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Hilbert space factorization and Fourier type of operators

by

Aicke Hinrichs (Jena and College Station, TX)

Abstract. It is an open question whether every Fourier type 2 operator factors
through a Hilbert space. We show that at least the natural gradations of Fourier type
2 norms and Hilbert space factorization norms are not uniformly equivalent. A corre-
sponding result is also obtained for a number of other sequences of ideal norms instead of
the Fourier type 2 gradation including the Walsh function analogue of Fourier type. Our
main tools are ideal norms and random matrices.

1. Introduction. Let F denote the Fourier transform on the real line
given by

Ff(s) =
1√
2π

∞�

−∞
f(t)e−istdt.

X and Y are always complex Banach spaces. L(X,Y ) denotes the Banach
space of bounded linear operators from X to Y . An operator T ∈ L(X,Y ) is
said to be of Fourier type p for some p ∈ (1, 2] if the operator F⊗T , which is,
by the classical Hausdorff–Young inequality, a well defined operator between
the algebraic tensor products Lp(R)⊗X and Lq(R)⊗Y , has a bounded linear
extension acting between the vector-valued spaces LXp (R) and LYq (R). Here
q is the conjugate number of p given by 1/p+ 1/q = 1. We say that X has
Fourier type p if the identity operator IX does.

The notion of Fourier type was introduced by Peetre [Pee] in the case of
Banach spaces. He studied interpolation properties of such spaces. Kwapień
[Kwa] proved that X has Fourier type 2 if and only if X is isomorphic to a
Hilbert space. The deepest result in this direction is due to Bourgain [Bou1],
[Bou2] who showed that X has some Fourier type p > 1 if and only if it is
B-convex, i.e. has some Rademacher type p > 1.

Bourgain’s theorem fails for operators, i.e. there exist operators of Rade-
macher type 2 failing to have any Fourier type p > 1 (see [PW]). The
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operator case of Kwapień’s result is still an open question. It is not known
whether every operator of Fourier type 2 factors through a Hilbert space
(see [DF], [PW]). It is the main purpose of this paper to shed some light
onto this problem.

Both notions of Fourier type and factorization through a Hilbert space
are local notions in the sense that they depend only on the finite-dimensional
pieces of the operator under consideration. This is made precise in the fol-
lowing two theorems. Proofs of both of them can be found in [PW]. Both
theorems are mainly due to Kwapień [Kwa] (see also [Koe] and [Pis]).

Theorem 1.1. For any T ∈ L(X,Y ) the following assertions are equiv-
alent.

(i) T has Fourier type 2.
(ii) There exists c > 0 such that for all sequences x1, x2, . . . in X,

1�

0

∥∥∥
∞∑

k=1

exp(2πikt)Txk
∥∥∥

2
dt ≤ c2

∞∑

k=1

‖xk‖2.

(iii) There exists c > 0 such that for all n ∈ N and x1, . . . , xn ∈ X,

(1)
n∑

h=1

∥∥∥∥∥
n∑

k=1

1√
n

exp(2πihk/n)Txk

∥∥∥∥∥

2

≤ c2
n∑

k=1

‖xk‖2.

Theorem 1.2. For any T ∈ L(X,Y ) the following assertions are equiv-
alent.

(i) T factors through a Hilbert space, i.e. there exists a Hilbert space H
and operators B ∈ L(X,H) and A ∈ L(H,Y ) such that T = AB.

(ii) There exists c > 0 such that for all orthonormal systems (a1, a2, . . .)
in some Hilbert space L2(M,µ) and all sequences x1, x2, . . . in X,

�

M

∥∥∥
∞∑

k=1

ak(t)Txk
∥∥∥

2
dµ(t) ≤ c2

∞∑

k=1

‖xk‖2.

(iii) There exists c > 0 such that for all n ∈ N, n×n-matrices An = (αhk)
satisfying ‖An : ln2 → ln2 ‖ ≤ 1 and x1, . . . , xn ∈ X,

(2)
n∑

h=1

∥∥∥
n∑

k=1

αhkTxk

∥∥∥
2
≤ c2

n∑

k=1

‖xk‖2.

Remark. A characterization similar to Theorem 1 is possible for Fourier
type p operators (see [PW]). We restricted ourselves to the case p = 2 to
make the similarity between both theorems more striking.

For a fixed n × n-matrix An and T ∈ L(X,Y ), define κ(T |An) as the
smallest constant c such that (2) holds for all x1, . . . , xn ∈ X. The functional
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κ(An) : T → κ(T |An) is the Kwapień ideal norm associated with An. The
universal Kwapień ideal norm of T is defined as

κn(T ) = sup{κ(T |An) : ‖An : ln2 → ln2 ‖ ≤ 1}.
For the general theory of ideal norms associated with matrices and orthonor-
mal systems and, in particular, for properties of the ideal norms just defined
we refer the reader to [PW]. Observe that Theorem 1.2 says that the se-
quence (κn) of ideal norms is a natural gradation in the sense of [Tom] of
the Hilbert space factorization norm generally defined as inf ‖A‖·‖B‖ where
the infimum is taken over all factorizations T = AB as in (i). Similarly, if
we let En = (exp(2πihk/n)/

√
n), then Theorem 1.1 states that (κ(En)) is a

natural gradation of the Fourier type 2 norm, which may be defined as the
operator norm of F ⊗ T : LX2 (R)→ LY2 (R).

Considering the problem whether every Fourier type 2 operator factors
through a Hilbert space it is natural to ask whether the sequences of ideal
norms κn and κ(En) are uniformly equivalent, i.e. whether there exists a
constant c such that κn(T ) ≤ cκ(T |En) for all operators T . The following
theorem shows that this is not true.

Theorem 1.3. For any sequence (An) of n× n-matrices which satisfies
‖An : ln2 → ln2 ‖ ≤ 1 there exists a sequence (Tn) of operators such that

κn(Tn) = 1 and lim
n→∞

nακ(Tn|An) = 0 for α < 1/10.

This theorem also answers Problem 2.3.16 in [PW] about the existence
of universal matrices for Kwapień ideal norms. We even show that sets of
matrices needed to approximate κn(T ) for all T up to some fixed constant
factor (independent of n) must have big size. See Theorem 5.2 for a detailed
statement.

The proof of Theorem 1.3 is nonconstructive. We use operators Tn :
ln1 → ln∞ whose representing matrices have random entries of modulus 1.
In Section 2, we clarify the conditions under which such an operator can
have large value of κ(Tn|An) for a fixed n×n-matrix An. Section 3 contains
an estimate for the probability that this happens, which will be shown to
be negligible. In Section 4, we derive from the results of [BGN] about the
norm of such random matrices that the probability of having κn(Tn) large is
almost 1. This is used to prove Theorems 1.3 and 5.2. Finally, applications
to the behavior of ideal norms associated with the trigonometric system and
the Walsh system are contained in Section 6.

2. Operators from ln1 to ln∞. The purpose of this section is to provide
necessary conditions for an operator in L(ln1 , l

n
∞) to have large κ(T |An) for

a fixed matrix An. By a c-net N in a metric space M we mean a subset of
M such that the balls of radius c with centers in N cover M .
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Proposition 2.1. Let T ∈ L(ln1 , l
n
∞) be an operator induced by a ma-

trix (τij). Let An = (αhk) be an n × n-matrix with ‖An : ln2 → ln2 ‖ ≤ 1.
For some c > 0, let N be a c/8-net in Bln2 ∩ 2

c
√
n
Bln∞ in ln2 -distance. If

κ(T |An) ≥ c√n ‖T‖, then there exists a partition {1, . . . , n} =
⋃
i∈F Mi and

λ = (λ1, . . . , λn) ∈ N such that

(i) F ⊂ {1, . . . , n}, 1 ≤ |Mi| ≤ 16/c2 for i ∈ F and

(ii)
n∑

h=1

max
1≤j≤n

∣∣∣
∑

i∈F

( ∑

k∈Mi

λkαhk

)
τji

∣∣∣
2
≥ c2n‖T‖2

64
.

Proof. Because of homogeneity we can assume that T is a norm one
operator, that is, |τij | ≤ 1 for i, j = 1, . . . , n. Let e1, . . . , en denote the unit
vectors in ln1 . An extreme point argument (see [PW], p. 22) shows that

(3) κ(T |An)2 =
n∑

h=1

∥∥∥
n∑

k=1

µkTeϕ(k)αhk

∥∥∥
2

for some map ϕ : {1, . . . , n} → {1, . . . , n} and numbers µ1, . . . , µn with∑n
k=1 |µk|2 = 1. Let

A = {k ∈ {1, . . . , n} : |µk| ≤ 2/(c
√
n)} and Ac = {1, . . . , n} \ A.

Then 1 =
∑n
k=1 |µk|2 ≥ (4/(c2n))|Ac| implies |Ac| ≤ c2n/4. It follows from

(3) and the assumption κ(T |An) ≥ c√n that

c2n ≤
n∑

h=1

∥∥∥
n∑

k=1

µkTeϕ(k)αhk

∥∥∥
2

≤ 2
n∑

h=1

∥∥∥
∑

k∈A
µkTeϕ(k)αhk

∥∥∥
2

+ 2
n∑

h=1

∥∥∥
∑

k∈Ac

µkTeϕ(k)αhk

∥∥∥
2
.

Now the bound on the cardinality of Ac, ‖T‖ ≤ 1, and ‖An : ln2 → ln2 ‖ ≤ 1
imply that

n∑

h=1

∥∥∥
∑

k∈Ac

µkTeϕ(k)αhk

∥∥∥
2
≤

n∑

h=1

( ∑

k∈Ac

|µk| · |αhk|
)2

≤
n∑

h=1

( ∑

k∈Ac

|µk|2
)( ∑

k∈Ac

|αhk|2
)
≤
∑

k∈Ac

n∑

h=1

|αhk|2 ≤ |Ac| ≤ c2n/4.

Hence

c2n/4 ≤
n∑

h=1

∥∥∥
∑

k∈A
µkTeϕ(k)αhk

∥∥∥
2
.
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We define the level sets Mi = {k ∈ A : ϕ(k) = i} for i = 1, . . . , , n. Then

c2n/4 ≤
n∑

h=1

∥∥∥
n∑

i=1

( ∑

k∈Mi

µkαhk

)
Tei

∥∥∥
2

=
n∑

h=1

max
1≤j≤n

∣∣∣
n∑

i=1

∑

k∈Mi

µkαhkτji

∣∣∣
2
.

Let

B = {i ∈ {1, . . . , n} : |Mi| ≤ 16/c2} and Bc = {1, . . . , n} \B.
We conclude from the preceding inequality that

c2n/4 ≤ 2
n∑

h=1

max
1≤j≤n

∣∣∣
∑

i∈B

∑

k∈Mi

µkαhkτji

∣∣∣
2

+ 2
n∑

h=1

max
1≤j≤n

∣∣∣
∑

i∈Bc

∑

k∈Mi

µkαhkτji

∣∣∣
2
.

Since the sets Mi form a partition of A, we find that

n ≥ |A| =
n∑

i=1

|Mi| ≥
16
c2
|Bc|,

which in turn yields |Bc| ≤ c2n/16. Using again the assumptions |τji| ≤ 1
and ‖An : ln2 → ln2 ‖ ≤ 1, we derive that

n∑

h=1

max
1≤j≤n

∣∣∣
∑

i∈Bc

∑

k∈Mi

µkαhkτji

∣∣∣
2
≤

n∑

h=1

( ∑

i∈Bc

∣∣∣
∑

k∈Mi

µkαhk

∣∣∣
)2

≤ |Bc|
n∑

h=1

∑

i∈Bc

∣∣∣
∑

k∈Mi

µkαhk

∣∣∣
2
≤ c2n

16

∑

i∈Bc

∑

k∈Mi

|µk|2 ≤
c2n

16
.

Hence we arrive at

(4) c2n/16 ≤
n∑

h=1

max
1≤j≤n

∣∣∣
∑

i∈B

∑

k∈Mi

µkαhkτji

∣∣∣
2
,

which is nearly what we want. In the last step of the proof we replace (µk)
by (λk) ∈ N . To this end we define

λok =
{
µk if k ∈Mi for some i ∈ B,
0 otherwise.

We extend B to a set F and define Mi for i ∈ F \B such that (Mi) forms a
partition of {1, . . . , n} with |Mi| ≤ 16/c2 for all i ∈ F . Removing the empty
Mi’s we may and do assume that |F | ≤ n and F ⊂ {1, . . . , n}. Then we can
rewrite inequality (4) as

(5) c2n/16 ≤
n∑

h=1

max
1≤j≤n

∣∣∣
∑

i∈F

∑

k∈Mi

λokαhkτji

∣∣∣
2
.
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Our construction yields (λo1, . . . , λ
o
n) ∈ Bln2 ∩ 2

c
√
n
Bln∞ . Thus we can find

λ = (λ1, . . . , λn) ∈ N such that
n∑

k=1

|λok − λk|2 ≤ c2/64.

Now it follows from (5) that

c2n/16 ≤ 2
n∑

h=1

max
1≤j≤n

∣∣∣
∑

i∈F

∑

k∈Mi

λkαhkτji

∣∣∣
2

+ 2
n∑

h=1

max
1≤j≤n

∣∣∣
∑

i∈F

∑

k∈Mi

(λok − λk)αhkτji
∣∣∣
2
.

Finally, we use once more the assumptions |τji| ≤ 1 and ‖An : ln2 → ln2 ‖ ≤ 1
to conclude that
n∑

h=1

max
1≤j≤n

∣∣∣
∑

i∈F

∑

k∈Mi

(λok − λk)αhkτji
∣∣∣
2
≤

n∑

h=1

(∑

i∈F

∣∣∣
∑

k∈Mi

(λok − λk)αhk
∣∣∣
)2

≤ |F |
∑

i∈F

n∑

h=1

∣∣∣
∑

k∈Mi

(λok − λk)αhk
∣∣∣
2
≤ n

∑

i∈F

∑

k∈Mi

|λok − λk|2 ≤ c2n/64,

which in turn implies the claimed property (ii).

Remark. The proposition is sharp in the following sense. If there exist
a partition {1, . . . , n} =

⋃
i∈F Mi and λ = (λ1, . . . , λn) ∈ Bln2 such that

(ii) holds then κ(T |An) ≥ c
√
n ‖T‖/8. This can be seen directly from the

definition of κ(T |An) by choosing xk = λkei for k ∈Mi.

3. Random matrices. Let Mn be the set of all n × n-matrices with
entries ±1, viewed as operators in L(ln1 , l

n
∞), equipped with the normal-

ized counting measure P , that is, P (T ) = 2−n
2

for all T ∈ Mn. The next
theorem which will be the main tool in the following sections shows that
the probability of κ(T : ln1 → ln∞|An) being large is very small for a fixed
n× n-matrix An. In contrast, the probability of T factoring nicely through
a Hilbert space is also very small. As we will see, this follows quite easily
from well known norm estimates for random matrices. Consequently, for any
given n×n-matrix An with ‖An : ln2 → ln2 ‖ ≤ 1, there must be n×n-matrices
T with ±1 entries which have, as operators in L(ln1 , l

n
∞), large κn(T ) but

considerably smaller κ(T |An). We now exploit this approach in detail.

Theorem 3.1. For n = 1, 2, . . . , every n × n-matrix An satisfying
‖An : ln2 → ln2 ‖ ≤ 1 and 1/

√
n ≤ c ≤ 1, we have

P(κ(T |An) ≥ c√n) ≤ 2−2−33c10n2+4n(4+log2 n).
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Proof. We fix a c/8-net N in Bln2 ∩ 2
c
√
n
Bln∞ in ln2 -distance. Let Mo

n be
the set of all T ∈ Mn satisfying the conclusion of Proposition 2.1. That
means that for each T ∈ Mo

n there exist a partition (Mi)i∈F of {1, . . . , n}
with nonempty Mi and λ ∈ N with properties (i) and (ii). Proposition 2.1
tells us that P(κ(T |An) ≥ c

√
n) ≤ P(Mo

n). Let P be the collection of all
partitions (Mi)i∈F of {1, . . . , n} satisfying (i). For fixed P ∈ P and λ ∈ N ,
we define M(P, λ) = {T ∈Mn : (ii) is also satisfied}. Then it follows from

Mo
n =

⋃

P∈P

⋃

λ∈N
M(P, λ)

that
P(Mo

n) ≤
∑

P∈P

∑

λ∈N
P(M(P, λ)).

The key lemma to be proved below is as follows.

Lemma 3.2. For all P ∈ P and λ ∈ N , we have

P(M(P, λ)) ≤ 2−2−33c10n2+2n(1+log2 n).

Together with the above considerations, this lemma now implies

(6) P(κ(T |An) ≥ c√n) ≤ |P| · |N |2−2−33c10n2+2n(1+log2 n).

It remains to estimate the cardinalities of P and N . A trivial bound on the
cardinality of P is

(7) |P| ≤ nn ≤ 2n(1+log2 n).

Moreover, it follows from well known entropy estimates thatN can be chosen
such that

|N | ≤ (17/c)2n ≤ 22n log2(17/c).

Since we assumed c ≥ 1/
√
n, this implies

(8) |N | ≤ 22n log2(17
√
n) ≤ 2n(10+log2 n).

Now (6)–(8) provide the claimed estimate in the theorem.

Proof of Lemma 3.2. For h = 1, . . . , n, we define

Nh =
{
ε ∈ {+1,−1}F :

∣∣∣
∑

i∈F

( ∑

k∈Mi

λkαhk

)
εi

∣∣∣ ≥ c/16
}
.

First, we observe that, for any ε ∈ {+1,−1}F , the set A(ε) = {h ∈
{1, . . . , n} : ε ∈ Nh} satisfies the cardinality estimate

(9) |A(ε)| ≤ 256/c2.
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Indeed, this follows from ‖An : ln2 → ln2 ‖ ≤ 1 since

|A(ε)| c
2

256
≤

n∑

h=1

∣∣∣
∑

i∈F

( ∑

k∈Mi

λkαhk

)
εi

∣∣∣
2
≤
∑

i∈F

∑

k∈Mi

|λk|2 ≤ 1.

Let now T ∈ M(P, λ) and define

B =
{
h ∈ {1, . . . , n} : max

1≤j≤n

∣∣∣
∑

i∈F

( ∑

k∈Mi

λkαhk

)
τji

∣∣∣ ≥ c/16
}

and Bc = {1, . . . , n} \B. Then
∑

h∈Bc

max
1≤j≤n

∣∣∣
∑

i∈F

( ∑

k∈Mi

λkαhk

)
τji

∣∣∣
2
≤ |Bc| c

2

256
=

c2

256
(n− |B|)

and
∑

h∈B
max

1≤j≤n

∣∣∣
∑

i∈F

( ∑

k∈Mi

λkαhk

)
τji

∣∣∣
2
≤
∑

h∈B

( n∑

k=1

|λk| · |αhk|
)2

≤
∑

h∈B

( n∑

k=1

|λk|2
)( n∑

k=1

|αhk|2
)
≤ |B|.

Now it follows from the assumed property (ii) that

c2n

64
≤ |B|+ (n− |B|) c

2

256
≤ c2n

256
+ |B|,

which implies |B| ≥ c2n/128. Let

Bj =
{
h ∈ {1, . . . , n} :

∣∣∣
∑

i∈F

( ∑

k∈Mi

λkαhk

)
τji

∣∣∣ ≥ c/16
}

= A((τji)i).

Then B =
⋃n
j=1 Bj . Furthermore, let N =

⋃n
h=1 Nh and

C = {j ∈ {1, . . . , n} : (τji)ni=1 ∈ N} = {j ∈ {1, . . . , n} : Bj 6= ∅}.
Then it follows from (9) that

c2n

128
≤ |B| ≤

n∑

j=1

|Bj | =
∑

j∈C
|Bj | ≤

256
c2
|C|,

which gives |C| ≥ c4n/215.
Let C denote the collection of all subsets C ⊂ {1, . . . , n} satisfying this

cardinality estimate. For C ∈ C, let

T (C) = {T ∈ M(P, λ) : (τji)ni=1 ∈ N for j ∈ C}.
The above considerations tell us that

⋃
C∈C T (C) =M(P, λ), which implies

that

(10) P(M(P, λ)) ≤
∑

C∈C
P(T (C)).
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To estimate P(T (C)), we have to estimate the size of N . It follows from the
well known tail behavior estimate of Rademacher series with real coefficients
that if ε1, . . . , εm are independent random variables identically distributed
with P(εk = +1) = P(εk = −1) = 1/2 and ζ1, . . . , ζm ∈ C, then

P
(∣∣∣
∑

εkζk

∣∣∣ > δ
)
≤ 4 exp

(
− δ2

4
∑ |ζk|2

)
for δ > 0.

Using this, we see from the definition of Nh that

|Nh| ≤ 2|F |+2 exp
(
− 2−10c2∑

i∈F |
∑
k∈Mi

λkαhk|2
)
.

Moreover, we conclude from |Mi| ≤ 16/c2 for i ∈ F and |λk| ≤ 2/c
√
n that

∑

i∈F

∣∣∣
∑

k∈Mi

λkαhk

∣∣∣
2
≤
∑

i∈F

( ∑

k∈Mi

|λk| · |αhk|
)2
≤ 4
c2n

∑

i∈F

( ∑

k∈Mi

|αhk|
)2

(11)

≤ 4
c2n

∑

i∈F
|Mi|

∑

k∈Mi

|αhk|2 ≤
64
c4n

n∑

k=1

|αhk|2 ≤
64
c4n.

Together with |F | ≤ n this implies

|Nh| ≤ 2n+2 exp(−2−18c6n) = 2n(1−2−18c6 log2 e)+2

and

|N | ≤
n∑

h=1

|Nh| ≤ 2n(1−2−18c6)+2+log2 n.

Now we are able to estimate the size of T (C) as

|T (C)| ≤ |N ||C|(2n)n−|C| ≤ 2n(1−2−18c6)|C|+(2+log2 n)|C|+n2−n|C|

≤ 2n
2−2−18c6n|C|+n(2+log2 n) ≤ 2n

2(1−2−33c10)+n(2+log2 n).

Hence
P(T (C)) ≤ 2−2−33c10n2+n(2+log2 n).

Finally, observing that |C| ≤ nn = 2n log2 n, an appeal to (10) finishes the
proof.

Remark. If An is a unimodular orthogonal n× n-matrix, which means
that |αhk| = 1/

√
n for h, k = 1, . . . , n, the estimate (11) can be improved to

∑

i∈F

∣∣∣
∑

k∈Mi

λkαhk

∣∣∣
2
≤ 1
n

∑

i∈F

( ∑

k∈Mi

|λk|
)2
≤ 1
n

∑

i∈F
|Mi|

∑

k∈Mi

|λk|2 ≤
16
c2n

.

This yields a better estimate in Theorem 3.1 for such matrices, in fact the
fraction 2−33c10 can be replaced by 2−31c8.

The next corollary is an immediate consequence of Theorem 3.1.
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Corollary 3.3. Let c > 0 and let (An)n≥1 be a sequence of n × n-
matrices with ‖An : ln2 → ln2 ‖ ≤ 1. Then P(κ(T |An) ≥ c

√
n) → 0 as

n→∞.

This corollary can be made more quantitative by keeping track of the
constants.

Corollary 3.4. Let (An)n≥1 be a sequence of n × n-matrices with
‖An : ln2 → ln2 ‖ ≤ 1. Then P(κ(T |An) ≥ nα) → 0 as n → ∞ for any
α > 2/5.

Proof. Setting cn = nα−1/2 and applying Theorem 3.1 gives

P(κ(T |An) ≥ nα) = P(κ(T |An) ≥ cn
√
n) ≤ 2−2−33n10α−3+4n(4+log2 n),

which tends to 0 as long as α > 2/5.

By use of the remark following the proof of Lemma 3.2, the preceding
corollary can be strengthened for unimodular orthogonal matrices to

Corollary 3.5. Let (An)n≥1 be a sequence of unimodular orthogonal
n × n-matrices with ‖An : ln2 → ln2 ‖ ≤ 1. Then P(κ(T |An) ≥ nα) → 0 as
n→∞ for any α > 3/8.

4. Hilbert space factorization. We start this section with the follow-
ing easy observation.

Proposition 4.1. Let T ∈ L(ln1 , l
n
∞) be an operator induced by a matrix

(τij) with τij = ±1. Then

κn(T : ln1 → ln∞) ≥ ‖T : ln2 → ln2 ‖−1n.

Proof. Let e1, . . . , en be the unit vectors in ln1 . Then
n∑

k=1

‖ek‖2 = n and
n∑

h=1

∥∥∥
n∑

k=1

τhkTek

∥∥∥
2

=
n∑

h=1

max
1≤j≤n

∣∣∣
n∑

k=1

τhkτjk

∣∣∣
2

= n3

imply that κ(T |T ) ≥ n. Now a glance at the definition of κn(T ) proves the
claim.

Estimates on norms of random matrices are well known. We need a
special case of Lemma 4 from [BGN]:

Lemma 4.2. There exist constants c1 and c2 such that , for all t > 0,

P(‖T : ln2 → ln2 ‖ ≥ c1
√

(1 + t)n) ≤ exp(−(t− c2)n).

Corollary 4.3. There exists a constant χ > 0 such that

P(κn(T ) ≤ χ√n) ≤ e−3n.
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Proof. Set t = 3 + 4c2 in the preceding lemma and define χ =
1/(2c1

√
1 + c2). Then the lemma tells us that

P(‖T : ln2 → ln2 ‖ ≥
√
n/χ) ≤ e−3(1+c2)n ≤ e−3n.

Now the assertion follows from the above proposition.

It can be immediately seen from Corollaries 3.3 and 4.3 that there cannot
exist a sequence (An) of n × n-matrices with ‖An : ln2 → ln2 ‖ ≤ 1 which is
universal for the sequence of ideal norms κn. We prefer here to give a more
quantitative statement which also implies Theorem 1.3.

Theorem 4.4. Let (An)n≥1 be a sequence of n× n-matrices with ‖An :
ln2 → ln2 ‖ ≤ 1. Then P(κn(T ) ≥ nβκ(T |An)) → 1 as n → ∞ for any
β < 1/10. If the An are unimodular orthogonal matrices then this even
holds for β < 1/8.

Proof. Since

P(κn(T ) ≥ nβκ(T |An)) ≥ 1− P(κn(T ) ≤ χ√n)− P(κ(T |An) ≥ χn1/2−β),

this follows from Corollaries 3.4, 3.5 and 4.3.

5. The size of universal sets of matrices. For n ≥ 1, letM2
n be the

set of all n × n-matrices with operator norm on ln2 less than or equal to 1.
We say that a sequence (Mn) of subsets Mn ⊂ M2

n is universal for κn if
there exists c > 0 such that

κn(T ) ≤ c sup
An∈Mn

κ(T |An) for n = 1, 2, . . . and all operators T.

In this section, we want to clarify what size the members Mn of a universal
sequence for κn must have. We first show an upper bound using entropy
estimates. With the help of the results from the preceding sections we then
derive a lower bound which is essentially the same.

Theorem 5.1. There exists a universal sequence (Mn) for κn for which
|Mn| ≤ 2n

2(5+log2 n) for n = 1, 2, . . .

Proof. Mn is going to be a 1/2-net in M2
n. Let us first see that such a

sequence is indeed universal for κn.

Given Bn = B
(0)
n ∈ M2

n, we inductively choose A(k)
n ∈ Mn such that

B
(k+1)
n = B

(k)
n − 2−kA(k)

n satisfies ‖B(k+1)
n : ln2 → ln2 ‖ ≤ 2−k−1. Then

Bn =
∞∑

k=0

2−kA(k)
n ,
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and it easily follows from the definition of κ(T |An) that

κ(T |Bn) ≤
∞∑

k=0

2−kκ(T |A(k)
n ) ≤ 2 max

An∈Mn

κ(T |An),

showing the required inequality.
It remains to prove that there is a 1/2-net Mn in M2

n with |Mn| ≤
22n2(5+log2 n). To this end, we identify M2

n with a subset of Cn2
in the

obvious way. Using the well known estimate

‖An : ln2 → ln2 ‖ ≤
( n∑

h=1

n∑

k=1

|αhk|2
)1/2

for an n × n-matrix An = (αhk), we see that it is enough to find a 1/2-net
in euclidian norm with the required cardinality.

Pick now a point x1 inM2
n. Assume that we have found points x1, . . . , xk

inM2
n such that ‖xi−xj‖ ≥ 1/2 for i 6= j, where ‖ ·‖ now denotes euclidian

norm. If possible, we choose a further point xk+1 ∈ M2
n with ‖xk+1−xi‖ ≥

1/2 for i = 1, . . . , k. This process eventually stops leaving us with points
x1, . . . , xK ∈ M2

n such that ‖xi − xj‖ ≥ 1/2 for i 6= j and such that the
union of the balls with centers xi and radius 1/2 covers M2

n. Hence the set
Mn = (x1, . . . , xK) is indeed a 1/2-net in euclidian norm.

Moreover, since also

( n∑

h=1

n∑

k=1

|αhk|2
)1/2

≤ √n ‖An : ln2 → ln2 ‖,

we find that M2
n ⊂
√
nB where B is the euclidian unit ball in Cn2

. Hence
the balls with centers xi and radius 1/4 are contained in (

√
n+1/4)B. They

are also mutually disjoint, so volume comparison yields

K

(
1
4

)2n2

≤
(√

n+
1
4

)2n2

,

which finally implies

|Mn| = K ≤ (4
√
n+ 1)2n2 ≤ 2n

2(5+log2 n).

Theorem 5.2. If the sequence (Mn) is universal for κn then there exists
α > 0 such that |Mn| ≥ 2αn

2
for n = 1, 2, . . .

Proof. Assume that (Mn) is universal for κn with constant c > 0. We
may also assume that each Mn is finite. In particular,

κn(T ) ≤ c max
An∈Mn

κ(T |An) for all T ∈ Mn.
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It then follows from Corollary 4.3 and Theorem 3.1 that

1− e−3n ≤ P(κn(T ) > χ
√
n) ≤ P( max

An∈Mn

κ(T |An) > (χ/c)
√
n)

≤ |Mn|2−2−33χ10n2/c10+4n(4+log2 n).

This easily gives the lower bound on |Mn| as claimed in the theorem.

6. Application to some other ideal norms. In this section, we make
use of the notation of [PW]. The reader not familiar with this notation is
advised to consult this reference for further information. We briefly review
some things we need here.
En = (e1, . . . , en) stands for the first n trigonometric characters ek(t) =

exp(2πikt) in L2(0, 1). Wn = (w1, . . . , wn) stands for the first n Walsh
functions in L2(0, 1) in some natural ordering.W2n is the n+1-st Hadamard–
Walsh matrix inductively defined by

W1 =
1√
2

(
+1 +1
+1 −1

)
and W2n+1 =

1√
2

(
+W2n +W2n

+W2n −W2n

)
.

The matrices En were already defined in the introduction.
The nth trigonometric and Walsh type norms of an operator T are de-

noted by %(T | En, In) and %(T |Wn, In), respectively. Given T , we let

%(T | Emax
n , In) = max{%(T | E(F ), I(F )) : F ⊂ N and |F | ≤ n},

%(T |Wmax
n , In) = max{%(T |W(F ), I(F )) : F ⊂ N and |F | ≤ n}.

We now state the main theorem of this section.

Theorem 6.1. None of the following sequences of ideal norms is uni-
formly equivalent to the sequence κn:

κ(En), %(En, In), %(Emax
n , In), %(Wn, In), %(Wmax

n , In).

Moreover the sequence κ(W2n) is not uniformly equivalent to the sequence
κ2n .

Proof. It is shown in [Bou2] that %(Wmax
n , In) ≤ c%(Wn, In) with c in-

dependent of n (see also [PW], p. 326). This means that the sequences
%(Wmax

n , In) and %(Wn, In) are uniformly equivalent. We conclude from
Theorem 1.3 that the sequence κ(W2n) is not uniformly equivalent to the se-
quence κ2n . Since %(W2n , I2n)=κ(W2n), we conclude that neither %(Wn, In)
nor %(Wmax

n , In) can be uniformly equivalent to κn.
As already observed in [Hin], the methods of [Bou2] imply that there ex-

ists c > 0 such that %(Emax
n , In) ≤ c√1 + logn%(En, In). Since the sequence

%(En, In) is uniformly equivalent to the sequence κ(En) (see [PW], p. 285),
we infer from Theorem 1.3 that none of the sequences κ(En), %(En, In), and
%(Emax

n , In) is uniformly equivalent to κn.
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