Local integrated C-semigroups

by

MIAO LI (Wuhan), FA-LUN HUANG (Chengdu) and QUAN ZHENG (Wuhan)

Abstract. We introduce the notion of a local *n*-times integrated *C*-semigroup, which unifies the classes of local *C*-semigroups, local integrated semigroups and local *C*-cosine functions. We then study its relations to the *C*-wellposedness of the (n+1)-times integrated Cauchy problem and second order abstract Cauchy problem. Finally, a generation theorem for local *n*-times integrated *C*-semigroups is given.

1. Introduction. The first systematic local theory for illposed abstract Cauchy problems appeared in 1990. Tanaka and Okazawa [TO] defined local C-semigroups and local integrated semigroups, and a real characterization was obtained under the assumption that D(A) and R(C) are dense. A generation theorem for local C-semigroups with nondensely defined generator was given by Zou [Zo]. Sun [Su] proved some properties of local C-semigroups and (once) integrated semigroups. In [LZ] and [ZL], Liu and Zhao discussed some properties of local integrated C-semigroups and their applications to the abstract Cauchy problem. Local C-cosine functions were introduced and investigated by F. Huang and T. Huang [HH] in the case when R(C) is dense. Furthermore, a generation theorem giving a sufficient condition for a densely defined operator A to be the generator of a local C-semigroup or C-cosine function appeared in [Ga].

On the other hand, W. Arendt *et al.* [AEK] proceeded in a different way. They defined the wellposedness of the (n + 1)-times integrated Cauchy problem (see $C_{n+1}(\tau)$ below with Cx replaced by x), and then characterized it by the resolvent of A ([AEK, Theorems 2.1, 2.2]). The operator-valued function which governs the problem there was called the *n*-times integrated semigroup generates by A. Moreover, an interesting extension property of the solution was given.

²⁰⁰⁰ Mathematics Subject Classification: 47D62, 47D60, 47D06, 47D03.

Key words and phrases: local n-times integrated C-semigroup, C-cosine function, wellposedness, asymptotic C-resolvent.

Project supported by the National Science Foundation of China (No. 19971031).

M. Li et al.

In this paper, we define local n-times integrated C-semigroups which unify the classes of local C-semigroups, local integrated semigroups and local C-cosine functions. We then study the relations between local n-times integrated C-semigroups and C-wellposedness of the (n+1)-times integrated Cauchy problem

$$C_{n+1}(\tau) \qquad \begin{cases} v \in C([0,\tau); D(A)) \cap C^1([0,\tau); X), \\ v'(t) = Av(t) + \frac{t^n}{n!} Cx, \quad t \in [0,\tau), \\ v(0) = 0. \end{cases}$$

(See Section 2 for definitions.) A generation theorem for local integrated C-semigroups is also given.

Section 2 clarifies the relations between the local *n*-times integrated *C*-semigroups and the *C*-wellposedness of $C_{n+1}(\tau)$. We show in Theorem 2.5 that the *C*-wellposedness of $C_{n+1}(\tau)$ implies that *A* generates a local *n*-times integrated *C*-semigroup. Moreover, if $C_{n+1}(\tau)$ is *C*-wellposed, then

$$C_0(\tau) \qquad \begin{cases} u \in C([0,\tau); D(A)) \cap C^1([0,\tau); X), \\ u'(t) = Au(t), \quad t \in [0,\tau), \\ u(0) = Cx, \end{cases}$$

has a unique solution for each $x \in D(A^{n+1})$.

In Section 3 we consider second order Cauchy problems. Proposition 3.1 gives some properties of local C-cosine functions and their generators. It was shown in [WW] that a second order Cauchy problem is C-wellposed if and only if A generates a local C-cosine function. In terms of local integrated C-semigroups, we show in Theorem 3.3 that the second order problem is C-wellposed if and only if the reduced first order Cauchy problem is $\mathcal{C} := \begin{pmatrix} 0 & C \\ C & 0 \end{pmatrix}$ -wellposed. So the example in [HH] can be modified to show that the generator of a local integrated C-semigroups since it was proved in [AEK] that the generator of a local integrated semigroup always has nonempty resolvent.

In [AEK, Theorem 4.1] it is proved that if $C_{n+1}(\tau)$ is wellposed, then $C_{2n+1}(2\tau)$ is wellposed as well. That is, the solution can be extended if one is ready to give up regularity. Wang and Gao [WG] have generalized it to local regularized semigroups and local regularized cosine functions. For local integrated C-semigroups, we also have analogous extensions (Theorem 4.1).

Section 5 is devoted to the generation of local integrated C-semigroups. First we prove that if $C_{k+1}(\tau)$ is C-wellposed then A has an asymptotic C-resolvent. Then, by using the Arendt–Widder theorem on the Laplace transforms of vector-valued functions, we show that if A has an asymptotic C-resolvent, then $C_{k+2}(\tau)$ is C-wellposed (Theorem 5.2); when A is densely defined, we get in fact the C-wellposedness of $C_{k+1}(\tau)$ (Corollary 5.3). Our proof simplifies those for local C-semigroups and local C-cosine functions (see [TO], [HH], [Zo], [Ga]).

Throughout this paper, C is an injective operator on a Banach space X. For an operator A, we denote by D(A), R(A) its domain and range, respectively.

2. Local *n*-times integrated *C*-semigroups and the *C*-wellposedness of $C_{n+1}(\tau)$. First we give the definition of local *n*-times integrated *C*-semigroups. For details on *n*-times integrated *C*-semigroups defined on $[0, \infty)$, see [LS].

DEFINITION 2.1. Let $\tau \in (0, \infty]$ and $n \in \mathbb{N}$. A strongly continuous family $\{T(t) : 0 \leq t < \tau\} \subset B(X)$ is called a *local n-times integrated* C-semigroup on X if it satisfies:

(i)
$$T(0) = 0$$
 and $T(t)C = CT(t)$ for $t \in [0, \tau)$.
(ii) $T(t)T(s)x = \frac{1}{(n-1)!} \left(\int_{0}^{t+s} -\int_{0}^{t} -\int_{0}^{s}\right) (s+t-r)^{n-1}T(r)Cx \, dr$
 $x \in X$ and $0 \le s, t, s+t \le \tau$

for $x \in X$ and $0 \le s, t, s + t < \tau$.

 $T(\cdot)$ is said to be *nondegenerate* if T(t)x = 0 for all $t \in [0, \tau)$ implies x = 0.

The generator, A, of a nondegenerate local n-times integrated C-semigroup $T(\cdot)$ is defined by

$$x \in D(A)$$
 with $Ax = y \Leftrightarrow T(t)x - \frac{t^n}{n!}Cx = \int_0^t T(s)y \, ds, \ \forall t \in [0, \tau).$

The *C*-resolvent set of A, $\varrho_C(A)$, is the set of all complex numbers λ such that $\lambda - A$ is injective and $R(C) \subseteq R(\lambda - A)$.

If C = I, a local integrated C-semigroup is in fact a local integrated semigroup. We also call a local C-semigroup a local 0-times integrated C-semigroup.

DEFINITION 2.2. Let $n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$ and $\tau > 0$. The Cauchy problem $C_{n+1}(\tau)$ is *C*-wellposed if for every $x \in X$ there exists a unique solution of $C_{n+1}(\tau)$.

Now we demonstrate the relations between local *n*-times integrated *C*-semigroups and the *C*-wellposedness of $C_{n+1}(\tau)$. To this end, we give a result analogous to [AEK, Proposition 2.3]. The proof is also similar, so it is omitted.

PROPOSITION 2.3. Let $n \in \mathbb{N}_0$ and $0 < \tau \in \mathbb{R}$. Assume that $C_{n+1}(\tau)$ is C-wellposed. Then there exists a unique nondegenerate strongly continuous

function $S: [0, \tau) \to B(X)$ such that for every $x \in X$, $\int_0^t S(s)x \, ds \in D(A)$ and

(1)
$$A\int_{0}^{t} S(s)x \, ds = S(t)x - \frac{t^{n}}{n!}Cx, \quad t \in [0, \tau).$$

PROPOSITION 2.4. Let $\{S(t) : t \in [0, \tau)\}$ be a nondegenerate strongly continuous family of bounded operators such that $S(t)A \subseteq AS(t)$ and CS(t)= S(t)C. Suppose that for every $x \in X$, $\int_0^t S(s)x \, ds \in D(A)$ and satisfies (1). Then:

(i) S(t) is a local n-times integrated C-semigroup whose generator is an extension of A.

(ii) $C_{k+1}(\tau)$ is C-wellposed.

Proof. (i) Fix $t \in (0, \tau)$. For 0 < r < t, since A commutes with $S(\cdot)$, we have

$$\begin{split} \frac{d}{dr}S(t-r)\int_{0}^{r}S(\sigma)x\,d\sigma \\ &= -S(t-r)A\int_{0}^{r}S(\sigma)x\,d\sigma - \frac{(t-r)^{n-1}}{(n-1)!}\int_{0}^{r}S(\sigma)Cx\,d\sigma + S(t-r)S(r)x \\ &= -S(t-r)S(r)x + S(t-r)\frac{r^{n}}{n!}Cx - \frac{(t-r)^{n-1}}{(n-1)!}\int_{0}^{r}S(\sigma)Cx\,d\sigma \\ &+ S(t-r)S(r)x \\ &= \frac{r^{n}}{n!}S(t-r)Cx - \frac{(t-r)^{n-1}}{(n-1)!}\int_{0}^{r}S(\sigma)Cx\,d\sigma. \end{split}$$

Integrating with respect to r from 0 to s, where 0 < s < t, gives

$$S(t-s)\int_{0}^{s} S(\sigma)x \, d\sigma = \int_{0}^{s} \frac{r^{n}}{n!} S(t-r)Cx \, dr - \int_{0}^{s} \frac{(t-r)^{n-1}}{(n-1)!} \int_{0}^{r} S(\sigma)Cx \, d\sigma \, dr.$$

Thus,

$$S(t-s)S(s)x = S(t-s)A\int_{0}^{s} S(\sigma)x \, d\sigma + S(t-s)\frac{s^{n}}{n!}Cx$$

= $AS(t-s)\int_{0}^{s} S(\sigma)x \, d\sigma + S(t-s)\frac{s^{n}}{n!}Cx$
= $A\int_{0}^{s} \frac{r^{n}}{n!}S(t-r)Cx \, dr - A\int_{0}^{s} \frac{(t-r)^{n-1}}{(n-1)!}\int_{0}^{r} S(\sigma)Cx \, d\sigma \, dr$

$$\begin{split} &+ \frac{s^n}{n!} S(t-s) Cx \\ \stackrel{(a)}{=} A \int_{t-s}^t \frac{(t-r)^n}{n!} S(r) Cx \, dr - \int_0^s \frac{(t-r)^{n-1}}{(n-1)!} S(r) Cx \, dr \\ &+ \int_0^s \frac{(t-r)^{n-1}}{(n-1)!} \cdot \frac{r^n}{n!} C^2 x \, dr + \frac{s^n}{n!} S(t-s) Cx \\ \stackrel{(b)}{=} -\frac{s^n}{n!} A \int_0^{t-s} S(r) Cx \, dr + A \int_{t-s}^t \frac{(t-\sigma)^{n-1}}{(n-1)!} \int_0^\sigma S(r) Cx \, dr \, d\sigma \\ &- \int_0^s \frac{(t-r)^{n-1}}{(n-1)!} S(r) Cx \, dr + \int_0^s \frac{(t-r)^{n-1}}{(n-1)!} \cdot \frac{r^n}{n!} C^2 x \, dr + \frac{s^n}{n!} S(t-s) Cx \\ \stackrel{(c)}{=} \frac{s^n}{n!} \cdot \frac{(t-s)^n}{n!} C^2 x + \Big(\int_{t-s}^t -\int_0^s \Big) \frac{(t-r)^{n-1}}{(n-1)!} S(r) Cx \, dr \\ &- \int_{t-s}^t \frac{(t-r)^{n-1}}{(n-1)!} \cdot \frac{r^n}{n!} C^2 x \, dr + \int_0^s \frac{(t-r)^{n-1}}{(n-1)!} S(r) Cx \, dr \\ &= \frac{1}{(n-1)!} \Big(\int_0^t -\int_0^s -\int_0^{t-s} \Big) (t-r)^{n-1} S(r) Cx \, dr, \end{split}$$

where the identity (a) follows from (1) by our hypothesis, (b) holds by integration by parts, and (c) holds by applying (1) twice: to the integrands of \int_{t-s}^{t} and \int_{0}^{t-s} .

Hence $\{S(t) : t \in [0, \tau)\}$ is a local *n*-times integrated *C*-semigroup. Obviously its generator is an extension of *A*.

(ii) We only need to show the solution of $C_{k+1}(\tau)$ is unique. Let $v(\cdot)$ be a solution of $C_{k+1}(\tau)$ with initial value x. For $r < t < \tau$, define u(r) = S(t-r)v(r); then

$$\frac{d}{dr}S(t-r)v(r) = -S(t-r)Av(r) - \frac{(t-r)^{n-1}}{(n-1)!}Cv(r) + S(t-r)Av(r) - S(t-r)\frac{r^n}{n!}Cx.$$

Integrating it from 0 to t, we have

$$0 = \int_{0}^{t} \frac{(t-r)^{n-1}}{(n-1)!} Cv(r) \, dr + \int_{0}^{t} \frac{r^{n}}{n!} S(t-r) Cx \, dr$$

M. Li et al.

$$= -\int_{0}^{t} \frac{(t-r)^{n}}{n!} Cv'(r) dr + \int_{0}^{t} \frac{r^{n}}{n!} S(t-r) Cx dr$$
$$= \int_{0}^{t} \frac{(t-r)^{n}}{n!} [-Cv'(r) + S(r) Cx] dr.$$

The above equation holds for all $t \in [0, \tau)$, hence Cv'(t) = S(t)Cx, that is, $v(t) = \int_0^t S(s)x \, ds$ for all $t \in [0, \tau)$.

THEOREM 2.5. Suppose A is closed and $CA \subseteq AC$. Suppose that $C_{n+1}(\tau)$ is C-wellposed, and $S(\cdot)$ is given by Proposition 2.3. Then:

- (a) S(t)x = 0 for all $t \in [0, \tau)$ implies x = 0.
- (b) S(t)C = CS(t) for all $t \in [0, \tau)$.
- (c) For $x \in D(A)$, $S(t)x \in D(A)$ and AS(t)x = S(t)Ax.
- (d) S(t)S(s) = S(s)S(t) for all $0 \le s, t < \tau$.
- (e) Suppose $A = C^{-1}AC$. Then $x \in D(A)$ and Ax = y if and only if

$$S(t)x = \int_{0}^{t} S(s)y \, ds + \frac{t^n}{n!} Cx, \quad \forall t \in [0, \tau).$$

(f) S(t) is a local n-times integrated C-semigroup generated by an extension of A, $C^{-1}AC$.

(g) Suppose $\varrho_C(A) \neq \emptyset$. Then for all $\lambda \in \varrho_C(A)$,

$$(\lambda - A)^{-1}CS(t) = S(t)(\lambda - A)^{-1}C, \quad t \in [0, \tau).$$

Proof. (a) follows from the definition of C-wellposedness.

(b) holds since A commutes with C and the solution is unique.

(c) Let
$$x \in D(A)$$
. To see $S(t)x \in D(A)$ with $AS(t)x = S(t)Ax$, define

$$\widetilde{S}(t)x = \int_{0}^{t} S(t)Ax \, ds + \frac{t^{n}}{n!}Cx.$$

Then

$$\begin{split} A \int_{0}^{t} \widetilde{S}(s) x \, ds &= A \int_{0}^{t} \left(\int_{0}^{s} S(r) Ax \, dr + \frac{s^{n}}{n!} Cx \right) ds \\ &= \int_{0}^{t} \left(A \int_{0}^{s} S(r) Ax \, dr \right) ds + \frac{t^{n+1}}{(n+1)!} CAx \\ &= \int_{0}^{t} S(s) Ax \, ds - \frac{t^{n+1}}{(n+1)!} CAx + \frac{t^{n+1}}{(n+1)!} CAx \\ &= \widetilde{S}(t) x - \frac{t^{n}}{n!} Cx; \end{split}$$

by the uniqueness of the solution, we have $\widetilde{S}(t)x = S(t)x$. So we also have

$$A\int_{0}^{t} S(s)x \, ds = \int_{0}^{t} S(s)Ax \, ds;$$

differentiating it with respect to t, and using the closedness of A, we obtain $S(t)x \in D(A)$ with AS(t)x = S(t)Ax.

(d) Choose $s \in [0, \tau)$ and $x \in X$. By (c) we have

$$A\int_{0}^{t} S(s)S(r)x \, dr = S(s)A\int_{0}^{t} S(r)x \, dr = S(s)S(t)x - \frac{t^{n}}{n!}S(s)Cx,$$

so $u(t) = \int_0^t S(s)S(r)x \, dr$ is a solution of $C_{n+1}(\tau)$ at CS(s)x (since CS(s)x = S(s)Cx by (b)). But Proposition 2.3 implies that so is $\int_0^t S(r)S(s)x \, dr$. Hence, by uniqueness, $\int_0^t S(s)S(r)x \, dr = \int_0^t S(r)S(s)x \, dr$ for all $t \in [0, \tau)$, which implies that S(s)S(t)x = S(t)S(s)x.

(e) Necessity follows from the definition of S(t) and (c). Sufficiency. Since

(2)
$$S(t)x = \int_{0}^{t} S(s)y \, ds + \frac{t^n}{n!} Cx$$

and

$$S(t)x = A\int_{0}^{t} S(s)x \, ds + \frac{t^{n}}{n!}Cx,$$

we have $A \int_0^t S(s)x \, ds = \int_0^t S(s)y \, ds$, which means that $S(t)x \in D(A)$ and AS(t)x = S(t)y as A is closed; also, from (2) we know that $Cx \in D(A)$, and

$$ACx = \frac{n!}{t^n} \left(AS(t)x - A \int_0^t S(s)y \, ds \right) = Cy \in R(C),$$

thus $x \in D(A)$.

(f) It follows from (b), (c), and Propositions 2.3 and 2.4 that S(t) is an *n*-times integrated *C*-semigroup generated by an extension, *B*, of *A*. From the proof of (e), we see that $B \subseteq C^{-1}AC$. Conversely, if $Cx \in D(A)$ and $ACx = Cy \in R(C)$, then

$$S(t)Cx = \int_{0}^{t} S(s)Cy \, ds + \frac{t^{n}}{n!}C^{2}x;$$

since C is injective and commutes with S(t), it follows that $x \in D(B)$ and Bx = y.

(g) Let $\lambda \in \rho_C(A)$ and $x \in X$. Then

$$A\int_{0}^{t} S(s)x \, ds = S(t)x - \frac{t^{n}}{n!}Cx,$$

so that

$$(\lambda - A)^{-1}CA\int_{0}^{t} S(s)x \, ds = (\lambda - A)^{-1}CS(t)x - \frac{t^{n}}{n!}(\lambda - A)^{-1}C^{2}x.$$

Since $(\lambda - A)^{-1}C$ commutes with A, we have

$$A\int_{0}^{t} (\lambda - A)^{-1} CS(s) x \, ds = (\lambda - A)^{-1} CS(t) x - \frac{t^{n}}{n!} (\lambda - A)^{-1} C^{2} x,$$

and thus (g) follows from the uniqueness of the solution. \blacksquare

REMARKS 2.6. Recall that we assumed in Section 1 that C is injective. (a) If $CA \subseteq AC$, then

(3)
$$x \in D(A), \ Ax = y \iff S(t)x = \int_{0}^{t} S(s)y \, ds + \frac{t^n}{n!}Cx$$

implies $A = C^{-1}AC$.

(b) If C commutes with all S(t), then (3) also implies $CA \subseteq AC$.

(c) By Theorem 2.5(d), if $\{S(t) : t \in [0, \tau)\}$ gives the solution of $C_{n+1}(\tau)$, then S(t)S(s) = S(s)S(t) for all $s, t \in [0, \tau)$. On the other hand, if $\{S(t) : t \in [0, \tau)\}$ is a local *n*-times integrated semigroup then S(t)S(s) = S(s)S(t) for all $s, t \in [0, \tau)$ with $s+t < \tau$; we do not know whether this identity holds for all $s, t \in [0, \tau)$.

(d) If $C_{n+1}(\tau)$ is C-wellposed, then for every $x \in D(A^{n+1})$,

$$T(t)x := \int_{0}^{t} S(s)A^{k+1}x \, ds + \frac{t^{k}}{k!}A^{k}Cx + \dots + tACx + Cx$$

gives the solution of $C_0(\tau)$ at Cx, where S(t) is given by Proposition 2.3.

(e) We will see in the next section that there exists a local integrated C-semigroup whose generator has empty C-resolvent.

3. Relations to second order Cauchy problems. Consider the second order Cauchy problem

$$(ACP_2, \tau) \qquad \begin{cases} u''(t) = Au(t) & (-\tau < t < \tau), \\ u(0) = x, \quad u'(0) = y. \end{cases}$$

Let $x, y \in X$. A function u(t) is called a *mild solution* of (ACP_2, τ) at (x, y) if

$$w(t) := \int_0^t (t-s)u(s) \, ds \in D(A)$$

and

$$\frac{d^2}{dt^2}w(t) = Aw(t) + x + ty, \quad -\tau < t < \tau.$$

 (ACP_2, τ) is called *C*-wellposed if it has a unique mild solution for every pair of $x, y \in R(C)$.

A strongly continuous family $\{C(t)\}_{t \in (-\tau,\tau)}$ of operators is called a *local* C-cosine function if C(0) = C and

(4)
$$C(t+s)C + C(t-s)C = 2C(s)C(t), \quad \forall s, t, t+s, t-s \in (-\tau, \tau).$$

C(t) is called *nondegenerate* if $C(t)x \equiv 0$ for all $t \in (-\tau, \tau)$ implies x = 0. If C(t) is nondegenerate, then the *generator*, A, is defined by

$$x \in D(A)$$
 and $Ax = y \iff C(t)x = \int_{0}^{t} (t-s)C(s)y\,ds + Cx, \ t \in (-\tau, \tau).$

We collect the properties of local C-cosine functions in the following.

PROPOSITION 3.1. Let $\{C(t)\}_{t \in (-\tau,\tau)}$ be a local C-cosine function generated by A. Then:

- (a) C(t)C = CC(t) for all $t \in (-\tau, \tau)$.
- (b) C(-t) = C(t) for all $t \in (-\tau, \tau)$.
- (c) C(t)C(s) = C(s)C(t) for all $t, s \in (-\tau, \tau)$.
- (d) $C(t)A \subseteq AC(t)$ for all $t \in (-\tau, \tau)$.
- (e) $C^{-1}AC = A$.

(f) $x \in D(A) \Leftrightarrow \frac{d^2}{dt^2}C(t)x|_{t=0}$ exists and is in R(C) and C''(0)x = ACx = CAx and C'(0)x = 0.

(g)
$$\int_0^t (t-s)C(s)x \, ds \in D(A)$$
 and $A \int_0^t (t-s)C(s)x \, ds = C(t)x - Cx$.

Proof. (a) and (b) are obvious from the definition of a local C-cosine function.

(c) By (b), we can assume that $t, s \ge 0$.

If $t + s < \tau$, we have C(t)C(s) = C(s)C(t) from (4).

If $t+s > \tau$ while $t/2+s < \tau$, then from $2C(t/2)C(t/2) = C(t)C+C^2$, we get $C(t)C = 2C(t/2)C(t/2) - C^2$; since C is injective, we only need to show C(t/2)C(t/2)C(s) = C(s)C(t/2)C(t/2). But this holds since $t/2+s < \tau$, so C(t/2) commutes with C(s).

Iterating this process proves (c) for all $t, s \in (-\tau, \tau)$.

(d) Let $x \in D(A)$. Then $C(t)x = \int_0^t (t-s)C(s)Ax \, ds + Cx$, which combined with (a) and (c) gives

$$C(t)C(r)x = \int_{0}^{s} (t-s)C(s)C(r)Ax\,ds + CC(r)x$$

and hence $C(r)x \in D(A)$ with AC(r)x = C(r)Ax.

(e) can be shown similarly to Theorem 2.5(e) and Remark 2.6(a).

(f) We only need to prove the sufficiency. Suppose C''(0)x = Cy and $C'(0)x = 0, t \in (-\tau, \tau)$, and h is small enough. Then

$$\frac{1}{4h^2}(C(t+2h) + C(t-2h) - 2C(t))Cx = \frac{1}{2h^2}C(t)(C(2h) - C)x.$$

Hence C(t)Cx is twice differentiable and

$$C''(t)Cx = C(t)C''(0)x = C(t)Cy.$$

Integrating it with respect to t twice, we have

$$C(t)Cx = \int_{0}^{t} (t-s)C(s)Cy \, ds + C^{2}x,$$

which implies that $x \in D(A)$ since C is injective.

The proof of (g) is contained in that of [WW, Proposition 2.4].

We need the following relations between second order Cauchy problems and cosine functions.

LEMMA 3.2 ([WW]). Suppose A is closed, $C \in B(X)$ is injective and $C^{-1}AC = A$. Then the following statements are equivalent:

- (a) (ACP_2, τ) is C-wellposed.
- (b) There exists a family $\{C(t)\}_{t \in (-\tau,\tau)}$ satisfying:
 - (i) $\int_0^t (t-s)C(s)x \, ds \in D(A)$ and $t \mapsto A \int_0^t (t-s)C(s)x \, ds$ is continuous in $(-\tau, \tau)$.

(ii)
$$A \int_0^t (t-s)C(s)x \, ds = C(t)x - Cx$$
 for all $t \in (-\tau, \tau)$.

(iii)
$$C(t)A \subseteq AC(t)$$
.

(c) A generates a local C-cosine function $\{C(t)\}_{t \in (-\tau,\tau)}$.

Now we are in a position to clarify the relations between the second Cauchy problem (ACP_2, τ) and the twice integrated Cauchy problem

$$\widetilde{C}_{2}(\tau) \qquad \begin{cases} \mathcal{U}'(t) = \mathcal{A}\mathcal{U}(t) + t \begin{pmatrix} x \\ y \end{pmatrix}, \\ \mathcal{U}(0) = 0, \end{cases}$$

where $\mathcal{A} = \begin{pmatrix} 0 & 1 \\ A & 0 \end{pmatrix}$ on $E = X \times X$.

THEOREM 3.3. (ACP₂, τ) is C-wellposed if and only if $\widetilde{C}_2(\tau)$ is C-

wellposed, where $\mathcal{C} := \begin{pmatrix} 0 & C \\ C & 0 \end{pmatrix}$.

Proof. Suppose (ACP_2, τ) is C-wellposed and C(t) is given by Lemma 3.2. For $x, y \in X$, let

$$u_1(t) = \int_0^t (t-s)C(s)x \, ds + \int_0^t \frac{(t-s)^2}{2}C(s)y \, ds,$$
$$u_2(t) = \int_0^t (C(s) - C)x \, ds + \int_0^t (t-s)C(s)y \, ds.$$

Then $\mathcal{U}(t) = \begin{pmatrix} u_1(t) \\ u_2(t) \end{pmatrix}$ gives the solution of $\widetilde{C}_2(\tau)$ at $\begin{pmatrix} Cx \\ Cy \end{pmatrix}$.

Suppose $\mathcal{U}(t) = \begin{pmatrix} u_1(t) \\ u_2(t) \end{pmatrix}$ is the solution of

$$\mathcal{U}'(t) = \mathcal{A}\mathcal{U}(t), \quad \mathcal{U}(0) = 0.$$

Then $u'_1(t) = u_2(t)$, $u'_2(t) = Au_1(t)$ with $u_1(0) = u_2(0) = 0$, which means that $u''_1(t) = Au_1(t)$ and $u_1(0) = u'_1(0) = 0$. Hence $u_1(t)$ gives a solution of (ACP_2, τ) at x = 0. Since the solution is unique, we have $u_1(t) = u_2(t) = 0$.

Conversely, let $\widetilde{C}_2(\tau)$ be \mathcal{C} -wellposed, and suppose $\mathcal{U}(t) = (u_1(t) \ u_2(t))^{\top}$ is the solution of $\mathcal{U}'(t) = \mathcal{A} \mathcal{U}(t) + t(0 \ Cx)^{\top}$, $\mathcal{U}(0) = 0$. Then $u''_1(t) = Au_1(t) + Cx$ gives a mild solution of (ACP_2, τ) . The uniqueness of the solution can be proved as above. \blacksquare

From this theorem we can derive a local twice integrated C-semigroup from every local C-cosine function. So the examples in [HH] can serve as examples of local twice integrated C-semigroups. Therefore, we have examples of local integrated C-semigroups whose generator has empty C-resolvent. This is different from the generators of local integrated semigroups as it was shown in [AEK] that every such generator has nonempty resolvent.

4. Extension of solutions. In this section we show that a solution given on a finite interval can always be extended if a loss of regularity is accepted.

THEOREM 4.1. Let $\tau > 0$ and $k \in \mathbb{N}$. Assume that $C_{k+1}(\tau)$ is Cwellposed. Then $C_{2k+1}(2\tau)$ is C^2 -wellposed. Thus, for all $\tau' > 0$, there exist $k', l \in \mathbb{N}$ such that $C_{k'}(\tau')$ is C^l -wellposed.

Proof. Let $\tau_0 < \tau$. All that needs to be shown is that $C_{2k+1}(2\tau_0)$ has a unique solution. Define for $t \in [0, \tau_0)$,

$$T_{2k-m}(t) = \int_{0}^{t} \frac{(t-s)^{k-m-1}}{(k-m-1)!} S_k(s) C \, ds, \quad 0 \le m \le k,$$

and for $\tau_0 \leq t \leq 2\tau_0$,

$$T_{2k}(t) = S_k(\tau_0)S_k(t-\tau_0) + \sum_{m=1}^{k-1} (\tau_0^m T_{2k-m}(t-\tau_0) + (t-\tau_0)^m T_{2k-m}(\tau_0)).$$

Then $T_{2k} : [0, 2\tau_0] \to B(X)$ is strongly continuous. Moreover, the function $v(t) = \int_0^t T_{2k}(s) x \, ds$ is a solution of $C_{2k+1}(2\tau_0)$ at $C^2 x$. The verification is analogous to that of [AEK, Theorem 4.1], so it is omitted.

We must show that the solution of $C_{2k+1}(2\tau)$ is unique. Although we can deduce it from Proposition 2.4 and Theorem 2.5, it can also be derived directly from the *C*-wellposedness of $C_{k+1}(\tau)$. Let v(t) be a solution of $C_{2k+1}(2\tau)$ with initial value x = 0, that is, $v'(t) = Av(t), t \in [0, 2\tau)$ and v(0) = 0. Then the restriction of v(t) to $[0, \tau)$ is also a solution of $C_{k+1}(\tau)$ with initial value x = 0; by the wellposedness of $C_{k+1}(\tau)$, we have $v(t) \equiv 0$ on $[0, \tau)$. Since $v(\cdot)$ is continuous, $v(\tau) = 0$. Let $w(t) = v(t + \tau), t \in [0, \tau)$. Then w is also a solution of $C_{k+1}(\tau)$ at x = 0, and the same reasoning leads to $w(t) \equiv 0$ on $[0, \tau)$, that is, $v(t) \equiv 0$ on $[\tau, 2\tau)$. In sum, $v(t) \equiv 0$ on $[0, 2\tau)$.

5. Generation of local integrated *C*-semigroups. Suppose the Cauchy problem $C_{k+1}(\tau)$ is *C*-wellposed, and the strongly continuous family S(t) is given by Proposition 2.3. Let $\gamma \in [0, \tau)$, and define the local Laplace transform of *S* by

$$L_{\gamma}(\lambda) = \int_{0}^{\gamma} e^{-\lambda s} S(s) \, ds, \quad \lambda \in \mathbb{R}.$$

Note that $L_{\gamma}(\lambda)$ can be viewed as the Laplace transform of

$$\widetilde{S}(s) = \begin{cases} S(s), & s \le \gamma, \\ 0, & s > \gamma. \end{cases}$$

For $\lambda \in C$ and $t \geq 0$, let

$$g_{\gamma}(\lambda) = \int_{0}^{\gamma} e^{\lambda(\gamma-s)} \frac{s^{k-1}}{(k-1)!} \, ds = \frac{e^{\lambda\gamma}}{\lambda^{k}} + q_{\gamma}(\lambda)$$

where

$$q_{\gamma}(\lambda) = -\frac{1}{\lambda^k} - \frac{\gamma}{\lambda^{k-1}} - \frac{\gamma^2}{2!\lambda^{k-2}} - \dots - \frac{\gamma^{k-1}}{(k-1)!\lambda}.$$

By the above definition,

$$g_{\gamma}(0) = \int_{0}^{\gamma} \frac{s^{k-1}}{(k-1)!} \, ds = \frac{\gamma^{k}}{k!}$$

PROPOSITION 5.1. Let $\gamma \in [0, \tau)$ and $\lambda \geq 0$. Then $L_{\gamma}(\lambda)$ satisfies:

(a) For every $x \in X$, $L_{\gamma}(\lambda)x$ is infinitely differentiable with respect to λ , and there exists $M_{\gamma} > 0$ such that

$$\left\|\frac{\lambda^n}{(n-1)!}\frac{d^{n-1}}{d\lambda^{n-1}}L_{\gamma}(\lambda)\right\| \le M_{\gamma}, \quad \forall \lambda \ge 0, \ n \in \mathbb{N}.$$

(b) For every $x \in X$, $L_{\gamma}(\lambda)x \in D(A)$ and

$$(\lambda - A)L_{\gamma}(\lambda)x = e^{-\gamma\lambda}(g_{\gamma}(\lambda)Cx - S(\gamma)x).$$

(c) $L_{\gamma}(\lambda)L_{\gamma}(\mu) = L_{\gamma}(\mu)L_{\gamma}(\lambda), \ L_{\gamma}(\lambda)C = CL_{\gamma}(\lambda).$ (d) For every $x \in D(A), \ AL_{\gamma}(\lambda)x = L_{\gamma}(\lambda)Ax.$

 $(a) \quad 107 \quad 0007 \quad g \quad w \in D \quad (11), \quad 1127 \quad (77) \quad 257 \quad (77) \quad 107$

Proof. (a) Obviously $L_{\gamma}(\lambda)$ is infinitely differentiable with

$$\frac{d^{n-1}}{d\lambda^{n-1}}L_{\gamma}(\lambda)x = (-1)^{n-1}\int_{0}^{\gamma} e^{-\lambda s} s^{n-1}S(s)x\,ds,$$

hence

$$\left\|\frac{\lambda^n}{(n-1)!}\frac{d^{n-1}}{d\lambda^{n-1}}L_{\gamma}(\lambda)\right\| \leq \sup_{0\leq s\leq \gamma} \|S(s)\| \cdot \frac{\lambda^n}{(n-1)!} \int_0^\infty e^{-\lambda s} s^{n-1} ds$$
$$= \sup_{0\leq s\leq \gamma} \|S(s)\| =: M_{\gamma}.$$

(b) Since

$$L_{\gamma}(\lambda) = \int_{0}^{\gamma} e^{-\lambda s} \frac{d}{ds} \int_{0}^{s} S(r) dr ds$$
$$= e^{-\lambda \gamma} \int_{0}^{\gamma} S(r) dr + \lambda \int_{0}^{\gamma} e^{-\lambda s} \int_{0}^{s} S(r) dr ds,$$

by the closedness of A we have $L_{\gamma}(\lambda)x \in D(A)$ and

$$\begin{split} (\lambda - A)L_{\gamma}(\lambda)x &= \lambda L_{\gamma}(\lambda)x - e^{-\lambda\gamma} \left[S(\gamma)x - \frac{\gamma^{k}}{k!}Cx \right] \\ &-\lambda \int_{0}^{\gamma} e^{-\lambda s} \left[S(s)x - \frac{s^{k}}{k!}Cx \right] ds \\ &= -e^{-\lambda\gamma}S(\gamma)x + e^{-\lambda\gamma}\frac{\gamma^{k}}{k!}Cx + \lambda \int_{0}^{\gamma} e^{-\lambda s}\frac{s^{k}}{k!}Cx ds \\ &= -e^{-\lambda\gamma}S(\gamma)x + \int_{0}^{\gamma} e^{-\lambda s}\frac{s^{k-1}}{(k-1)!}Cx ds \\ &= -e^{-\lambda\gamma}S(\gamma)x + e^{-\lambda\gamma}g_{\gamma}(\lambda)Cx. \end{split}$$

(c) holds since S(t) commutes with S(s) for all $s, t \in [0, \tau)$ by Theorem 2.5.

M. Li et al.

(d) For $x \in D(A)$, by Theorem 2.5, we have $S(t)x \in D(A)$ with AS(t)x = S(t)Ax, so

$$AL_{\gamma}(\lambda)x = A\int_{0}^{\gamma} e^{-\lambda s} S(s)x \, ds = \int_{0}^{\gamma} e^{-\lambda s} S(s)Ax \, ds = L_{\gamma}(\lambda)Ax,$$

which is (d). \blacksquare

We call $\{L_{\gamma}(\lambda) : \gamma \in [0, \tau), \lambda \geq 0\} \subset B(X)$ an asymptotic *C*-resolvent for *A* if there exists a strongly continuous family $\{V(t) : t \in [0, \tau)\} \subset B(X)$ such that (a), (c) and (d) hold and (b) holds with $S(\gamma)$ replaced by $V(\gamma)$. Now we investigate the converse of Proposition 5.1.

THEOREM 5.2. Let A be a closed operator. Suppose that A has an asymptotic C-resolvent $\{L_{\gamma}(\lambda) : \gamma \in [0, \tau), \lambda \geq 0\}$. Then the Cauchy problem $C_{k+2}(\tau)$ is C-wellposed.

Proof. By (a) and the Arendt–Widder theorem [Ar], there exists a Lipschitz continuous operator-valued function $S_{\gamma}(t)$ such that

(5)
$$L_{\gamma}(\lambda) = \lambda \int_{0}^{\infty} e^{-\lambda t} S_{\gamma}(t) dt, \quad \gamma \in (0, \tau), \ \lambda \ge 0,$$

and $S_{\gamma}(0) = 0$, $||S_{\gamma}(t+h) - S_{\gamma}(t)|| \le M_{\gamma}h$. For $x \in X$, by (b), $L_{\gamma}(\lambda)x \in D(A)$,

$$AL_{\gamma}(\lambda)x = \lambda A \int_{0}^{\infty} e^{-\lambda t} S_{\gamma}(t)x \, dt = \lambda^{2} A \int_{0}^{\infty} e^{-\lambda t} \left(\int_{0}^{t} S_{\gamma}(s)x \, ds \right) dt;$$

on the other hand, also by (b),

$$\begin{split} AL_{\gamma}(\lambda)x &= -e^{-\gamma\lambda}(g_{\gamma}(\lambda)Cx - V(\gamma)x) + \lambda L_{\gamma}(\lambda)x\\ &= \lambda^{2}\int_{0}^{\infty} e^{-\lambda t}S_{\gamma}(t)x\,dt - \int_{0}^{\gamma} e^{-\lambda s}\frac{s^{k-1}}{(k-1)!}Cx\,ds\\ &+ \lambda\int_{\gamma}^{\infty} e^{-\lambda s}V(\gamma)x\,ds\\ &= \lambda^{2}\int_{0}^{\infty} e^{-\lambda t}S_{\gamma}(t)x\,dt - \lambda^{2}\int_{0}^{\infty} e^{-\lambda t}f(t)Cx\,dt\\ &+ \lambda^{2}\int_{0}^{\infty} e^{-\lambda t}h(t)V(\gamma)x\,dt, \end{split}$$

where f(t) is the twofold integral of

$$f_1(t) = \begin{cases} t^{k-1}/(k-1)!, & t < \gamma, \\ 0, & t \ge \gamma, \end{cases}$$

and h(t) is the integral of

$$h_1(t) = \begin{cases} 0, & t < \gamma, \\ 1, & t \ge \gamma. \end{cases}$$

Combining the two identities, we have

$$A\int_{0}^{\infty} e^{-\lambda t} \int_{0}^{t} S_{\gamma}(s) x \, ds \, dt = \int_{0}^{\infty} e^{-\lambda t} (S_{\gamma}(t)x - f(t)Cx + h(t)V(\gamma)x) \, dt.$$

By [XL, Chap. 1, Theorem 1.10], $\int_0^t S_{\gamma}(s) x \, ds \in D(A)$ and

$$A\int_{0}^{t} S_{\gamma}(s)x \, ds = S_{\gamma}(t)x - f(t)Cx + h(t)V(\gamma)x;$$

in particular, since $f(t) = t^{k+1}/(k+1)!$ and h(t) = 0 on $[0, \gamma)$, for $t \in [0, \gamma)$ we have

(6)
$$A\int_{0}^{t} S_{\gamma}(s)x \, ds = S_{\gamma}(t)x - \frac{t^{k+1}}{(k+1)!}Cx,$$

which gives the solution of $C_{k+2}(\gamma)$. Now let $x \in D(A)$. Since $L_{\gamma}(\lambda)$ commutes with A by the assumption (d), we have $S_{\gamma}(t)x \in D(A)$ with $AS_{\gamma}(t)x = S_{\gamma}(t)Ax$ by (5) and the uniqueness of the Laplace transform. So (3) implies

(7)
$$S'_{\gamma}(t)x = AS_{\gamma}(t)x + \frac{t^k}{k!}Cx, \quad \forall x \in D(A);$$

also, by (d), $S_{\gamma}(t)C = CS_{\gamma}(t)$.

We define S(t) on $[0, \tau)$ by

$$S(t)x = S_{\gamma}(t)x$$
 for $t \in [0, \gamma), \ \gamma \in [0, \tau)$ and $x \in X$.

Then S(t)x is well defined and $\{S(t)x : 0 \le t < \tau\}$ gives a solution of $C_{k+2}(\tau)$. Indeed, by (6) and (7), for $\gamma_1, \gamma_2 \in [0, \tau)$,

$$\frac{d}{dr}S_{\gamma_2}(t-r)\int_0^r S_{\gamma_1}(s)x\,ds$$

= $-S_{\gamma_2}(t-r)A\int_0^r S_{\gamma_1}(s)x\,ds - \frac{(t-r)^k}{k!}C\int_0^r S_{\gamma_1}(s)x\,ds$
 $+S_{\gamma_2}(t-r)A\int_0^r S_{\gamma_1}(s)x\,ds - S_{\gamma_2}(t-r)\frac{r^{k+1}}{(k+1)!}Cx$

for $x \in X$ and $0 \le r \le t < \min(\gamma_1, \gamma_2)$. Integrating both sides with respect to r from 0 to t, we get

$$0 = \int_{0}^{t} \frac{(t-r)^{k+1}}{(k+1)!} (-CS_{\gamma_1}(r)x + S_{\gamma_2}(r)Cx) dr$$

for all t, which implies $CS_{\gamma_1}(r)x = S_{\gamma_2}(r)Cx$. Since C is injective, we have $S_{\gamma_1}(t)x = S_{\gamma_2}(t)x$ for $t < \min(\gamma_1, \gamma_2)$. The uniqueness of the solution of $C_{k+2}(\tau)$ can be proved similarly.

COROLLARY 5.3. Suppose A is a densely defined closed operator. Then the Cauchy problem $C_{k+1}(\tau)$ is C-wellposed if and only if A has an asymptotic C-resolvent $\{L_{\gamma}(\lambda) : \gamma \in [0, \tau), \lambda \geq 0\}.$

Proof. By (5), the Lipschitz continuity of $S_{\gamma}(t)$ and the denseness of D(A), $S'_{\gamma}(t)$ can be extended to a bounded linear operator, T(t), on X, such that T(t)x gives the unique solution of $C_{k+1}(\tau)$.

Acknowledgements. The authors are greatly indebted to the referees for several helpful suggestions.

References

- [Ar] W. Arendt, Vector-valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), 327–352.
- [AEK] W. Arendt, O. El-Mennaoui, and V. Keyantuo, Local integrated semigroups: evolution with jumps of regularity, J. Math. Anal. Appl. 186 (1994), 572–595.
- [Ga] M. C. Gao, Local C-semigroups and local C-cosine functions, Acta Math. Sci. 19 (1999), 201–213.
- [HH] F. L. Huang and T. W. Huang, Local C-cosine family theory and application, Chinese Ann. Math. Ser. B 16 (1995), 213–232.
- [KS] C. C. Kuo and S. Y. Shaw, On α-times integrated C-semigroups and the abstract Cauchy problem, Studia Math. 142 (2000), 201–217.
- [dL] R. deLaubenfels, Existence Families, Functional Calculi and Evolution Equations, Lecture Notes in Math. 1570, Springer, 1994.
- [LS] Y. C. Li and S. Y. Shaw, N-times integrated C-semigroups and the abstract Cauchy problem, Taiwanese J. Math. 1 (1997), 75–102.
- [LZ] Q. R. Liu and H. X. Zhao, Local integrated C-semigroups and the abstract Cauchy problems (I), J. Northwest Univ. 24 (1994), 381–386 (in Chinese).
- [Su] G. Sun, Integrated C-semigroups, local C-semigroups, mild C-existence families and (ACP), dissertation, Nanjing Univ., 1993 (in Chinese).
- [TO] N. Tanaka and N. Okazawa, Local C-semigroups and local integrated semigroups, Proc. London Math. Soc. 61 (1990), 63–90.
- [WW] H. Y. Wang and S. W. Wang, C-cosine functions and the applications to the second order abstract Cauchy problems, in: Functional Analysis in China, Kluwer, 1996, 333–350.
- [Wa] S. W. Wang, Mild integrated C-existence families, Studia Math. 112 (1995), 251– 266.
- [WG] S. W. Wang and M. C. Gao, Automatic extensions of local regularized semigroups and local regularized cosine functions, Proc. Amer. Math. Soc. 127 (1999), 1651– 1663.
- [Wi] D. V. Widder, *The Laplace Transform*, Princeton Univ. Press, Princeton, 1941.
- [XL] T. J. Xiao and J. Liang, The Cauchy Problem for Higher-Order Abstract Differential Equations, Lecture Notes in Math. 1701, Springer, 1998.

[Zo] X. Zou, A generation theorem for local C-semigroups, J. Nanjing Univ. 34 (1998), 406–411.

Department of Mathematics Huazhong University of Science and Technology Wuhan, Hubei 430074 People's Republic of China E-mail: limiao1973@hotmail.com qzheng@hust.edu.cn Department of Mathematics Sichuan University Chengdu, Sichuan 610064 People's Republic of China

Received September 5, 2000 Revised version December 18, 2000

(4597)