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Spaces of operators and ¢
by

PauL LEwis (Denton, TX)

Abstract. Bessaga and Pelczyniski showed that if ¢y embeds in the dual X* of a
Banach space X, then ¢! embeds complementably in X, and £°° embeds as a subspace of
X*. In this note the Diestel-Faires theorem and techniques of Kalton are used to show
that if X is an infinite-dimensional Banach space, Y is an arbitrary Banach space, and
cop embeds in L(X,Y), then £*° embeds in L(X,Y), and ¢! embeds complementably in
X ®+ Y™. Applications to embeddings of cg in various spaces of operators are given.

All Banach spaces in this note are defined over the real field. If X and Y
are Banach spaces, then L(X,Y) is the Banach space of all continuous linear
functions (= operators) from X to Y equipped with the usual operator norm,
K(X,Y) is the space of compact operators from X to Y, and X* is the dual
of X. We say that X embeds in Y if there is a linear homeomorphism from
X into Y, i.e. there is an isomorphic embedding 7" : X — Y. The canonical
unit vector basis of ¢q is denoted by (e,), and the canonical basis of ¢! is
denoted by (er). If A C X, then [A] denotes the closed linear span of A.
The greatest crossnorm tensor product completion of X and Y is denoted
by X ®-Y. We refer the reader to Lindenstrauss and Tzafriri [LT] or Diestel
[D] for undefined notation and terminology.

Numerous authors have noticed that if ¢y embeds in K(X,Y) and ei-
ther X or Y has a “nice” Schauder decomposition, then £°° must embed in
L(X,Y) (see e.g. Kalton [K]|, Feder [F1], [F2], and Emmanuele [E1], [E2]).
However, it does not seem to have been observed that the complete analogue
of the Bessaga—Pelczynski theorem [BP, Thm. 3] holds in the space L(X,Y)
for any infinite-dimensional Banach space X.

THEOREM 1. If X is infinite-dimensional and ¢y embeds in L(X,Y"), then
0% embeds in L(X,Y) and {* embeds complementably in X®,Y*. Moreover,
(T'(en)) — 0 in the strong operator topology (of L(X,Y")) for each isomorphic
embedding T : co — L(X,Y) if and only if co fails to embed in'Y .
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Proof. We follow the lead of Kalton [K] and consider two cases: ¢o em-
beds in Y and ¢y does not embed in Y.

Suppose that T : ¢g — Y is an isomorphic embedding. Use the Josefson—
Nissenzweig theorem [D, Chap. XIII], and choose a sequence (x) in X*
so that ||z} | = 1 for each n and (z}) — 0 in the weak™ topology. Define

J 4> — L(X,[T(e,)]) by

J(ba)(@) =Y bu}, ()T (en)
n=1

for x € X. It is easy to check that J is continuous, linear, and injective.
Further, J~! is continuous since (T'(e,,)) ~ (en).

Now suppose that ¢y does not embed in Y, and let B : ¢g — L(X,Y) be
an isomorphic embedding. Certainly the weak unconditional convergence of
> e, guarantees that

> l{Blen)(@).y™)] < o0

for each x € X and y* € Y*. Thus ) B(e,)z is weakly unconditionally
convergent in Y. Since ¢y does not embed in Y, > B(e,, )z is unconditionally
convergent in Y ([BP], [D, p. 45]). Therefore if A is a non-empty subset of N,
then ) _ 4 B(en) converges unconditionally in the strong operator topology
of L(X,Y). Further, an application of the Uniform Boundedness Principle
shows that

{ Z B(e,) (strong operator topology) : A C N, A # (Z)}
n€A

is bounded. Define p by u(0) = 0 and

w(A) = Z B(e,) (strong operator topology)
neA

for any non-empty subset A of N. It is straightforward to check that g is
bounded and finitely additive on the o-algebra X' consisting of all subsets
of N. However, (u(n)) /4 0, i.e. p is not strongly additive. Hence, by the
o-algebra version of the Diestel-Faires theorem ([DU, p. 20|, [DF]), L(E, F)
contains an isomorphic copy of £°°.

Next suppose that (x,,) is a bounded sequence in X and (y;;) is a bounded
sequence in Y* so that

Z |<B(€n)$n,y:> - 1‘ < 0.
n=1

(Of course, one can easily arrange to have the preceding infinite series sum
to zero.) Note that L(X,Y**) is isometrically isomorphic to (X ®,Y™*)* and
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that (z, ® y) is a bounded sequence in X ®., Y* [DU, Chap. VIII]. An
application of the main theorem of Lewis [L] shows that there is a sequence
(up) consisting of differences of terms of the sequence (x, ® y;) so that
(un) ~ (ey) and [u,] is complemented in X ®., Y*.

Now suppose that T': ¢y — Y is an embedding and z* € X*, ||z*|| = 1.
Define J : ¢g — L(X,Y) by J(u)(z) = 2*(2)T(u) for u € ¢y and z € X. It
follows that J is an isomorphism and (J(e,)) # 0 in the strong operator
topology.

Conversely, if J : ¢g — L(X,Y) is any operator, z € X, and (J(e,)z)
# 0, then Y J(e,)x is weakly unconditionally convergent and not uncondi-
tionally convergent in Y. Therefore ¢y embeds in Y. =

Of course, the converse of the classical Bessaga—Pelczyniski theorem is not
difficult to verify. That is, if /! embeds complementably in X, then certainly
co embeds in X*. However, as we shall see, the converse implication in our
setting is false.

It is well known that if 1 < p < ¢ < oo, then L(¢?,/¢P) is reflexive
and L(¢P,¢7) is not reflexive (see e.g. [K] or Theorem VIII.4.4 of Diestel
and Uhl [DU]). Moreover, Diestel and Uhl [DU, p. 249] pointed out that if
1 < p < 0o, then ¢? @, (P contains a complemented copy of £*. Consequently,
if X =/, 2<p<oo,and Y = X* then /' embeds complementably in
X ®yY* =0 @, P but L(X,Y) = L({P, ({P)*) is reflexive and thus does
not contain cy.

Now, again, if 1 < p < ¢ < o0, it follows from Theorem 6 of [K] that
L(¢P ¢7) contains a copy of £>°. Moreover, Kalton remarked in the intro-
duction to [K] that L(¢?,¢?) contains an isomorphic copy of £*°. In fact,
the techniques of the proof of Theorem 1 allow a more extensive statement.
Recall that a sequence (X,,)5%; of closed linear subspaces of X is called an
unconditional Schauder decomposition of X [LT, pp. 47-48] if each x € X
has an unconditional and unique expansion of the form = = > x,, with
z, € X,, for each n.

THEOREM 2. If X has an unconditional Schauder decomposition, then
0> embeds in L(X,X) and £* embeds complementably in X ®., X*.

Proof. Suppose that (X,,)2°; is an unconditional Schauder decomposi-
tion of X, and let ), be the natural projection of X into X,,. Let F be the
finite-cofinite algebra of subsets of N. Define () to be 0. If A € F, A # (),
and A is finite, set u(A) = > .4 Qn. If A° is finite, set u(A4) = —pu(A°).
Then p is finitely additive and not strongly additive. Further, the uncondi-
tionality of the decomposition ensures that y is bounded. An application of
the algebra version of the Diestel-Faires theorem guarantees that cq embeds

in L(X, X). An application of Theorem 1 finishes the proof. m
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The following result contrasts sharply with Theorem 2. The reader should
compare this theorem with Theorem 3 of Emmanuele [E2].

THEOREM 3. If neither X nor Y contains a complemented copy of ¢
and each operator from X to Y™ is compact, then (X ®,Y)* does not contain
co, and, consequently, X ®,Y does not contain a complemented copy of ¢*.

Proof. Suppose that (X ®, Y)* does contain ¢y. Since (X ®, Y)* is
isometrically isomorphic to L(X,Y ™), we use Theorem 1 and see that ¢*°
embeds in L(X,Y™). Since every operator from X to Y* is compact, we
apply Theorem 4 of [K] and conclude that /> must embed in X* or in Y™*.
However, either case contradicts our hypotheses. m

In Theorem 1 of [E1], Emmanuele showed that if there is a non-compact
member of L(X,Y), Y is complemented in a Banach space Z which has an
unconditional Schauder decomposition (Z,), and each operator from X to
Z, is compact for each n, then K(X,Y) must contain a copy of ¢g. It is not
difficult to see that Emmanuele’s hypotheses produce a sequence (7),) in
K(X,Y) so that Y ° | T,,(z) converges unconditionally for each z € X but

(ZZ:I T,,)%2, is not Cauchy in L(X,Y’). As the next theorem shows, the
compactness of each T,, and the unconditional norm convergence of > T, (x)
are not crucial in the determination of the presence of ¢y. (Compactness does
play a crucial role in other implications in Emmanuele’s theorem.)

THEOREM 4. Let Z(X,Y) be a norm closed operator ideal in L(X,Y).
Then co embeds in Z(X,Y) if and only if there is a non-null sequence (T},)
in Z(X,Y) so that Y T,(x) is weakly unconditionally convergent in'Y for
each x € X.

Proof. Suppose that (T},) is as in the statement of the theorem, and let
F be the collection of all finite subsets of N. By the Uniform Boundedness
Principle, {}_,,c 4 Tn : A € F} is bounded in L(X,Y"). Use the finite-cofinite
algebra of subsets of N and the Diestel-Faires theorem as in Theorem 2 to
conclude that ¢y embeds in Z(X,Y).

Conversely, suppose that T : ¢g — Z(X,Y) is an isomorphism, and let
T, =T(e,), n € N. Then > T, (z) is weakly unconditionally convergent for
eachz e X. m

REMARK. Theorems 1 and 4 make it clear that £*° embeds isomorphi-
cally in L(X,Y) if and only if there is a non-null sequence (T3,) in L(X,Y)
so that > T),(x) is weakly unconditionally convergent in Y for each x € X.
Further, if S is any linear subspace of L(X,Y’) which is closed in the strong
operator topology and (7),) is a non-null sequence from S so that »_ 7}, (x)
converges unconditionally for each z € X, then £*° embeds in S. See Feder
[F1], [F2] for a discussion of similar conditions.
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We conclude by giving a quick application of the preceding results in
this note to operators on abstract continuous function spaces and their rep-
resenting measures. We refer the reader to [BL] or [ABBL] for a complete
discussion of this setting. We do note that if 7' : C(H, X ) — Y is an operator
on an abstract continuous function space with representing vector measure
m, then T is said to be strongly bounded if (m(A,)) — 0 on any pairwise
disjoint sequence of Borel subsets of the compact Hausdorff space H, where
m(A) denotes the semivariation of m on A.

THEOREM 5. If ¢ does not embed in K(X,Y), then every operator T :
C(H,X)—Y is strongly bounded. If , in addition, X is reflexive, then every
such operator is weakly compact.

Proof. Suppose that T' : C(H,X) — Y is an operator which is not
strongly bounded. By results in Brooks and Lewis [BL] or Dobrakov [Do], T
is not unconditionally converging. Therefore T must be an isomorphism on
a copy of ¢y ([BP], [D, p. 54]), and Y contains a copy of ¢y. Thus ¢y actually
embeds in the rank one operators from X to Y, and we have established the
contrapositive of the first statement in the theorem.

Now suppose ¢y does not embed in K(X,Y) and that X is reflexive.
The preceding paragraph and Theorem 4.1 of [BL] directly show that every
operator T : C(H,X) — Y is weakly compact. m
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