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Invertible harmonic mappings beyond the Kneser theorem
and quasiconformal harmonic mappings

by

David Kalaj (Podgorica)

Abstract. We extend the Rado–Choquet–Kneser theorem to mappings with Lip-
schitz boundary data and essentially positive Jacobian at the boundary without restric-
tion on the convexity of image domain. The proof is based on a recent extension of the
Rado–Choquet–Kneser theorem by Alessandrini and Nesi and it uses an approximation
scheme. Some applications to families of quasiconformal harmonic mappings between Jor-
dan domains are given.

1. Introduction and statement of the main result. Harmonic map-
pings in the plane are univalent complex-valued harmonic functions of a
complex variable. Conformal mappings are a special case where the real and
imaginary parts are conjugate harmonic functions, satisfying the Cauchy–
Riemann equations. Harmonic mappings were studied classically by differ-
ential geometers because they provide isothermal (or conformal) coordinates
for minimal surfaces. More recently they have been actively investigated by
complex analysts as generalizations of univalent analytic functions, or con-
formal mappings. For the background to this theory we refer to the book
of Duren [6]. If w is a univalent complex-valued harmonic function, then
by Lewy’s theorem (see [24]), w has a non-vanishing Jacobian and conse-
quently, according to the inverse mapping theorem, w is a diffeomorphism.
Moreover, if w is a harmonic mapping of the unit disk U onto a convex Jor-
dan domain Ω, mapping the boundary T = ∂U onto ∂Ω homeomorphically,
then w is a diffeomorphism. This is a celebrated theorem of Rado, Kneser
and Choquet ([20]). This theorem has been extended in various directions
(see for example [11], [3], [31] and [32]). One of the recent extensions is the
following proposition, due to Nesi and Alessandrini, which is one of the main
tools in proving our main result.
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Proposition 1.1 ([2]). Let F : T→ γ ⊂ C be an orientation preserving
diffeomorphism of class C1 onto a simple closed curve γ of the complex
plane C. Let D be a bounded domain such that ∂D = γ. Let w = P [F ] ∈
C1(U; C), where P [f ] is the Poisson extension of F . The mapping w is a
diffeomorphism of U onto D if and only if

(1.1) Jw(eit) > 0 everywhere on T,

where Jw(eit) := limr→1− Jw(reit), and Jw(reit) is the Jacobian of w at reit.

In this paper we generalize the Rado–Kneser–Choquet theorem as fol-
lows.

Theorem 1.2 (The main result). Let F : T→ γ ⊂ C be an orientation
preserving Lipschitz weak homeomorphism of the unit circle T onto a C1,α

smooth Jordan curve γ. Let D be a bounded domain such that ∂D = γ. Then
Jw(eit)/|F ′(t)| exists a.e. in T and has a continuous extension Tw(eit) to T.
If

(1.2) Tw(eit) > 0 everywhere on T,

then the mapping w = P [F ] is a diffeomorphism of U onto D.

In order to compare this statement with Kneser’s Theorem, it is worth
noticing that when D is convex, then by Remark 3.2 the condition (1.2) is
automatically satisfied.

It follows from Theorem 1.2 that under its conditions, the Jacobian Jw
of w has a continuous extension to the boundary provided that F ∈ C1(T)
and it should be noticed that this does not mean that the partial derivatives
of w necessarily have a continuous extension to the boundary (see e.g. [26]
for a counterexample).

Note that we do not have any restriction on convexity of the image
domain in Theorem 1.2, which is proved in Section 3.

Using this theorem, in Section 4 we characterize all quasiconformal har-
monic mappings between the unit disk U and a smooth Jordan domain D
in terms of boundary data (see Theorem 4.1), which could be considered as
a variation of Proposition 1.1.

2. Preliminaries

2.1. Arc length parameterization of a Jordan curve. Suppose
that γ is a rectifiable Jordan curve in the complex plane C. Denote by l the
length of γ and let g : [0, l]→ γ be the arc length parameterization of γ, i.e.
a parameterization satisfying the condition

|g′(s)| = 1 for all s ∈ [0, l].
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We will say that γ is of class C1,α, 0 < α ≤ 1, if g is of class C1 and

sup
t,s

|g′(t)− g′(s)|
|t− s|α

<∞.

Definition 2.1. Let l = |γ|. We will say that a surjective function
F = g ◦ f : T → γ is a weak homeomorphism if f : [0, 2π] → [0, l] is a
nondecreasing surjective function.

Definition 2.2. Let f : [a, b]→ C be a continuous function. The mod-
ulus of continuity of f is

ω(t) = ωf (t) = sup
|x−y|≤t

|f(x)− f(y)|.

The function f is called Dini continuous if

(2.1)
�

0+

ωf (t)
t

dt <∞.

Here
	
0+ :=

	k
0 for some positive constant k. A smooth Jordan curve γ is

said to be Dini smooth if g′ is Dini continuous. Observe that every smooth
C1,α Jordan curve is Dini smooth.

Let

(2.2) K(s, t) = Re[(g(t)− g(s)) · ig′(s)]
for (s, t) ∈ [0, l]× [0, l]. We extend it on R× R by K(s± l, t± l) = K(s, t).
Note that ig′(s) is the inner unit normal vector of γ at g(s), and therefore
if γ is convex then

(2.3) K(s, t) ≥ 0 for every s and t.

Suppose now that F : R→ γ is an arbitrary 2π-periodic Lipschitz function
such that F |[0,2π) : [0, 2π)→ γ is an orientation preserving bijective function.
Then there exists an increasing continuous function f : [0, 2π] → [0, l] such
that

(2.4) F (τ) = g(f(τ)).

In the remainder of this paper we will identify [0, 2π) with the unit circle T,
and F (s) with F (eis). In view of the previous convention we have, for a.e.
eiτ ∈ T,

F ′(τ) = g′(f(τ)) · f ′(τ),

and therefore
|F ′(τ)| = |g′(f(τ))| · |f ′(τ)| = f ′(τ).

Along with the function K we will also consider the function KF defined by

KF (t, τ) = Re[(F (t)− F (τ)) · iF ′(τ)].
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It is easy to see that

(2.5) KF (t, τ) = f ′(τ)K(f(t), f(τ)).

Lemma 2.3. If γ is Dini smooth, and ω is the modulus of continuity of g′,
where g denotes the arc-length parameterization of γ, then

(2.6) |K(s, t)| ≤
min{|s−t|,l−|s−t|}�

0

ω(τ) dτ.

Proof. Note that

K(s, t) = Re[(g(t)− g(s)) · ig′(s)]

= Re
[
(g(t)− g(s)) · i

(
g′(s)− g(t)− g(s)

t− s

)]
,

and

g′(s)− g(t)− g(s)
t− s

=
t�

s

g′(s)− g′(τ)
t− s

dτ.

Therefore∣∣∣∣g′(s)− g(t)− g(s)
t− s

∣∣∣∣ ≤ t�

s

|g′(s)− g′(τ)|
t− s

dτ ≤
t�

s

ω(τ − s)
t− s

dτ

=
1

t− s

t−s�

0

ω(τ) dτ.

On the other hand

|g(t)− g(s)| ≤ sup
s≤x≤t

|g′(x)|(t− s) = t− s, s ≤ t.

It follows that

(2.7) |K(s, t)| ≤
|s−t|�

0

ω(τ) dτ.

Since K(s± l, t± l) = K(s, t), from (2.7) we obtain (2.6).

Lemma 2.4. If ω : [0, l] → [0,∞), ω(0) = 0, is a bounded function sat-
isfying

	
0+ ω(x) dx/x < ∞, then

	
0+ ω(ax) dx/x < ∞ for every constant a.

Moreover, for every 0 < y ≤ l,

(2.8)
y�

0+

1
x2

x�

0

ω(at) dt dx =
y�

0+

(
ω(ax)
x
− ω(ax)

y

)
dx.

Proof. The first statement is immediate. Making the substitutions u =	x
0 ω(at) dt and dv = x−2dx, and using the fact that

lim
α→0+

	α
0 ω(at) dt

α
= lim

α→0+
ω(αa) = ω(0) = 0,
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which follows from l’Hôpital’s rule, we obtain
y�

0+

1
x2

x�

0

ω(at) dt dx = lim
α→0+

y�

α

1
x2

x�

0

ω(at) dt dx

= − lim
α→0+

	x
0 ω(at) dt

x

∣∣∣∣y
α

+ lim
α→0+

y�

α

ω(ax)
x

dx

=
y�

0+

(
ω(ax)
x
− ω(ax)

y

)
dx.

A function ϕ : A → B is called L-bi-Lipschitz, where 0 < L < ∞, if
L−1|x− y| ≤ |ϕ(x)− ϕ(y)| ≤ L|x− y| for x, y ∈ A.

Lemma 2.5. If ϕ : R → R is an L-bi-Lipschitz mapping (or an L-
Lipschitz weak homeomorphism) such that ϕ(x + a) = ϕ(x) + b for some a
and b and every x, then there exists a sequence of L-bi-Lipschitz diffeomor-
phisms (respectively of diffeomorphisms) ϕn : R→ R such that ϕn converges
uniformly to ϕ, and ϕn(x+ a) = ϕn(x) + b.

Proof. We introduce appropriate mollifiers: fix a smooth function ρ :
R → [0, 1] which is compactly supported in (−1, 1) and satisfies

	
R ρ = 1.

For ε = 1/n consider the mollifier

(2.9) ρε(t) :=
1
ε
ρ

(
t

ε

)
.

It is compactly supported in (−ε, ε) and
	
R ρε = 1. Define

ϕε(x) = ϕ ∗ ρε =
�

R
ϕ(y)

1
ε
ρ

(
x− y
ε

)
dy =

�

R
ϕ(x− εz)ρ(z) dz.

Then
ϕ′ε(x) =

�

R
ϕ′(x− εz)ρ(z) dz.

It follows that

L−1
�

R
ρ(z) dz = L−1 ≤ |ϕ′ε(x)| ≤ L

�

R
ρ(z) dz = L.

The fact that ϕε(x) converges uniformly to ϕ follows from the Arzelà–Ascoli
theorem.

In the case when ϕ is an L-Lipschitz weak homeomorphism, we make
use of the following simple fact. Since ϕ is L-Lipschitz, the function

ϕm(x) =
mb

mb+ a
(ϕ(x) + x/m)

is Lm-bi-Lipschitz for some Lm > 0, with ϕm(x + a) = ϕm(x) + b, and ϕm
converges uniformly to ϕ. By the previous case, we can choose a diffeomor-



122 D. Kalaj

phism

(2.10) ψm = ϕm ∗ ρεm =
mb

mb+ a

(
ϕ ∗ ρεm +

x

m

)
such that ‖ψm − ϕm‖∞ ≤ 1/m. Thus

lim
n→∞

‖ψn − ϕ‖∞ = 0.

2.2. Harmonic functions and Poisson integral. The function

P (r, t) =
1− r2

2π(1− 2r cos t+ r2)
, 0 ≤ r < 1, t ∈ [0, 2π],

is called the Poisson kernel. The Poisson integral of a complex function
F ∈ L1(T) is the complex harmonic function given by

(2.11) w(z) = u(z) + iv(z) = P [F ](z) =
2π�

0

P (r, t− τ)F (eit) dt,

where z = reiτ ∈ U. The following claim holds:

Claim 1 (see e.g. [4, Theorem 3.13 b), p = ∞]). If w is a bounded
harmonic function, then there exists a function F ∈ L∞(T) such that w(z) =
P [F ](z).

We refer to the book of Axler, Bourdon and Ramey [4] for a good account
of harmonic functions.

The Hilbert transformation of a function χ ∈ L1(T) is defined by the
formula

χ̃(τ) = H(χ)(τ) = − 1
π

π�

0+

χ(τ + t)− χ(τ − t)
2 tan(t/2)

dt.

Here
	π
0+ Φ(t) dt := limε→0+

	π
ε Φ(t) dt. This integral is improper and con-

verges for a.e. τ ∈ [0, 2π]; this and other facts concerning H can be found
in Zygmund’s book [35, Chapter VII]. If f is a harmonic function then a
harmonic function f̃ is called the harmonic conjugate of f if f + if̃ is an
analytic function. Let χ, χ̃ ∈ L1(T). Then

(2.12) P [χ̃] = P̃ [χ],

where k̃(z) is the harmonic conjugate of k(z) (see e.g. [30, Theorem 6.1.3]).
Assume that z = x + iy = reiτ ∈ U. The complex derivatives of a

differentiable mapping w : U→ C are defined as follows:

wz =
1
2

(
wx +

1
i
wy

)
, wz̄ =

1
2

(
wx −

1
i
wy

)
.

The derivatives of w in polar coordinates can be expressed as

wτ (z) :=
∂w(z)
∂τ

= i(zwz − zwz̄), wr(z) :=
∂w(z)
∂r

= eiτwz + e−iτwz̄.
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The Jacobian determinant of w is expressed in polar coordinates as

(2.13) Jw(z) = |wz|2 − |wz̄|2 =
1
r

Im(wτwr) =
1
r

Re(iwrwτ ).

Assume that w = P [F ](z) is a harmonic function defined on U. Then
there exist two analytic functions h and k defined on U such that w = h+k.
Moreover wτ = i(zh′(z)− z̄k′(z)) is a harmonic function and rwr = zh′(z)+
z̄k′(z) is its harmonic conjugate.

Assume now that F is Lipschitz continuous. Then F ′ ∈ L1(T) and by
(2.11), using integration by parts, it follows that wτ equals the Poisson
integral of F ′:

wτ (reiτ ) =
2π�

0

∂τP (r, τ − t)F (t) dt = −
2π�

0

∂tP (r, τ − t)F (t) dt

= −P (r, τ − t)F (t)
∣∣2π
t=0

+
2π�

0

P (r, τ − t)F ′(t) dt

=
2π�

0

P (r, τ − t)F ′(t) dt.

Let 0 < α < π/2 and define

Γα = {z : arg z ∈ [π − α, π + α]}, Γα(s) = U ∩ eis(Γα + 1).

That is, Γα(s) is the wedge inside the unit disk with angle 2α, whose axis
passes between eis and zero. We say that a function f : U → C has a non-
tangential limit at eis if for 0 < α < π/2 the limit

g(s) = lim
Γα(s)3z→eis

f(z)

exists and does not depend on α.
We now recall Fatou’s theorem [4, Theorem 6.39]:

Claim 2. If G ∈ L1(T), then the Poisson extension W (z) = P [G](z) has
nontangential limit at almost every ζ ∈ T.

By using Fatou’s theorem we find that the radial limits of wτ exist a.e.
and

(2.14) lim
r→1−

wτ (reiτ ) = F ′(τ) a.e.

If F is Lipschitz continuous, then Φ = F ′ ∈ L∞(T), and by Marcel
Riesz’s famous theorem (see e.g. [8, Theorem 2.3]), for 1 < p < ∞ there is
a constant Ap such that

‖H(F ′)‖Lp(T) ≤ Ap‖F ′‖Lp(T).
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It follows that Φ̃ = H(F ′) ∈ L1. Since rwr is the harmonic conjugate of wτ ,
according to (2.12), we have rwr = P [H(F ′)], and by Fatou’s theorem again,

(2.15) lim
r→1−

wr(reiτ ) = H(F ′)(τ) a.e.

3. The proof of the main theorem. The aim of this section is to
prove Theorem 1.2. We will construct a suitable sequence wn of univalent
harmonic mappings, converging almost uniformly to w = P [F ]. To do so,
we will mollify the boundary function F by a sequence of diffeomorphisms
Fn and take the Poisson extension wn = P [Fn]. We will show that under the
assumption of Theorem 1.2, for large n, wn satisfies the conditions of the
theorem of Alessandrini and Nesi. By a result of Hengartner and Schober [9],
the limit function w of a locally uniformly convergent sequence of univalent
harmonic mappings wn is univalent, implying that F is a surjective mapping.

We begin by the following lemma.

Lemma 3.1. Let γ be a Dini smooth Jordan curve, denote by g its arc-
length parameterization and assume that F (t) = g(f(t)) is a Lipschitz weak
homeomorphism from the unit circle onto γ. If w(z) = u(z) + iv(z) =
P [F ](z) is the Poisson extension of F , then for almost every τ ∈ [0, 2π]
the limit

Jw(eiτ ) := lim
r→1−

Jw(reiτ )

exists and

(3.1) Jw(eiτ ) = f ′(τ)
2π�

0

Re [(g(f(t))− g(f(τ))) · ig′(f(τ))]
2 sin2 t−τ

2

dt.

Proof. Let z = reiτ . Since F is Lipschitz it is absolutely continuous and
by (2.14) and (2.15) the radial derivatives of wτ and wr exist for a.e. eiτ ∈ T.
Let w(eit) := F (t), u(eit) := Re(F (t)) and v(eit) := Im(F (t)). Now, for a.e.
τ ∈ [0, 2π], by Lagrange’s theorem,

u(eiτ )− u(reiτ )
1− r

= ur(peiτ ), r < p < 1,

v(eiτ )− v(reiτ )
1− r

= vr(qeiτ ), r < q < 1.

It follows that for a.e. τ ∈ [0, 2π],

lim
r→1−

u(eiτ )− u(reiτ )
1− r

= lim
r→1−

ur(reiτ ),(3.2)

lim
r→1−

v(eiτ )− v(reiτ )
1− r

= lim
r→1−

vr(reiτ ),(3.3)
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and consequently for a.e. τ ∈ [0, 2π]

(3.4) lim
r→1−

w(eiτ )− w(reiτ )
1− r

= lim
r→1−

wr(reiτ ).

Furthermore

w(eiτ )− w(reiτ ) =
2π�

0

[F (τ)− F (t)]P (r, τ − t) dt

and therefore, for a.e. τ ∈ [0, 2π],

lim
r→1−

wr(reiτ ) = lim
r→1−

w(eiτ )− w(reiτ )
1− r

(3.5)

= lim
r→1−

2π�

0

[F (τ)− F (t)]
P (r, τ − t)

1− r
dt.

By using the previous facts and the formulae (2.13) and (2.14), since

lim
r→1−

A(r)B(r) = lim
r→1−

A(r) lim
r→1−

B(r)

provided the limits on the right-hand side exist, we obtain

lim
r→1−

Jw(reiτ ) = lim
r→1−

Re[iwr(reiτ )wτ (reiτ )]
r

(3.6)

= lim
r→1−

Re[i(w(eiτ )− w(reiτ ))F ′(τ)]
(1− r)r

= lim
r→1−

2π�

0

P (r, τ − t)
1− r

Re[i(F (τ)− F (t))F ′(τ)] dt

= lim
r→1−

π�

−π
KF (t+ τ, τ)

P (r, t)
1− r

dt a.e.,

where

(3.7) KF (t, τ) = f ′(τ) Re[(g(f(t))− g(f(τ))) · ig′(f(τ))].

We refer to [22, (5.6)] for a similar approach, but for some other purpose.
To continue, observe first that

P (r, t)
1− r

=
1 + r

2π(1 + r2 − 2r cos t)
≤ 1
π((1− r)2 + 4r sin2 t/2)

≤ π

4rt2

for 0 < r < 1 and t ∈ [−π, π] because |sin(t/2)| ≥ t/π. On the other hand,
by (2.6) and (3.7), for

σ = min{|f(t+ τ)− f(τ)|, l − |f(t+ τ)− f(τ)|}
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we obtain

|KF (t+ τ, τ)| ≤ ‖F ′‖∞
σ�

0

ω(u) du,

where ω is the modulus of continuity of g′. Therefore for r ≥ 1/2,∣∣∣∣KF (t+ τ, τ)
P (r, t)
1− r

∣∣∣∣ ≤ ‖F ′‖∞π4rt2

σ�

0

ω(u) du ≤ σ

t

‖F ′‖∞π
4rt2

t�

0

ω

(
σ

t
u

)
du(3.8)

≤ π‖F ′‖2∞
2

1
t2

t�

0

ω(‖F ′‖∞u) du := Q(t).

Having in mind (2.8), we obtain

π�

−π
|Q(t)| dt ≤ 2π‖F ′‖2∞

2

π�

0

1
t2

t�

0

ω(‖F ′‖∞u) du

= π‖F ′‖2∞
π�

0

(
ω(‖F ′‖∞u)

u
− ω(‖F ′‖∞u)

π

)
du < M <∞.

According to the Lebesgue Dominated Convergence Theorem, taking the
limit under the integral sign in the last integral in (3.6), from

lim
r→1−

P (r, t)
1− r

=
1

2π
lim
r→1−

1 + r

1 + r2 − 2r cos t
=

1
4π sin2 t

2

we obtain (3.1).

For a Lipschitz nondecreasing function f and an arc-length parameteri-
zation g of the Dini smooth curve γ we define an operator T as follows:

(3.9) T [f ](τ) =
2π�

0

Re[(g(f(t))− g(f(τ))) · ig′(f(τ))]
2 sin2 t−τ

2

dt

2π
, τ ∈ [0, 2π].

According to Lemma 3.1, this integral converges. Notice that if γ is a con-
vex Jordan curve then Re[(g(f(t))− g(f(τ))) · ig′(f(τ))] ≥ 0, and therefore
T [f ]>0. In the next proof, we will show that under the condition T [f ]>0,
the harmonic extension of a bi-Lipschitz mapping is a diffeomorphism re-
gardless of the condition of convexity.

Proof of Theorem 1.2. Assume for simplicity that |γ| = 2π. The general
case follows by normalization. Let g : [0, 2π] → γ be an arc-length para-
meterization of γ. Then F (eit) = g(f(t)), where f : R → R is a Lipschitz
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weak homeomorphism such that f(t+ 2π) = f(t) + 2π. From (3.9) we have

T [f ](τ) = lim
ε→0+

π�

ε

Re[(g(f(t+ τ))− g(f(τ))) · ig′(f(τ))]
2 sin2 t

2

dt

2π

+ lim
ε→0+

−ε�

−π

Re[(g(f(t+ τ))− g(f(τ))) · ig′(f(τ))]
2 sin2 t

2

dt

2π
.

Assume that β : [0, 2π]→ R is a continuous function such that

(3.10) g′(s) = eiβ(s), β(0) = β(2π).

Then

(3.11) |g′(s)− g′(t)| = 2
∣∣∣∣sin β(t)− β(s)

2

∣∣∣∣.
Let ωβ be the modulus of continuity of g′. Then

(3.12) ωβ(ρ) = max
|t−s|≤ρ

2
∣∣∣∣sin β(t)− β(s)

2

∣∣∣∣.
Since γ ∈ C1,α,

(3.13) ωβ(ρ) ≤ c(γ)ρα.

Further from (3.10), we have

Re[(g(f(t+ τ))− g(f(τ))) · ig′(f(τ))]
2 sin2 t

2

=
Re
[ 	f(t+τ)

f(τ) g′(s) ds · ig′(f(τ))
]

2 sin2 t
2

=
Re
[ 	f(t+τ)

f(τ) eiβ(s) ds · ieiβ(f(τ))
]

2 sin2 t
2

=
−Im

[ 	f(t+τ)
f(τ) eiβ(s)−β(f(τ)) ds

]
2 sin2 t

2

=

	f(t+τ)
f(τ) sin[β(s)− β(f(τ))] ds

2 sin2 t
2

.

Taking

dU =
1

2 sin2 t
2

dt and V =
f(t+τ)�

f(τ)

sin[β(s)− β(f(τ))] ds,

we obtain

U = − cot
t

2
and dV = f ′(t+ τ) sin[β(f(t+ τ))− β(f(τ))] dt.
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To continue recall that f is Lipschitz with a Lipschitz constant L. Thus

| lim
ε→0+

U(t)V (t)|πε | =
∣∣∣∣ lim
ε→0+

cot
ε

2

f(ε+τ)�

f(τ)

sin[β(s)− β(f(τ))] ds
∣∣∣∣

≤ lim
ε→0+

cot
ε

2
· |sin[β(ε+ τ)− β(f(τ))]| |f(ε+ τ)− f(τ)|

≤ lim
ε→0+

Lε cot
ε

2
· ωβ(ε) = 0.

Similarly we have
lim
ε→0+

U(t)V (t)|−ε−π = 0.

By integration by parts we obtain

T [f ](τ) = lim
ε→0+

(
UV |πε +

π�

ε

f ′(t+ τ) · sin[β(f(t+ τ))− β(f(τ))] cot
t

2
dt

2π

)

+ lim
ε→0+

(
UV |−ε−π +

−ε�

−π
f ′(t+ τ) · sin[β(f(t+ τ))− β(f(τ))] cot

t

2
dt

2π

)

=
π�

−π
f ′(t+ τ) · sin[β(f(t+ τ))− β(f(τ))] cot

t

2
dt

2π
.

Hence

T [f ](τ) =
π�

−π
f ′(t+ τ) · sin[β(f(t+ τ))− β(f(τ))] cot

t

2
dt

2π
.

By using Lemma 2.5, we can choose a family of diffeomorphisms fn converg-
ing uniformly to f . Then

T [fn](τ) =
π�

−π
f ′n(t+ τ) · sin[β(fn(t+ τ))− β(fn(τ))] cot

t

2
dt

2π
.

We are going to show that T [fn] converges uniformly to T [f ]. In order to
do this, we apply the Arzelà–Ascoli theorem.

First of all

|T [fn](τ)| ≤ 1
π
‖f ′n‖∞

π�

0

ωβ(‖f ′n‖∞t) cot
t

2
dt

≤ 1
π
‖f ′‖∞

π�

0

ωβ(‖f ′‖∞t) cot
t

2
dt = C(f, γ) <∞.

We prove now that T [fn] is an equicontinuous family of functions. We have
to estimate the quantity

|T [fn](τ)− T [fn](τ0)|.
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Assume without loss of generality that τ0 = 0. Then

|T [fn](τ)− T [fn](0)| =
∣∣∣∣ π�
−π
f ′n(t+ τ) · sin[β(fn(t+ τ))− β(fn(τ))] cot

t

2
dt

2π

−
π�

−π
f ′n(t) · sin[β(fn(t))− β(fn(0))] cot

t

2
dt

2π

∣∣∣∣ ≤ A+B,

where

A =
∣∣∣∣ π�
−π

(f ′n(t+ τ)− f ′n(t)) · sin[β(fn(t+ τ))− β(fn(τ))] cot
t

2
dt

2π

∣∣∣∣,
B =

∣∣∣∣ π�
−π
f ′n(t) · {sin[β(fn(t))− β(fn(0))]− sin[β(fn(t+ τ))− β(fn(τ))]}

× cot
t

2
dt

2π

∣∣∣∣.
Take r ≥ 1, p > 1, q > 1 such that 1/p+ 1/q = 1, and δ ∈ (0, 1).

In what follows, for a function g ∈ La(T), a > 0, we consider the following
a-norm:

‖g‖a =
( 2π�

0

|g(eit)|a dt
2π

)1/a

.

Define fτ (x) := f(x+ τ). By (2.10) we have

fn =
n

n+ 1

(
f ∗ ρεn +

x

n

)
.

Thus

(3.14) |f ′n,τ − f ′n| =
n

n+ 1
|(f ′τ − f ′) ∗ ρεn |.

According to Young’s inequality for convolution ([34, pp. 54–55], [8, Theo-
rem 20.18]), we obtain

‖(f ′τ − f ′) ∗ ρεn‖r ≤ ‖f ′τ − f ′‖r.
In view of (3.13) and (3.14), for 1 < q < 1

1−α , by the Hölder inequality we
have

A ≤ ‖f ′n(t+ τ)− f ′n(t)‖p ·
∥∥∥∥sin[β(fn(t+ τ))− β(fn(τ))] cot

t

2

∥∥∥∥
q

(3.15)

≤ ‖f ′(t+ τ)− f ′(t)‖p ·
∥∥∥∥ωβ(|fn|∞t) cot

t

2

∥∥∥∥
q

≤ C1(γ)‖f ′‖∞‖f ′(t+ τ)− f ′(t)‖p.
Let now estimate B. First of all
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(3.16)

B ≤ ‖f ′‖∞
∥∥∥∥{sin[β(fn(t))−β(fn(0))]− sin[β(fn(t+ τ))−β(fn(τ))]} cot

t

2

∥∥∥∥
1

.

On the other hand, using again the Hölder inequality we have∥∥∥∥{sin[β(fn(t))− β(fn(0))]− sin[β(fn(t+ τ))− β(fn(τ))]} cot
t

2

∥∥∥∥
1

≤ ‖{sin[β(fn(t))− β(fn(0))]− sin[β(fn(t+ τ))− β(fn(τ))]}δ‖p

×
∥∥∥∥{sin[β(fn(t))− β(fn(0))]− sin[β(fn(t+ τ))− β(fn(τ))]}1−δ cot

t

2

∥∥∥∥
q

.

Further

‖{sin[β(fn(t))− β(fn(0))]− sin[β(fn(t+ τ))− β(fn(τ))]}δ‖p

≤
∥∥∥∥{∣∣∣∣2 sin

β(fn(t))− β(fn(0))− β(fn(t+ τ)) + β(fn(τ))
2

∣∣∣∣}δ∥∥∥∥
p

≤
∥∥∥∥{∣∣∣∣2 sin

β(fn(t+ τ))− β(fn(t))
2

∣∣∣∣}δ∥∥∥∥
p

+
∥∥∥∥{∣∣∣∣2 sin

β(fn(τ))− β(fn(0))
2

∣∣∣∣}δ∥∥∥∥
p

≤ ωβ(|f ′n|∞τ)δ + ωβ(|f ′n|∞τ)δ = 2ωβ(|f ′n|∞τ)δ ≤ 2ωβ(|f ′|∞τ)δ,

and∥∥∥∥{sin[β(fn(t))− β(fn(0))]− sin[β(fn(t+ τ))− β(fn(τ))]}1−δ cot
t

2

∥∥∥∥
q

≤
∥∥∥∥2ωβ(|f ′n|∞t)1−δ cot

t

2

∥∥∥∥
q

.

Choose q and δ such that

(α− αδ − 1)q > −1.

Then the integral ∥∥∥∥2ωβ(|f ′n|∞t)1−δ cot
t

2

∥∥∥∥
q

converges and it is less than or equal to

C(γ)‖f ′n‖1−δ∞ ≤ C(γ)‖f ′‖1−δ∞ .

Therefore

(3.17) B ≤ 2‖f ′‖∞C(γ)‖f ′‖1−δ∞ ωβ(‖f ′‖∞τ)δ.
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Since translation is continuous (see [33, Theorem 9.5]), (3.15) and (3.17) im-
ply that the family {T [fn]} is equicontinuous. By the Arzelà–Ascoli theorem
it follows that

(3.18) lim
n→∞

‖T [fn]− T [f ]‖∞ = 0.

Thus T [f ] is continuous. Moreover for sufficiently large n, for

δ = min{T [f ](s) : 0 ≤ s ≤ 2π} > 0,

from (3.18), we obtain

T [fn](s) ≥ T [f ](s)− δ/2 ≥ δ/2 > 0, s ∈ [0, 2π].

Since fn is a diffeomorphism, f ′n(τ) > 0. Thus for sufficiently large n,

Jwn(eiτ ) = f ′n(τ)T [fn](eiτ ) > 0, eiτ ∈ T.
Since fn ∈ C∞, it follows that

wn = P [Fn] ∈ C1(U).

Therefore all the conditions of Proposition 1.1 are satisfied. This means that
wn is a harmonic diffeomorphism of the unit disk onto the domain D.

Since, by a result of Hengartner and Schober [9], the limit function w
of a locally uniformly convergent sequence of univalent harmonic mappings
wn on U is either univalent on U, a constant, or its image lies on a straight
line, we deduce that w = P [F ] is univalent.

Remark 3.2. If γ is a C1,α convex curve, then

Re[(g(f(t))− g(f(τ))) · ig′(f(τ))] ≥ 0

and therefore T [f ](τ) > 0. By the proof of Theorem 1.2, τ 7→ T [f ](τ) is
continuous. Therefore minτ∈[0,2π] T [f ](τ) = δ > 0.

4. Quasiconformal harmonic mappings. An injective harmonic map-
ping w = u+ iv is called K-quasiconformal (K-q.c), K ≥ 1, if

(4.1) |wz̄| ≤ k|wz|
on D where k = (K − 1)/(K + 1). Notice that, since

|∇w(z)| := max{|∇w(z)h| : |h| = 1} = |wz|+ |wz̄|
and

l(∇w(z)) := min{|∇w(z)h| : |h| = 1} =
∣∣|wz| − |wz̄|∣∣,

the condition (4.1) is equivalent to

(4.2) |∇w(z)| ≤ Kl(∇w(z)).

For a general definition of quasiregular mappings and quasiconformal map-
pings we refer to the book of Ahlfors [1]. In this section we apply Theorem 1.2
to the class of q.c. harmonic mappings. The area of quasiconformal harmonic
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mappings is a very active area of research. For background on this theory
we refer [10], [18]–[25], [26], [28], [29], [5]. In this section we obtain some new
results concerning a characterization of this class. We will restrict ourselves
to the class of q.c. harmonic mappings w between the unit disk U and a
Jordan domain D. The unit disk is taken because of simplicity. Namely, if
w : Ω → D is q.c. harmonic, and a : U→ Ω is conformal, then w ◦ a is also
q.c. harmonic. However the image domain D cannot be replaced by the unit
disk.

The case when D is a convex domain is treated in detail by the author
and others in the above cited papers. In this section we will use our main
result to yield a characterization of quasiconformal harmonic mappings of
the unit disk onto a Jordan domain that is not necessarily convex in terms
of boundary data.

To state the main result of this section, we make use of Hilbert transform
formalism. It provides a necessary and a sufficient condition for the harmonic
extension of a homeomorphism from the unit circle to a C2 Jordan curve
γ to be a q.c mapping. It is an extension of the corresponding result [12,
Theorem 3.1] relating to convex Jordan domains.

Theorem 4.1. Let F : T→ γ be a sense preserving homeomorphism of
the unit circle onto the Jordan curve γ = ∂D ∈ C2. Then w = P [F ] is a
quasiconformal mapping of the unit disk onto D if and only if F is absolutely
continuous and

0 < l(F ) := ess inf l(∇w(eiτ )),(4.3)
‖F ′‖∞ := ess sup |F ′(τ)| <∞,(4.4)

‖H(F ′)‖∞ := ess sup |H(F ′)(τ)| <∞.(4.5)

If F satisfies (4.3)–(4.5), then w = P [F ] is K-quasiconformal, where

(4.6) K :=

√
‖F ′‖2∞ + ‖H(F ′)‖2∞ − l(F )2

l(F )
.

The constant K is approximately sharp for small values of K: if w is the
identity or if it is a mapping close to the identity, then K = 1 or K is close
to 1 (respectively).

Proof of necessity. Suppose that w = P [F ] = g+h is a K-q.c. harmonic
mapping that satisfies the conditions of the theorem. By [12, Theorem 2.1],
we see that w is Lipschitz continuous,

(4.7) L := ‖F ′‖∞ <∞

and

(4.8) |∇w(z)| ≤ KL.
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By [16, Theorem 1.4] we have, for b = w(0),

(4.9) |∂w(z)| − |∂̄w(z)| ≥ C(Ω,K, b) > 0, z ∈ U.

Because of (4.8), the analytic functions ∂w(z) and ∂̄w(z) are bounded, and
thus there exist functions F1, F2 ∈ L∞(T) such that ∂w(z) = P [F1](z) and
∂̄w(z) = P [F2](z) (see Claim 1 in Subsection 2.2). Therefore by Fatou’s
theorem,

(4.10) lim
r→1−

(|∂w(reiτ )| − |∂̄w(reiτ )|) = |∂w(eiτ )| − |∂̄w(eiτ )| a.e.

Combining (4.7), (4.10) and (4.9), we get (4.3) and (4.4).
Next we prove (4.5). Observe first that wr = eiτwz + e−iτwz. Thus

(4.11) |wr| ≤ |∇w| ≤ KL.

Therefore rwr = P [H(F ′)] is a bounded harmonic function, which implies
that H(F ′) ∈ L∞(T). Therefore (4.5) holds and the necessity is proved.

Proof of sufficiency. We have to prove that under the conditions (4.3)–
(4.5), w is quasiconformal. From

0 < l(F ) = ess inf l(∇w(eiτ ))

we obtain

Jw(eiτ ) = (|wz|+ |wz̄|)l(∇w(eiτ )) ≥ l(F )2 a.e.

Since F is absolutely continuous with ‖F ′‖∞ < ∞, it follows that F ′ ∈
L∞(T). From (2.14) and (2.15) we have

(4.12) lim
r→1−

wr(reiτ ) = H(F ′)(τ) and lim
r→1−

wτ (reiτ ) = F ′(τ) a.e.

As

|wz|2 + |wz̄|2 =
1
2

(
|wr|2 +

|wτ |2

r2

)
,

it follows that for a.e. τ ∈ [0, 2π),

lim
r→1−

(|wz(reiτ )|2 + |wz̄(reiτ )|2) = |wz(eiτ )|2 + |wz̄(eiτ )|2(4.13)

≤ 1
2

(‖F ′‖2∞ + ‖H(F ′)‖2∞).

To continue we make use of (4.3). From (4.13), (4.3) and (4.2), for a.e.
τ ∈ [0, 2π),

(4.14)
|wz(eiτ )|2 + |wz̄(eiτ )|2

(|wz(eiτ )| − |wz̄(eiτ )|)2
≤ ‖F

′‖2∞ + ‖H(F ′)‖2∞
2l(F )2

.

Hence

(4.15) |wz(eiτ )|2 + |wz̄(eiτ )|2 ≤ S(|wz(eiτ )| − |wz̄(eiτ )|)2 a.e.,
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where

(4.16) S :=
‖F ′‖2∞ + ‖H(F ′)‖2∞

2l(F )2
.

According to (4.14), S ≥ 1. Let

µ(eiτ ) :=
∣∣∣∣wz̄(eiτ )
wz(eiτ )

∣∣∣∣.
Since every C2 curve is C1,α, Theorem 1.2 shows that w = g+k is univalent
and according to Lewy’s theorem, Jw(z) = |g′(z)|2 − |h′(z)|2 > 0. Thus
a(z) = wz̄/wz = h′/g′ is an analytic function bounded by 1. As µ(eiτ ) =
|a(eiτ )|, we have µ(eiτ ) ≤ 1. Then (4.15) can be written as

1 + µ2(eiτ ) ≤ S(1− µ(eiτ ))2,

i.e. if S = 1, then µ(eiτ ) = 0 a.e. and if S > 1, then

(4.17) µ2(S − 1)− 2µS + S − 1 = (S − 1)(µ− µ1)(µ− µ2) ≥ 0,

where

µ1 =
S +
√

2S − 1
S − 1

, µ2 =
S − 1

S +
√

2S − 1
.

If S > 1, then from (4.17) it follows that µ(eiτ ) ≤ µ2 or µ(eiτ ) ≥ µ1. But
µ(eiτ ) ≤ 1 and therefore

(4.18) µ(eiτ ) ≤ S − 1
S +
√

2S − 1
a.e.

If S = 1, then (4.18) clearly holds. Define µ(z) = |a(z)|. Since a is a
bounded analytic function, by the maximum principle it follows that

µ(z) ≤ k := µ2

for z ∈ U. This yields

K(z) ≤ K :=
1 + k

1− k
=

2S − 1 +
√

2S − 1√
2S − 1 + 1

=
√

2S − 1,

i.e.

K(z) ≤
√
‖F ′‖2∞ + ‖H(F ′)‖2∞ − l(F )2

l(F )

which means that w is K =
√
‖F ′‖2∞+‖H(F ′)‖2∞−l(F )2

l(F ) -quasiconfomal. The
result is asymptotically sharp because K = 1 for w being the identity. This
finishes the proof of Theorem 4.6.

Conjecture. Let F : T → γ ⊂ C be a homeomorphism of bounded
variation, where γ is Dini smooth. Let D be the bounded domain such that
∂D = γ. The mapping w = P [F ] is a diffeomorphism of U onto D if and
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only if

(4.19) ess inf{Jw(eit) : t ∈ [0, 2π]} ≥ 0.

Acknowledgments. I am grateful to the referee for providing very con-
structive comments and help in improving the contents of this paper.
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