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Interpolating discrete multiplicity varieties for A0
p
(Cn)

by

Bao Qin Li and Enrique Villamor (Miami, FL)

Abstract. A necessary and sufficient condition is obtained for a discrete multiplicity
variety to be an interpolating variety for the space A0p(C

n).

1. Introduction. In this paper, we will consider interpolation problems
for the space A0p(C

n), which is the ring of entire functions in C
n with the

property that for every ε > 0, there exists a constant Aε > 0 such that
|f(z)| < Aεeεp(z) for all z ∈ C

n, i.e., supz∈Cn |f(z)|e−εp(z) < ∞, where p is
a weight (see §2). A0p(Cn) is an important class of entire functions. When
p(z) = |z|, A0|z|(Cn) is, via the Fourier–Borel transformation, topologically
isomorphic to the ring of infinite order differential operators. The space
A0p(C

n) has a natural projective limit structure. This kind of spaces appear
naturally in complex, harmonic, and functional analysis.
Let V = {(ζk,mk)} be a discrete multiplicity variety in C

n (cf. §2)
and A0p(V ) be the space of multi-indexed sequences {ak,I}k∈N, 0≤|I|<mk of
complex numbers with the property that for every ε > 0, there exists a
constant Aε > 0 such that

mk−1∑

|I|=0

|ak,I | < Aεeεp(ζk) for all k ∈ N,

where I = (i1, . . . , in) ∈ (Z+)n and |I| = i1 + · · · + in. If for any sequence
{ak,I}k∈N, 0≤|I|<mk in A

0
p(V ), there always exists an entire function f in

A0p(C
n) such that

(1.1)
1

I!

∂|I|f(ζk)

∂zI
= ak,I for k ∈ N, 0 ≤ |I| < mk,

we will say that V is an interpolating (multiplicity) variety for A0p(C
n).

Clearly, condition (1.1) means that f has a prescribed finite collection of
Taylor coefficients at each ζk.
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Note that the constant Aε in the definition of A
0
p(C
n) depends on the

arbitrarily given ε, which makes the growth condition for A0p(C
n) more re-

strictive than that for the Hörmander algebra Ap(C
n), the space of entire

functions in C
n satisfying |f(z)| < AeBp(z), z ∈ C

n, for some A,B > 0, or
simply |f(z)| < AeAp(z), z ∈ C

n, for some A > 0. The space A0p(C
n) has a

different topological structure from the one of Ap(C
n), and there is no weight

q such that A0p(C
n) becomes a space Aq(C

n). We refer to [2, pp. 294–299]
for a discussion of relations and differences between Ap(C

n) and A0p(C
n).

To study problems such as analytic continuation for Dirichlet series and
representation of analytic solutions of partial differential equations of infinite
order, one needs to consider interpolation problems for the space A0p(C

n) in-
stead of Ap(C

n) (see e.g. [1], [2], [4] and references therein). In [2], a sufficient
interpolation condition for A0|z|(C

n), using distribution of points of V in a

“tube neighborhood” of V (cf. (2.4) and Remark 2.6 below), was obtained
by Berenstein–Kawai–Struppa by expressing A0|z|(C

n) as a sort of inductive

limit of Ap(C
n). It however does not provide necessary interpolation con-

ditions. The main purpose of this paper is to give a similar interpolation
condition, which is however both necessary and sufficient for interpolation
in A0p(C

n) and applies to arbitrary discrete multiplicity varieties in C
n. The

proof of the result will use some existing interpolation results and methods,
especially those in [5], [11] and [12]. We state the theorem in §2 and give its
proof in §3.
Acknowledgments. The authors are grateful to the referee for helpful

suggestions.

2. Definitions and results. We first fix some notions and notations
which will be used throughout the paper.

Definition 2.1. A plurisubharmonic function p : Cn → [0,∞) is called
a weight (function) if it satisfies the following conditions:

(2.1) log(1 + |z|2) = o{p(z)},
(2.2) p(z) = p(|z|), p(2z) = O{p(z)}.
Definition 2.2. Let A(Cn) be the ring of all entire functions on C

n.
Then

A0p(C
n) = {f ∈ A(Cn) : ∀ε > 0, ∃Aε > 0 such that

|f(z)| ≤ Aε exp(εp(z)), z ∈ C
n}.

A simple but important example of weighted spaces A0p(C
n) is A0|z|(C

n),
which is the space of entire functions of infraexponential type; it plays im-
portant roles in Dirichlet series, Fabry-type gap theorems, etc. (see e.g. [2]).
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Let f 6≡ 0 be a holomorphic function on an open connected neighborhood
of ζ ∈ C

n. Then a series
∑∞
j=ν Pj(z − ζ) converges uniformly on some

neighborhood of ζ and represents f on this neighborhood. Here Pj is a
homogeneous polynomial of degree j and Pν 6≡ 0. The nonnegative integer
ν, uniquely determined by f and ζ, is called the zero multiplicity, or zero
divisor, of f at ζ, denoted by divf (ζ).
Let V = {(ζk,mk)} be amultiplicity variety, that is, a discrete set {ζk} ⊂

C
n with |ζk| → ∞ together with a sequence {mk} of positive integers. We
write V ⊆ f−1(0) if divf (ζk) ≥ mk for each k, i.e., each ζk is a zero of f
of multiplicity at least mk. Associated to V , there is a unique closed ideal
in A(Cn),

J = J(V ) := {f ∈ A(Cn) : divf (ζk) ≥ mk, ∀k}.
Two entire functions g, h in C

n can be identified modulo J if and only if

∂|I|g(ζk)

∂zI
=
∂|I|h(ζk)

∂zI
, 0 ≤ |I| < mk, k ∈ N;

here and throughout the paper, we use I to denote a multi-index, that is,
I = (i1, . . . , in) ∈ (Z+)n, Z

+ = {0, 1, . . .}. The quotient space A(Cn)/J
can be identified with the space A(V ) of all sequences {ak,I}k∈N, 0≤|I|<mk

of complex numbers. The map

(2.3) f 7→ ϕ(f) =
{
∂|I|f(ζk)

I!∂zI

}

k∈N, 0≤|I|<mk

is the natural restriction map from A(Cn) into A(V ).

Definition 2.3. Let V = {(ζk,mk)} be a multiplicity variety on C
n.

Then we define

A0p(V ) =
{
a = {ak,I} ∈ A(V ) : ∀ε > 0, ∃Aε > 0

such that

mk−1∑

|I|=0

|ak,I | ≤ Aε exp(εp(ζk)), k ∈ N

}
.

Using Cauchy’s estimates, it is easy to check that ϕ is a map from A0p(C
n)

to A0p(V ). But, in general, the space A
0
p(V ) is larger.

Definition 2.4. A multiplicity variety V = {(ζk,mk)} is an interpolat-
ing variety for A0p(C

n) if the restriction map ϕ is surjective from A0p(C
n) to

A0p(V ).

Clearly, that V is an interpolating variety for A0p(C
n) means that for

any multi-indexed sequence {ak,I} ∈ A0p(V ), there exists an entire function
f ∈ A0p(Cn) such that ∂|I|f(ζk)/I!∂zI = ak,I for all k ∈ N and 0 ≤ |I| < mk,
i.e., f has a described finite collection of Taylor coefficients.
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We obtain the following both necessary and sufficient interpolation con-
dition, which applies to arbitrary multiplicity varieties in C

n.

Theorem 2.5. Let V = {(ζk,mk)} be a multiplicity variety in C
n and

N ≥ n a positive integer. Then V is an interpolating variety for A0p(Cn) if
and only if there exist an entire holomorphic mapping f = (f1, . . . , fN ) with
fj ∈ A0p(Cn) and a positive function q(z) = o{p(z)} such that V ⊆ f−1(0)
and , for some constants ε, C > 0, each connected component of the set

(2.4) Sq(f ; ε, C) := {z ∈ C
n : |f(z)| < εe−Cq(z)}

contains at most one point in V and has diameter at most one.

Remark 2.6. The above condition is given by means of distribution of
points of V in a “tube neighborhood” Sq(f ; ε, c) of the variety V , which
bears a resemblance to the interpolation condition for the Hörmander alge-
bra Ap(C

n) in [12]. Such a geometric condition has been fundamental in the
study of interpolation problems, slowly decreasing ideals, division problems,
etc. (see [1], [2], [5], [7], etc. and references therein). A similar sufficient con-
dition was given in [2, Theorem 3.2] when V is the complete intersection of
zero sets of some locally slowly decreasing functions in A0p(C

n), which is the
main interpolation theorem used to prove the Fabry-type gap theorems in [2,
§4]. Note that the multiplicity varieties in Theorem 2.5 are arbitrarily given.
If no multiplicities are involved, the condition in Theorem 2.5 is equivalent
to an estimate of the Jacobian of the entire holomorphic mapping f in the
theorem and was given in [11]. Some other related results can be found in
[1]–[5], etc.

We conclude this section by the following corollary, which uses the nec-
essary and sufficient condition of Theorem 2.5. It does not seem trivial to
see whether an interpolating variety for A0|z|(C

n) is an interpolating vari-

ety for A0q(C
n), where q ≥ |z| is another weight. This is, however, a trivial

consequence of the following general result.

Corollary 2.7. If a multiplicity variety V = {(ζk,mk)} in C
n is an

interpolating variety for A0p(C
n), then it is also an interpolating variety for

A0q(C
n) for any weight q ≥ p.
Proof. By the necessary condition of Theorem 2.5, there exist an en-

tire holomorphic mapping f = (f1, . . . , fn) and a positive function q1(z) =
o{p(z)} satisfying the conditions in Theorem 2.5. Since q ≥ p, we have
A0p(C

n) ⊆ A0q(Cn) and q1(z) = o{q(z)}. Thus, the conditions in Theorem 2.5
also hold for A0q(C

n). By the sufficiency of the condition in Theorem 2.5,
V is an interpolating variety for A0q(C

n).

3. Proof of Theorem 2.5. For convenience, in the following proof we
will use 0 < ε < 1, c > 0 to denote numerical constants, which may depend
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on n and the actual value of which may vary from one occurrence to the
next.
To prove the necessity, we first write down explicitly the projective limit

topologies of A0p(C
n) and A0p(V ) by specifying their neighborhood bases,

which will be needed later. For each positive integer m, let Am = {f ∈
A(Cn) : ‖f‖m,∞ <∞}, where ‖f‖m,∞ := supz∈Cn |f(z)|e−p(z)/m. The space
A0p(C

n) is endowed with the natural projective limit topology (see e.g. [13]
for basics of projective limit topology). A neighborhood base of f ∈ A0p(Cn)
is given by all the intersections

(3.1) A0p(C
n) ∩

⋂

m∈H

Um,

where Um is any neighborhood of f in Am with respect to the topology
induced by ‖f‖m,∞ and H is any finite subset of N. The space A0p(C

n) is
metrizable and complete as a projective limit of complete locally convex
spaces.
In the same way we set Am(V ) = {a = {ak,I} : ‖a‖m,∞ < ∞}, where

‖a‖m,∞ := supk∈N

∑mk−1
|I|=0 |ak,I |e−p(ζk)/m. Then a neighborhood base of a ∈

A0p(V ) is given by all the intersections

(3.2) A0p(V ) ∩
⋂

m∈I

Vm,

where Vm is any neighborhood of a with respect to the topology in Am(V )
induced by ‖a‖m,∞ and I is any finite subset of N. The space A0p(V ) is also
metrizable and complete.
Consider now the map ϕ : A0p(C

n)→ A0p(V ) defined in (2.3). It is surjec-
tive since V is an interpolating variety for A0p(C

n). It is easy to check that
ϕ is linear and continuous. Thus, by the open mapping theorem (see e.g. [9,
p. 294]), ϕ maps every neighborhood of 0 in A0p(C

n) onto a neighborhood
of 0 in A0p(V ).
For each positive integer m, let U0m = {f ∈ A0p(Cn) : ‖f‖m,∞ < Lm},

where Lm > 1 is a positive number. One can take Lm properly so that

(3.3) ϕ
( m⋂

j=1

U0j

)
⊃W 0m := {a = {ak,I} ∈ A0p(V ) : ‖a‖lm,∞ ≤ γm}

for some positive numbers lm, γm, with γm ≥ 1 (cf. [11]). We include the
proof of (3.3) for completeness. In fact, U0m = Um ∩ A0p(Cn), where Um =
{f ∈ A(Cn) : ‖f‖m,∞ < Lm}. By (3.1),

⋂m
j=1 U

0
j is a neighborhood of 0

in A0p(C
n). Thus, ϕ(

⋂m
j=1 U

0
j ) contains a neighborhood of 0 in A

0
p(V ) and

so, by (3.2), contains an open set of the form (
⋂
m∈I Vm) ∩ A0p(V ), where

Vm is defined as in (3.2) and I is a finite subset of N. We then deduce that
there exist an integer lm > 0 and a γm > 0 such that ϕ(

⋂m
j=1 U

0
j ) contains
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the set W 0m of (3.3). The positive constant γm obtained above might not
satisfy the required condition that γm ≥ 1. If this happens for some m, we
can revise the above sets. Suppose that m is the smallest positive integer so
that γm < 1 (m might be 1). We then replace Lj by (1/γm)lj , U

0
j by

Û0j :=
1

γm
U0j :=

{
1

γm
f : f ∈ U0j

}
=

{
f ∈ A0p(Cn) : ‖f‖j,∞ <

1

γm
Lj

}

for 1 ≤ j ≤ m, and W 0i by Ŵ 0i := (1/γm)W 0i for each 1 ≤ i ≤ m, which
satisfies the desired requirement that γ̂i := γi/γm ≥ 1 for each 1 ≤ i ≤ m.
We can continue this process and eventually obtain a sequence of sets in
A0p(C

n), still denoted by U0m, and a sequence of sets in A
0
p(V ), still denoted

byW 0m, which satisfy ϕ(
⋂m
j=1 U

0
j ) ⊇W 0m and γm ≥ 1 for each integerm ≥ 1.

This shows (3.3).

Next, we will use the fact that ϕ(
⋂m
j=1 U

0
j ) ⊇W 0m to produce a sequence

of functions with certain “good” properties, which will help us to construct
the mapping desired in the theorem (compare [12]). For each fixed k ∈ N

and 1 ≤ i ≤ n, (3.3) implies that there exists a sequence {gi,k,m}∞m=1 of
entire functions such that gi,k,m ∈

⋂m
j=1 U

0
j and

ϕ(gi,k,m) =

{
∂|I|gi,k,m(ζl)

I!∂zI

}

l∈N, 0≤|I|<ml

∈W 0m

with all the entries in this sequence being zero except one which is 1, specified
as follows:

(3.4)

∂|I|gi,k,m(ζl)

I!∂zI
= 0, ∀l, ∀0 ≤ |I| < ml except that

∂lkgi,k,m(ζk)

lk!∂z
lk
i

= 1,

where lk = mk/2 if mk is even and lk = (mk − 1)/2 if mk is odd. (This
sequence clearly belongs to W 0m. And it is here where we used the fact that
γm ≥ 1.) Since gi,k,m ∈

⋂m
j=1 U

0
j , we have ‖gi,k,m‖j,∞ < Lj for 1 ≤ j ≤ m

and so

(3.5) |gi,k,m(z)| < Ljep(z)/j , 1 ≤ j ≤ m, z ∈ C
n.

In particular, |gi,k,m(z)| ≤ L1ep(z), z ∈ C
n. By (2.2), it is easy to check that

there are two constants A,B > 1 such that

(3.6) p(w) ≤ Ap(z) +B
whenever |w − z| < 2√n.
Thus, we see that {gi,k,m}∞m=1 is uniformly bounded on compact sets in

C
n and so that {gi,k,m} is a normal family by Montel’s theorem (see e.g. [8]).
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By passing to a subsequence we can assume that {gi,k,m} converges to a
function gi,k in C

n as m → ∞, which is an entire function in C
n by the

Weierstrass theorem. Clearly, gi,k also satisfies

(3.7)

∂|I|gi,k(ζl)

∂zI
= 0, ∀l, ∀0 ≤ |I| < ml except that

∂lkgi,k(ζk)

lk!∂z
lk
i

= 1,

since each gi,k,m satisfies (3.4). From the fact that limm→∞ gi,k,m(z) =
gi,k(z) and from (3.5) it follows that for each m and each z ∈ C

n there
exists an integer m0 > m such that

|gi,k(z)| ≤ |gi,k(z)− gi,k,m0(z)|+ |gi,k,m0(z)|
≤ 1 + |gi,k,m0(z)| ≤ 1 + Ljep(z)/j

for each 1 ≤ j ≤ m0. In particular,
|gi,k(z)| ≤ 1 + Lmep(z)/m ≤ 2Lmep(z)/m.

Note that this inequality is true for each m. We have

(3.8) |gi,k(z)| ≤ exp(inf
m
{log(2Lm) + p(z)/m}) =: exp(q1(z)),

where q1(z) = infm{log(2Lm) + p(z)/m}. Clearly, q1(z) = o{p(z)}.
Take a large positive number K and define, for each fixed integer i (1 ≤

i ≤ n),

(3.9) fi(z) =
∞∑

k=1

hi,k(z)
1

(1 + |ζk|)K+1
exp(−2nAq1(ζk)), z ∈ C

n

where hi,k = g
2
i,k if mk is even and hi,k = (zi − ζk,i)g2i,k if mk is odd; here

z = (z1, . . . , zn), ζk = (ζk,1, . . . , ζk,n), and A is the number in (3.6). We will
prove that fi ∈ A0p(Cn). We denote by fi,k the general term of the series in
(3.9). We then have, by virtue of (3.8),

|fi,k(z)| ≤ (|z|+ |ζk|)e2q1(z)
1

(1 + |ζk|)K+1
exp(−2nAq1(ζk))(3.10)

≤ (1 + |z|)e2q1(z) 1

(1 + |ζk|)K
exp(−2nAq1(ζk)).

Write dk = min{1, infl 6=k |ζl − ζk|}, and Dk = B(ζk, dk/2), the ball
centered at ζk with radius dk/2. Then dk ≤ 1 and Dk ∩Dl = ∅ for k 6= l. By
(3.6), when |z − w| ≤ 2√n, we have
(3.11) q1(z) ≤ A inf

m
{log(2Lm) + p(w)/m}+B = Aq1(w) +B,
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where A and B are the numbers in (3.6). If dk < 1, then there is a ζj ∈
V ∩ B(ζk, 1) such that ζj 6= ζk and dk = |ζj − ζk|. By (3.7) we know that

∂ljgi,j(ζj)

lj !∂z
lj
i

= 1 and
∂ljgi,j(ζk)

lj !∂z
lj
i

= 0.

Also, by Cauchy’s estimate, we know that

∂ljgi,j(z)

lj !∂z
lj
i

≤ c max
w∈Cn : |w−z|≤1

|gi,j(w)| ≤ ceAq1(ζk)+B,

in view of (3.8) and (3.11). Thus, by the Schwarz lemma ([8, p. 7]), we have
∣∣∣∣
∂ljgi,j(z)

∂z
lj
i

∣∣∣∣ ≤ ceAq1(ζk)+B|z − ζk| for |z − ζk| < 1,

and in particular,

1 =

∣∣∣∣
∂ljgi,j(ζj)

∂z
lj
i

∣∣∣∣ ≤ ceAq1(ζk)+B|ζj − ζk|,

or dk = |ζj − ζk| ≥ εe−Aq1(ζk). This inequality is obviously also true if
dk = 1. Therefore in any case the volume of the ball Dk satisfies volDk =
πn(dk/2)

2n/n! ≥ εe−2nAq1(ζk). We thus deduce, by (3.10), that

|fi,k(z)| ≤ (1 + |z|)e2q1(z)
1

volDk
\
Dk

1

(1 + |ζk|)K
exp(−2nAq1(ζk)) dσ(3.12)

≤ c(1 + |z|)e2q1(z)
\
Dk

1

(1 + |ζk|)K
dσ,

where dσ is the Euclidean volume element in C
n. Note that if z ∈ Dk,

1 + |z| < 1 + |z − ζk|+ |ζk| < 2 + |ζk| < 2(1 + |ζk|).
Therefore, in view of the fact that Dk ∩ Dl = ∅ for k 6= l, we have

∞∑

k=1

\
Dk

1

(1 + |ζk|)K
dσ ≤

∞∑

k=1

\
Dk

2K

(1 + |z|)K dσ(3.13)

≤ 2K
\

Cn

1

(1 + |z|)K dσ =: 2
KL <∞

if we take K sufficiently large. Also, by (3.11), q(w) ≤ Aq1(z)+B whenever
|w − z| < 1.
We have thus showed that the series fi =

∑∞
k=1 fi,k converges uniformly

on compact sets in C
n and so that fi is an entire function in C

n. Moreover,
by virtue of (3.12) and (3.13), we have

(3.14) |fi(z)| ≤ c(1 + |z|)e2q1(z).
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But (1+ |z|)e2q1(z) = elog(1+|z|)+2q1(z) = eo{p(z)} by (2.1). We thus conclude
that fi ∈ A0p(Cn).
Let f = (f1, . . . , fn). It is obvious that V ⊆ f−1(0) by the construction

of each fi (see (3.7) and (3.9)). Next we will find a positive function q such
that a tube neighborhood Sq(f ; ε, C) satisfies the conditions in the theorem.
By (3.9) and (3.7) one can check that fi, 1 ≤ i ≤ n, can be expanded into
the following power series at each ζk:

(3.15) fi(z) = ck(zi − ζk,i)mk

+
∞∑

i1+···+in≥mk+nk

Ci1,...,in(ζ1 − ζk,1)i1 · · · (zi − ζk,i)ij · · · (ζn − ζk,n)in ,

where

(3.16) ck =
1

(1 + |ζk|)K+1
exp(−2nAq1(ζk)),

Ci1,...,in ’s are complex numbers, and nk = mk/2 if mk is even and nk =
(mk + 1)/2 if mk is odd.

Next, we let u = (u1, . . . , un) be a unit vector in C
n. Then there exists

an i (1 ≤ i ≤ n) such that ui ≥ 1/
√
n. For this fixed i, we see, by (3.15),

that for w ∈ C,

Fi(w) := fi(ζk +
√
nuw)(3.17)

= (
√
n)mkcku

mk
i w

mk + ηkw
sk +

∑

j>sk

bjw
j ,

where sk ≥ 3mk/2 is an integer, and ηk and bj are complex numbers.
Let Gi(w) = Fi(w)/w

mk . Then Gi(0) = (
√
n)mkcku

mk
j ≥ ck. By (3.14)

and (3.11) we have |Gi(w)| ≤ c(1 + |ζk|)e2Aq1(ζk) for |w| = 1, which is
also true in |w| ≤ 1 by the maximum modulus theorem. Also let Hi(w) =
Gi(w) − Gi(0). Then by (3.17), we see that Hi(w) has a zero at w = 0 of
order at least mk/2. Note that |Hi(w)| ≤ 2c(1 + |ζk|)e2Aq1(ζk) on |w| ≤ 1.
We have, by the Schwarz lemma, |Hi(w)| ≤ 2c(1 + |ζk|)e2Aq1(ζk)|w|mk/2 on
|w| ≤ 1. Thus, if a 6= 0 is a zero of Fi(w) in |w| ≤ 1, then Gi(a) = 0 and
thus

2c(1 + |ζk|)e2Aq1(ζk)|a|mk/2 ≥ |Hi(a)| = |Gi(0)| = (
√
n)mkcku

mk
i ≥ ck,

or by (3.16),

|a|mk/2 ≥ (2c)−1(1 + |ζk|)−K−2e−2A(n+1)q1(ζk) ≥ ε(1 + |ζk|)−ce−cq1(ζk)

for some ε, c > 0. If we let du = min{1, dist(0, F−1i (0) \ {0})}, we have
showed that

(3.18) dmku ≥ ε(1 + |ζk|)−ce−cq1(ζk) := (2
√
n δk)

mk .
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Note thatGi(w) has no zero in |w| ≤ 2δk ≤ du ≤ 1 by the definition of du.
Recall the following result from the Carathéodory theorem (see e.g. [10]): If
h is holomorphic and has no zero in |w| ≤ R with h(0) = 1, then

log |h(w)| ≥ − 2r
R− r log max|w|=R

|h(w)| for |w| ≤ r < R.

Applying it to Gi(w) in |w| ≤ 2δk we deduce that for |w| ≤ δk,

log

∣∣∣∣
Gi(w)

Gi(0)

∣∣∣∣ ≥ −2 log
(
max
|w|=2δk

∣∣∣∣
Gi(w)

Gi(0)

∣∣∣∣
)
,

which implies that

log |Gi(w)| ≥ −2 log( max
|w|=2δk

|Gi(w)|) + 3 log |Gi(0)|

and so that

|Gi(w)| ≥ ( max
|w|=2δk

|Gi(w))−2|Gi(0)|3

≥ c3kc−1(1 + |ζk|)−2e−4Aq1(ζk) ≥ ε(1 + |ζk|)−ce−cq1(ζk)

for some ε, c > 0. By (3.18) we have, for |w| = δk,
|Fi(w)| = |wmkGi(w)| = δmkk |Gi(w)| ≥ (1/2

√
n)mkε(1 + |ζk|)−ce−cq1(ζk).

On the other hand, by (3.15), (3.14), (3.6), and by the Cauchy estimates,

ck =

∣∣∣∣
1

(mk)!

∂mkfi(ζk)

∂zmki

∣∣∣∣

≤ c

(2
√
n)mk

max
Pk
|fi(z)| ≤

c

(2
√
n)mk

(1 + |ζk|)e2Aq1(ζk),

where Pk = {z ∈ C
n : |zj − ζk,j | < 2

√
n, 1 ≤ j ≤ n}. Hence, (1/2√n)mk

≥ ε(1 + |ζk|)−ce−cq1(ζk) and we finally conclude that on |w| = δk,
|fi(ζk +

√
nuw)| = |Fi(w)| ≥ εe−cq(ζk) for some ε, c > 0 independent of

u and k, where q(z) = log(1 + |z|) + q1(z) = o{p(z)} by (2.1) and the fact
that q1(z) = o{p(z)}.
Since the above u is an arbitrary unit vector, we have thus showed that

|f(ζk + z)| ≥ |fi(ζk + z)| ≥ εe−cq(ζk)

for |z| = √n δk. By virtue of (3.11) we have |f(z)| ≥ εe−Cq(z) for some
ε, C > 0 on |z − ζk| =

√
n δk. Note that

√
n δk ≤ 12du ≤ 12 in view of (3.18).

We have thus showed that the connected component Uk of S(f ; ε, c) = {z ∈
C
n : |f(z)| < εe−Cq(ζk)} containing ζk must be completely contained in
the ball |z − ζk| =

√
n δk, which has diameter at most 1 and does not

contain any other points of V . This shows the necessity of the theorem when
N = n. If N > n, we can easily add N − n entire functions fn+1, . . . , fN ∈
A0p(C

n) satisfying V ⊂ f−1j (0), n+ 1 ≤ j ≤ N . Let F = (f1, . . . , fN ). Then
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Sq(F ; ε, C) ⊆ Sq(f ; ε, C). Thus, the mapping F satisfies the conclusion of
the theorem.
To prove the sufficiency, let {ak,I}k∈N, 0≤|I|<mk be any given sequence in

A0p(V ). For any integer m there exists a cm ≥ 1 such that
∑mk−1
|I|=0 |ak,I | <

cme
p(ζk)/m for each k ∈ N since {ak,I} ∈ A0p(V ) and, meanwhile, |f(z)| <

cme
p(ζk)/m for each z ∈ C

n, since f ∈ A0p(Cn). Thus,

(3.19)

mk−1∑

|I|=0

|ak,I | < exp(inf
m
{log cm + p(ζk)/m})

for each k and

(3.20) |f(z)| < exp(inf
m
{log cm + p(z)/m})

for z ∈ C
n. Define

ga(z) = inf
m
{log cm + p(z)/m}, α(z) = max{q(z), ga(z)}.

Then α(z) = o{p(z)}.
We recall the following theorem [6, 1.7 and 1.8]: For any continuous and

increasing function ω(r), if ω(r) satisfies (2.1) and (2.2), and ω(er) is convex,
then for any function h(r) : [0,∞)→ [0,∞) satisfying h(r) = o(ω(r)) there
exists an increasing function g(r) such that g satisfies (2.1) and (2.2), g(er)
is convex, and h(r) = o{g(r)} and g(r) = o{ω(r)}. Applying this result
with ω = p and h = α we obtain an increasing function qa(r) such that
(2.1) and (2.2) are satisfied, qa(e

r) is convex, and α(r) = o{qa(r)} and
qa(r) = o{p(r)}. Then qa(|z|) = qa(eln |z|) is plurisubharmonic and thus a
weight. Also, there exists a c > 0 such that α(z) ≤ qa(|z|) + c. We see,
by (3.19) and (3.20), that

∑mk−1
|I|=0 |ak,I | < eqa(|ζk|)+c for each k and some

c > 0, and |f(z)| < eqa(|z|)+c for each z ∈ C
n, which implies that f ∈

Aqa(C
n) ⊂ A0p(Cn). Also, it is easy to see that Sqa(f ; ε0, C) ⊆ Sq(f ; ε, C),

where ε0 = e
−cCε. Thus, by the hypotheses of the theorem, each connected

component of Sqa(f ; ε0, C) contains at most one point in V and such a
component has diameter at most 1. Then the proof of the sufficiency can be
finished using the interpolation for the space Aqa(C

n), or by the following
argument.
Let Uk be the connected component of Sqa(f ; ε0, C) containing ζk. We

define an analytic function λ : Sqa(f ; ε0, C)→ C by

λ(z) =

{∑mk−1
|I|=0 ak,I(z − ζk)I if z ∈ Uk,
0 if z ∈ Sqa(f ; ε0, C) \

⋃
k∈N
Uk.

Then it is clear that
1

I!

∂|I|λ(ζk)

∂zI
= ak,I
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for all k ∈ N and all 0 ≤ |I| < mk. Moreover, on Uk we have |z − ζk| ≤ 1,
since the diameter of Uk is at most 1, and thus

(3.21) |λ(z)| ≤
mk−1∑

|I|=0

|ak,I | ≤ eqa(ζk) ≤ eAqa(z)+B

for some A,B > 0 by virtue of the property (2.2) of a weight, which implies
that qa(w) ≤ Aqa(z) + B whenever |w − z| ≤ 1. By the definition of λ,
estimate (3.21) holds for all z in Sqa(f ; ε0, C). We then use the following
result [5, Theorem 2.2]: If λ is analytic and satisfies |λ(z)| ≤ eAq(z)+B for
some A,B > 0 on Sq(f ; ε, C), where q is a weight and f = (f1, . . . , fm) :
C
n → C

m is an entire holomorphic mapping with fj ∈ Aq(Cn), then there
exists an entire function F ∈ Aq(Cn) such that F (z) = λ(z) on the variety
f(z) = 0. Applying this result to our function λ, we obtain a function
F ∈ Aqa(Cn) ⊂ A0p(Cn) such that F (z) = λ(z) on f−1(0) ⊇ V . In particular,

1

I!

∂|I|F (ζk)

∂zI
=
1

I!

∂|I|λ(ζk)

∂zI
= ak,I

for all k ∈ N and all 0 ≤ |I| < mk. This shows that V is an interpolating
variety for A0p(C

n), and thus concludes the proof.
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