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Inequalities of the Kahane—Khinchin type
and sections of L,-balls

by

A. KoLDOBSKY (Columbia, MO), A. PAJOR (Marne-la-Vallée) and
V. YASKIN (Norman, OK)

Abstract. We extend Kahane—Khinchin type inequalities to the case p > —2. As an
application we verify the slicing problem for the unit balls of finite-dimensional spaces
that embed in Lp, p > —2.

1. Introduction. A simple version of the Kahane-Khinchin inequality
states that for a convex origin-symmetric body K in R™ with vol(K) = 1
and p > ¢ > 0, for all £ € R™ we have

(§iwora)” <owa( | iworda)”,
K K

where C(p, q) depends only on p and ¢ (see e.g. [MP]).

Latala [La] extended this result to the case ¢ = 0, and later Guédon [G]
showed that this inequality holds for ¢ > —1. These results were extended
to the quasi-convex case by Litvak [Li|. In this article we extend Kahane—
Khinchin’s inequality further to ¢ > —2 and as an application we prove that
the slicing problem has an affirmative answer for the unit balls of spaces that
embed in L, p > —2.

Recall that an origin-symmetric convex body (compact set with non-
empty interior) K C R" is called isotropic with constant of isotropy Ly if
vol,(K) =1 and
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(2,0dv =L} forallge s

K
For every convex origin-symmetric body K there exists a linear isomorphism
T of R™ such that T K is isotropic, and we define the constant of isotropy of
K by Lg = Lk (see [MP]| for more details).

Recall that the slicing problem asks the following question: Does there
exist a universal constant C' such that, for every convex origin-symmetric
body K in any dimension, we have L < C?

An equivalent formulation of this problem (see [MP]) is whether there
exists a universal constant C7 such that for every origin-symmetric convex
body in R™ the following inequality holds:

(1) (vol(K))(n=D/m < ¢y e, vol(K N&L),
esn—

where ¢+ is the central hyperplane orthogonal to &, and S”~! is the unit
sphere in R". In other words, does there exist a universal constant such that
every convex origin-symmetric body of volume one has a hyperplane section
of volume greater than this universal constant?

The problem still remains open. Bourgain [Bol| proved that we have
Ly < O(n'/*logn), and very recently Klartag [K12| removed the logarithmic
term in this estimate. However, there are many classes of bodies for which the
answer is affirmative with a constant independent of the dimension (see e.g.
[Bal, |IBKM], [KMP], [MP]). In particular, the slicing problem is solved for
the unit balls of subspaces of L; (and hence for subspaces of L,, 1 < p < 2)
by Ball [Ba|. For the unit balls of subspaces of quotients of Ly, 1 < p < oo,
the problem is solved by Junge [J]|. In Junge’s proof the bounds blow up as
p approaches either 1 or co. E. Milman [M1] gave a simple proof of these
results for the unit balls of subspaces of L,, 0 < p < oo, and for quotients
of L, 1 < p < oo. Klartag and E. Milman [KIM] showed that the isotropic
constant for subspaces of quotients of L,, 1 < p < 2, is bounded from
above by O(1/+/p — 1), thus improving Junge’s estimate which was of order
1/(p — 1). We also note that for subspaces of Ly, 2 < p < oo, E. Milman
gave two different proofs of the fact that Lx < O(,/p). Here we present yet
another proof of this result, which is somewhat similar to one of E. Milman’s
proofs, but uses the Lewis position instead of the isotropic position.

Since the latter bound blows up as p — oo, we try a different approach,
considering negative values of p. The concept of embedding in L_, with
0 < p < n was introduced in [Ko2], and it was proved that a space (R™,||-|)
embeds in L_, if and only if the Fourier transform of || - |7 is a positive
distribution in R™. We will call unit balls of such spaces p-intersection bodies
or L_p-balls. For example, L_i-balls are intersection bodies and L_j-balls
are k-intersection bodies (see [Ko3|).
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We would like to know whether the answer to the slicing problem is
affirmative for L,-balls with p negative. Of course, if one could show this
for p € (—n, —n + 3], then one would solve the slicing problem completely,
since for any convex body K € R", the space (R", || - ||x) embeds in L, for
such values of p (see [Ko4, Section 4.2]). In this paper we employ Kahane—
Khinchin type inequalities, discussed above, to show that the slicing problem
has an affirmative answer for L,-balls, p > —2.

For other results on the slicing problem we refer the reader to [Bo2|, [D],

|K11], [MP], [P].

2. Subspaces of L, with p > 2. In this section we give a different
proof of the result Ly < O(,/p) mentioned in the Introduction. Note that
if 0 < p < 2 then the unit ball of a finite-dimensional subspace of L, is an
intersection body (see |[Ko2| for 0 < p < 2 and |[KKYY] for p = 0), and
the solution of the slicing problem for such bodies follows from the posi-
tive part of the Busemann—Petty problem. This problem asks the following
question. Let K and L be two origin-symmetric convex bodies in R”, such
that vol,—1(K N H) < vol,—1(L N H) for every central hyperplane H. Is it
true that vol,(K) < vol,(L)? The connection between intersection bodies
and the Busemann—Petty problem was found by Lutwak [Lu]. The answer
to the problem is affirmative if K is an intersection body and L is any
origin-symmetric star body. Hence, in order to give an affirmative answer to
the slicing problem for intersection bodies it is enough to take L to be the
Euclidean ball of the same volume as K (see [MP, Proposition 5.5]).

In view of the previous remarks it is enough to consider p > 2.

Let K be a convex origin-symmetric body in R”, and denote by

|z||x = min{a >0:2 € aK}
the norm on R™ generated by K.

THEOREM 2.1. Let p > 2. There exists a constant C(p) depending only
on p such that L < C(p) for the unit ball K of any finite-dimensional
subspace of L,. Moreover, C(p) = O(\/p) as p — oo.

Proof. According to a theorem of Lewis [Le| (we formulate it in the form
given in |LYZ, Theorem 8.2|), if (R™, || - ||x) is a subspace of L,, p > 1, then
there exist a position of the body K (which will again be denoted by K and
will be called Lewis’ position) and a finite Borel measure y on S"~! such
that for all z € R",

(2) Izl = § Iz, w)l” dpw),
Sn—l
(3) o> = | I(z,w) du(u).

Sn—1



220 A. Koldobsky et al.

On the other hand, for any body K one has (see [MP, Section 1.6])

! S |z|? de.

(4) Li <
n(vol(K))t+2/n e

Using formula (3), applying Hoélder’s inequality twice and then using
formula (2) we get

[lalde = | | I(2,u)dp(u) de

K K gn—1
< (vol(K))'=2/p S (S |(z,u ]pd:c) /pdu(u)
gn—1 K
S

< (vol(K))!~ 2/p( S (a2, 0) P dae dp ))2/10( S du(u))kz/p

Sn—1K gn1
2/ 1-2/
= (oK) (§ felfede) (] dp(w)
K Sn—1
Passing to polar coordinates one can easily check that

pd — n
} Nl o = =

vol(K),
K p

therefore the previous computations combined with inequality (4) yield

(5) L%S%(vol(}())ﬁ/n(ﬂlﬂ)z/p( S du(u))l_Q/p
et
S%(VOI(K))—WH( i du(u))*?/p.

Sn—1
Let us estimate from below the volume of the body K. Let o be the
normalized Haar measure on the sphere. Then

Vel do(@)=§ | Iz, )" du(u)do(z)

Snfl Snflsnfl
p/2
= | o) | aut = (L) T dutw),
Sn—l Sn—l n + p Sn—l

where C' is an absolute constant. The latter estimate follows, for example,
from [Ko4, Lemma 3.12] and Stirling’s formula.

We get
C 2/ 2/ » o/m
wap( ) )™= (] et @) ™2 ( § Jeli doto)

= (vol(K) /vol(B})) /" ~ © (vol(K)) /",



Sections of Ly-balls 221

since (vol(Bg))Y™ ~ n~1/2 meaning that (vol(By))'/"n'/? approaches a
non-zero constant as n — oo (see e.g. [Ko4, Corollary 2.20] and apply Stir-
ling’s formula).

Therefore inequality (5) implies

Cp
L2 <
(6) K = n‘i‘psx du(u)v

n—1

where C'is an absolute constant (possibly different from the one used above).
Finally, let us compute the measure of S"~! with respect to . Integrating
equation (3) with respect to o we get

1= | [zPdo(@)= | | (z,u)*du(u)do(x)

Sn—1 Sn—1 gn—1
1
= | fPdo(@) | dp(w) == | du(u).
Sn—1 Sn—1 Sn—1

This equality together with (6) implies
Ly <C\/p. =

3. Subspaces of L, with p < 0. First let us give some preliminary
definitions and results to introduce the reader into the subject of Fourier
analysis of distributions, which will be the main tool of this section.

Let ¢ be a function from the Schwartz space S of rapidly decreasing
infinitely differentiable functions on R™. We define the Fourier transform
of ¢ by

6(&) = | ¢a)e " dz, ¢eR™
Rn
The Fourier transform of a distribution f is defined by (f, o) = (f, @ for
every test function ¢ € S.

We say that a distribution is positive definite if its Fourier transform is a
positive distribution, in the sense that (f,®) > 0 for every non-negative test
function ¢.

Let f be an infinitely differentiable function on the sphere S"~!; extend
it to R™\ {0} as a homogeneous function of degree —k, 0 < k < n. Then the
Fourier transform of the homogeneous extension is an infinitely differentiable
function on R™\ {0}, homogeneous of degree —n + k. (See for example [Ko4,
Section 3.3].)

We will need the following version of Parseval’s formula on the sphere
proved in [Kol].

LEMMA 3.1. If K and L are origin-symmetric infinitely smooth convex
bodies in R™ and 0 < p < n, then (||z||F)" and (||z||;" ") are continuous
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functions on S™1 and

VUl @ Ul ) ) de = 2m)™ | 2l llell" " da.

Sn—1 Sn—1

A well-known result of P. Lévy (see for example [Ko4, Section 6.1]) is
that a space (R",|| - ||) embeds into Ly, p > 0, if and only if there exists a
finite Borel measure p on the unit sphere so that, for every = € R™,

(7) 2”7 = § |(z, &) du(&).

gn—1
If p is not an even integer, this condition is equivalent to the fact that
(I'(=p/2)||x||P)" is a positive distribution outside of the origin (see [Ko4,
Theorem 6.10]).

The concept of embedding in L_, with 0 < p < n was introduced in
|[Ko2| by extending formula (7) analytically to negative values of p. It was
also proved that, as for positive p, there is a Fourier analytic characterization
for such embeddings, namely a space (R", || - ||) embeds in L_, if and only if
the Fourier transform of || - || 77 is a positive distribution in R". We will call
unit balls of such spaces p-intersection bodies or L_p,-balls.

LEMMA 3.2. Let K be an infinitely smooth origin-symmetric convex body
i R™. If K s a p-intersection body, 0 < p < n, then

(vol(K)"~PV/™ < C(n, p) (o (1] P!

where
F((n —p)/2) ‘Sn—l‘(n—p)/n.

C(nvp) = 2pﬂ_n/2n(n_p)/n1—1(p/2)

Proof. Using the formula for the volume in polar coordinates and Parse-
val’s formula we get

vol(K) :% s dx_% [ el 2l do
Sn—1 Sn—1
= ! T plontp
=@y ) IR O™ @) de

If K is a p-intersection body, then (||z| )" (&) > 0, therefore

(2l )€ dé - max (|l=] " )" (&).

Sn—l é esn— 1

Using the fact that (see |GS, p. 192|)

vol(K) <

(2m)™n

m—n—i—p — p7_r'n,/2 (p/2)
(1l3™)(€) = 2m"/2 e P el
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and applying Parseval’s formula again, we get

27Pn " I((n—p)/2)

) < e Sy ) (R @™ €
Xéggxl(\lfll PRI
_ 2P 2 I((n—p)/2) ol de e (el 4"
27Pn"/2 I'((n —p)/2) “n g \P/
n I'(p/2) (Sng_l Izl dx)
| gt |(np)/ égq%XI(HmH NE)
= C(n, p)(vol(K ))p/nﬁnﬁxl(ﬂxﬂ K DNE).

From Lemma 3.2 it follows that one can obtain inequalities of type (1)
by finding a good upper estimate for (||z||"**)"(€) in terms of the central
section. Our next lemma gives an answer to this question for certain values
of p. The proof of the lemma will be given in Section 5.

LEMMA 3.3. Let K be an origin-symmetric conver infinitely smooth body
i R™. Then

(i) forp € (0,1) we have
n 22~ Lr(n—p
(Iel7)°) < 7 D
(ii) forp € (1,2) we have
20=Lr(n — p)
sin(mp/2)
We remark that these inequalities become equalities in the case p = 1,

since (|7 z" TN (&) = m(n—1)vol,—1 (K NEL) (see e.g. [Kod, Theorem 3.8]).
Now we are ready to state our main result.

(voln—1 (K N €))7 (vol(K))' 7,

(vol,_1 (K N&EL))P(vol(K))LP.

THEOREM 3.4. Let 0 < p < 2. If K 1is a convex p-intersection body, then
(vol(K))(m=D/m < C(p) [Juax, vol, 1 (K NéL),
esn=

where
7.(.1—;7/2

1/p
C(p) = <F(p/2)]:(2 —p) Sil’l(ﬂ'p/2)>

1-p/2 1/p .
<F(p/2) Sil’l(ﬂ'p/Q)) if 1<p<2.

if 0<p <1,
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Proof. For infinitely smooth bodies the theorem is a consequence of Lem-
mas 3.2 and 3.3 and Lemma 7.1 from the Appendix. For non-smooth bodies
the theorem follows from the fact that every L,-ball can be approximated in
the radial metric by infinitely smooth L,-balls (see [M2, Lemma 3.11]). =

REMARK. Asremarked by E. Milman [M1, Remark 4.3], a uniform bound
on the isotropic constant for subspaces of L, with —14+¢ < ¢ < 0 follows from
his argument and Guédon’s extension of the Kahane—Khinchin inequality to
the case ¢ > —1. The novelty of the previous theorem for L, with -1 < ¢ <0
is that the bound does not blow up as ¢ approaches —1 (p from the previous
theorem and ¢ are related by p = —¢). Unfortunately, the bound does blow
up as p tends to 2.

The next two sections will be devoted to the proof of Lemma 3.3.

4. Reduction to the section function. Let K be an infinitely smooth
origin-symmetric convex body. For ¢ € S"~!, consider the parallel section
function Ag ¢ on R defined by

AK{(t) = VOln_l(K N {(x,f) = t})
The fractional derivative of A ¢ of order ¢ at zero is defined as the action
of the distribution t;l_q/F(—q) on this function, where t; = max{t,0}.
That is,

AL = (g 15 Ael0)

In particular (see [GKS]) it follows that for 0 < p < 1,

[e.e]

_ 1
8 AT 0y = — = (P AR (1) dt,
(8) ke (0) T —p) § K£(1)
and for 1 < p < 2,
_ 17
AT )= — = {4p(A —A .
(9) ke (0) T=p) §) tP(Age(t) — Are(0)) dt
Also note that
1 7 _
1y _ —1+ IRT (—e¢)
voln_1 (K NEY) = A (0) = im, 0 (S) T AR e(t) dt = lim A (0).

It was shown in [GKS] that if K has an infinitely smooth boundary then
the fractional derivatives of the function Ax ¢ can be computed in terms of
the Fourier transform of the Minkowski functional raised to certain powers.

Namely, for p > 0, p # n we have

_ i 2) _
10 A( 1+p) 0) = Sln(?Tp/ p n+py\A '
(10) £ 70) = S (N
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Therefore the inequalities from Lemma 3.3 can now be written as follows:
—1 _
Ag(,gﬂ)) (0) < C(p)(vol(K)) P (Ag £(0))P

for an appropriate constant C(p). Equivalently (if we assume for simplicity
that vol(K) = 1),

1 p 1
11 P Ak e(t < ce(p) lim { —— t717° A e(t) ).
( ) <F(1_p) + K,{( )> _C(p)€%<[‘(€) + ) K,f( )>
5. Kahane—Khinchin type inequalities. Assume that vol(K) = 1
(K is not necessarily convex) and 0 < p < ¢. Then for all £ € S"! the
following holds by virtue of Holder’s inequality:
1/p 1/q
(Sl oPaz) ™ < ([iepd) ™.
K K
However, if K is convex and origin-symmetric, then this inequality can be

reversed. Namely, there is a constant C(p,q), depending on p and ¢ only,
such that

(V1w oear)” < capn(|iwora)”, vees .
K K

The latter is called the Kahane—Khinchin inequality for linear functionals

(see [Ka], [Bor], [MP]).

Note that
V@ o de = | (@, )1k (@) do =117 | xx(2)dedt
K R~ R (x,6)=t
= | [t]9Ax ¢ (t) dt = 2(t%, A (1)),

Therefore the Kahane—Khinchin inequality can be written as

1/q 1/p
<£ﬁm@>s@&£ﬁmm>,

which resembles Lemma 3.3 in the form of inequality (11). Hence in order
to prove Lemma 3.3, we need to extend the Kahane—Khinchin inequality to
negative values of p and q.

Proof of Lemma 3.3: case 0 < p < 1. From [MP, p. 76] it follows that

o0 1/(1+q)
F) = ((a+) g sl )

is an increasing function of ¢ on (—1, 00).
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Therefore, taking ¢ = —p with 0 < p < 1 and using F(—p) < F(0) we

get
T Are®) N\NYOTP T Aget) | vol(K)
< (S)t AK@(O) dt> <) o Axe(0) W= 2 0)

Using formulas (10), (8) and applying the previous inequality, we get

(Ial7)©) = Fo— L AT (0

_ m(n —p) p
=Ty ) A

2*~'n(n —p)
~ (1 =p)I'(1 —p)sin(mp/2)
20" (n — p) 1-
= 1(K)) P(A P,
ooy gy (el (A0
Proof of Lemma 3.3: case 1 < p < 2. What follows is similar to [MP,
Section 2.6]. Consider the function
S t— pAKé(O) AK 5( ) dt 1/(1—13)

N Ag £(0)
Glp) = §o t™ P(l—ge t) dt

(vol(K))' 7P (Af(0))"

We want to show that it is increasing on (1, 2).

Let &(t) = log Ak ¢(0) —log Ak ¢(t). By Brunn’s theorem (see e.g. [Ko4,
Theorem 2.3]), () > 0 and it is increasing and convex on the support of
AK’g(t). Now

0 4=p(1 — e~ 2®)) g¢\ 1/ (1-p)
G(p) — <SOOO _( — ) > )
o t7P(1—et)dt
Let a = 1/G(p). Then it is not hard to check that

{tP—edt=t7(1—e M)t
0 0

Consider the function
o

H(z) = | t7(e™®® — o) dt.
x
We want to show that H(x) <0 for x € [0,00). Since H(0) = H(c0) = 0, it
suffices to show that H(x) is first decreasing and then increasing.
Indeed,
H'(z) = —a P(e~?®) — ¢mo7),
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Since &(x) is increasing and convex, there is a point xy such that @¢(z) < ax
for 0 < z < 29 and @(x) > ax for © > xg. Therefore H'(z) <0if 0 < z < x¢
and H'(z) > 0 if z > z¢. So, we have proved that H(z) < 0, which means
that for every x > 0,

[P —e®Wyde > [ t7P(1— ) dt.

Now let 1 < g < p < 2; we have

[ 101 = Py at = (p— g) | 791 | 47(1 - e0)
0 0 T
OSoxp q- 105075 P(1—e P g
0 T
=\ t91—edt =o' | 791 — ) dt.
0 0

Therefore, using the definition of o, we get
ot 91— e ?®)dt
§o t79(1—e t)dt

> (G(p)'*
G(q) < G(p).

So, G(p) is increasing on (1, 2).
If we extend the function G(p) to p € (0,1) by the formula

§o t—Pe—2@®) g\ 1/(1-p)
G = _—
(p) ( 880 t_pe_t dt Y

then according to [MP, p. 81], this function is increasing on (0, 1).
Note that on both intervals (0,1) and (1,2) the function can be written
as

AP () 1/(1-p)
G(p) = (71("5 ( ))
Ak (0)
(-1

Moreover, since A £+p)(0) is an analytic function of p € C (see [Ko4, p. 37]),

we have
d A( 1+p ( )|p=0
lim G(p) = lim G = ex .
i Glp) = tim G(p) p( S )

Consequently, for p € (1,2) we get
G(p) > G(0),
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and therefore

SSO t_p AK,{(O)_AK,E(t) dt 1/(1_]?)

A £(0) S vol(K)
tp(1— e t)dt = A (0)’
or o 1
1 S 4P AK,£<t) - AK,&(O) dt < ( VOI(K) > —p‘
F(l — p) 0 AK,{(O) - 2AK7§(O)

Using formulas (10), (9) and applying the previous inequality, we get

(el = T0— 2L AP (0

__mln-p T
 sin(np/2) (1 — p) (S) tP(Age(t) — Ak e(0)) dt
2" In(n—p)

Ag £(0))P(vol(K)) 7.

Salnp7a) (A0 (vol(K)) . o
6. Higher order derivatives. In this section we show that inequalities

similar to those from Lemma 3.3 exist for larger values of p; however, in

this case we need to pay the price of averaging the Fourier transform over a
sphere.

Let H € G(n,n — 2) and let &, & be an orthonormal basis in H+.

Define
A r(u) = vol, o(K N{H + w1& + ugka}), ueR”

LEMMA 6.1. Let K be an origin-symmetric infinitely smooth convex body

in the isotropic position. Then for q € (0,1) we have
J (el 9N 6) do < Clq L™,
Sn—1nHgL

where L is the constant of isotropy of K and C(q) is a constant depending
only on q.

Proof. From the proof of Theorem 2 in [Ko3| we know that

Vool 0) = Cla)(|ul ™79, Ak u(u))
Sn=1nH-L
= Ci(q) | |u| > (A m(u) — Ax,u(0)) du,
R2

and passing to polar coordinates, we see that this equals

o0

Ci(q) S S r 1T Ak g (r0) — Ak 1 (0)) dr df.
Sn=1nHL 0
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Since Ak g is log-concave, we can apply a Kahane-Khinchin type in-
equality (part (ii) of Lemma 3.3) to the inner integral. Hence

[e.o]

| 94k (0) — A (r6)) dr
0 < Oo(q)(Ax.m(0)4(vol,_1 (K N span{H,H})) 7.

Since for isotropic bodies central sections of codimension 1 and 2 are equiv-
alent to LI_{1 and LI_{2 respectively (see e.g. [MP, p. 96]), we get

[ 779k (0) — A i (r0)) dr < C(q) L LY = C(q)Ly" " m
0

7. Appendix. Here we prove a result used in one of the previous sec-
tions.
LEMMA 7.1. Let 0 < p <n and C(n,p) be as in Lemma 3.2. Then
9l—p—p/2
C(n,p)-(n—p) < ———-
(B (=2 < T )
Proof. We need to show that

n—p F(<n_p)/2) n—1(n—p)/n
nopin opepiz 0| =1
The left-hand side is equal to
n—p I(n—p)/2)( 2> \" D" _ I((n-p)/2+1)
n=p)/n  2x(n=p)/2 \ I'(n/2) (I'(n/2+ 1))n=p)/n’
Since the function log(I'(z)) is convex [Ko4, p.30], we have

log(I'(n/2 + 1)) —log(I"(1)) _ log(I'((n —p)/2+1)) —log(I'(1))

n/2 - (n—p)/2 ’
therefore
(I(n/2+1)"? > (I((n—p)/2+1))" P/ o
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