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Smooth renormings of the Lebesgue–Bochner
function space L1(µ,X)

by

Marián Fabian (Praha) and Sebastián Lajara (Albacete)

Abstract. We show that, if µ is a probability measure and X is a Banach space,
then the space L1(µ,X) of Bochner integrable functions admits an equivalent Gâteaux
(or uniformly Gâteaux) smooth norm provided that X has such a norm, and that if X
admits an equivalent Fréchet (resp. uniformly Fréchet) smooth norm, then L1(µ,X) has
an equivalent renorming whose restriction to every reflexive subspace is Fréchet (resp.
uniformly Fréchet) smooth.

1. Introduction. An important problem in the theory of integration
on Banach spaces is whether a given geometrical property of a Banach space
X lifts to the corresponding Lebesgue–Bochner space Lp(µ,X), where µ is
a probability measure and 1 ≤ p <∞. A number of results in this direction
appeared during the last three decades (see e.g. [DGJ], [DU], [LS1], [LS2], [S],
[ST] and references therein). In particular, it was shown in [LS1] and [LS2]
that if p > 1 then the canonical norm of Lp(µ,X) inherits several smoothness
properties of the norm of X. The situation becomes different when p = 1,
since the natural norm of L1(µ), which embeds in L1(µ,X), is not smooth.
However, some of these properties can be transferred to L1(µ,X) under a
suitable renorming. A first result of this type for the property of locally
uniform convexity was obtained in [S] using the Troyanski–Zizler method
of renorming in Banach spaces with long sequences of projections (see e.g.
[DGZ, Section VII.1]).

In this work we show that several smoothness properties lift from X
into L1(µ,X) up to renorming. Our technique relies on the construction
of an Orlicz–Bochner norm associated to a norm on X with the relevant
smoothness properties. In particular, such renormings preserve the lattice
structure when X is a Banach lattice.
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All Banach spaces considered in this paper are real. Our notation is
standard, and can be found, for instance, in [DGZ], [DU] and [FHHMZ].

Let (X, ‖ · ‖) be a Banach space and (Ω,Σ, µ) be a probability space.
We denote by L1(Ω,Σ, µ,X), or simply by L1(µ,X), the Banach space
of all (equivalence classes of) Bochner integrable functions f : Ω → X,
endowed with the norm ‖f‖L1(µ,X) =

	
Ω ‖f(ω)‖ dµ(ω). As usual, the symbols

SX and BX stand for the unit sphere and the closed unit ball of X, i.e.,
SX = {x ∈ X : ‖x‖ = 1} and BX = {x ∈ X : ‖x‖ ≤ 1}. The topological
dual of X is denoted by X∗.

Let U be a non-empty open subset of the Banach space X, let ϕ : U → R
be a function, and pick x ∈ U . We say that ϕ is Gâteaux differentiable at x
if there exists a functional ϕ ′(x) ∈ X∗ (the derivative of ϕ at x) such that

(1.1) lim
t→ 0

ϕ(x+ th)− ϕ(x)

t
= ϕ ′(x)h for all h ∈ X.

If this limit is uniform with respect to h ∈ BX , we say that ϕ is Fréchet
differentiable at x. Let V be a non-empty subset of U with dist(X \U, V ) =:
∆ > 0 (we put dist(∅, V ) = +∞). The function ϕ is called uniformly Gâteaux
differentiable on V if it is Gâteaux differentiable at every point of V and
the limit (1.1) is uniform in x ∈ V , i.e., if for every h ∈ BX and every ε > 0
there is δ ∈ (0, ∆) such that∣∣∣∣ϕ(x+ th)− ϕ(x)

t
− ϕ ′(x)h

∣∣∣∣ < ε whenever 0 < |t| < δ and x ∈ V.

Finally, ϕ is called uniformly Fréchet differentiable on V if it is Gâteaux
differentiable at every point of V and the limit (1.1) is uniform in both
x ∈ V and h ∈ BX , i.e., if for every ε > 0 there is δ ∈ (0, ∆) such that∣∣∣∣ϕ(x+ th)− ϕ(x)

t
− ϕ ′(x)h

∣∣∣∣ < ε whenever 0 < |t| < δ, h ∈ BX and x ∈ V.

The norm ‖ · ‖ on the Banach space X is called Gâteaux smooth (resp.
Fréchet smooth) if it is Gâteaux differentiable (resp. Fréchet differentiable)
at every point of X \{0}. The norm ‖ · ‖ is called uniformly Gâteaux smooth
(resp. uniformly Fréchet smooth) if it is uniformly Gâteaux differentiable
(resp. uniformly Fréchet differentiable) on SX .

The class of Banach spaces that admit an equivalent Gâteaux smooth
norm is quite large; it includes, e.g., all weakly countably determined Ba-
nach spaces (see e.g. [DGZ, Section VII.1]). The existence of an equivalent
Fréchet smooth norm on a Banach space X implies that it is an Asplund
space, that is, every separable subspace of X has separable dual (see e.g.
[DGZ, Section II.5]). It is also well known (see e.g. [DGZ, Section IV.4])
that X admits an equivalent uniformly Fréchet smooth renorming if, and
only if, X is super-reflexive. The structure of Banach spaces with an equiva-
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lent uniformly Gâteaux smooth norm was elucidated in [FGZ] and [FGMZ],
where it was shown that they are exactly the subspaces of Hilbert-generated
spaces (a Banach space X is called Hilbert-generated if there exist a Hilbert
space H and a bounded linear operator T : H → X with dense range).

We observe that if µ is a probability measure then the space L1(µ), being
generated by L2(µ), admits an equivalent uniformly Gâteaux smooth norm.
In [BF], it was shown that L1(µ) admits an equivalent norm whose restric-
tion to every reflexive subspace is Fréchet smooth. A strengthening of this
fact was obtained in [GS] (see also [FMZ] and [LPT]), where it was proved
that Fréchet smoothness can be replaced by uniform Fréchet smoothness.
This result, together with the fact that super-reflexivity is equivalent to the
existence of an equivalent uniformly Fréchet smooth renorming, yields a new
proof of Rosenthal’s theorem in [Ro] that every reflexive subspace of L1(µ)
is super-reflexive.

The purpose of this paper is to obtain extensions of the results above
in the setting of Lebesgue–Bochner spaces. In Section 2 we show that if
µ is a probability measure and X is a Gâteaux (resp. uniformly Gâteaux)
renormable space, then the space L1(µ,X) admits an equivalent Gâteaux
(resp. uniformly Gâteaux) smooth norm. In Section 3 we prove that if X
admits an equivalent Fréchet (resp. uniformly Fréchet) smooth norm, then
the norm on L1(µ,X) constructed in Section 2 is such that its restriction to
every reflexive subspace is Fréchet (resp. uniformly Fréchet) smooth.

2. Gâteaux smooth and uniformly Gâteaux smooth renormings
of L1(µ,X). Our first result establishes that the properties of Gâteaux
smoothness and uniform Gâteaux smoothness of the space X lift to L1(µ,X)
up to renorming.

Theorem 2.1. Let (X, ‖ · ‖) be a Banach space and (Ω,Σ, µ) be a prob-
ability space. If the norm ‖ · ‖ is Gâteaux smooth (resp. uniformly Gâteaux
smooth), then the Lebesgue–Bochner space L1(µ,X) admits an equivalent
Gâteaux smooth (resp. uniformly Gâteaux smooth) norm.

As we already mentioned, the proofs of this theorem and the main result
of the next section (Theorem 3.1) rely on the construction of a suitable
Orlicz–Bochner norm on L1(µ,X) (see [RR, p. 213] for details). LetM : R→
[0,∞) be an Orlicz function (i.e., M is a convex, even function such that
M increases on [0,∞), M(t) → ∞ as t → ∞ and M(0) = 0). In addition,
we assume that M is non-degenerate (that is, M vanishes only at t = 0),
differentiable, and the functions M , M ′ and R 3 t 7→ tM ′(t) are Lipschitzian
on R. From now on, the symbol C will denote a common Lipschitz constant

for these functions. Examples of such M are M1(t) =
	|t|
0 arctan(s) ds, t ∈ R,

or M2(t) = t2 if |t| ≤ 1 and M2(t) = 2|t| − 1 if |t| > 1.
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Write, for each f ∈ L1(µ,X),

(2.1) ϕ(f) :=
�

Ω

M(‖f(ω)‖) dµ(ω).

Clearly, ϕ is well defined on all of L1(µ,X), is symmetric, convex and satisfies
ϕ(0) = 0. Moreover, if f, g ∈ L1(µ,X) then

|ϕ(f)− ϕ(g)| ≤
�

Ω

∣∣M(‖f(ω)‖)−M(‖g(ω)‖)
∣∣ dµ(ω)

≤ C
�

Ω

∣∣‖f(ω)‖ − ‖g(ω)‖
∣∣ dµ(ω) ≤ C‖f − g‖L1(µ,X).

So, ϕ is (globally) C-Lipschitzian (and in particular continuous). Conse-
quently, the set B = {f ∈ L1(µ,X) : ϕ(f) ≤ 1} is symmetric, convex and
closed. Let | · | denote the Minkowski functional of B, that is,

(2.2) |f | = inf{% > 0 : ϕ(f/%) ≤ 1}, f ∈ L1(µ,X).

Notice that | · | is the Orlicz–Bochner norm on L1(µ,X) associated to M and
the norm ‖ · ‖. The C-Lipschitz property of ϕ yields |f | ≤ C‖f‖L1(µ,X) for

every f ∈ L1(µ,X). Further, if f ∈ L1(µ,X) and |f | = 1, then the convexity
of M yields

1 = ϕ(f)≥
�

{‖f(·)‖≥1}

M(‖f(ω)‖) dµ(ω)≥M ′(1)
�

{‖f(·)‖≥1}

(‖f(ω)‖ − 1) dµ(ω)

≥M ′(1)
�

{‖f(·)‖≥1}

‖f(ω)‖ dµ(ω)−M ′(1),

and hence

‖f‖L1(µ,X) =
�

{‖f(·)‖≥1}

‖f(ω)‖ dµ(ω) +
�

{‖f(·)‖<1}

‖f(ω)‖ dµ(ω)

≤ 2M ′(1) + 1

M ′(1)
=: d.

Therefore, (1/C)| · | ≤ ‖ · ‖L1(µ,X) ≤ d| · |.
We shall prove that | · | satisfies the assertion of Theorem 2.1. First, we

shall show that the function ϕ defined by (2.1) inherits the properties of
Gâteaux smoothness and uniform Gâteaux smoothness of the original norm
on X. For convenience we put ‖ · ‖′(0)h = 0 for every h ∈ X.

Proposition 2.2. If the norm ‖ · ‖ on X is Gâteaux smooth, then the
function ϕ defined by (2.1) is Gâteaux differentiable on L1(µ,X), and for
all f, h ∈ L1(µ,X) we have

(2.3) ϕ′(f)h =
�

Ω

M ′(‖f(ω)‖) ‖ · ‖′(f(ω))(h(ω)) dµ(ω).
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Proof. Fix f ∈ L1(µ,X), and pick a direction h ∈ L1(µ,X). The formu-
las

ξn(ω) = n

[
M

(∥∥∥∥f(ω) +
1

n
h(ω)

∥∥∥∥)−M(‖f(ω)‖)
]
, n ∈ N,

and
ξ(ω) = M ′(‖f(ω)‖) ‖ · ‖′(f(ω))(h(ω))

define measurable functions on Ω. Bearing in mind that the norm ‖ · ‖ is
Gâteaux smooth, we can deduce easily via the mean value theorem that
limn ξn(ω) = ξ(ω) for all ω ∈ Ω. Moreover, since M is C-Lipschitzian, we
have |ξn(ω)| ≤ C‖h(ω)‖ for all ω ∈ Ω. As h ∈ L1(µ), Lebesgue’s dominated
convergence theorem ensures that ξ is integrable and

lim
n

�

Ω

ξn(ω) dµ(ω) =
�

Ω

ξ(ω) dµ(ω),

that is,

lim
n
n

(
ϕ

(
f +

1

n
h

)
− ϕ(f)

)
=

�

Ω

M ′(‖f(ω)‖) ‖ · ‖′(f(ω))(h(ω)) dµ(ω).

Now, the convexity of ϕ guarantees that the one-sided derivative ϕ′+(f)h
exists and that (2.3) holds with ϕ′(f)h replaced by ϕ′+(f)h. Moreover,
since the right hand side of (2.3) is linear in h and M ′ is C-Lipschitz, and∣∣‖·‖′(f(ω))(h(ω))

∣∣ ≤ ‖h(ω)‖ for all ω∈Ω, we have |ϕ′(f)(h)| ≤ C‖h‖L1(µ,X).

Thus, the function L1(µ,X) 3 h 7→
	
ΩM

′(‖f(ω)‖) ‖ · ‖′(f(ω))(h(ω)) dµ(ω)
is linear and bounded, and ϕ is Gâteaux differentiable at f , as we wanted
to show.

Now, a “uniform” version of Proposition 2.2 follows.

Proposition 2.3. If the norm ‖ · ‖ on X is uniformly Gâteaux smooth,
then the function ϕ defined by (2.1) is uniformly Gâteaux differentiable on
all of L1(µ,X).

In the proof, we shall use the following two simple lemmas.

Lemma 2.4. Let (X, ‖ · ‖) be a Banach space, let U ⊂ X be a non-empty
open set, and let ∆ > 0 be so small that the (open) set U1 :=

{
x ∈ U :

dist(x,X \ U) > ∆
}

is non-empty. Let ψ : U → R be a Lipschitzian and
Gâteaux differentiable function.

(i) If ψ is uniformly Gâteaux differentiable on U1, then for every v ∈ X
the function U1 3 x 7→ ψ′(x)v is uniformly continuous.

(ii) If, for every v ∈ X, the function U 3 x 7→ ψ′(x)v is uniformly
continuous, then ψ is uniformly Gâteaux differentiable on U1.

Proof. (i) Let c > 0 be a Lipschitz constant of ψ. Fix any 0 6= v ∈ X, and
pick ε > 0. Find τ ∈ (0, ∆/‖v‖) such that

∣∣ 1
τ (ψ(x+tv)−ψ(x))−ψ′(x)v

∣∣ < ε/3
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whenever x ∈ U1 (note that ψ(x + τv) is defined). Put δ = τε/(6c), and
consider any x, y ∈ U1 with ‖x− y‖ < δ. Then x+ τv, y + τv ∈ U , and

|ψ′(x)v − ψ′(y)v| ≤
∣∣∣∣ψ′(x)v − 1

τ
(ψ(x+ τv)− ψ(x))

∣∣∣∣
+

∣∣∣∣1τ (ψ(y + τv)− ψ(y))− ψ′(y)v

∣∣∣∣
+

1

τ
|ψ(x+ τv)− ψ(y + τv)|+ 1

τ
|ψ(y)− ψ(x)|

<
ε

3
+
ε

3
+

1

τ
c‖x− y‖+

1

τ
c‖y − x‖ < 2ε

3
+

2c

τ
δ = ε.

(ii) Fix any v ∈ X, and take ε > 0. Find δ > 0 so small that |ψ′(x)v −
ψ′(y)v| < ε whenever x, y ∈ U and ‖x − y‖ < δ. Now, consider any x ∈ U1

and any τ ∈ R with 0 < |τ | < min
{
δ,∆/‖v‖

}
. Then the mean value theorem

provides a θ ∈ [0, 1] such that∣∣∣∣1τ (ψ(x+ τv)− ψ(x))− ψ′(x)v

∣∣∣∣ = |ψ′(x+ θτv)v − ψ′(x)v|,

and bearing in mind that x + θτv ∈ U and ‖x + θτv − x‖ < |τ | ‖v‖ < δ it
follows that ∣∣∣∣1τ (ψ(x+ τv)− ψ(x)

)
− ψ′(x)v

∣∣∣∣ < ε,

as we wanted.

Lemma 2.5. Let (X, ‖ · ‖) be a Banach space whose norm is Gâteaux
smooth. Then the following statements are mutually equivalent:

(i) The norm ‖ · ‖ is uniformly Gâteaux smooth.
(i′) For every r > 0 the norm ‖ · ‖ is uniformly Gâteaux differentiable

on the set X \ rBX .
(ii) For every h ∈ X the function SX 3 x 7→ ‖ · ‖′(x)h is uniformly

continuous.
(ii′) For every r > 0 and every h ∈ X the function X \ rBX 3 x 7→

‖ · ‖′(x)h is uniformly continuous.

Proof. The implications (i′)⇒(i) and (ii′)⇒(ii) are trivial, and the equiv-
alence between (i′) and (ii′) follows from Lemma 2.4. To show (i)⇒(i′)
fix r > 0, h ∈ X, and ε > 0. By hypothesis, there is δ > 0 such that∣∣1
t (‖x+ th‖ − 1)− ‖ · ‖′(x)h

∣∣ < ε whenever 0 < |t| < δ and x ∈ SX . For any
s ∈ R with 0 < |s| < rδ and y ∈ X \ rBX we have |s/‖y‖| < |s|/r < δ, and
thus∣∣∣∣‖y + sh‖ − ‖y‖

s
−‖·‖′(y)h

∣∣∣∣= ∣∣∣∣ 1

s/‖y‖

(∥∥∥∥ y

‖y‖
+

s

‖y‖
h

∥∥∥∥−1

)
−‖·‖′

(
y

‖y‖

)
h

∣∣∣∣<ε.
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It remains to prove (ii)⇒(ii′). Fix r > 0, h ∈ X, and ε > 0. By hypoth-
esis, there is δ > 0 such that

∣∣‖ · ‖′(x)h− ‖ · ‖′(y)h
∣∣ < ε whenever x, y ∈ SX

and ‖x− y‖ < 2δ/r. If u, v ∈ X \ rBX are such that ‖u− v‖ < δ, then∥∥∥∥ u

‖u‖
− v

‖v‖

∥∥∥∥ ≤ ∥∥∥∥ u

‖u‖
− v

‖u‖

∥∥∥∥+

∥∥∥∥ v

‖u‖
− v

‖v‖

∥∥∥∥ ≤ 2‖u− v‖
‖u‖

<
2δ

r
,

and consequently∣∣‖ · ‖′(u)h− ‖ · ‖′(v)h
∣∣ =

∣∣∣∣‖ · ‖′( u

‖u‖

)
h− ‖ · ‖′

(
v

‖v‖

)
h

∣∣∣∣ < ε.

The assertion (ii′) is thus proved.

Proof of Proposition 2.3. We have already proved that ϕ is C-Lipschitz-
ian and Gâteaux differentiable on all of L1(µ,X). So, according to Lemma
2.4 it is enough to show that for every h ∈ L1(µ,X), the function L1(µ,X) 3
f 7→ ϕ′(f)h is uniformly continuous. Assume first that h = xχE for some
x ∈ X \ {0} and some measurable set E ⊂ Ω. (The symbol χE stands for
the characteristic function of E.) Fix ε > 0 and pick 0 < r < ε/(8‖x‖) such
that

(2.4) M ′(2r) <
ε

8‖x‖
.

Since the norm ‖ · ‖ is uniformly Gâteaux smooth, thanks to Lemma 2.5
there is 0 < s < min{r, 1} such that

(2.5)∣∣‖ · ‖′(u)x− ‖ · ‖′(v)x
∣∣ < ε

4C
whenever u, v ∈ X \ rBX and ‖u− v‖ < s.

Put δ = sε/(8C‖x‖), and let f, g ∈ L1(µ,X) with ‖f − g‖L1(µ,X) < δ. From
Proposition 2.2 we get

(2.6)

|ϕ′(f)h− ϕ′(g)h| =
∣∣∣ �
E

M ′(‖f(ω)‖) ‖ · ‖′(f(ω))(x) dµ(ω)

−
�

E

M ′(‖g(ω)‖) ‖ · ‖′(g(ω))(x) dµ(ω)
∣∣∣

≤
�

E

|M ′(‖f(ω)‖)−M ′(‖g(ω)‖)|
∣∣‖ · ‖′(f(ω))x

∣∣ dµ(ω)

+
�

E

M ′(‖g(ω)‖)
∣∣‖ · ‖′(f(ω))x− ‖ · ‖′(g(ω))x

∣∣ dµ(ω).

Let us estimate the integrals on the right hand side. For brevity we write,
for each ω ∈ Ω,
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a(ω) = (M ′(‖f(ω)‖)−M ′(‖g(ω)‖)
)
‖ · ‖′(f(ω))x

b(ω) = M ′(‖g(ω)‖)
(
‖ · ‖′(f(ω))x− ‖ · ‖′(g(ω))x

)
.

Bearing in mind that M ′ is C-Lipschitzian and
∣∣‖ · ‖′(f(ω))x

∣∣ ≤ ‖x‖ for all
ω ∈ E, we have

�

E

|a(ω)| dµ(ω) ≤ C
�

E

∣∣‖f(ω)‖ − ‖g(ω)‖
∣∣ ‖x‖ dµ(ω)(2.7)

≤ C‖x‖ ‖f − g‖L1(µ,X) < ε/8.

Let us now estimate
	
E |b(ω)| dµ(ω). Put E1 = {ω ∈ E : ‖g(ω)‖ < 2r} and

E2 = E \ E1. Using (2.4) we get

(2.8)
�

E1

|b(ω)| dµ(ω) ≤ 2‖x‖
�

E1

M ′(‖g(ω)‖) dµ(ω) ≤ εµ(E1)/4 ≤ ε/4.

Further, we put E21 = {ω ∈ E2 : ‖f(ω) − g(ω)‖ < s} and E22 = E2 \ E21.
For each ω ∈ E21 we have ‖g(ω)‖ ≥ 2r, and thus ‖f(ω)‖ ≥ ‖g(ω)‖−‖f(ω)−
g(ω)‖ > 2r − s > r. Using (2.5) with u := f(ω) and v := g(ω), and taking
into account that M ′ is bounded by C, we deduce that |b(ω)| ≤ C ε

4C = ε/4
whenever ω ∈ E21. Therefore,

(2.9)
�

E21

|b(ω)| dµ(ω) ≤ ε

4
µ(E21) ≤

ε

4
.

It remains to estimate
	
E22
|b(ω)| dµ(ω). According to Chebyshev’s inequality

it follows that

µ(E22) ≤
1

s

�

E22

‖f(ω)− g(ω)‖ dµ(ω) ≤ 1

s
‖f − g‖L1(µ,X) <

δ

s
<

ε

8C‖x‖
,

and consequently
�

E22

|b(ω)| dµ(ω) ≤ 2C‖x‖µ(E22) <
ε

4
.

Adding this inequality to (2.8) and (2.9) we get
�

E

|b(ω)| dµ(ω) < 3ε/4,

and bearing in mind (2.6) and (2.7) we obtain

|ϕ′(f)(xχE)− ϕ′(g)(xχE)| < ε.

Thus, for each x ∈ X and each measurable set E ⊂ Ω, the function
L1(µ,X) 3 f 7→ ϕ′(f)(xχE) is uniformly continuous. It follows that if σ is
any simple function in L1(µ,X), then L1(µ,X) 3 f 7→ ϕ′(f)σ is uniformly
continuous as well.
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Now, fix h ∈ L1(µ,X). For any f, g ∈ L1(µ,X) and each simple function
σ ∈ L1(µ,X) we have

|ϕ′(f)h− ϕ′(g)h| ≤ |ϕ′(f)(h− σ)|+ |ϕ′(f)(σ)− ϕ′(g)(σ)|+ |ϕ′(g)(σ − h)|
≤ 2C‖h− σ‖L1(µ,X) + |ϕ′(f)(σ)− ϕ′(g)(σ)|.

Since the set of simple functions is ‖ · ‖L1(µ,X)-dense in L1(µ,X), we deduce

that L1(µ,X) 3 f 7→ ϕ′(f)h is uniformly continuous. Now, it remains to
apply Lemma 2.4.

Proof of Theorem 2.1. Let |·| be the equivalent norm on L1(µ,X) defined
by (2.2). Assume that ‖·‖ is Gâteaux smooth. An argument as in [FZ, p. 664]
shows that | · | is also Gâteaux smooth, and

(2.10) | · |′(f)h =
ϕ′(f)h

ϕ′(f)f
whenever f, h ∈ L1(µ,X) and |f | = 1.

For completeness we shall prove this. Fix f ∈ L1(µ,X) with |f | = 1. Pick
any ζ in the subdifferential ∂| · |(f) and h ∈ ker ζ. Put γ(t) = ϕ(f + th) for
t ∈ R. Since, by Proposition 2.2, the function ϕ is Gâteaux differentiable on
L1(µ,X), we see that γ is differentiable on R, with γ′(t) = ϕ′(f + th)h for
every t ∈ R. On the other hand, for each t ∈ R we have |f + th| ≥ ζ(f) = 1,
and bearing in mind that ϕ is convex we obtain

1 = ϕ

(
f + th

|f + th|

)
≤ ϕ(f + th)

|f + th|
≤ γ(t).

Therefore, γ(t) ≥ γ(0) for all t ∈ R, and so 0 = γ′(0) = ϕ′(f)h, that is, h ∈
kerϕ′(f). We have proved that ker ζ ⊆ kerϕ′(f). Hence, there is a ∈ R such
that ζ = aϕ′(f). So, ∂| · |(f) is a singleton, and | · | is Gâteaux differentiable
at f . Moreover, since 1 = ζ(f) = aϕ′(f)f we have a = (ϕ′(f)f)−1, and
(2.10) is proved.

Now, suppose that ‖ · ‖ is uniformly Gâteaux smooth. According to
Proposition 2.3 and Lemma 2.4, for every h∈L1(µ,X) the function L1(µ,X)
3 h 7→ ϕ′(f)h is uniformly continuous. We shall show that so is SL1(µ,X) 3
f 7→ | · |′(f)h. For f ∈ L1(µ,X), write

λ(f) = ϕ′(f)f.

We claim that λ is C-Lipschitzian. Indeed, (2.3) yields

λ(f) =
�

Ω

M ′(‖f(ω)‖)‖f(ω)‖ dµ(ω),

and since R 3 t 7→ tM ′(t) is C-Lipschitzian we deduce that

|λ(f)− λ(g)| ≤
�

Ω

∣∣M ′(‖f(ω)‖)‖f(ω)‖ −M ′(‖g(ω)‖)‖g(ω)‖
∣∣ dµ(ω)(2.11)

≤ C‖f − g‖L1(µ,X)
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for all f, g ∈ L1(µ,X). Moreover, from the convexity of ϕ we get

(2.12) λ(f) ≥ ϕ(f)− ϕ(0) = 1 whenever |f | = 1.

Now, fix h ∈ L1(µ,X), and consider any f, g ∈ L1(µ,X) with |f | = |g| = 1.
Thanks to (2.10)–(2.12) we have∣∣| · |′(f)h− | · |′(g)h

∣∣ =

∣∣∣∣ϕ′(f)h

λ(f)
− ϕ′(g)h

λ(g)

∣∣∣∣
≤ 1

λ(f)

∣∣ϕ′(f)h− ϕ′(g)h
∣∣+

1

λ(f)λ(g)
|λ(f)− λ(g)|

∣∣ϕ′(g)h
∣∣

≤
∣∣ϕ′(f)h− ϕ′(g)h

∣∣+ |λ(f)− λ(g)|C‖h‖L1(µ,X)

≤
∣∣ϕ′(f)h− ϕ′(g)h

∣∣+ C2‖f − g‖L1(µ,X)‖h‖L1(µ,X).

Since L1(µ,X) 3 f 7→ ϕ′(f)h is uniformly continuous, it follows that so is
SL1(µ,X) 3 f 7→ ‖·‖′(f)h, and applying Lemma 2.5 we deduce that the norm
| · | is uniformly Gâteaux smooth.

Remark 2.6. The equivalent norm | · | we constructed on L1(µ,X) is a
lattice norm whenever X is a Banach lattice (see e.g. [LT, p. 1] for details).
Indeed, assume that (X, ‖ · ‖,≤) is a Banach lattice. For f, g ∈ L1(µ,X) we
write

f � g if and only if f(ω) ≤ g(ω) for almost all ω ∈ Ω.
Since the function M is increasing on [0,∞) we deduce easily that |f | ≤ |g|
whenever f, g ∈ L1(µ,X) and f ∨ (−f) ≤ g ∨ (−g).

Remark 2.7. Notice that another uniformly Gâteaux smooth renorm-
ing on L1(µ,X) can be achieved indirectly using the characterization of
uniformly Gâteaux smooth renormable Banach spaces mentioned at the be-
ginning. Indeed, if X admits an equivalent uniformly Gâteaux smooth norm,
then there exists a Hilbert-generated space Y such that X ⊂ Y ([FGZ]). On
the other hand, imitating an argument in [D] (see also [DU, p. 252, Corol-
lary 11]) we deduce that, if a Banach space Z is generated by a Hilbert
space H, then L1(µ,Z) is generated by the Hilbert space L2(µ,H). (Given
a Banach space (E, ‖ · ‖), we denote by L2(µ,E) the Banach space of all
(equivalence classes of) strongly measurable functions f : Ω → E such that
‖f‖2L2(µ,E) =

	
Ω ‖f(ω)‖2 dµ(ω) < ∞.) Consequently, L1(µ, Y ) is Hilbert-

generated, and hence it admits an equivalent uniformly Gâteaux smooth
norm. Since L1(µ,X) embeds into L1(µ, Y ) it follows that L1(µ,X) has an
equivalent uniformly Gâteaux smooth norm as well.

3. Fréchet smooth and uniformly Fréchet smooth renormings on
reflexive subspaces of L1(µ,X). In this section, we consider the prob-
lem of lifting the properties of Fréchet smoothness and uniform Fréchet
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smoothness of a Banach space X to L1(µ,X). It is well known that if λ is
the Lebesgue measure on [0, 1], then the space L1(λ) contains an isomor-
phic copy of `1. (Indeed, if {An}n∈N is a partition of [0, 1] into Lebesgue
measurable non-negligible sets, then the closed linear span of the charac-
teristic functions of An’s is a subspace of L1(λ), isometric to `1.) Since `∞

is non-separable it follows that L1(λ) is not an Asplund space, and L1(λ)
admits no equivalent Fréchet smooth renorming. Thus, an analogue of The-
orem 2.1 in the cases of Fréchet or uniformly Fréchet smoothness does not
make sense. We have, however, the following result.

Theorem 3.1. Let (X, ‖ · ‖) be a Banach space and (Ω,Σ, µ) be a prob-
ability space. If the norm ‖ · ‖ is Fréchet smooth (resp. uniformly Fréchet
smooth), then L1(µ,X) admits an equivalent norm whose restriction to every
reflexive subspace is Fréchet smooth (resp. uniformly Fréchet smooth).

As an immediate consequence of the parenthetic version of this theorem
we obtain the following extension of the aforementioned result by Rosenthal
in the setting of Lebesgue–Bochner spaces.

Corollary 3.2. Let (Ω,Σ, µ) be a probability space. If X is a super-
reflexive Banach space, then every reflexive subspace of L1(µ,X) is super-
reflexive.

In the proof of Theorem 3.1 we shall use the following analogues of
Propositions 2.2 and 2.3.

Proposition 3.3. Let (X, ‖ · ‖) be a Banach space and (Ω,Σ, µ) be a
probability space. Let ϕ : L1(µ,X) → [0,∞) be defined by (2.1) and Y be a
reflexive subspace of L1(µ,X). If the norm ‖ · ‖ is Fréchet smooth, then ϕ
is “Y -Fréchet differentiable” at every f ∈ L1(µ,X), that is,

lim
t→0

sup

{∣∣∣∣ϕ(f + th)− ϕ(f)

t
− ϕ′(f)h

∣∣∣∣ : h ∈ BY
}

= 0.

In particular, ϕ restricted to Y is then Fréchet differentiable on Y .

Proof. Fix f ∈ L1(µ,X). In order to guarantee the µ-measurability of
some functions defined below, we shall first perform a separable reduction
for the Fréchet differentiability of ϕ at f . For h ∈ BY and n ∈ N, write

Rn(f, h) = n

[
ϕ

(
f +

1

n
h

)
− ϕ(f)

]
− ϕ′(f)h,

and let S be a countable subset of BY such that

(3.1) sup{Rn(f, h) : h ∈ BY } = sup{Rn(f, h) : h ∈ S} for all n ∈ N.

We may and do assume that h(Ω) is a separable subset of X for every h ∈ S
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and also that f(Ω) is separable. Define

Y0 = span(S) and X0 = span
(⋃
h∈S

h(Ω) ∪ f(Ω)
)
.

It is clear that X0 is a separable subspace of X, and a simple argument
reveals that

(3.2) h(Ω) ⊂ X0 for every h ∈ Y0.

Moreover, ϕ is Y -Fréchet differentiable at f if (and only if) it is Y0-Fréchet
differentiable at f . Indeed, from (3.1) we get

sup{Rn(f, h) : h ∈ BY }=sup{Rn(f, h) : h ∈ S}≤sup{Rn(f, h) : h ∈ BY0}.

Thus, if ϕ is Y0-Fréchet differentiable at f then

lim
n

sup{Rn(f, h) : h ∈ BY } = 0,

and the convexity of ϕ ensures that ϕ is Fréchet differentiable at f . There-
fore, it suffices to prove that ϕ is Y0-Fréchet differentiable at f .

Fix ε > 0. Since Y0 is reflexive, the ball BY0 is uniformly integrable (see
e.g. [DU, p. 104]), i.e., there is N = NY0(ε) > 1 such that

(3.3)
�

{‖h(·)‖>N}

‖h(ω)‖ dµ(ω) < ε for h ∈ BY0 .

Now, fix any h ∈ BY0 and, for each n ∈ N, put gn = f + 1
nh. The convexity

of ϕ yields

ϕ(gn)− ϕ(f) ≥ ϕ′(f)(gn − f) =
1

n
ϕ′(f)h,

ϕ(f)− ϕ(gn) ≥ ϕ′(gn)(f − gn) = − 1

n
ϕ′(gn)h.

Thus,

0 ≤ Rn(f, h) ≤ ϕ′(gn)h− ϕ′(f)h,

and using Proposition 2.2 we get

0 ≤ Rn(f, h) ≤
�

Ω

M ′(‖gn(ω)‖) ‖ · ‖′(gn(ω))(h(ω)) dµ(ω)

−
�

Ω

M ′(‖f(ω)‖) ‖ · ‖′(‖f(ω)‖)(h(ω)) dµ(ω).

(Recall that we put ‖ · ‖′(0) = 0.) Define E = {ω ∈ Ω : ‖h(ω)‖ ≤ N}. As
M ′ is bounded by C and

∣∣‖ · ‖′(u)v
∣∣ ≤ ‖v‖, we obtain

M ′(‖f(ω)‖)
∣∣‖ · ‖′(f(ω))(h(ω))

∣∣ ≤ C‖h(ω)‖,
M ′(‖gn(ω)‖)

∣∣‖ · ‖′(gn(ω))(h(ω))
∣∣ ≤ C‖h(ω)‖,
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for all ω ∈ Ω and any n ∈ N. From inequality (3.3) it then follows that
�

Ω\E

M ′(‖f(ω)‖)
∣∣‖ · ‖′(fn(ω))(h(ω))

∣∣ dµ(ω) ≤ Cε,

�

Ω\E

M ′(‖gn(ω)‖)
∣∣‖ · ‖′(gn(ω))(h(ω))

∣∣ dµ(ω) ≤ Cε.

Consequently,

(3.4) 0 ≤ Rn(f, h)

≤ 2Cε+
�

E

∣∣[M ′(‖gn(ω)‖)−M ′(‖f(ω)‖)]‖ · ‖′(gn(ω))(h(ω))
∣∣ dµ(ω)

+
�

E

M ′(‖f(ω)‖)
∣∣‖ · ‖′(gn(ω))(h(ω))− ‖ · ‖′(f(ω))(h(ω))

∣∣ dµ(ω).

For ω ∈ Ω, write

an(ω) = [M ′(‖gn(ω)‖)−M ′(‖f(ω)‖)] ‖ · ‖′(gn(ω))(h(ω)),

bn(ω) = M ′(‖f(ω)‖)[‖ · ‖′(gn(ω))(h(ω))− ‖ · ‖′(f(ω))(h(ω))].(3.5)

Since M ′ is C-Lipschitzian we have
�

E

|an(ω)| dµ(ω) ≤ C
�

E

‖gn(ω)− f(ω)‖ ‖h(ω)‖ dµ(ω) =
C

n

�

E

‖hn(ω)‖2 dµ(ω)

≤ CN2

n
µ(E) ≤ CN2

n
,

and using (3.4) we get

(3.6) 0 ≤ Rn(f, h) ≤ 2Cε+
CN2

n
+

�

E

|bn(ω)| dµ(ω).

It remains to estimate the integral
	
E |bn(ω)| dµ(ω).

For each ω ∈ Ω we write

ξn(ω) = sup

{∥∥∥∥‖ · ‖′(f(ω) +
N

n
u

)
− ‖ · ‖′(f(ω))

∥∥∥∥ : u ∈ BX0

}
if ‖f(ω)‖ > N/n, and ξn(ω) = 2 otherwise. (Notice that ξn does not depend
upon h ∈ BY0 .) We claim that ξn is a µ-measurable function. Indeed, let T
be a countable dense subset of BX0 . Then

ξn(ω) = sup

{∥∥∥∥‖ · ‖′(f(ω) +
N

n
u

)
− ‖ · ‖′(f(ω))

∥∥∥∥ : u ∈ T
}

whenever ‖f(ω)‖ > N/n, because the Fréchet smoothness of ‖ ·‖ guarantees
that the mapping X0 \{0} 3 x 7→ ‖ · ‖′(x) ∈ X∗ is norm-to-norm continuous
(see [FHHMZ, Corollary 7.24]). The latter supremum is over the countable
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family of functions Ω 3 ω 7→
∥∥‖ · ‖′(f(ω) + N

n u)− ‖ · ‖′(f(ω))
∥∥, u ∈ T , each

being µ-measurable. It follows that ξn is also µ-measurable.
Now, from (3.2) we get

|bn(ω)| ≤ CNξn(ω) for all ω ∈ E.
Taking into account that M ′(0) = 0, we have�

E

|bn(ω)| dµ(ω) =
�

E\f−1(0)

|bn(ω)| dµ(ω) ≤ CN
�

E\f−1(0)

ξn(ω) dµ(ω)

≤ CN
�

Ω\f−1(0)

ξn(ω) dµ(ω),

and using (3.6) we obtain

0 ≤ Rn(f, h) ≤ 2Cε+
CN2

n
+ CN

�

Ω\f−1(0)

ξn(ω) dµ(ω).

Since this is true for every h ∈ BY0 , we have

(3.7)

0 ≤ sup{Rn(f, h) : h ∈ BY0} ≤ 2Cε+
CN2

n
+ CN

�

Ω\f−1(0)

ξn(ω) dµ(ω).

Now, we shall prove that

(3.8)
�

Ω\f−1(0)

ξn(ω) dµ(ω)→ 0 as n→∞.

Since the mapping X \{0} 3 x 7→ ‖ ·‖′(x) ∈ X∗ is norm-to-norm continuous
it follows that ξn(ω)→ 0 as n→∞ for every ω ∈ Ω \ f−1(0). On the other
hand, 0 ≤ ξn(ω) ≤ 2 for all ω ∈ Ω and all n ∈ N. Therefore, (3.8) follows
from Lebesgue’s dominated convergence theorem.

From (3.7) and (3.8) we get

0 ≤ lim sup
n

sup{Rn(f, h) : h ∈ BY0} ≤ 2Cε.

Letting ε > 0 go to zero in this inequality we obtain

sup

{
n

[
ϕ

(
f +

1

n
h

)
− ϕ(f)

]
− ϕ′(f)h : h ∈ BY0

}
→ 0 as n→∞,

and since ϕ is convex and Y0 3 h 7→ ϕ ′(f)h is linear, it follows that

lim
t→0

sup

{∣∣∣∣ϕ(f + th)− ϕ(f)

t
− ϕ′(f)h

∣∣∣∣ : h ∈ BY0
}

= 0,

as we wanted to show.

Proposition 3.4. Let (X, ‖ · ‖) be a Banach space and (Ω,Σ, µ) be a
probability space. Let ϕ : L1(µ,X) → [0,∞) be defined by (2.1) and Y be a
reflexive subspace of L1(µ,X). If the norm ‖·‖ is uniformly Fréchet smooth,
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then the derivative ϕ′ is “Y -uniformly continuous”, that is, for every ε > 0
there is δ > 0 such that

|ϕ′(f)h− ϕ′(g)h| < ε whenever

f, g ∈ L1(µ,X), h ∈ BY and ‖f − g‖L1(µ,X) < δ.

In particular, ϕ restricted to Y is then uniformly Fréchet differentiable on Y .

In the proof of this proposition we shall use the following Fréchet coun-
terparts of Lemmas 2.4 and 2.5. Their proofs are left to the reader.

Lemma 3.5. Let (X, ‖ · ‖), U , U1, ∆ and ψ be as in Lemma 2.4.

(i) If ψ is uniformly Fréchet differentiable on U1, then the mapping
U1 3 x 7→ ψ′(x) ∈ X∗ is norm-to-norm uniformly continuous.

(ii) If U 3 x 7→ ψ′(x) ∈ X∗ is norm-to-norm uniformly continuous,
then ψ is uniformly Fréchet differentiable on U1.

Lemma 3.6. Let (X, ‖ · ‖) be a Banach space whose norm is Gâteaux
smooth. Then the following statements are mutually equivalent:

(i) The norm ‖ · ‖ is uniformly Fréchet smooth.
(i′) For every r > 0 the norm ‖ · ‖ is uniformly Fréchet differentiable

on the set X \ rBX .
(ii) For every h ∈ X the mapping SX 3 x 7→ ‖ · ‖′(x) ∈ SX∗ is norm-

to-norm uniformly continuous.
(ii′) For every r > 0 the mapping X \ rBX 3 x 7→ ‖ · ‖′(x) ∈ SX∗ is

norm-to-norm uniformly continuous.

Proof of Proposition 3.4. Fix ε > 0. Since Y is reflexive we can find
N = NY (ε) > 1 such that

(3.9)
�

{‖h(·)‖>N}

‖h(ω)‖ dµ(ω) < ε for h ∈ BY .

On the other hand, thanks to Lemma 3.6 there exists 0 < γ < min{1, ε/N}
such that

(3.10)∥∥‖ · ‖′(x)− ‖ · ‖′(y)
∥∥ < ε

N
whenever x, y ∈ X \ ε

N
BX and ‖x− y‖ < γ.

Let δ = γε/N . Consider any f, g ∈ L1(µ,X) with ‖f − g‖L1(µ,X) < δ, and
take h ∈ BY . For ω ∈ Ω, write

a(ω) =
(
M ′(‖f(ω)‖)−M ′(‖g(ω)‖)

)
‖ · ‖′(f(ω))(h(ω)),

b(ω) = M ′(‖g(ω)‖)
(
‖ · ‖′(f(ω))(h(ω))− ‖ · ‖′(g(ω))(h(ω))

)
,
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and put E = {ω ∈ Ω : ‖h(ω)‖ ≤ N}. Using (3.9) and proceeding as in the
proof of (3.4) we deduce that

(3.11) |ϕ′(f)h− ϕ′(g)h| ≤ 2Cε+
�

E

|a(ω)| dµ(ω) +
�

E

|b(ω)| dµ(ω).

Further, bearing in mind that M ′ is C-Lipschitz we get
�

E

|a(ω)| dµ(ω) ≤ C
�

E

∣∣‖f(ω)‖ − ‖g(ω)‖
∣∣‖h(ω)‖ dµ(ω)(3.12)

≤ CN‖f − g‖L1(µ,X) < Cε.

Now, we shall estimate the integral
	
E |b(ω)| dµ(ω). Define

E1 = {ω ∈ E : ‖f(ω)− g(ω)‖ ≥ γ}, E2 = E \ E1,

E21 = {ω ∈ E2 : ‖g(ω)‖ ≤ 2ε/N}, E22 = E2 \ E21.

Then µ(E1) < 1/γ‖f − g‖L1(µ,X) < δ/γ = ε/N , and consequently

(3.13)
�

E1

|b(ω)| dµ(ω) ≤ 2C
�

E1

‖h(ω)‖ dµ(ω) ≤ 2CNµ(E1) < 2Cε.

On the other hand, as M ′(‖g(ω)‖) ≤ C‖g(ω)‖ ≤ 2Cε/N for each ω ∈ E21,
it follows that

(3.14)
�

E21

|b(ω)| dµ(ω) ≤ 2Cε

N

�

E21

2‖h(ω)‖ dµ(ω) ≤ 4Cε.

It remains to estimate
	
E22
|b(ω)| dµ(ω). For each ω ∈ E22 we have ‖g(ω)‖ >

2ε/N , and so ‖f(ω)‖ > ε/N . Applying now (3.10) with x := f(ω) and
y := g(ω) we get∣∣‖ · ‖′(f(ω))(h(ω))− ‖ · ‖′(g(ω))(h(ω))

∣∣ < ε

N
N = ε for every ω ∈ E22,

and consequently �

E22

|b(ω)| dµ(ω) ≤ Cε.

Adding this to (3.13) and (3.14) we obtain
	
E |b(ω)| dµ(ω) < 7Cε, and taking

into account (3.11) and (3.12) yields

|ϕ′(f)h− ϕ′(g)h| < 10Cε.

Therefore, ϕ′ is Y -uniformly continuous. Finally, an appeal to Lemma 3.5
shows that the restriction of ϕ to Y is uniformly Fréchet differentiable.

Proof of Theorem 3.1. Let | · | be the equivalent norm on L1(µ,X) given
by (2.2). Assume that the norm ‖ · ‖ on X is Fréchet smooth. From the end
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of the proof of Theorem 2.1 we know that

(3.15)∣∣| · |′(f1)h− | · |′(f2)h∣∣ ≤ |ϕ′(f1)h− ϕ′(f2)h|+C2‖f1 − f2‖L1(µ,X)‖h‖L1(µ,X)

for all f1, f2, h ∈ L1(µ,X) such that |f1| = |f2| = 1. Fix any f ∈ L1(µ,X)
with |f | = 1. We shall show that |·| is Y -Fréchet differentiable at f . Consider
any 0 < t < 1 and h ∈ Y with |h| ≤ 1. The convexity of | · | yields

t| · |′(f)h ≤ |f + th| − |f | ≤ t| · |′(f + th)h = t| · |′
(
f + th

|f + th|

)
h.

Combining this with (3.15) and bearing in mind that ‖ · ‖L1(µ,X) ≤ d| · | for
some constant d > 0, we get

0 ≤ |f + th| − |f |
t

− | · |′(f)h

≤
∣∣∣∣ϕ′( f + th

|f + th|

)
h− ϕ′(f)h

∣∣∣∣+ C2

∥∥∥∥ f + th

|f + th|
− f

∥∥∥∥
L1(µ,X)

‖h‖L1(µ,X)

≤
∣∣∣∣ϕ′( f + th

|f + th|

)
h− ϕ′(f)h

∣∣∣∣+
2d2t

1− t
.

Therefore,

sup
h∈B(Y,|·|)

∣∣∣∣ |f + th| − |f |
t

− | · |′(f)h

∣∣∣∣
≤ sup

h∈B(Y,|·|)

∣∣∣∣ϕ′( f + th

|f + th|

)
h− ϕ′(f)h

∣∣∣∣+
2d2t

1− t

for all t ∈ (0, 1). By Proposition 3.3, the function ϕ is Y -Fréchet differen-
tiable at f . So, ϕ′ is Y -norm-to-norm continuous at f , and thus

lim
t→0+

sup
h∈B(Y,|·|)

∣∣∣∣ϕ′( f + th

|f + th|

)
h− ϕ′(f)h

∣∣∣∣ = 0.

Consequently,

lim
t→0+

sup
h∈B(Y,|·|)

∣∣∣∣ |f + th| − |f |
t

− | · |′(f)h

∣∣∣∣ = 0,

and the norm | · | is Y -Fréchet differentiable at f .
Assume further that the norm ‖ · ‖ on X is uniformly Fréchet smooth.

Fix f, g ∈ L1(µ,X) with |f | = |g| = 1. From (3.15) we get

sup
h∈B(Y,|·|)

∣∣| · |′(f)h−|· |′(g)h
∣∣ ≤ sup

h∈B(Y,|·|)

|ϕ′(f)h−ϕ′(g)h|+C2d‖f−g‖L1(µ,X).

Since, by the former proposition, the mapping L1(µ,X) 3 f 7→ ϕ′(f) is
Y -uniformly continuous, so is S(L1(µ,X),|·|) 3 f 7→ | · |′(f), and using Lemma
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3.6 we conclude that the norm | · | restricted to Y is uniformly Fréchet
smooth.

Remark 3.7. The parenthetic part of Theorem 3.1 can be proved indi-
rectly, using the well known theorem by Figiel and Pisier [FP] (cf. [LT, II,
Theorem 1.e.9]) that L2(µ,X) is super-reflexive if (and only if) X is super-
reflexive, and some renorming results of [FMZ] on strongly super-reflexive
generated Banach spaces. According to [FMZ], we say that a Banach space
E is strongly generated by a Banach space Y if there exists a bounded linear
operator T : Y → E such that, for every ε > 0 and every weakly compact
set K ⊂ E, there is c > 0 such that K ⊂ c T (BY ) + εBE . In [FMZ, Corol-
lary 8], it was shown that if E is strongly generated by a super-reflexive
space, then E admits an equivalent norm whose restriction to every reflex-
ive subspace of E is uniformly Fréchet smooth. Further, an argument as in
the proof of [FMZ, Proposition 12] shows that if µ is a probability measure
and X is a Banach space, then L1(µ,X) is strongly generated by L2(µ,X).
Thus, if X has an equivalent uniformly Fréchet smooth norm, then L1(µ,X)
is strongly generated by the super-reflexive space L2(µ,X), and L1(µ,X)
admits an equivalent norm whose restriction to every reflexive subspace is
uniformly Fréchet smooth.
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