if o(a) C U.

COROLLARY 3. Let g be a solvable Lie algebra and let 01,00 € Qg(My).
Then

abcoy(m) = abcoa(n)

for all T € My. In particular, abcoy(a) = abcoa(a) for any commutative
tuple a and quasispectra o1, o2.

Proof. Let m : ¢ — A be a Lie homomorphism from 91,;. By Defini-
tion 1, o9(m) is a compact set. If U is an absolutely convex domain such
that abcoa(m) C U then using Theorem 3 we conclude that 7 extends
to a continuous algebra homomorphism 7 : Og(U) — A. According again
to Theorem 3, now with respect to the quasispectrum o1, we infer that
o1(r) C U. Thus o1(7) C abcoa(m). Similarly, o2(7m) C abcoy(m). Conse-
quently, abc o1 () = abcoa(w). =

Corollary 3 is a noncommutative version of Theorem 8 in [5].

COROLLARY 4. Let g be a solvable Lie algebra and let 01,00 € Qg(My).
If q is a seminorm on g* then

q(o1(m)) = q(o2()).
In particular, if a is a commutative n-tuple in a Banach algebra then
lo(a)]] = max{lle.| : c € 5™},

where || - || is the Euclidean norm in C", and c, € C" corresponds to ¢ € S™
with the property (3.3).
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Proof. Using Corollary 3, we infer that
q(o1(m)) = q(abeoy(m)) = q(abeoa(m)) = q(o2(m)),
that is, ¢(o1(7)) = q(o2(7)). =

5. The geometric spectral radius. In this section we demonstrate
that the joint spectral radius of a compact subset in a finite-dimensional
solvable Lie subalgebra of a Banach algebra can be calculated by means of
quasispectra.

Let again g be a finite-dimensional solvable Lie algebra, My C Bay a
subset of Lie homomorphisms of g into Banach algebras, 7 : g — A a Lie
homomorphism from My, and o € Q(My). Consider a continuous map ~ :
{2 — g acting from a compact topological space {2 into g. We define a
quasispectrum of the map my : {2 — g by setting

o(my) ={\y: Aeo(m)}.

Obviously, o(my) is a subset of the Banach space C(f2), so one can define
the geometric spectral radius of the map 7y as in [2], by setting

(5.1) To.00(17) = [lo/(77) [ co-
Let g, be the seminorm on g* given by ¢y(A) = [[AY|co. Then 74 (17y) =
¢y(o(m)). Using Corollary 4, we obtain

To1,00(TY) = Tog,00(T7)
for all o1, o9 € Q(My). Thus the geometric spectral radius does not depend
upon the quasispectrum o € Q(My). Therefore we set 1o (T7Y) = T'5,00(77Y).
The following assertion exhibits a connection between the geometric and
joint spectral radii.

PROPOSITION 3. roo(m7y) = |o(my(£2))]| = o|my(£2)].
Proof. By using (5.1) and Definition 1, we deduce that
Too(mY) = sup{|[|\Y]|oo : A € o(m)} = sup sup |A(z)|= sup sup |A(x)]
A€o (m) mEY(£2) z€7(£2) A€o ()

= sup |o(m)(x)] = sup o(n(z)) = [o(7y(£2))].
z€Y(12) z€Y(12)
But |o(my(£2))| = o|7y(£2)| by Theorem 1. »

Note that Proposition 3 was proved by D. Beltita in [2, Theorem 4.1(2)]
when A = B(X), n(g) consists of compact operators and ¢ = X is the
Cartan-Taylor spectrum (see Proposition 1).

COROLLARY 5. Let A be a Banach algebra, g a finite-dimensional solv-
able Lie subalgebra in A, and M a compact subset in g. If o(g) a quasispec-
trum of g then

o| M| = max{[A(M)[ : A € o(g)}-
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In particular, if M = a is a commutative n-tuple in a Banach algebra then
the above identity reduces to the mazimum formula

ola| = max{p(a;) : 1 <i <n}.

Proof. 1t suffices to apply Proposition 3 by assuming that {2 = M and ~
is the identity map. Note also that || A|ys]|ec = |A(M)] for all A € g*.
Now let a be a commutative n-tuple. Using (3.2), we deduce that

a| = max |A(a)| = max max|)\;| = max max |\;| = max o(a;
olal )\EO’(a)| (a) Xeo(a) i [Ail p )\EU(a)| il < o(a;),

that is, g|a| = max; o(a;). =
Finally, using Proposition 2 and Corollary 5, we conclude that
o| M| = sup{|A(M)| : x € S},

where S is the unit sphere in g.
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