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A stronger Dunford�Pettis propertybyH. Carrión (São Paulo), P. Galindo (Valenia) andM. L. Lourenço (São Paulo)
Abstrat. We disuss a strong version of the Dunford�Pettis property, earlier named

(DP ∗) property, whih is shared by both ℓ1 and ℓ∞. It is equivalent to the Dunford�Pettisproperty plus the fat that every quotient map onto c0 is ompletely ontinuous. Otherweak sequential ontinuity results on polynomials and analyti mappings related to the
(DP ∗) property are shown.There are several lasses of subsets of a Banah spae whih play asigni�ant role in desribing its topologial properties, and hene in thestudy of operators and polynomials. One an think of the lasses of om-pat, weakly ompat, limited sets, et. Often in the literature when dealingwith the omplete ontinuity of either operators or polynomials one faesBanah spaes whih are either Shur spaes or Grothendiek spaes withthe Dunford�Pettis property; see the work of F. Bombal and G. Emmanuele[1℄, M. González and J. Gutiérrez [12℄ and J. Jaramillo, A. Prieto andI. Zalduendo [14℄. What do these lasses of spaes have in ommon?We foundthat, among other things, they share the property that weakly ompat setsare limited and also that suh property had been introdued by J. Borwein,M. Fabian and J. Vanderwer� in [3℄ under the name of (DP ∗) property.In this note we obtain haraterizations of this property in terms of c0-valued linear operators. For instane, it is equivalent to the Dunford�Pettisproperty plus the fat that every quotient map onto c0 is ompletely ontin-uous. It is shown that any non-limited operator between Banah spaes withthe (DP ∗) property �xes a opy of ℓ1. We also relate it to weak sequentialontinuity properties of polynomials and analyti mappings de�ned on Ba-2000 Mathematis Subjet Classi�ation: Primary 46B20; Seondary 46G20.Key words and phrases: Dunford�Pettis property, omplete ontinuity, polynomial.Researh of P. Galindo supported partially by Cint (Universidade de São Paulo) andBFM-FEDER 2003-07540 (DGI Spain).Researh of M. L. Lourenço supported partially by CNPq (472416/2004-9) and BFM-FEDER 2003-07540 (DGI Spain). [205℄ © Instytut Matematyzny PAN, 2008



206 H. Carrión et al.nah spaes enjoying this property; in partiular, polynomials are ompletelyontinuous when the range spae is Gelfand�Phillips.1. Generalities. A subset L of a Banah spae X is said to be limitedif weak∗ null sequenes in the dual spae X∗ onverge uniformly on L. If alllimited sets in a Banah spae X are relatively ompat, then X is said tobe a Gelfand�Phillips spae. All separable spaes and all weakly ompatlygenerated spaes are Gelfand�Phillips spaes. Reall that L ⊂ X is said tobe onditionally weakly ompat if any sequene in L has a weakly Cauhysubsequene. A Banah spae X has the Grothendiek property if weak∗onvergent sequenes in X∗ are weakly onvergent.Given Banah spaes X,Y and a positive integer n we denote byP (nX,Y )the spae of all ontinuous n-homogeneous polynomials from X into Y. Toeah P ∈ P (nX,Y ) we an assoiate a unique symmetri n-linear mapping
P̌ from Xn to Y suh that P (x) = P̌ (x, . . . , x) for all x ∈ X. The spae of allholomorphi funtions from X into Y will be denoted by H(X,Y ). For any
f ∈ H(X,Y ) and A ⊂ X, we de�ne ‖f‖A = supx∈A ‖f(x)‖. As is ustomary,we say that f is ompletely ontinuous if it maps weakly onvergent sequenesinto onvergent sequenes.For unexplained notation on Banah spaes we refer to [11℄ and on poly-nomials and holomorphi mappings to [10℄.Definition 1.1. A Banah spae X is said to have the (DP ∗) propertywhenever all weakly ompat sets in X are limited.In other words, this is equivalent to the fat that for any weakly null se-quene (xn) inX and any weak∗ onvergent sequene (ϕn) inX∗, limn ϕn(xn)
= 0.Reall that X has the Dunford�Pettis property if for any weakly nullsequene (xn) in X and any weakly onvergent sequene (ϕn) in X∗,
limn ϕn(xn) = 0. That is, weakly null sequenes in X are uniformly onver-gent on weakly ompat sets in X∗, or equivalently, on onditionally weaklyompat sets. But observe that De�nition 1.1 does not mean that weaklynull sequenes in X are uniformly onvergent on weak∗ ompat sets in X∗,as this is just the Shur property of X; and not even on weak∗ onditionallyompat sets, sine the unit ball of the dual of a separable spae is weak∗onditionally ompat.Proposition 1.2. The Banah spae X has the (DP ∗) property if , andonly if , every onditionally weakly ompat set L in X is a limited set. Inpartiular , if X has the (DP ∗) property , then it is �nite-dimensional orontains a opy of ℓ1, and P (nX) ontains a opy of ℓ∞ for n ≥ 2.Proof. Assume X has the (DP ∗) property. If L is not limited, there isa sequene (ϕn) weak∗ null in X∗ suh that (‖ϕn‖L) is not null. Thus, we



A stronger Dunford�Pettis property 207an pik δ > 0 and xn ∈ L so that |ϕn(xn)| > δ. There is no loss of gen-erality in assuming that (xn) itself is a weakly Cauhy sequene. Sine thesequene (ϕn(xm))n is null, there is nm suh that |ϕnm
(xm)| < δ/2. Thus

|ϕnm
(xnm

− xm)| ≥ |ϕnm
(xnm

)| − |ϕnm
(xm)| ≥ δ/2. However, the sequene

(xnm
− xm)m is weakly null in X, so limm ϕnm

(xnm
− xm) = 0, ontrary tothe former inequality.The onverse statement is obvious sine every weakly ompat set isonditionally weakly ompat.To see thatX ontains a opy of ℓ1, observe that otherwise by Rosenthal's

ℓ1 theorem, the unit ball of X would be onditionally weakly ompat, henelimited. Aording to the Josefson�Nissenzweig theorem this is only possibleif X is �nite-dimensional. In ase X ontains a opy of ℓ1, it has ℓ2 as aquotient, q : X → ℓ2. Then qt : P (nℓ2) → P (nX) is an embedding and it isknown that P (nℓ2) ontains a opy of ℓ∞.Remark 1.3 (f. [1℄, [3℄, [14℄). If X is a Shur spae, then X has the
(DP ∗) property. Also every Grothendiek Banah spae with the Dunford�Pettis property enjoys the (DP ∗) property. Also every Banah spae withthe Peªzy«ski (P ) property, the Dunford�Pettis property and without om-plemented opies of c0 enjoys the (DP ∗) property.As a onsequene, H∞ has the (DP ∗) property sine Bourgain showedthat it has the Dunford�Pettis property [4℄ and it is a Grothendiek spae [5℄.Remark 1.4. If X is a Gelfand�Phillips spae, then either X is a Shurspae or X laks the (DP ∗) property. In partiular, a separable spae withthe (DP ∗) property must be a Shur spae. Indeed, if X is not a Shur spae,then there is a weakly null sequene whih is not norm onvergent, hene itannot be limited.The above result slightly improves Proposition 5 of [14℄ (see also [3℄) asit points out that if X has the (DP ∗) property and is a Gelfand�Phillipsspae (instead of X∗ having weak∗ sequentially ompat unit ball), then it isa Shur spae. Let us reall the existene of a Gelfand�Phillips spae whosedual unit ball is not weak∗ sequentially ompat [18℄.Proposition 1.5. If X and Y are Banah spaes with the (DP ∗) prop-erty , then so is X × Y as well.Proof. It su�es to hek that the produt of two limited sets A ⊂ X and
B ⊂ Y is limited. Indeed, let (ϕn) ⊂ (X×Y )∗ ≈ X∗⊕Y ∗ be weak∗ null. Then
ϕn = φn+ψn for φn ∈ X∗ and ψn ∈ Y ∗ with (φn) and (ψn) weak∗ null. Sine
‖ψn‖B → 0 and ‖φn‖A → 0, we have ‖ϕn‖A×B ≤ ‖φn‖A + ‖ψn‖B → 0.Examples. (a) In general, a quotient spae of a spae with the (DP ∗)property does not share this property: think of ℓ2 as a quotient of ℓ1. If X



208 H. Carrión et al.has the (DP ∗) property and Y ⊂ X does not ontain ℓ1, then X/Y has the
(DP ∗) property: Assume that for some weakly null sequene (χn) ⊂ X/Y,and for some weak∗ onvergent sequene (Φn) ⊂ (X/Y )∗, we have |Φn(χn)| >
δ > 0. Then we may �nd a weak∗ onvergent sequene (ϕn) ⊂ X∗ and, byLohman's lifting result (see [8, p. 212℄), a weakly Cauhy sequene (xk) ⊂ Xsuh that xk ∈ χnk

and |ϕnk
(xk)| = |Φnk

(χnk
)| > δ > 0, whih ontra-dits the (DP ∗) property of X sine (xk) is a onditionally weakly ompatset.However, omplemented subspaes do inherit this property, although gen-eral losed subspaes do not: just reall c0 ⊂ ℓ∞. Atually, aording to Re-mark 1.4, every losed subspae of a Banah spae X has the (DP ∗) propertyif, and only if, X is a Shur spae.(b) Also the (DP ∗) property is neither inherited from the dual, as in thease of c0, nor inherited by the dual, as in the ase of ℓ1(ℓn2 ) whih is a Shurspae whose dual ℓ∞(ℓn2 ) laks the Dunford�Pettis property [22℄.() The above proposition enlarges the lass of spaes enjoying the (DP ∗)property and provides examples, like ℓ1 × ℓ∞, of spaes with the (DP ∗)property whih are neither Shur nor Grothendiek. Observe also that theproposition implies that the bidual of the dis algebra A has the (DP ∗)property. Indeed, it is known ([21, p. 11℄) that A∗∗ = H∞⊕V ∗

sing where Vsingdenotes the spae of measures on the unit sphere of C singular with respetto the Lebesgue measure. As pointed out there, V ∗

sing is a C(K)-spae for anextremely disonneted ompat Hausdor� spae K, hene a Grothendiekspae.(d) Furthermore, the tensor produt ℓ∞ ⊗̂π ℓ∞ has been shown in [2℄ tolak the Dunford�Pettis property, hene also the (DP ∗).(e) The spae L1 does not have the (DP ∗) property, sine otherwise, asa separable spae, it must be, aording to 1.4, a Shur spae, and this ispreluded by the fat that it ontains a opy of ℓ2. Furthermore, sine L1 is aweakly sequentially omplete Banah lattie, it is a omplemented subspaeof its bidual (see, for instane, Theorem 1..4 in [19, II℄), whih thereforeannot have the (DP ∗) property. As a onsequene, ℓ∗
∞

does not have (DP ∗)either beause, thanks to an old result of Peªzy«ski, ℓ∞ ≈ L∞ (≃ L∗

1), so
ℓ∗
∞

is isomorphi to L∗∗

1 .(f) Clearly in a weakly sequentially omplete Banah spae the notionsof onditionally weakly ompat and relatively weakly ompat set oinide.Therefore if X has the (DP ∗) property, then limited sets in X are relativelyweakly ompat if, and only if, X is weakly sequentially omplete.Proposition 1.6. If X∗ has the (DP ∗) property and no sequene in X∗equivalent to the unit basis of ℓ1 onverges in the weak∗ topology , then X hasthe (DP ∗) property.



A stronger Dunford�Pettis property 209Proof. Let (ϕn) ⊂ X∗ and (xn) ⊂ X be sequenes weak∗ onvergent andweakly null respetively, suh that for some ε > 0, |ϕn(xn)| > ε. Aordingto the assumption, (ϕn) does not have subsequenes equivalent to the unitbasis of ℓ1. By passing to subsequenes, we may suppose that (ϕn) is aweakly Cauhy sequene. Further, (xn) is a weak∗ null sequene in X∗, so
limn |ϕn(xn)| = 0 beause E∗ has the (DP ∗) property.2. Operators. In this setion we obtain several haraterizations of the
(DP ∗) property in terms of linear operators into c0.Proposition 2.1. X has the (DP ∗) property if , and only if , every op-erator T : X → c0 is ompletely ontinuous. In partiular , if X has the
(DP ∗) property , then it does not ontain omplemented opies of c0.Proof. Let (xn) ⊂ X be a weakly null sequene and let (ϕn) be a weak∗null sequene inX∗. De�ne T : X → c0 by T (x) = (ϕn(x)). Then ‖T (xm)‖ =
supn |ϕn(xm)| tends to 0 as m → ∞, so (ϕn) onverges uniformly to 0on {xn}.Conversely, let T : X → c0 be an operator, and let (xn) ⊂ X be aweakly null sequene. If ‖T (xm)‖ does not onverge to 0, there is no lossof generality in assuming that ‖T (xm)‖ > δ for all m and some δ > 0.For eah m, there is a anonial projetion from c0, say πkm

, suh that
‖T (xm)‖ = |πkm

(T (xm))|. The sequene (km) annot be bounded, sineotherwise we may take N > km for all m, and then onsidering only the�rst N oordinates we would obtain a mapping x ∈ X 7→ (Ti(x))
N
i=1 ∈ C

Nfor whih (Ti(xn))N
i=1 would be a non-null sequene. Therefore (πkm

◦ T ) isa weak∗ null sequene in X∗, and by assumption (πkm
◦ T ) must onvergeuniformly to 0 on (xn). A ontradition.For a C(K)-spae, being a Grothendiek spae is equivalent to the (DP ∗)property. This is so beause whenever a C(K)-spae does not ontain aomplemented opy of c0, it must be a Grothendiek spae [20, p. 230℄.Reall that ℓ∞/c0 ≈ C(βN \ N) is a Grothendiek spae, hene it has the

(DP ∗) property.Theorem 2.2. X has the (DP ∗) property if , and only if , X has theDunford�Pettis property and every quotient mapping q : X → c0 is om-pletely ontinuous.Proof. We begin with the su�ieny. Let (ϕn) be a weak∗ null sequenein X∗ and (xn) a weakly null sequene in X. Assume that |ϕn(xn)| > δ > 0for all n ∈ N. By Rosenthal's ℓ1 theorem, we may suppose that either (ϕn)is a weakly Cauhy sequene or it is equivalent to the ℓ1 basis. In the �rstase, given xm, there is nm suh that |ϕn(xm)| < δ/2 for n ≥ nm. Further,
|(ϕnm

− ϕm)(xm)| ≥ |ϕm(xm)| − |ϕnm
(xm)| ≥ δ/2.



210 H. Carrión et al.Now the sequene (ϕnm
− ϕm)m is weakly null in X∗ so by the Dunford�Pettis property, limm(ϕnm

− ϕm)(xm) = 0. This ontradition leaves uswith the ase where (ϕn) is equivalent to the ℓ1 basis. Then the mapping
x ∈ X 7→ q(x) = (ϕn(x)) ∈ c0 is surjetive beause its transpose q∗ is anisomorphi embedding. Hene, by assumption, q must be a ompletely on-tinuous operator, so (q(xn)) is a null sequene in c0. This is a ontraditionsine ‖q(xn)‖ ≥ |ϕn(xn)| > δ.The neessity is obvious from Proposition 2.1.Note that the above proof also shows that for spaes X suh that X∗does not ontain a opy of ℓ1, the (DP ∗) property and the Dunford�Pettisproperty are equivalent.Reall that an operator T : X → Y is alled limited (respetively, ondi-tionally weakly ompat) if T takes the unit ball of X into a limited (respe-tively, onditionally weakly ompat) subset of Y.Theorem 2.3. Assume X and Y have the (DP ∗) property. If T : X→ Yis a non-limited operator , then T �xes a opy of ℓ1.Proof. If T is not limited, then there is a sequene (ϕn) weak∗ null in
Y ∗ suh that ‖T ∗(ϕn)‖ is not null. Thus, we an pik δ > 0 and xn ∈ Xwith ‖xn‖ ≤ 1 so that |(ϕn ◦ T )(xn)| > δ. We laim that (xn) has no weaklyCauhy subsequene. If the laim is false, then there is no loss of generality inassuming that (xn) is itself weakly Cauhy. Sine the sequene (ϕn(T (xm)))nis null, there is nm suh that |(ϕnm

◦ T )(xm)| < δ/2. Further,
|ϕnm

(T (xnm
) − T (xm))| ≥ |ϕnm

(T (xnm
))| − |ϕnm

(T (xm))| ≥ δ/2.However, the sequene (xnm
− xm)m is weakly null in X, so by the (DP ∗)property of X, limm(ϕnm

◦T )(xnm
−xm) = 0, whih ontradits the previousstatement. Thus the laim holds. Therefore by Rosenthal's ℓ1 theorem thereis a subsequene of (xn) whih is equivalent to the ℓ1 basis. For simpliity,we assume again that suh a subsequene is the whole sequene.Now we deal with (T (xn)). Bearing in mind the (DP ∗) property of Y andthe weak∗ onvergene of (ϕn), the above alulations also show that (T (xn))has no weakly Cauhy subsequene. Finally, Rosenthal's ℓ1 theorem gives usa subsequene (T (xnk

)) of (T (xn)) equivalent to the ℓ1 basis. Therefore wehave found a opy of ℓ1 �xed by T.We may dedue from the above theorem that the quotient mapping ℓ∞ →
ℓ∞/c0 �xes a opy of ℓ1 sine, as an open mapping, it is not limited.The following is an extension of Corollary in [6℄ that follows straight fromProposition 1.2.Remark 2.4. If Y enjoys the (DP ∗) property and the operator T :X→Yis a onditionally weakly ompat, then T is limited.



A stronger Dunford�Pettis property 2113. Polynomials and analyti mappings. The objet of this setionis to relate the (DP ∗) property to weak sequential ontinuity properties ofpolynomials and analyti mappings de�ned on Banah spaes enjoying it. Inpartiular, polynomials are ompletely ontinuous when the range spae isGelfand�Phillips.Proposition 3.1. Let X and Y be Banah spaes with c0 ⊆ Y . If ev-ery operator T : X → Y is ompletely ontinuous, then X has the (DP ∗)property and every polynomial P ∈ P (nX,Y ) is ompletely ontinuous.Proof. The assumption implies that every T : X → c0 is ompletelyontinuous sine c0 ⊆ Y . Thus X has the (DP ∗) property by Proposition 2.1.The seond statement is proved by indution on the degree of P . It isobvious for n = 1. So, assume it is true for n. For P ∈ P (n+1X,Y ) we show�rst that P maps weakly null sequenes into null sequenes. Let (xm) ⊂ Xbe a weakly null sequene. The indutive hypothesis shows that for eah
x ∈ X, the n-homogeneous polynomial z ∈ X 7→ P̌ (x, zn) ∈ Y is ompletelyontinuous, hene limm P̌ (x, xn

m) = 0. Choose ϕm ∈ Y ∗ suh that ‖ϕm‖ = 1and ϕm(P (xm)) = ‖P (xm)‖. Then T : X → c0 ⊆ Y given by
T (x) = (ϕm(P̌ (x, xn

m)))mis a well de�ned operator whih is ompletely ontinuous sine X has the
(DP ∗) property. Therefore,

0 = lim
m

‖T (xm)‖ = lim
m

‖(ϕm(P̌ (xm, x
n
m)))m| = lim

m
‖P (xm)‖,as we wanted. Now for a sequene (xn) ⊂ E weakly onvergent to a it su�esto observe the identity

P (xm) − P (a) = P (xm − a) +
n∑

j=1

(
n+ 1

j

)
P̌ ((xm − a)n+1−j, aj).By the above, limP (xm − a) = 0 and moreover every mapping z ∈ X 7→

P̌ (zn+1−j, aj) ∈ Y , j = 1, . . . , n, is a polynomial of degree not greater than n,so by indution limm P̌ ((xm −a)n+1−j, aj) = 0. Thus limm P (xm) = P (a).The above theorem does not neessarily hold if the assumption c0 ⊆ Y isremoved. Just onsider X = ℓ2 and Y = ℓ1, for whih all operators L : ℓ2 →
ℓ1 are ompat (Pitt's theorem). Obviously ℓ2 laks the (DP ∗) property andthe 2-homogeneous polynomial (xn) ∈ ℓ2 7→ (x2

n) ∈ ℓ1 is not ompletelyontinuous.We observe that the (DP ∗) property yields a polynomial version of itself.Remark 3.2. If X has the (DP ∗) property , then pointwise onvergentsequenes in P (kX) onverge uniformly to 0 on weakly null sequenes in X.Indeed, as a onsequene of [13, Theorem 5℄, for any sequene (Pn) pointwiseonvergent in P (kX), to say P, we know that Pn−P onverges to 0 uniformly



212 H. Carrión et al.on limited sets in E, and, in partiular, on any weakly null sequene (xn)in X. Further, sine E also has the Dunford�Pettis property, P is ompletelyontinuous. Therefore, limn Pn(xn) = limn(Pn − P )(xn) = 0.As a onsequene of Proposition 3.1 we reover Theorem 17 in [12℄, thatis, if X has the (DP ∗) property, then every polynomial P : X → c0 is om-pletely ontinuous. Our next result extends this in the same way Theorem 6in [1℄ did. We obtain a slight extension valid for some holomorphi mappings;we inlude in the proof the polynomial ase just for the reader's onveniene.Proposition 3.3. If X has the (DP ∗) property and Y is a Gelfand�Phillips spae, then every polynomial P : X → Y is ompletely ontinuous.Further , any f ∈ H(X,Y ) whih is bounded on weakly ompat (resp. lim-ited) sets is weakly ontinuous on them.Proof. Sine polynomials map limited sets into limited sets [13℄, P mapsweakly ompat subsets of X into limited sets in Y, hene into relativelyompat sets, and further the weak and norm topologies oinide on thoseimages. Now if (xn) ⊂ X onverges weakly to a, then for eah ϕ ∈ Y ∗,
(ϕ◦P )(xn) → (ϕ◦P )(a) beause of [13, Theorem 3℄, that is, P (xn) onvergesweakly to P (a). Further, by [13, Proposition 7℄, P is weakly ontinuous onlimited sets in X.Sine f may be uniformly approximated on weakly ompat (resp. lim-ited) sets by its Taylor series at 0, the weak ontinuity of f on weakly om-pat (resp. limited) sets follows from that of the polynomials in the Taylorseries.In [7, Fat 1℄, relating to a question of Peªzy«ski, it is shown that aseparable Banah spae X is Shur if, and only if, every symmetri bilinearseparately ompat map X × X → c0 is ompletely ontinuous. It is alsoremarked that this may fail for nonseparable spaes. Our next remark pointsout that the (DP ∗) property is the due property ofX for the stated onditionto hold.Corollary 3.4. A Banah spae X has the (DP ∗) property if , andonly if , every symmetri bilinear separately ompat map X × X → c0 isompletely ontinuous.Proof. The neessity follows from Proposition 3.3 and the polarizationformula. Conversely, let T ∈ L(X, c0). We laim that the symmetri bilinearmap T ⊗ T : X × X → c0 given by T ⊗ T (x, y) = T (x)T (y) (pointwiseprodut) is separately ompat. Without loss of generality, assume ‖T‖ = 1.Now, �x x ∈ X. For given ε > 0 there is n suh that |T (x)m| ≤ ε for all
m ≥ n; so

T (x)T (BX) ⊂ (‖T (x)‖D)n + εBc0 .



A stronger Dunford�Pettis property 213Hene T (x)T is a ompat mapping, as laimed. Therefore, by assumption,
T ⊗T is ompletely ontinuous. Thus if (xn) is a weakly null sequene in X,then ‖T ⊗ T (xn, xn)‖ = ‖(T (xn))2‖ = ‖(T (xn))‖2 → 0, showing that T isompletely ontinuous.It is lear that no Gelfand�Phillips spae an ontain a (omplemented)opy of ℓ∞. However in the above proposition we annot replae the onditionon the spae Y by the non-ontainment of opies of ℓ∞ without some extraassumption on X. This is pointed out by Haydon's example of a ompatspae K suh that C(K) is a Grothendiek spae without opies of ℓ∞ ([15℄),for whih the identity mapping is not ompletely ontinuous.Let us reall that a subset L of X is bounding if every f ∈ H(X) isbounded on L.Corollary 3.5. All holomorphi funtions on X are ompletely ontin-uous if , and only if , all holomorphi funtions on X are bounded on weaklyompat sets. Under this ondition, X has the (DP ∗) property , and if Y isa Gelfand�Phillips spae, then any f ∈ H(X,Y ) is ompletely ontinuous.Proof. ⇒. If f ∈ H(X) and there is a weakly ompat set L ⊂ X suhthat f is unbounded on L, then we an �nd a weakly onvergent sequene
(xn) ⊂ L suh that |f(xn)| ≥ n, ontraditing the assumption.

⇐. Now the weakly ompat sets are bounding, hene limited (see forinstane [17℄). Therefore X has the (DP ∗) property and so we may applythe above proposition.The �nal statement follows from notiing that, under the assumption, anyholomorphi mapping on X is bounded on eah weakly ompat set L, sowe may approximate it by some polynomial whih is ompletely ontinuouson L.This orollary atually requires dealing with all holomorphi funtions:Reall that for the re�exive Tsirelson spae, T ∗, a holomorphi funtion on
T ∗ is ompletely ontinuous if, and only if, it is bounded on weakly ompatsets. Nevertheless this lass does not exhaust the spae of all holomorphifuntions on T ∗, and learly T ∗ does not have the (DP ∗) property.Let B denote the lass of Banah spaes whih satisfy the equivalentonditions in Corollary 3.5, that is, Banah spaes whose weakly ompatsets are bounding. The above orollary shows that any X ∈ B satis�es the
(DP ∗) property, a fat that also follows from the proof of Theorem 3 in[14℄. The spaes in the lass B may be haraterized in an analogous wayto Proposition 2.1: X ∈ B if, and only if, all f ∈ H(X, c0) are ompletelyontinuous.The spae ℓ∞ belongs to B. This follows from Theorem 1 in [16℄.



214 H. Carrión et al.We laim that also the spae ℓ∞/c0 ≈ C(βN \N) is in B. First, we provethat for any weakly null sequene (fn) ⊂ C(βN \ N) there is a weakly nullsequene of extensions (f̃n) ⊂ C(βN). In order to do that, de�ne in a pre-liminary step f̃n(m) = 1/m for m ≤ n; the funtions f̃n are ontinuous inthe ompat subset {1, . . . , n}∪βN \N whih have ontinuous extensions to
βN whih we also denote by f̃n and whih satisfy ‖f̃n‖ ≤ max{‖fn‖, 1}. Theresulting sequene (f̃n) learly onverges pointwise to 0 in βN and is uni-formly bounded. Thus the Lebesgue dominated onvergene theorem guar-antees that it is weakly null. To prove the laim, assume to the ontrarythat there is a g ∈ H(C(βN \ N)) unbounded on some weakly ompatset L ⊂ C(βN \ N). Thus there is a sequene (xn) ⊂ L weakly onver-gent to x0 suh that (g(xn)) is an unbounded sequene. Put fn = xn − x0.If G(x) = g(x + x0), then G ∈ H(C(βN \ N)), and the sequene (G(fn))is unbounded. If q : C(βN) → C(βN \ N) is the restrition map, then
G ◦ q ∈ H(C(βN)) and (G ◦ q(f̃n)) is unbounded. This is a ontradition,sine (f̃n) is a weakly null sequene.Next we show that B is stable under artesian produt and that the lassof Banah spaes with the (DP ∗) property is wider than B.Proposition 3.6. If X,Y ∈ B, then X × Y also belongs to B.Proof. Let f ∈ H(X × Y ) and onsider a weakly ompat set in X × Ywhih we may suppose to be A×B with A ⊂ X and B ⊂ Y both weakly om-pat. We hek that the olletion {f(x, ·)}x∈A ⊂ H(Y ) is τ0-bounded. In-deed, for any ompat subsetK of Y, the olletion {f(·, y)}y∈K ⊂(H(X), τ0)is bounded, hene τδ-bounded ([9, 2.44, 2.46℄). In addition, sine A is bound-ing in X, the sup norm on A, ‖ · ‖A, is a τδ-ontinuous seminorm in H(X)by [9, 4.18℄, so

sup
x∈A

sup
y∈K

|f(x, y)| = sup
y∈K

sup
x∈A

|f(x, y)| = sup
y∈K

‖f(·, y)‖A <∞,as we wanted. Now, sine B is bounding in Y, {f(x, ·)}x∈A is bounded forthe ‖ · ‖B seminorm, hene {|f(x, y)|}x∈A,y∈B is bounded, and so A × B isbounding in X × Y.Example 3.7. There is a Banah spae with the (DP ∗) property whihdoes not belong to B. Let E be the Banah spae onstruted by Josefson in[17℄. It ontains a opy of c0, its unit basis (ek) is a limited set in E (ibid.,Lemma 1) and E/c0 is a Shur spae. Atually, E has the (DP ∗) property.Indeed, let (xn) be a weakly null sequene in E. If q : E → E/c0 is thequotient mapping, then (q(xn)) is a null sequene, so we an hoose an ∈ c0suh that ‖xn +an‖ ≤ ‖q(xn)‖+1/n. Then (xn +an) is a null sequene, and



A stronger Dunford�Pettis property 215therefore (an) is a weakly null sequene in c0. Sine
{xn : n ∈ N} ⊂ {xn + an : n ∈ N} − {an : n ∈ N},to show that {xn : n ∈ N} is limited it is su�ient to prove the limitednessin E of {an : n ∈ N}. Suppose the latter set is not limited in E. Then (an)annot be norm null and we may apply the Bessaga�Peªzy«ski seletionpriniple (see [11, 6.21℄) to obtain an also non-limited subsequene (ank

) of
(an) that is equivalent to a blok basi sequene of the unit basis (ek) whihin turn is equivalent (up to normalization) to (ek) ([11, 6.22℄). Sine (ek) isa limited set in E, so also is (ank

), ontrary to assumption.On the other hand, all bounding sets in E are relatively ompat. Ifall the weakly ompat sets were bounding, they would also be relativelyompat or, in other words, E would be a Shur spae. This is not possiblesine E ontains a opy of c0.Aknowledgements. This note was prepared while the seond authorvisited USP and the third visited UV. Both thank eah institution for thesupport reeived.
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