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Abstract. It follows from our earlier results [Israel J. Math., to appear] that in
the Gurariy space G every finite-dimensional smooth subspace is contained in a bigger
smooth subspace. We show that this property does not characterise the Gurariy space
among Lindenstrauss spaces and we provide various examples to show that C(K) spaces
do not have this property.

The starting point of this paper is the following observation which easily
follows from [3, Theorem 1.2] (see the proof below).

Observation. Let L be a finite-dimensional smooth subspace of the Gu-
rariy space G. Then there is a smooth subspace M ⊂ G with M ) L.

Recall that a point x of the unit sphere SX of a Banach space X is called
a smooth point of SX if there is a unique linear functional f ∈ SX∗ such that
f(x) = 1. A subspace X of a Banach space Y is called smooth if any point
x ∈ SX is a smooth point of SX . A separable Banach space G is called a
Gurariy space if given ε > 0 and an isometric embedding T : L → G of a
finite-dimensional normed space L into G, for any finite-dimensional space
M ⊃ L there is an extension T̃ : M → G with ‖T̃‖ ‖T̃−1‖ ≤ 1 + ε. Such a
space was constructed by Gurariy [4] and its isometric uniqueness was shown
by Lusky [10] (see also [6]).

A Banach space X is called a Lindenstrauss space if its dual is isometric
to an L1(µ) for some measure µ. This class includes C(K) spaces and was
intensively studied in [9] and [8]. It is known (see [4]) that the Gurariy space
is a Lindenstrauss space.

We say that a pair L ⊂M of normed spaces has the unique Hahn–Banach
extension property (UHB for short) if every functional f ∈ L∗ has a unique
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extension f̂ ∈M∗ with ‖f̂‖ = ‖f‖. For instance if M is smooth and L ⊂M ,
dimL <∞, then this pair has UHB.

In the proof of the Observation we use the following theorem, which is
the main result of [3].

Theorem 1. Let X be a separable Banach space. The following are equiv-
alent:

(a) X = G.
(b) Let L ⊂ M with dimL < ∞ and codimM L = 1 be a pair with

property UHB and let T : L → X be an isometric embedding of L
into X. Then there is an isometric extension T̃ : M → X of T .

Proof of the Observation. Put M1 = L⊕R and define a norm on M1 as

‖(x, t)‖ = (‖x‖2 + t2)1/2, x ∈ L, t ∈ R.
Since L is smooth it easily follows that so is M1, and hence the pair L ⊂M1

has UHB. By Theorem 1(b) (for T = Id) there is an isometric extension
T̃ : M1 → G of T . Putting M = T̃ (M1) finishes the proof.

Now we briefly describe the paper. First we note (Theorem 3) that
the property of the space G stated in the Observation does not charac-
terise the Gurariy space among Lindenstrauss spaces. Next we investigate
spaces C(K), an important class of Lindenstrauss spaces, and we show that
they contain finite-dimensional smooth spaces which cannot be enlarged to
smooth spaces.

Recall that a Banach space X is called polyhedral if the unit ball of any
finite-dimensional subspace E ⊂ X is a polytope (i.e. finite intersection of
closed half-spaces).

Proposition 2. Let X be a polyhedral space, V be arbitrary Banach
space, E ⊂ X ⊕∞ V be a finite-dimensional smooth space, and P be the
coordinate projection from X⊕∞V onto V . Then P |E is an isometry into V .

Proof. Let V̄ = P (E) and X̄ = (I − P )(E). Then E ⊂ X̄ ⊕∞ V̄ and
let ι denote this identity embedding. Then ι∗ : X̄∗ ⊕1 V̄

∗ → E∗ is an onto
map. Since E is smooth, E∗ is strictly convex, so every point in SE∗ is
an extreme point. We have extBX̄∗⊕1V̄ ∗ = extBX̄∗ ∪ extBV̄ ∗ ; but X̄ is a
finite-dimensional polyhedral space, so extBX̄∗ is a finite set. This implies
that ι∗(extBV̄ ∗) is dense in SE∗ , in particular it is norming. Thus for e ∈ E
we have

‖e‖ = sup
g∗∈extBV̄ ∗

ι∗(0, g∗)(e) = sup
g∗∈extBV̄ ∗

(0, g∗)(ι(e))

= sup
g∗∈extBV̄ ∗

g∗(P (e)) = ‖P (e)‖.

Now we can prove our first main result.
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Theorem 3. Let X be a separable polyhedral Lindenstrauss space. Then
the (Lindenstrauss) space Y = X ⊕∞ G has the smooth extension property,
i.e. for any finite-dimensional smooth subspace E ⊂ Y there is a finite-
dimensional smooth subspace M ⊂ Y with M ) E.

Proof. It follows from Proposition 2 that E1 = P (E) is a smooth sub-
space of G, where P is the coordinate projection onto G. By the Observation
there exists a smooth subspace M1 ⊂ G with E1 ( M1. Define T : E1 → X
as T = (I − P )P−1, where P−1 : E1 → E. Clearly, ‖T‖ ≤ 1. Since X
is a polyhedral Lindenstrauss space, by the Lazar–Lindenstrauss theorem
(see [7] and [9]) the (finite-dimensional, hence compact) operator T has a
norm-preserving extension T̃ : M1 → X, ‖T̃‖ = ‖T‖ ≤ 1. Define

M = {x+ y : y ∈M1, x = T̃ y} ⊂ X ⊕∞ G.

Clearly,M is isometric toM1 and hence smooth. We now check that E ⊂M.
Take z ∈ E and put y = Pz ∈ E1 ⊂ M1 and x = (I − P )z. To prove that
z ∈M we need to verify that x = T̃ y. However,

T̃ y = Ty = (I − P )P−1y = (I − P )P−1Pz = x,

which finishes the proof.

Remark. The space Y from Theorem 3 is not isometric to G. To see
this, just note that w∗-cl extBG∗ = BG∗ (see [8]), but it is easy to see that
w∗-cl extBY ∗ 6= BY ∗ . However, the space Y is isomorphic to G. Indeed,
Y = X ⊕∞ G where X is a Lindenstrauss space. Clearly, the infinite sum
(
∑
X)c0 is a Lindenstrauss space too. By [11], G contains it as a comple-

mented subspace, so

Y = X +G ∼ X + (
∑
X)c0 + V ) ∼ (

∑
X)c0 + V ) ∼ G.

Problem. Assume that a separable Lindenstrauss space X has the
smooth extension property. Is it true that X isomorphic to G?

Now we consider the problem of extension of smooth subspaces of C(K)
spaces. We will need the following general fact.

Proposition 4. Let M be a smooth finite-dimensional subspace of a
Banach space X and let L be a proper subspace of M. Then

(1) extBX∗ |M ⊃ SM∗

and

(2) SM∗ |L = BL∗ .

Proof. It is well known that a finite-dimensional space M is smooth if
and only if M∗ is strictly convex, i.e. extBM∗ = SM∗ , and (1) follows from
the Krein–Milman theorem.

The second assertion is obvious.
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We start with the case C(Sn) where Sn stands for the n-dimensional
unit sphere, i.e. the boundary of the unit ball of the real (n+ 1)-dimensional
Euclidean space Rn+1 (e.g. S1 is the unit circle in the plane).

Theorem 5. The space C(Sn) contains an (n+ 1)-dimensional smooth
subspace H consisting of C1 functions. However in any (n+ 2)-dimensional
smooth subspace of C(Sn) the subspace of C1 functions has dimension at
most n. In particular H is not contained in a bigger smooth subspace.

Proof. The space H consists of all restrictions to Sn of linear functionals
on Rn+1 ⊃ Sn. It is isometric to `n+1

2 (so smooth) and clearly consists of C∞
functions. To prove the second claim suppose that there exists a smooth
(n + 2)-dimensional subspace M ⊂ C(Sn) and an (n + 1)-dimensional sub-
space L ⊂M which consists of C1 functions. Now let r : extBC(Sn)∗ → BL∗

be the restriction map, r(µ) = µ|L. From Proposition 4 we see that it is
an onto map. It is known that extBC(Sn)∗ consists of ± point evaluations,
thus we can identify it with ±Sn. Let us fix a basis φ1, . . . , φn+1 in L with
biorthogonal functionals φ∗1, . . . , φ∗n+1. For ` ∈ L we have

r(±s)(`) = ±
n+1∑
j=1

φ∗j (`)φj(s), s ∈ Sn.

Thus the map Φ(±s) = ±
∑n+1

j=1 φj(s)φ
∗
j maps the union of two disjoint

copies of Sn onto the unit ball of the (n+ 1)-dimensional space L∗. But this
is a C1 map (because the functions φj are C1), which contradicts Sard’s
theorem. The proof of the theorem is complete.

The following theorem is in a sense a generalization of Theorem 5.

Theorem 6. Every separable C(K) space with nonseparable dual con-
tains every finite-dimensional smooth space E in such a way that no bigger
subspace is smooth.

Proof. By our assumptions on C(K) we see that K is a metrizable com-
pact space (since C(K) is separable). Moreover, K is uncountable (if K were
countable then C(K)∗ = l1, contradicting that C(K)∗ is nonseparable). Let
φ : K → SE∗ be a continuous map from K onto the unit sphere of E∗. Such
a map exists. To see this, note e.g. that K contains a Cantor set, so we can
map this subset onto a cube of proper dimension. Next we extend this map
to K. Then we wrap this cube onto SE∗(1).

(1) This argument is standard and the result is well known. It is a special case of a
more general and well known fact that if K1 is any Peanian (i.e. metrizable, connected
and locally connected) compact and K is an uncountable metrizable compact, then there
is a continuous map from K onto K1.
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Next we define an isometric embedding Iφ : E ↪→ C(K) by the formula
Iφ(e)(k) = φ(k)(e) for e ∈ E and k ∈ K. Clearly, L = Iφ(E) is a smooth
finite-dimensional subspace of C(K). Moreover,

(3) ‖δk|L‖ = 1, k ∈ K.
Assume that there is a smooth subspace M ⊂ C(K) with L ( M .

Then by Proposition 4 we have extBC(K)∗ |L = {±δk : k ∈ K}|L = BL∗ ,
contradicting (3). The proof is complete.

Now we present an analogous observation about infinite-dimensional
smooth subspaces. Before we proceed we must recall some classical topo-
logical results essentially due to Keller [5].

Theorem 7 (Keller).

(a) The closed unit ball BX∗ of the dual of a separable Banach space X,
when equipped with the weak∗ topology, is homeomorphic to the Hil-
bert cube Q = [0, 1]∞.

(b) The Hilbert cube is homogeneous, i.e. for any p, q ∈ Q there exists a
homeomorphism φ of Q such that φ(p) = q.

The proofs of this can be found in [5] and in more modern exposition in
[1, Chap. 3, Ths. 3.1 and 4.1].

To prove Theorem 9 we also need the following easy lemma.

Lemma 8. If L is a smooth Banach space then extBL∗ is norm dense
in SL∗ .

Proof. If f ∈ SL∗ attains its norm, say at x ∈ SL, then it is the only
supporting functional for x and so by the Krein–Milman theorem it must be
an extreme point of BL∗ . The Bishop–Phelps theorem (see e.g. [2, Corollary
3.3]) finishes the proof of the lemma.

Remark. Instead of the Bishop–Phelps theorem we can apply the
Hahn–Banach theorem and deduce that the set extBL∗ is w∗-dense in SL∗

(even in BL∗), which is enough for our purposes.

Theorem 9. Let X be a separable, smooth infinite-dimensional Banach
space. There exists a subspace Y ⊂ C(∆) isometric to X which is not con-
tained in a bigger smooth subspace.

Proof. Let ∆ := {0, 1}∞ be the Cantor set and let φ((εi)
∞
i=1) =∑∞

i=1 εi2
−i be the classical Cantor map from ∆ onto [0, 1]. Since ∆ is hom-

eomorphic to ∆∞, taking φ coordinatwise we get the natural map Φ from
∆ onto the Hilbert cube Q := [0, 1]∞. It is easy and well known that there
exists a subset F ⊂ [0, 1] of cardinality continuum such that #φ−1(t) = 1 for
t ∈ F . This implies that the set F =

∏∞
i=1 F ⊂ Q has cardinality continuum

and for p ∈ F we have #Φ−1(p) = 1.
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Next with the help of Theorem 7(a) we construct a continuous map Ψ
from ∆ onto BX∗ (equipped with the weak∗ topology). Moreover without
loss of generality by Theorem 7(b) we can assume that #Ψ−1(0) = 1. Using
this map we define an isometric embedding
(4) ι(x)(t) = Ψ(t)(x)

of X into C(∆). Put Y = ι(X).
Now suppose that there exists a smooth subspace L such that C(∆) ⊃

L ) Y .
The set extBC(∆)∗ |L is a w∗-compact subset of BL∗ which by the

Krein–Milman theorem contains extBL∗ , and so by Lemma 8 it contains
the unit sphere SL∗ . Since L is infinite-dimensional, this implies that
extBC(∆)∗ |L = BL∗ . When we restrict extBC(∆)∗ further to Y , we get a
map ξ(±δt) = ±Ψ(t). Clearly, ξ−1(0) = {±Ψ−1(0)} is a set of cardinality at
most 2. On the other hand, the restriction of BL∗ to Y maps a whole interval
of functionals to 0. This contradiction shows that L cannot be smooth. The
proof is complete.

Remark. It was suggested by the referee that maybe in Theorem 9 one
can replace ∆ by any uncountable compact set.
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