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Inequalities of the Kahane�Khinhin typeand setions of Lp-ballsbyA. Koldobsky (Columbia, MO), A. Pajor (Marne-la-Vallée) andV. Yaskin (Norman, OK)
Abstrat. We extend Kahane�Khinhin type inequalities to the ase p > −2. As anappliation we verify the sliing problem for the unit balls of �nite-dimensional spaesthat embed in Lp, p > −2.1. Introdution. A simple version of the Kahane�Khinhin inequalitystates that for a onvex origin-symmetri body K in R

n with vol(K) = 1and p > q > 0, for all ξ ∈ R
n we have

( \
K

|(x, ξ)|p dx
)1/p

≤ C(p, q)
( \

K

|(x, ξ)|q dx
)1/q

,

where C(p, q) depends only on p and q (see e.g. [MP℄).Lataªa [La℄ extended this result to the ase q = 0, and later Guédon [G℄showed that this inequality holds for q > −1. These results were extendedto the quasi-onvex ase by Litvak [Li℄. In this artile we extend Kahane�Khinhin's inequality further to q > −2 and as an appliation we prove thatthe sliing problem has an a�rmative answer for the unit balls of spaes thatembed in Lp, p > −2.Reall that an origin-symmetri onvex body (ompat set with non-empty interior) K ⊂ R
n is alled isotropi with onstant of isotropy LK if
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218 A. Koldobsky et al.\
K

(x, θ)2 dx = L2
K for all θ ∈ Sn−1.For every onvex origin-symmetri body K there exists a linear isomorphism

T of R
n suh that TK is isotropi, and we de�ne the onstant of isotropy of

K by LK = LTK (see [MP℄ for more details).Reall that the sliing problem asks the following question: Does thereexist a universal onstant C suh that, for every onvex origin-symmetribody K in any dimension, we have LK < C?An equivalent formulation of this problem (see [MP℄) is whether thereexists a universal onstant C1 suh that for every origin-symmetri onvexbody in R
n the following inequality holds:(1) (vol(K))(n−1)/n ≤ C1 max

ξ∈Sn−1
vol(K ∩ ξ⊥),where ξ⊥ is the entral hyperplane orthogonal to ξ, and Sn−1 is the unitsphere in R

n. In other words, does there exist a universal onstant suh thatevery onvex origin-symmetri body of volume one has a hyperplane setionof volume greater than this universal onstant?The problem still remains open. Bourgain [Bo1℄ proved that we have
LK ≤ O(n1/4 log n), and very reently Klartag [Kl2℄ removed the logarithmiterm in this estimate. However, there are many lasses of bodies for whih theanswer is a�rmative with a onstant independent of the dimension (see e.g.[Ba℄, [BKM℄, [KMP℄, [MP℄). In partiular, the sliing problem is solved forthe unit balls of subspaes of L1 (and hene for subspaes of Lp, 1 ≤ p ≤ 2)by Ball [Ba℄. For the unit balls of subspaes of quotients of Lp, 1 < p < ∞,the problem is solved by Junge [J℄. In Junge's proof the bounds blow up as
p approahes either 1 or ∞. E. Milman [M1℄ gave a simple proof of theseresults for the unit balls of subspaes of Lp, 0 ≤ p < ∞, and for quotientsof Lp, 1 < p ≤ ∞. Klartag and E. Milman [KlM℄ showed that the isotropionstant for subspaes of quotients of Lp, 1 < p ≤ 2, is bounded fromabove by O(1/

√
p − 1), thus improving Junge's estimate whih was of order

1/(p − 1). We also note that for subspaes of Lp, 2 ≤ p < ∞, E. Milmangave two di�erent proofs of the fat that LK < O(
√

p). Here we present yetanother proof of this result, whih is somewhat similar to one of E. Milman'sproofs, but uses the Lewis position instead of the isotropi position.Sine the latter bound blows up as p → ∞, we try a di�erent approah,onsidering negative values of p. The onept of embedding in L−p with
0 < p < n was introdued in [Ko2℄, and it was proved that a spae (Rn, ‖ · ‖)embeds in L−p if and only if the Fourier transform of ‖ · ‖−p is a positivedistribution in R

n. We will all unit balls of suh spaes p-intersetion bodiesor L−p-balls. For example, L−1-balls are intersetion bodies and L−k-ballsare k-intersetion bodies (see [Ko3℄).



Setions of Lp-balls 219We would like to know whether the answer to the sliing problem isa�rmative for Lp-balls with p negative. Of ourse, if one ould show thisfor p ∈ (−n,−n + 3], then one would solve the sliing problem ompletely,sine for any onvex body K ∈ R
n, the spae (Rn, ‖ · ‖K) embeds in Lp forsuh values of p (see [Ko4, Setion 4.2℄). In this paper we employ Kahane�Khinhin type inequalities, disussed above, to show that the sliing problemhas an a�rmative answer for Lp-balls, p > −2.For other results on the sliing problem we refer the reader to [Bo2℄, [D℄,[Kl1℄, [MP℄, [P℄.2. Subspaes of Lp with p > 2. In this setion we give a di�erentproof of the result LK < O(

√
p) mentioned in the Introdution. Note thatif 0 ≤ p ≤ 2 then the unit ball of a �nite-dimensional subspae of Lp is anintersetion body (see [Ko2℄ for 0 < p ≤ 2 and [KKYY℄ for p = 0), andthe solution of the sliing problem for suh bodies follows from the posi-tive part of the Busemann�Petty problem. This problem asks the followingquestion. Let K and L be two origin-symmetri onvex bodies in R

n, suhthat voln−1(K ∩ H) ≤ voln−1(L ∩ H) for every entral hyperplane H. Is ittrue that voln(K) ≤ voln(L)? The onnetion between intersetion bodiesand the Busemann�Petty problem was found by Lutwak [Lu℄. The answerto the problem is a�rmative if K is an intersetion body and L is anyorigin-symmetri star body. Hene, in order to give an a�rmative answer tothe sliing problem for intersetion bodies it is enough to take L to be theEulidean ball of the same volume as K (see [MP, Proposition 5.5℄).In view of the previous remarks it is enough to onsider p > 2.Let K be a onvex origin-symmetri body in R
n, and denote by

‖x‖K = min{a > 0 : x ∈ aK}the norm on R
n generated by K.Theorem 2.1. Let p > 2. There exists a onstant C(p) depending onlyon p suh that LK ≤ C(p) for the unit ball K of any �nite-dimensionalsubspae of Lp. Moreover , C(p) = O(

√
p) as p → ∞.Proof. Aording to a theorem of Lewis [Le℄ (we formulate it in the formgiven in [LYZ, Theorem 8.2℄), if (Rn, ‖ · ‖K) is a subspae of Lp, p ≥ 1, thenthere exist a position of the body K (whih will again be denoted by K andwill be alled Lewis' position) and a �nite Borel measure µ on Sn−1 suhthat for all x ∈ R

n,
‖x‖p

K =
\

Sn−1

|(x, u)|p dµ(u),(2)
|x|2 =

\
Sn−1

|(x, u)|2 dµ(u).(3)



220 A. Koldobsky et al.On the other hand, for any body K one has (see [MP, Setion 1.6℄)(4) L2
K ≤ 1

n(vol(K))1+2/n

\
K

|x|2 dx.Using formula (3), applying Hölder's inequality twie and then usingformula (2) we get\
K

|x|2 dx =
\
K

\
Sn−1

|(x, u)|2 dµ(u) dx

≤ (vol(K))1−2/p
\

Sn−1

( \
K

|(x, u)|p dx
)2/p

dµ(u)

≤ (vol(K))1−2/p
( \

Sn−1

\
K

|(x, u)|p dx dµ(u)
)2/p( \

Sn−1

dµ(u)
)1−2/p

= (vol(K))1−2/p
( \

K

‖x‖p
K dx

)2/p( \
Sn−1

dµ(u)
)1−2/p

.Passing to polar oordinates one an easily hek that\
K

‖x‖p
K dx =

n

n + p
vol(K),therefore the previous omputations ombined with inequality (4) yield

L2
K ≤ 1

n
(vol(K))−2/n

(
n

n + p

)2/p( \
Sn−1

dµ(u)
)1−2/p(5)

≤ 1

n
(vol(K))−2/n

( \
Sn−1

dµ(u)
)1−2/p

.Let us estimate from below the volume of the body K. Let σ be thenormalized Haar measure on the sphere. Then\
Sn−1

‖x‖p
K dσ(x) =

\
Sn−1

\
Sn−1

|(x, u)|p dµ(u) dσ(x)

=
\

Sn−1

|x1|p dσ(x) ·
\

Sn−1

dµ(u) ≤
(

Cp

n + p

)p/2 \
Sn−1

dµ(u),where C is an absolute onstant. The latter estimate follows, for example,from [Ko4, Lemma 3.12℄ and Stirling's formula.We get
Cp

n + p

( \
Sn−1

dµ(u)
)2/p

≥
( \

Sn−1

‖x‖p
K dσ(x)

)2/p
≥

( \
Sn−1

‖x‖−n
K dσ(x)

)−2/n

= (vol(K)/vol(Bn
2 ))−2/n ∼ 1

n
(vol(K))−2/n,



Setions of Lp-balls 221sine (vol(Bn
2 ))1/n ∼ n−1/2, meaning that (vol(Bn

2 ))1/nn1/2 approahes anon-zero onstant as n → ∞ (see e.g. [Ko4, Corollary 2.20℄ and apply Stir-ling's formula).Therefore inequality (5) implies(6) L2
K ≤ Cp

n + p

\
Sn−1

dµ(u),where C is an absolute onstant (possibly di�erent from the one used above).Finally, let us ompute the measure of Sn−1 with respet to µ. Integratingequation (3) with respet to σ we get
1 =

\
Sn−1

|x|2 dσ(x) =
\

Sn−1

\
Sn−1

(x, u)2 dµ(u) dσ(x)

=
\

Sn−1

|x1|2 dσ(x) ·
\

Sn−1

dµ(u) =
1

n

\
Sn−1

dµ(u).This equality together with (6) implies
LK ≤ C

√
p.3. Subspaes of Lp with p < 0. First let us give some preliminaryde�nitions and results to introdue the reader into the subjet of Fourieranalysis of distributions, whih will be the main tool of this setion.Let φ be a funtion from the Shwartz spae S of rapidly dereasingin�nitely di�erentiable funtions on R

n. We de�ne the Fourier transformof φ by
φ̂(ξ) =

\
Rn

φ(x)e−i(x,ξ) dx, ξ ∈ R
n.

The Fourier transform of a distribution f is de�ned by 〈f̂ , φ〉 = 〈f, φ̂〉 forevery test funtion φ ∈ S.We say that a distribution is positive de�nite if its Fourier transform is apositive distribution, in the sense that 〈f̂ , φ〉 ≥ 0 for every non-negative testfuntion φ.Let f be an in�nitely di�erentiable funtion on the sphere Sn−1; extendit to R
n \ {0} as a homogeneous funtion of degree −k, 0 < k < n. Then theFourier transform of the homogeneous extension is an in�nitely di�erentiablefuntion on R

n \{0}, homogeneous of degree −n+k. (See for example [Ko4,Setion 3.3℄.)We will need the following version of Parseval's formula on the sphereproved in [Ko1℄.Lemma 3.1. If K and L are origin-symmetri in�nitely smooth onvexbodies in R
n and 0 < p < n, then (‖x‖−p

K )∧ and (‖x‖−n+p
L )∧ are ontinuous



222 A. Koldobsky et al.funtions on Sn−1 and\
Sn−1

(‖x‖−p
K )∧(ξ)(‖x‖−n+p

L )∧(ξ) dξ = (2π)n
\

Sn−1

‖x‖−p
K ‖x‖−n+p

L dx.

A well-known result of P. Lévy (see for example [Ko4, Setion 6.1℄) isthat a spae (Rn, ‖ · ‖) embeds into Lp, p > 0, if and only if there exists a�nite Borel measure µ on the unit sphere so that, for every x ∈ R
n,(7) ‖x‖p =

\
Sn−1

|(x, ξ)|p dµ(ξ).If p is not an even integer, this ondition is equivalent to the fat that
(Γ (−p/2)‖x‖p)∧ is a positive distribution outside of the origin (see [Ko4,Theorem 6.10℄).The onept of embedding in L−p with 0 < p < n was introdued in[Ko2℄ by extending formula (7) analytially to negative values of p. It wasalso proved that, as for positive p, there is a Fourier analyti haraterizationfor suh embeddings, namely a spae (Rn, ‖ · ‖) embeds in L−p if and only ifthe Fourier transform of ‖ · ‖−p is a positive distribution in R

n. We will allunit balls of suh spaes p-intersetion bodies or L−p-balls.Lemma 3.2. Let K be an in�nitely smooth origin-symmetri onvex bodyin R
n. If K is a p-intersetion body , 0 < p < n, then

(vol(K))(n−p)/n ≤ C(n, p) max
ξ∈Sn−1

(‖x‖−n+p
K )∧(ξ),where

C(n, p) =
Γ ((n − p)/2)

2pπn/2n(n−p)/nΓ (p/2)
|Sn−1|(n−p)/n.Proof. Using the formula for the volume in polar oordinates and Parse-val's formula we get

vol(K) =
1

n

\
Sn−1

‖x‖−n
K dx =

1

n

\
Sn−1

‖x‖−p
K ‖x‖−n+p

K dx

=
1

(2π)nn

\
Sn−1

(‖x‖−p
K )∧(ξ)(‖x‖−n+p

K )∧(ξ) dξ.

If K is a p-intersetion body, then (‖x‖−p
K )∧(ξ) ≥ 0, therefore

vol(K) ≤ 1

(2π)nn

\
Sn−1

(‖x‖−p
K )∧(ξ) dξ · max

ξ∈Sn−1
(‖x‖−n+p

K )∧(ξ).Using the fat that (see [GS, p. 192℄)
(|x|−n+p

2 )∧(ξ) = 2pπn/2 Γ (p/2)

Γ ((n − p)/2)
|ξ|−p

2 ,



Setions of Lp-balls 223and applying Parseval's formula again, we get
vol(K) ≤ 2−pπ−n/2

(2π)nn

Γ ((n − p)/2)

Γ (p/2)

\
Sn−1

(‖x‖−p
K )∧(ξ)(|x|−n+p

2 )∧(ξ) dξ

× max
ξ∈Sn−1

(‖x‖−n+p
K )∧(ξ)

=
2−pπ−n/2

n

Γ ((n − p)/2)

Γ (p/2)

\
Sn−1

‖x‖−p
K dx · max

ξ∈Sn−1
(‖x‖−n+p

K )∧(ξ)

≤ 2−pπ−n/2

n

Γ ((n − p)/2)

Γ (p/2)

( \
Sn−1

‖x‖−n
K dx

)p/n

× |Sn−1|(n−p)/n max
ξ∈Sn−1

(‖x‖−n+p
K )∧(ξ)

= C(n, p)(vol(K))p/n max
ξ∈Sn−1

(‖x‖−n+p
K )∧(ξ).From Lemma 3.2 it follows that one an obtain inequalities of type (1)by �nding a good upper estimate for (‖x‖−n+p
K )∧(ξ) in terms of the entralsetion. Our next lemma gives an answer to this question for ertain valuesof p. The proof of the lemma will be given in Setion 5.Lemma 3.3. Let K be an origin-symmetri onvex in�nitely smooth bodyin R

n. Then(i) for p ∈ (0, 1) we have
(‖x‖−n+p

K )∧(ξ) ≤ 2p−1π(n − p)

Γ (2 − p) sin(πp/2)
(voln−1(K ∩ ξ⊥))p(vol(K))1−p,(ii) for p ∈ (1, 2) we have

(‖x‖−n+p
K )∧(ξ) ≤ 2p−1π(n − p)

sin(πp/2)
(voln−1(K ∩ ξ⊥))p(vol(K))1−p.We remark that these inequalities beome equalities in the ase p = 1,sine (‖x‖−n+1

K )∧(ξ) = π(n−1)voln−1(K∩ξ⊥) (see e.g. [Ko4, Theorem 3.8℄).Now we are ready to state our main result.Theorem 3.4. Let 0 < p < 2. If K is a onvex p-intersetion body , then
(vol(K))(n−1)/n ≤ C(p) max

ξ∈Sn−1
voln−1(K ∩ ξ⊥),where

C(p) =





(
π1−p/2

Γ (p/2)Γ (2 − p) sin(πp/2)

)1/p if 0 < p ≤ 1,

(
π1−p/2

Γ (p/2) sin(πp/2)

)1/p if 1 < p < 2.



224 A. Koldobsky et al.Proof. For in�nitely smooth bodies the theorem is a onsequene of Lem-mas 3.2 and 3.3 and Lemma 7.1 from the Appendix. For non-smooth bodiesthe theorem follows from the fat that every Lp-ball an be approximated inthe radial metri by in�nitely smooth Lp-balls (see [M2, Lemma 3.11℄).Remark. As remarked by E. Milman [M1, Remark 4.3℄, a uniform boundon the isotropi onstant for subspaes of Lq with −1+ε < q ≤ 0 follows fromhis argument and Guédon's extension of the Kahane�Khinhin inequality tothe ase q > −1. The novelty of the previous theorem for Lq with −1 < q < 0is that the bound does not blow up as q approahes −1 (p from the previoustheorem and q are related by p = −q). Unfortunately, the bound does blowup as p tends to 2.The next two setions will be devoted to the proof of Lemma 3.3.4. Redution to the setion funtion. Let K be an in�nitely smoothorigin-symmetri onvex body. For ξ ∈ Sn−1, onsider the parallel setionfuntion AK,ξ on R de�ned by
AK,ξ(t) = voln−1(K ∩ {(x, ξ) = t}).The frational derivative of AK,ξ of order q at zero is de�ned as the ationof the distribution t−1−q
+ /Γ (−q) on this funtion, where t+ = max{t, 0}.That is,

A
(q)
K,ξ(0) =

〈
1

Γ (−q)
t−1−q
+ , AK,ξ(t)

〉
.In partiular (see [GKS℄) it follows that for 0 < p < 1,(8) A

(−1+p)
K,ξ (0) =

1

Γ (1 − p)

∞\
0

t−pAK,ξ(t) dt,and for 1 < p < 2,(9) A
(−1+p)
K,ξ (0) =

1

Γ (1 − p)

∞\
0

t−p(AK,ξ(t) − AK,ξ(0)) dt.Also note that
voln−1(K ∩ ξ⊥) = AK,ξ(0) = lim

ε→0+

1

Γ (ε)

∞\
0

t−1+εAK,ξ(t) dt = lim
ε→0+

A
(−ε)
K,ξ (0).It was shown in [GKS℄ that if K has an in�nitely smooth boundary thenthe frational derivatives of the funtion AK,ξ an be omputed in terms ofthe Fourier transform of the Minkowski funtional raised to ertain powers.Namely, for p > 0, p 6= n we have(10) A

(−1+p)
K,ξ (0) =

sin(πp/2)

π(n − p)
(‖x‖−n+p

K )∧(ξ).



Setions of Lp-balls 225Therefore the inequalities from Lemma 3.3 an now be written as follows:
A

(−1+p)
K,ξ (0) ≤ C(p)(vol(K))(1−p)(AK,ξ(0))pfor an appropriate onstant C(p). Equivalently (if we assume for simpliitythat vol(K) = 1),(11) 〈

1

Γ (1 − p)
t−p
+ , AK,ξ(t)

〉1/p

≤ c(p) lim
ε→0

〈
1

Γ (ε)
t−1+ε
+ , AK,ξ(t)

〉
.

5. Kahane�Khinhin type inequalities. Assume that vol(K) = 1(K is not neessarily onvex) and 0 < p < q. Then for all ξ ∈ Sn−1 thefollowing holds by virtue of Hölder's inequality:
( \

K

|(x, ξ)|p dx
)1/p

≤
( \

K

|(x, ξ)|q dx
)1/q

.However, if K is onvex and origin-symmetri, then this inequality an bereversed. Namely, there is a onstant C(p, q), depending on p and q only,suh that
( \

K

|(x, ξ)|q dx
)1/q

≤ C(q, p)
( \

K

|(x, ξ)|p dx
)1/p

, ∀ξ ∈ Sn−1.The latter is alled the Kahane�Khinhin inequality for linear funtionals(see [Ka℄, [Bor℄, [MP℄).Note that\
K

|(x, ξ)|q dx =
\

Rn

|(x, ξ)|qχK(x) dx =
\
R

|t|q
\

(x,ξ)=t

χK(x) dx dt

=
\
R

|t|qAK,ξ(t) dt = 2〈tq+, AK,ξ(t)〉.Therefore the Kahane�Khinhin inequality an be written as
〈

1

Γ (q)
tq+, AK,ξ(t)

〉1/q

≤ c̃(p, q)

〈
1

Γ (p)
tp+, AK,ξ(t)

〉1/p

,whih resembles Lemma 3.3 in the form of inequality (11). Hene in orderto prove Lemma 3.3, we need to extend the Kahane�Khinhin inequality tonegative values of p and q.Proof of Lemma 3.3: ase 0 < p < 1. From [MP, p. 76℄ it follows that
F (q) =

(
(q + 1)

∞\
0

tq
AK,ξ(t)

AK,ξ(0)
dt

)1/(1+q)

is an inreasing funtion of q on (−1,∞).



226 A. Koldobsky et al.Therefore, taking q = −p with 0 < p < 1 and using F (−p) ≤ F (0) weget
(

(1 − p)

∞\
0

t−p AK,ξ(t)

AK,ξ(0)
dt

)1/(1−p)

≤
∞\
0

AK,ξ(t)

AK,ξ(0)
dt =

vol(K)

2AK,ξ(0)
.Using formulas (10), (8) and applying the previous inequality, we get

(‖x‖−n+p
K )∧(ξ) =

π(n − p)

sin(πp/2)
A

(−1+p)
K,ξ (0)

=
π(n − p)

Γ (1 − p) sin(πp/2)

∞\
0

t−pAK,ξ(t) dt

≤ 2p−1π(n − p)

(1 − p)Γ (1 − p) sin(πp/2)
(vol(K))1−p(AK,ξ(0))p

=
2p−1π(n − p)

Γ (2 − p) sin(πp/2)
(vol(K))1−p(AK,ξ(0))p.Proof of Lemma 3.3: ase 1 < p < 2. What follows is similar to [MP,Setion 2.6℄. Consider the funtion

G(p) =



T
∞

0 t−p AK,ξ(0)−AK,ξ(t)
AK,ξ(0) dtT

∞

0 t−p(1 − e−t) dt




1/(1−p)

.

We want to show that it is inreasing on (1, 2).Let Φ(t) = log AK,ξ(0)− log AK,ξ(t). By Brunn's theorem (see e.g. [Ko4,Theorem 2.3℄), Φ(t) ≥ 0 and it is inreasing and onvex on the support of
AK,ξ(t). Now

G(p) =

(T∞
0 t−p(1 − e−Φ(t)) dtT
∞

0 t−p(1 − e−t) dt

)1/(1−p)

.Let α = 1/G(p). Then it is not hard to hek that
∞\
0

t−p(1 − e−αt) dt =

∞\
0

t−p(1 − e−Φ(t)) dt.Consider the funtion
H(x) =

∞\
x

t−p(e−Φ(t) − e−αt) dt.We want to show that H(x) ≤ 0 for x ∈ [0,∞). Sine H(0) = H(∞) = 0, itsu�es to show that H(x) is �rst dereasing and then inreasing.Indeed,
H ′(x) = −x−p(e−Φ(x) − e−αx).



Setions of Lp-balls 227Sine Φ(x) is inreasing and onvex, there is a point x0 suh that Φ(x) ≤ αxfor 0 < x < x0 and Φ(x) ≥ αx for x > x0. Therefore H ′(x) ≤ 0 if 0 < x < x0and H ′(x) ≥ 0 if x > x0. So, we have proved that H(x) ≤ 0, whih meansthat for every x > 0,
∞\
x

t−p(1 − e−Φ(t)) dt ≥
∞\
x

t−p(1 − e−αt) dt.Now let 1 < q < p < 2; we have
∞\
0

t−q(1 − e−Φ(t)) dt = (p − q)

∞\
0

xp−q−1
∞\
x

t−p(1 − e−Φ(t)) dt

≥ (p − q)

∞\
0

xp−q−1
∞\
x

t−p(1 − e−Φ(t)) dt

=

∞\
0

t−q(1 − e−αt) dt = αq−1
∞\
0

t−q(1 − e−t) dt.Therefore, using the de�nition of α, we getT
∞

0 t−q(1 − e−Φ(t)) dtT
∞

0 t−q(1 − e−t) dt
≥ (G(p))1−qor

G(q) ≤ G(p).So, G(p) is inreasing on (1, 2).If we extend the funtion G(p) to p ∈ (0, 1) by the formula
G(p) =

(T∞
0 t−pe−Φ(t) dtT
∞

0 t−pe−t dt

)1/(1−p)

,then aording to [MP, p. 81℄, this funtion is inreasing on (0, 1).Note that on both intervals (0, 1) and (1, 2) the funtion an be writtenas
G(p) =

(
A

(−1+p)
K,ξ (0)

AK,ξ(0)

)1/(1−p)

.Moreover, sine A
(−1+p)
K,ξ (0) is an analyti funtion of p ∈ C (see [Ko4, p. 37℄),we have

lim
p→1+

G(p) = lim
p→1−

G(p) = exp

(
−

d
dpA

(−1+p)
K,ξ (0)|p=0

AK,ξ(0)

)
.Consequently, for p ∈ (1, 2) we get

G(p) ≥ G(0),
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T
∞

0 t−p AK,ξ(0)−AK,ξ(t)
AK,ξ(0) dtT

∞

0 t−p(1 − e−t) dt




1/(1−p)

≥ vol(K)

2AK,ξ(0)
,or

1

Γ (1 − p)

∞\
0

t−p AK,ξ(t) − AK,ξ(0)

AK,ξ(0)
dt ≤

(
vol(K)

2AK,ξ(0)

)1−p

.Using formulas (10), (9) and applying the previous inequality, we get
(‖x‖−n+p

K )∧(ξ) =
π(n − p)

sin(πp/2)
A

(−1+p)
K,ξ (0)

=
π(n − p)

sin(πp/2)Γ (1 − p)

∞\
0

t−p(AK,ξ(t) − AK,ξ(0)) dt

≤ 2p−1π(n − p)

sin(πp/2)
(AK,ξ(0))p(vol(K))1−p.

6. Higher order derivatives. In this setion we show that inequalitiessimilar to those from Lemma 3.3 exist for larger values of p; however, inthis ase we need to pay the prie of averaging the Fourier transform over asphere.Let H ∈ G(n, n − 2) and let ξ1, ξ2 be an orthonormal basis in H⊥.De�ne
AK,H(u) = voln−2(K ∩ {H + u1ξ1 + u2ξ2}), u ∈ R

2.Lemma 6.1. Let K be an origin-symmetri in�nitely smooth onvex bodyin the isotropi position. Then for q ∈ (0, 1) we have\
Sn−1∩H⊥

(‖x‖−n+2+q)∧(θ) dθ ≤ C(q)L−2−q
K ,where LK is the onstant of isotropy of K and C(q) is a onstant dependingonly on q.Proof. From the proof of Theorem 2 in [Ko3℄ we know that\

Sn−1∩H⊥

(‖x‖−n+2+q)∧(θ) = C(q)〈|u|−2−q, AK,H(u)〉

= C1(q)
\

R2

|u|−2−q(AK,H(u) − AK,H(0)) du,and passing to polar oordinates, we see that this equals
C1(q)

\
Sn−1∩H⊥

∞\
0

r−1−q(AK,H(rθ) − AK,H(0)) dr dθ.



Setions of Lp-balls 229Sine AK,H is log-onave, we an apply a Kahane�Khinhin type in-equality (part (ii) of Lemma 3.3) to the inner integral. Hene
∞\
0

r−1−q(AK,H(0) − AK,H(rθ)) dr

≤ C2(q)(AK,H(0))1+q(voln−1(K ∩ span{H, θ}))−q.Sine for isotropi bodies entral setions of odimension 1 and 2 are equiv-alent to L−1
K and L−2

K respetively (see e.g. [MP, p. 96℄), we get
∞\
0

r−1−q(AK,H(0) − AK,H(rθ)) dr ≤ C(q)L−2−2q
K Lq

K = C(q)L−2−q
K .

7. Appendix. Here we prove a result used in one of the previous se-tions.Lemma 7.1. Let 0 ≤ p < n and C(n, p) be as in Lemma 3.2. Then
C(n, p) · (n − p) ≤ 21−pπ−p/2

Γ (p/2)
.Proof. We need to show that

n − p

n(n−p)/n

Γ ((n − p)/2)

2π(n−p)/2
|Sn−1|(n−p)/n ≤ 1.The left-hand side is equal to

n − p

n(n−p)/n

Γ ((n − p)/2)

2π(n−p)/2

(
2πn/2

Γ (n/2)

)(n−p)/n

=
Γ ((n − p)/2 + 1)

(Γ (n/2 + 1))(n−p)/n
.Sine the funtion log(Γ (x)) is onvex [Ko4, p.30℄, we have

log(Γ (n/2 + 1)) − log(Γ (1))

n/2
≥ log(Γ ((n − p)/2 + 1)) − log(Γ (1))

(n − p)/2
,therefore

(Γ (n/2 + 1))n/2 ≥ (Γ ((n − p)/2 + 1))(n−p)/2.
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