STUDIA MATHEMATICA 184 (3) (2008)

On the boundedness of the differentiation operator between weighted spaces of holomorphic functions

by

ANAHIT HARUTYUNYAN (Yerevan) and WOLFGANG LUSKY (Paderborn)

Abstract. We give necessary and sufficient conditions on the weights v and w such that the differentiation operator $D : Hv(\Omega) \to Hw(\Omega)$ between two weighted spaces of holomorphic functions is bounded and onto. Here $\Omega = \mathbb{C}$ or $\Omega = \mathbb{D}$. In particular we characterize all weights v such that $D : Hv(\Omega) \to Hw(\Omega)$ is bounded and onto where w(r) = v(r)(1-r) if $\Omega = \mathbb{D}$ and w = v if $\Omega = \mathbb{C}$. This leads to a new description of normal weights.

1. Introduction. Let Ω be the complex plane \mathbb{C} or the open unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. A weight v on Ω is a continuous non-increasing function $v : [0, a[\to]0, \infty[$ where a = 1 if $\Omega = \mathbb{D}$ and $a = \infty$ if $\Omega = \mathbb{C}$. We assume that $\lim_{r \to a} v(r) = 0$ if a = 1 and $\lim_{r \to a} r^m v(r) = 0$ for all $m \ge 0$ if $a = \infty$. For a function $h : \Omega \to \mathbb{C}$ and $r \in [0, a[$ put

$$M_{\infty}(h,r) = \sup_{|z|=r} |h(z)|$$
 and $||h||_{v} = \sup_{0 \le r < a} M_{\infty}(h,r)v(r).$

We consider the Banach space

 $Hv(\Omega) = \{h : \Omega \to \mathbb{C} \text{ holomorphic: } \|h\|_v < \infty\}$

endowed with the norm $\|\cdot\|_v$. Hence, a holomorphic function h satisfies $h \in Hv(\Omega)$ if and only if $M_{\infty}(h, r) = O(1/v(r))$ as $r \to a$.

There is an extensive literature about the Banach spaces $Hv(\Omega)$ and their generalisations to other domains $\Omega \subset \mathbb{C}^n$ or to corresponding spaces of harmonic functions (see e.g. [19, 20, 21, 2, 11, 8, 12, 15, 16, 14]). Moreover, many authors study special classes of operators between such spaces. For example, the authors of [3, 6, 9] discuss multiplication operators $M_{\varphi}f = \varphi \cdot f$, $f \in Hv(\Omega)$, where φ is a fixed holomorphic function. Other papers ([7, 5, 22]

²⁰⁰⁰ Mathematics Subject Classification: Primary 46E15; Secondary 47B38.

Key words and phrases: differentiation operator, holomorphic functions, weighted spaces.

Research of A. Harutyunyan supported by Deutsche Forschungsgemeinschaft 436 ARM 17/2/06.

and many more) deal with composition operators $C_{\varphi}f = f \circ \varphi, f \in Hv(\Omega)$, where $\varphi : \Omega \to \Omega$ is again a fixed holomorphic function.

Also, there is a vast literature on interpolation and sampling in these weighted spaces of holomorphic functions (e.g. [17, 18, 1, 10]). Here the operators

$$T: Hv(\mathbb{D}) \to l_{\infty}, \quad f \mapsto (f(z_n)v(z_n))_n,$$

are studied where $(z_n)_n \subset \mathbb{D}$ is a given sequence, which is called a set of interpolation if T is surjective and a sampling set if T is a monomorphism. A nice survey of all these results is given in [4].

In our paper we discuss the question of what kind of growth condition the derivative Dh = h' satisfies. In Section 2 we introduce necessary and sufficient conditions on weights v and w such that $D : Hv(\Omega) \to Hw(\Omega)$ is bounded and sometimes onto. In Section 3 we investigate the case $\Omega = \mathbb{D}$ and w(r) = (1 - r)v(r) while in Section 4 we focus on $\Omega = \mathbb{C}$ and w = v.

To this end we make some further assumptions on v which do not restrict generality. We can always fix radii $r_1 < r_2 < \cdots < a$ such that $v(r_n) = 2v(r_{n+1})$ for all n and change v(r) keeping monotonicity for $r_n < r < r_{n+1}$ without changing $Hv(\Omega)$. Therefore we can always assume that v is continuously differentiable. Moreover in the following, for any n > 0, the function $\gamma_n(r) = r^n v(r)$ plays an important role. Put

 $r_n = \min\{r : r \text{ is a global maximum point of } \gamma_n\},\$

 $s_n = \max\{r : r \text{ is a global maximum point of } \gamma_n\}.$

1.1. LEMMA. If m < n then $s_m \leq r_n$.

Proof. We have

$$s_m^n v(s_m) \le r_n^n v(r_n) \le r_n^{n-m} s_m^m v(s_m).$$

Hence $s_m^{n-m} \leq r_n^{n-m}$ and thus $s_m \leq r_n$.

So, if $r_m < r < s_m$ then r cannot be a global maximum point for γ_n for any $n \neq m$. For those m with $r_m < s_m$ we change v on the interval $[r_m, s_m]$. Define $\tilde{v}(r) = (r_m/r)^m v(r_m)$ if $r_m < r < s_m$. Then all $r \in [r_m, s_m]$ are global maximum points of $r^m \tilde{v}(r)$ and we obtain $r^m \tilde{v}(r) = r_m^m v(r_m)$. Moreover, $\tilde{v}(r_m) = v(r_m)$ and $\tilde{v}(s_m) = v(s_m)$. According to [16, Corollary 5.4], $\|\cdot\|_v$ is equivalent to a norm which depends exclusively on the global maximum points of the functions γ_m . So in the following we assume that any $r \in [r_m, s_m]$, for any m > 0, is a global maximum point of γ_m . This is no loss of generality, otherwise we go over to \tilde{v} where $\|\cdot\|_{\tilde{v}}$ is equivalent to $\|\cdot\|_v$.

1.2. LEMMA. We have $\lim_{n\to\infty} r_n = a$.

Proof. According to Lemma 1.1, r_n is increasing. Put $r = \lim_{n\to\infty} r_n$ and assume r < a.

CASE a = 1. Here we obtain

$$1 \ge \left(\frac{2^{-1}(1+r)}{r_n}\right)^n \frac{v(2^{-1}(1+r))}{v(r_n)}.$$

Since

$$\lim_{n \to \infty} \left(\frac{1}{2} \left(\frac{1}{r_n} + \frac{r}{r_n} \right) \right)^n = \infty \quad \text{and} \quad \lim_{n \to \infty} v(r_n) = v(r)$$

we arrive at a contradiction.

CASE $a = \infty$. Here we have

$$1 \ge \left(\frac{1+r}{r_n}\right)^n \frac{v(r+1)}{v(r_n)} \ge \left(\frac{1}{r}+1\right)^n \frac{v(r+1)}{v(r_n)}.$$

Again we get a contradiction for large n.

According to our assumptions, any r in [0, a] is a global maximum point for some γ_n . We have $\gamma'_n(r) = 0$ if and only if -rv'(r)/v(r) = n. Hence if $\gamma'_n(r) = 0$ then $\gamma'_m(r) \neq 0$ for any $m \neq n$. This means that r is a global maximum point of γ_n and all local maximum points of γ_n are also global.

2. The differentiation and integration operators $Hv(\Omega) \to Hw(\Omega)$ for general w. Let v and w be two weights. Assume that $Hw(\Omega)$ is isomorphic to l_{∞} . For each n fix a maximum point r_n of $r^n w(r)$. According to [16] there are numbers $0 < m_1 < m_2 < \cdots, t_{n,k} \in \mathbb{R}$ and operators

$$(T_n h)(z) = \sum_{m_{n-1} \le k < m_{n+1}} t_{n,k} \alpha_k z^k \quad \text{ for } h(z) = \sum_k \alpha_k z^k$$

such that

(1)
$$c_1 \sup_{n} \sup_{r_{m_{n-1}} \le r \le r_{m_{n+1}}} M_{\infty}(T_n h, r) w(r) \le \|h\|_w$$

 $\le c_2 \sup_{n} \sup_{r_{m_{n-1}} \le r \le r_{m_{n+1}}} M_{\infty}(T_n h, r) w(r)$

for all $h \in Hw(\Omega)$ and some $c_1, c_2 > 0$. Moreover there is a universal constant $\gamma > 0$ such that

(2)
$$M_{\infty}(T_nh,r) \leq \gamma M_{\infty}(h,r)$$
 for all n,h and r .

Finally, either

(3)
$$\sup_{n} \max\left(\left(\frac{r_{m_{n}}}{r_{m_{n-1}}}\right)^{m_{n}} \frac{w(r_{m_{n}})}{w(r_{m_{n-1}})}, \left(\frac{r_{m_{n-1}}}{r_{m_{n}}}\right)^{m_{n-1}} \frac{w(r_{m_{n-1}})}{w(r_{m_{n}})}\right) < \infty$$

and

(3')
$$0 < \inf_{n} \frac{m_{n+1} - m_n}{m_n - m_{n-1}} \le \sup_{n} \frac{m_{n+1} - m_n}{m_n - m_{n-1}} < \infty,$$

or

(4)
$$\sup(m_{n+1} - m_{n-1}) < \infty.$$

In the latter case we can split T_n further, i.e. we can assume

(5)
$$d_1 \sup_{n \in \mathbb{Z}_+} |\alpha_n| r_n^n w(r_n) \le ||h||_w \le d_2 \sup_{n \in \mathbb{Z}_+} |\alpha_n| r_n^n w(r_n)$$

for some $d_1, d_2 > 0$ and all $h = \sum_k \alpha_k z^k \in Hw(\Omega)$. ((4) is not possible for $\Omega = \mathbb{D}$, see [15].)

If (3) holds then we have

(6)
$$\sup_{n} \left(\frac{r_{m_n}}{r_{m_{n-1}}}\right)^{m_n - m_{n-1}} < \infty.$$

Now [16, Lemma 3.1] implies, for any $r \in [r_{m_{n-1}}, r_{m_{n+1}}]$,

$$M_{\infty}(T_{n}h, r)w(r) \leq 2\left(\frac{r}{r_{m_{n+1}}}\right)^{m_{n-1}} \frac{w(r)}{w(r_{m_{n+1}})} M_{\infty}(T_{n}h, r_{m_{n+1}})w(r_{m_{n+1}})$$

$$\leq 2\left(\frac{r_{m_{n-1}}}{r_{m_{n+1}}}\right)^{m_{n-1}} \frac{w(r_{m_{n-1}})}{w(r_{m_{n+1}})} M_{\infty}(T_{n}h, r_{m_{n+1}})w(r_{m_{n+1}})$$

$$= 2\left(\frac{r_{m_{n-1}}}{r_{m_{n}}}\right)^{m_{n-1}} \frac{w(r_{m_{n-1}})}{w(r_{m_{n}})} \left(\frac{r_{m_{n}}}{r_{m_{n+1}}}\right)^{m_{n}} \frac{w(r_{m_{n}})}{w(r_{m_{n+1}})} \left(\frac{r_{m_{n+1}}}{r_{m_{n}}}\right)^{m_{n}-m_{n-1}}$$

$$\times M_{\infty}(T_{n}h, r_{m_{n+1}})w(r_{m_{n+1}})$$

$$\leq dM_{\infty}(T_{n}h, r_{m_{n+1}})w(r_{m_{n+1}})$$

for some universal constant d > 0.

For the last inequality we used (3), (3') and (6). (According to (3') there is a universal constant c with $m_n - m_{n-1} \leq c(m_{n+1} - m_n)$ for all n. Hence

$$\left(\frac{r_{m_{n+1}}}{r_{m_n}}\right)^{m_n-m_{n-1}} \le \left(\left(\frac{r_{m_{n+1}}}{r_{m_n}}\right)^{m_{n+1}-m_n}\right)^c,$$

and this is uniformly bounded by (6).)

Therefore, in this case, (1) implies

(7)
$$\widetilde{c}_1 \sup_n M_{\infty}(T_n h, r_{m_{n+1}}) w(r_{m_{n+1}}) \le ||h||_w$$

 $\le \widetilde{c}_2 \sup_n M_{\infty}(T_n h, r_{m_{n+1}}) w(r_{m_{n+1}})$

for some $\tilde{c}_1, \tilde{c}_2 > 0$.

It is known that $Hw(\Omega)$ is isomorphic to l_{∞} if and only if

$$\begin{aligned} \forall b_1 > 1 \ \exists b_2 > 1 \ \exists c > 0 \ \forall m, n \ge c, \\ |m-n| \ge c \quad \text{and} \quad \left(\frac{r_m}{r_n}\right)^m \frac{w(r_m)}{w(r_n)} \le b_1 \\ \Rightarrow \quad \left(\frac{r_n}{r_m}\right)^n \frac{w(r_n)}{w(r_m)} \le b_2. \end{aligned}$$

Examples include $(1-r)^{\alpha}$, $\alpha > 0$, $\exp(-(1-r)^{-1})$ on \mathbb{D} , $\exp(-\alpha r)$, $\exp(-\log^2 r)$ on \mathbb{C} .

If $Hw(\Omega)$ is not isomorphic to l_{∞} then it is isomorphic to the space $H_{\infty} = \{h : \mathbb{D} \to \mathbb{C} : h \text{ holomorphic and bounded}\}$ (see [16]). Here we still obtain estimates similar to (1) but (2)–(4) will fail to hold.

Now we investigate the differentiation operator $D : Hv(\Omega) \to Hw(\Omega)$. Let $h(z) = \sum_k \alpha_k z^k$. For n > 0 define the Cesàro mean σ_n by

$$(\sigma_n h)(z) = \sum_{k \le n} \frac{[n] - k}{[n]} \alpha_k z^k,$$

where [n] is the largest integer $\leq n$. Moreover, for $j \in \mathbb{Z}$, define the shift U_j by

$$(U_j h)(re^{i\varphi}) = \sum_k \alpha_k r^k e^{i(k+j)\varphi}$$

We formally extend the definition of T_n to $T_n U_j h$ by putting

$$(T_n U_j h)(r e^{i\varphi}) = \sum_{m_{n-1} \le k+j < m_n} t_{n,k} \alpha_k r^k e^{i(k+j)\varphi}$$

Define $g(\varrho e^{i\varphi}) = (U_i h)(\varrho r e^{i\varphi})$. Then (2) applied to g with $\varrho = 1$ implies

$$M_{\infty}(T_n U_j h, r) \le \gamma M_{\infty}(U_j h, r) \le \gamma M_{\infty}(h, r)$$
 for all r and n

- 2.1. THEOREM.
- (a) Let $Hw(\Omega)$ be isomorphic to l_{∞} . If

$$\limsup_{r \to a} \left(-\frac{w'(r)}{v(r)} \right) < \infty$$

then $D: Hv(\Omega) \to Hw(\Omega)$ is bounded.

(b) Let s_n be a global maximum point of $r^n v(r)$. If $D : Hv(\Omega) \to Hw(\Omega)$ is bounded then

$$\limsup_{n \in \mathbb{Z}_+, n \to \infty} \left(-\frac{v'(s_n)}{v^2(s_n)} w(s_n) \right) < \infty.$$

If, in addition, $\limsup_{n \in \mathbb{Z}_+, n \to \infty} s_{n+1}/s_n < \infty$, then also

$$\limsup_{r \to a} \left(-\frac{v'(r)}{v^2(r)} w(r) \right) < \infty$$

(In (b), $Hw(\Omega)$ need not be isomorphic to l_{∞} .)

Proof. (a) Fix n. Assume that (7) holds. Then it suffices to consider $M_{\infty}(T_nDh, r_{m_{n+1}})w(r_{m_{n+1}})$. We have

$$(T_n Dh)(z) = \frac{m_{n+1}}{r_{m_{n+1}}} \left(U_{-1} (\operatorname{id} - \sigma_{m_{n+1}}) U_1 T_n U_{-1} h \right)(z)$$

if $|z| = r_{m_{n+1}}$. The operators U_k , $k = \pm 1$, $T_n U_{-1}$ and $\sigma_{m_{n+1}}$ are uniformly bounded with respect to $M_{\infty}(\cdot, r)$ for all r and the operator norms do not depend on r. Hence there is a universal constant c with

$$M_{\infty}(T_nDh, r_{m_{n+1}})w(r_{m_{n+1}}) \le c \frac{m_{n+1}}{r_{m_{n+1}}} M_{\infty}(h, r_{m_{n+1}})w(r_{m_{n+1}}).$$

On the other hand we have $(r^{m_{n+1}}w(r))'|_{r=r_{m_{n+1}}} = 0$ since $r_{m_{n+1}}$ is a global maximum point of $r^{m_{n+1}}w(r)$. This implies $m_{n+1}w(r_{m_{n+1}})/r_{m_{n+1}} = -w'(r_{m_{n+1}})$. Fix some $r_0 > 0$. A change of v and w on $[0, r_0]$ does not affect $Hv(\Omega)$ and $Hw(\Omega)$. Therefore we can assume that there is d > 0 with $-w'(r)/v(r) \le d$ for all r. Then we obtain

$$M_{\infty}(T_n Dh, r_{m_{n+1}})w(r_{m_{n+1}}) \le cdM_{\infty}(h, r_{m_{n+1}})v(r_{m_{n+1}}) \le cd\|h\|_{v}$$

By (7), D is bounded. The proof for the case (5) is the same.

(b) Fix r > 0. According to our general assumption r is a global maximum point for some function $r^n v(r)$. Hence we have $s_{[n]} \leq r \leq s_{[n]+1}$ with n = -rv'(r)/v(r). Assume that r is so large that $1 \leq [n]$. Consider $h(z) = z^{[n]}$. We have

$$\|h\|_{v} = s_{[n]}^{[n]} v(s_{[n]}) \le \left(\frac{r}{s_{[n]}}\right)^{n-[n]} r^{[n]} v(r)$$

and

$$[n]r^{[n]-1}w(r) \le \|Dh\|_w \le \|D\| \cdot \|h\|_v \le \|D\| \left(\frac{r}{s_{[n]}}\right)^{n-[n]} r^{[n]}v(r).$$

Hence

$$\frac{n}{r} \frac{w(r)}{v(r)} \le \frac{n}{[n]} \|D\| \left(\frac{r}{s_{[n]}}\right)^{n-[n]}$$

and therefore

$$-\frac{v'(r)}{v^2(r)}w(r) \le \frac{n}{[n]} \|D\| \left(\frac{r}{s_{[n]}}\right)^{n-[n]} \le \frac{n}{[n]} \|D\| \left(\frac{s_{[n]+1}}{s_{[n]}}\right)^{n-[n]}$$

For $r = s_{[n]}$ we obtain the first assertion of (b). If $\sup_n s_{[n]+1}/s_{[n]} < \infty$ then the second assertion of (b) follows.

Recall that $\limsup_{n \in \mathbb{Z}_+, n \to \infty} s_{n+1}/s_n < \infty$ always holds if $\Omega = \mathbb{D}$.

Let I be the integration operator, i.e. for a holomorphic function h we put

$$(Ih)(z) = \int_{0}^{z} h(u) \, du$$

To decide whether the differentiation operator is surjective we prove

2.2. Proposition.

(a) Let $Hw(\Omega)$ be isomorphic to l_{∞} . Moreover, assume that

$$\limsup_{r \to a} \left(-\frac{w^2(r)}{w'(r)v(r)} \right) < \infty.$$

Then $I: Hv(\Omega) \to Hw(\Omega)$ is bounded.

(b) Let s_n be a global maximum point of $r^n v(r)$. If $I : Hv(\Omega) \to Hw(\Omega)$ is bounded then

$$\limsup_{n\in\mathbb{Z}_+,\,n\to\infty}\left(-\frac{w(s_n)}{v'(s_n)}\right)<\infty.$$

If, moreover, $\limsup_{n \in \mathbb{Z}_+, n \to \infty} s_{n+1}/s_n < \infty$ then also

$$\limsup_{r \to a} \left(-\frac{w(r)}{v'(r)} \right) < \infty.$$

(In (b), $Hw(\Omega)$ need not be isomorphic to l_{∞} .)

Proof. (a) We use (7) again. (The proof for the case (5) is the same.) Fix n and consider $h \in Hv(\Omega)$. We have

$$(T_nIh)(re^{i\varphi}) = \int_0^r (T_nU_1h)(se^{i\varphi}) \, ds.$$

Using [16, Lemma 3.1(a)], we see that, for any $s \in [r_{m_{n-1}}, r_{m_{n+1}}]$,

$$M_{\infty}(T_n U_1 h, s) = M_{\infty}(U_{-1} T_n U_1 h, s) \le \left(\frac{s}{r_{m_{n-1}}}\right)^{m_{n+1}} M_{\infty}(T_n U_1 h, r_{m_{n-1}}).$$

In particular,

$$\begin{split} M_{\infty}(T_{n}U_{1}h, r_{m_{n+1}})w(r_{m_{n+1}}) \\ &\leq \left(\frac{r_{m_{n+1}}}{r_{m_{n-1}}}\right)^{m_{n+1}}\frac{w(r_{m_{n+1}})}{w(r_{m_{n-1}})}M_{\infty}(T_{n}U_{1}h, r_{m_{n-1}})w(r_{m_{n-1}}) \\ &= \left(\frac{r_{m_{n+1}}}{r_{m_{n}}}\right)^{m_{n+1}}\frac{w(r_{m_{n+1}})}{w(r_{m_{n}})}\left(\frac{r_{m_{n}}}{r_{m_{n-1}}}\right)^{m_{n}}\frac{w(r_{m_{n}})}{w(r_{m_{n-1}})} \\ &\quad \cdot \left(\frac{r_{m_{n}}}{r_{m_{n-1}}}\right)^{m_{n+1}-m_{n}}M_{\infty}(T_{n}U_{1}h, r_{m_{n-1}})w(r_{m_{n-1}}) \\ &\leq dM_{\infty}(T_{n}U_{1}h, r_{m_{n-1}})w(r_{m_{n-1}}) \end{split}$$

for some universal constant d. (As before, the last inequality follows from (3), (3') and (6).) Hence in view of (7) it suffices to consider the right-hand side of the preceding inequality. We have, using [16, Lemma 3.1(b)],

$$M_{\infty}(T_n U_1 h, s) \le 2 \left(\frac{s}{r_{m_{n-1}}}\right)^{m_{n-1}-1} M_{\infty}(T_n U_1 h, r_{m_{n-1}})$$

if $s \leq r_{m_{n-1}}$. (Recall that $M_{\infty}(T_nU_1h, r) = M_{\infty}(U_{-1}T_nU_1h, r)$ for any r, and $U_{-1}T_nU_1h$ has the form $(U_{-1}T_nU_1h)(re^{i\varphi}) = \sum_{k\geq m_{n-1}-1} \alpha_k r^k e^{ik\varphi}$ for some α_k .) This implies

$$M_{\infty}(T_{n}Ih, r_{m_{n-1}})w(r_{m_{n-1}}) \leq \int_{0}^{r_{m_{n-1}}} M_{\infty}(T_{n}U_{1}h, s) \, ds \, w(r_{m_{n-1}})$$
$$\leq 2M_{\infty}(T_{n}U_{1}h, r_{m_{n-1}}) \int_{0}^{r_{m_{n-1}}} \left(\frac{s}{r_{m_{n-1}}}\right)^{m_{n-1}-1} \, ds \, w(r_{m_{n-1}})$$
$$\leq cM_{\infty}(h, r_{m_{n-1}}) \frac{r_{m_{n-1}}}{m_{n-1}} \, w(r_{m_{n-1}})$$

where c is a universal constant. Since $r_{m_{n-1}}/m_{n-1} = -w(r_{m_{n-1}})/w'(r_{m_{n-1}})$ we conclude that

$$M_{\infty}(T_n Ih, r_{m_{n-1}})w(r_{m_{n-1}}) \le cM_{\infty}(h, r_{m_{n-1}}) \left(-\frac{w^2(r_{m_{n-1}})}{w'(r_{m_{n-1}})}\right).$$

Our assumptions yield a universal constant c_1 and $r_0 > 0$ with $-w^2(r)/w'(r) \le c_1 v(r)$ for all $r \ge r_0$. We may assume again $r_0 = 0$ (and perhaps change v and w on $[0, r_0]$). Then $||Ih||_w \le d_1 ||h||_v$ for some universal constant d_1 .

(b) Fix r > 0. Then there is n > 0 such that r is a global maximum point of $r^n v(r)$. We have $s_{[n]} \leq r \leq s_{[n]+1}$. With $h(z) = z^{[n]}$ we obtain $\|h\|_v = s_{[n]}^{[n]} v(s_{[n]})$ and

$$\frac{1}{[n]+1} r^{[n]+1} w(r) \le \|Ih\|_w \le \|I\| s^{[n]}_{[n]} v(s_{[n]}) \le \|I\| \left(\frac{r}{s_{[n]}}\right)^{n-[n]} r^{[n]} v(r).$$

This yields

$$\frac{r}{n}\frac{w(r)}{v(r)} \le \frac{[n]+1}{n} \left(\frac{r}{s_{[n]}}\right)^{n-[n]} \|I\| \le \frac{[n]+1}{n} \left(\frac{s_{[n]+1}}{s_{[n]}}\right)^{n-[n]} \|I\|$$

and hence

$$-\frac{w(r)}{v'(r)} \le \frac{[n]+1}{n} \left(\frac{r}{s_{[n]}}\right)^{n-[n]} \|I\| \le \frac{[n]+1}{n} \left(\frac{s_{[n]+1}}{s_{[n]}}\right)^{n-[n]} \|I\|,$$

which implies (b).

2.3. COROLLARY. Assume that $Hv(\Omega)$ and $Hw(\Omega)$ are isomorphic to l_{∞} . If

$$\limsup_{r \to a} \left(-\frac{w'(r)}{v(r)} \right) < \infty \quad and \quad \limsup_{r \to a} \left(-\frac{v^2(r)}{v'(r)w(r)} \right) < \infty$$

then $D: Hv(\Omega) \to Hw(\Omega)$ is bounded and surjective.

Proof. The boundedness follows from Theorem 2.1. According to Proposition 2.2. the integration operator $I : Hw(\Omega) \to Hv(\Omega)$ is bounded, which yields the surjectivity of D.

We deduce that, in view of the open mapping theorem, under the assumptions of Corollary 2.3 there are universal constants c and d such that $c||h||_{v} \leq ||h'||_{w} \leq d||h||_{v}$ whenever $h \in Hv(\Omega)$ and h(0) = 0.

3. The differentiation operator on holomorphic functions over the unit disk. Here we consider $\Omega = \mathbb{D}$. First we show that D is never a bounded endomorphism $Hv(\mathbb{D}) \to Hv(\mathbb{D})$.

3.1. PROPOSITION. For any weight v there exists a function $h \in Hv(\mathbb{D})$ such that $h' \notin Hv(\mathbb{D})$.

Proof. Otherwise we would have $D(Hv(\mathbb{D})) \subset Hv(\mathbb{D})$ and, in view of the closed graph theorem, $D: Hv(\mathbb{D}) \to Hv(\mathbb{D})$ would be bounded. If r_n is a global maximum point of $r^nv(r)$ we would obtain $nr_n^{n-1}v(r_n) \leq ||D||r_n^nv(r_n)$ for any $n \in \mathbb{Z}_+$. Hence $n/||D|| \leq r_n \leq 1$ for all n, a contradiction.

If we consider w(r) = (1 - r)v(r) we obtain positive results. We extend Theorem 3.1 of [13].

3.2. THEOREM. Let $v : [0,1[\rightarrow]0,\infty[$ be a weight and put w(r) = (1-r)v(r). Then the following are equivalent:

(i) If
$$h \in Hv(\mathbb{D})$$
 then $h' \in Hw(\mathbb{D})$.
(ii) $D: Hv(\mathbb{D}) \to Hw(\mathbb{D})$ is bounded.
(iii) $\limsup_{r \to 1} \left(-\frac{(1-r)v'(r)}{v(r)} \right) < \infty$.
(iv) $v(r)/(1-r)^{\alpha}$ is increasing on $[r_0, 1[$ for some $\alpha > 0$ and $r_0 > 0$.

(v)
$$\sup_{n} \frac{v(1-2)}{v(1-2^{-n-1})} < \infty.$$

Proof. (i) \Rightarrow (ii) follows from the closed graph theorem; (ii) \Rightarrow (i) is obvious; (ii) \Rightarrow (iii) is a consequence of Theorem 2.1(b).

(iii) \Leftrightarrow (iv): Consider $f(r) = \log(v(r)(1-r)^{-\alpha})$. Then

$$f'(r) = \left(\alpha + (1-r)\frac{v'(r)}{v(r)}\right)\frac{1}{1-r},$$

which proves the claim.

(iv) \Rightarrow (v) follows from [10, Lemma 1(a)], and (v) \Rightarrow (i) from [13, Theorem 3.1]. \blacksquare

Property (iv) of the preceding theorem is known as property(U) (see [10]).

To round out the discussion we mention the following result which was essentially proved in [13]. 3.3. THEOREM. Let $v : [0,1[\rightarrow]0,\infty[$ be a weight and put w(r) = (1-r)v(r). Then the following are equivalent:

(i)
$$h \in Hv(\mathbb{D})$$
 if and only if $h' \in Hw(\mathbb{D})$.

(ii)
$$0 < \liminf_{r \to 1} \left(-\frac{(1-r)v'(r)}{v(r)} \right) < \limsup_{r \to 1} \left(-\frac{(1-r)v'(r)}{v(r)} \right) < \infty.$$

- (iii) $v(r)/(1-r)^{\alpha}$ is increasing and $v(r)/(1-r)^{\beta}$ is decreasing on $[r_0, 1[$ for some $\alpha > 0$, $\beta > 0$ and $r_0 > 0$.
- (iv) $\sup_{\substack{n \ v(1-2^{-n}) \\ k \in \mathbb{Z}_+}} \frac{v(1-2^{-n})}{v(1-2^{-n-1})} < \infty$ and $\limsup_{n} \frac{v(1-2^{-n-k})}{v(1-2^{-n})} < 1$ for some

Proof. (ii) \Leftrightarrow (iii): Put

$$f(r) = \log\left(\frac{v(r)}{(1-r)^{\alpha}}\right)$$
 and $g(r) = \log\left(\frac{v(r)}{(1-r)^{\beta}}\right)$.

Then

$$f'(r) = \left(\alpha + (1-r)\frac{v'(r)}{v(r)}\right)\frac{1}{1-r} \text{ and } g'(r) = \left(\beta + (1-r)\frac{v'(r)}{v(r)}\right)\frac{1}{1-r}$$

From this we derive the claim.

 $(iii) \Leftrightarrow (iv)$ is [10, Lemma 1].

 $(iv) \Rightarrow (i)$ is [13, Theorem 3.1].

 $(i) \Rightarrow (iv)$: According to Theorem 3.2 we have

$$\sup_{n} \frac{v(1-2^{-n})}{v(1-2^{-n-1})} < \infty.$$

Then [13, Theorem 3.1] yields (iv). \blacksquare

Weights v with property (iii) of the preceding theorem are called *normal* (see [19]). Note that here $||h||_v$ is equivalent to $|h(0)| + \sup_{0 \le r < 1} M_{\infty}(h', r) \times (1-r)v(r)$.

EXAMPLES. $v(r) = (1-r)^{\alpha}$ for some $\alpha > 0$ satisfies the assumptions of Theorem 3.3; $v(r) = (1 - \log(1-r))^{-1}$ satisfies the assumptions of Theorem 3.2 but not of Theorem 3.3; $v(r) = \exp(-(1-r)^{-1})$ does not even satisfy the assumptions of Theorem 3.2.

4. The differentiation operator on entire functions. In contrast to \mathbb{D} , for $\Omega = \mathbb{C}$, we may have $DHv(\Omega) \subset Hv(\Omega)$. We characterize these weights. To this end we recall some facts for general weights v. Proposition 5.2 and Lemma 5.3 of [16] imply that there are constants $c_1, c_2 > 0$, integers $0 \leq k_1 < k_2 < \cdots$, radii $0 < t_1 < t_2 < \cdots$ and numbers $s_{n,i} > 0$ such that the operators T_n with

$$(T_n h)(z) = \sum_{k_{n-2} < j \le k_{n+1}} s_{n,j} \alpha_j z^j \quad \text{for } h(z) = \sum_j \alpha_j z^j$$

satisfy

(8)
$$c_1 \sup_n M_{\infty}(T_n h, t_n) v(t_n) \le ||h||_v \le c_2 \sup_n M_{\infty}(T_n h, t_n) v(t_n)$$

for all $h \in Hv(\Omega)$. Moreover

(9) $||h||_{v} \le c_2 M_{\infty}(h, t_n) v(t_n)$ whenever $h \in T_n H v(\Omega)$

and n = 1, 2, ... (see also [16, Corollary 4.4]). Finally, the numbers $s_{n,j}$ are such that the shifts $U_{\pm 1}$ satisfy

(10)

 $M_{\infty}((T_n - U_{-k}T_nU_k)h, r) \leq \gamma M_{\infty}(h, r)$ for all n, h, r and $k = \pm 1$ where $\gamma > 0$ is a universal constant. (See the operators of [16, Lemma 5.3].)

4.1. THEOREM. Let $v : [0, \infty[\rightarrow]0, \infty[$ be a weight. Then the following are equivalent:

(i)
$$D: Hv(\mathbb{C}) \to Hv(\mathbb{C})$$
 is bounded,

(ii) $\limsup_{r \to \infty} (-v'(r)/v(r)) < \infty$,

(iii) There are $\beta, r_0 > 0$ such that $v(r)e^{\beta r}$ is increasing on $[r_0, \infty[$.

Proof. Let r_n be a global maximum point of $r^n v(r)$.

(i) \Rightarrow (ii): Theorem 2.1(b) implies $n/r_n = -v'(r_n)/v(r_n) \leq \beta$ for some β and large enough $n \in \mathbb{Z}_+$. Now fix some r, say $r_n \leq r \leq r_{n+1}$ for some $n \in \mathbb{Z}_+$. According to our assumptions on v there is $m \in [n, n+1]$ such that r is a maximum point for the function $s^m v(s)$. We have

$$-n\frac{v(r_n)}{v'(r_n)} = r_n \le r = -m\frac{v(r)}{v'(r)}.$$

This implies

$$-\frac{v'(r)}{v(r)} \le \frac{m}{n}\,\beta \le \frac{n+1}{n}\,\beta$$

and hence (ii).

(ii) \Leftrightarrow (iii): Put $f(r) = \log(v(r)e^{\beta r})$. Then $f'(r) = v'(r)/v(r) + \beta$. Hence $v(r)e^{\beta r}$ is increasing if and only if (ii) holds. This proves the claim.

(ii) \Rightarrow (i): We proceed as in the proof of 2.1 to show that $D: Hv(\mathbb{C}) \rightarrow Hv(\mathbb{C})$ is bounded. Fix *n* and consider the operator T_n of (8). We have

(11)
$$(T_n Dh)(z) = \frac{k_{n+1}}{t_n} (U_{-1}(\mathrm{id} - \sigma_{k_{n+1}}) U_1 T_n U_{-1} h)(z)$$

if $|z| = t_n$. We claim that k_{n+1}/t_n is uniformly bounded. First, (ii) implies

$$\frac{n}{r_n} = -\frac{v'(r_n)}{v(r_n)} \le \beta$$

for all n > 0 and some $\beta > 0$. Hence $n/\beta \le r_n$. We may take β so large that it satisfies the assertion of (iii) as well. Now fix n and assume $k_{n+1}/\beta \ge t_n$. Using (9) with $h(z) = z^{k_{n+1}}$ we see that

$$c_{2} \geq \left(\frac{r_{k_{n+1}}}{t_{n}}\right)^{k_{n+1}} \frac{v(r_{k_{n+1}})}{v(t_{n})} \geq \left(\frac{k_{n+1}}{\beta t_{n}}\right)^{k_{n+1}} \frac{v(k_{n+1}/\beta)}{v(t_{n})}$$
$$\geq \left(\frac{k_{n+1}}{\beta t_{n}}\right)^{k_{n+1}} \exp\left(\beta\left(t_{n}-\frac{k_{n+1}}{\beta}\right)\right).$$

Here the second inequality follows by comparing the function $r^{k_{n+1}}v(r)$ at $r = k_{n+1}/\beta$ and at the maximum point $r = r_{k_{n+1}}$. Using (iii), since $k_{n+1}/\beta \ge t_n$ we obtain the last inequality.

Hence

$$\frac{k_{n+1}}{t_n} \le \beta c_2^{1/k_{n+1}} \exp(1).$$

If $k_{n+1}/\beta \leq t_n$ then $k_{n+1}/t_n \leq \beta$. So (11) together with (10) imply

$$M_{\infty}(T_nDh, t_n)v(t_n) \leq \tilde{c} \frac{k_{n+1}}{t_n} M_{\infty}(U_1T_nU_{-1}h, t_n)v(t_n)$$

$$\leq \tilde{c} \frac{k_{n+1}}{t_n} (M_{\infty}(T_nh, t_n) + M_{\infty}(T_n - U_1T_nU_{-1}h, t_n)v(t_n)$$

$$\leq c\beta(M_{\infty}(T_nh, t_n) + M_{\infty}(h, t_n))v(t_n)$$

where \tilde{c} and c are universal constants. Here we used again the fact that U_k and $\sigma_{k_{n+1}}$ are uniformly bounded with respect to $M_{\infty}(\cdot, t_n)$ and the operator norms do not depend on n. Finally, (8) shows that D is bounded.

4.2. THEOREM. Let $v : [0, \infty[\rightarrow]0, \infty[$ be a weight. Then the following are equivalent:

- (i) $h \in Hv(\mathbb{C})$ if and only if $h' \in Hv(\mathbb{C})$.
- (ii) $D: Hv(\mathbb{C}) \to Hv(\mathbb{C})$ is bounded and surjective.
- (iii) There are $c_1, c_2 > 0$ such that, for all $h \in Hv(\mathbb{C})$,

$$c_1(||h'||_v + |h(0)|) \le ||h||_v \le c_2(||h'||_v + |h(0)|).$$

- (iv) $0 < \liminf_{r \to \infty} (-v'(r)/v(r)) \le \limsup_{r \to \infty} (-v'(r)/v(r)) < \infty.$
- (v) There are $\alpha, \beta, r_0 > 0$ such that $v(r)e^{\alpha r}$ is decreasing and $v(r)e^{\beta r}$ is increasing on $[r_0, \infty[$.

Proof. The first three items are equivalent by the closed graph theorem and the open mapping theorem.

Let r_n be a global maximum point of $r^n v(r)$.

(iv) \Leftrightarrow (v): Put $f(r) = \log(v(r)e^{\alpha r})$ and $g(r) = \log(v(r)e^{\beta r})$. Then we have $f'(r) = v'(r)/v(r) + \alpha$ and $g'(r) = v'(r)/v(r) + \beta$. Hence $v(r)e^{\alpha r}$ is

decreasing if and only if $-v'(r)/v(r) \ge \alpha$, and $v(r)e^{\beta r}$ is increasing if and only if $-v'(r)/v(r) \le \beta$. This proves the claim.

(ii) \Rightarrow (iv): That $\limsup_{r\to\infty}(-v'(r)/v(r)) < \infty$ follows from Theorem 4.1. Proposition 2.2(b) yields $0 < \liminf_{n \in \mathbb{Z}_+, n \to \infty}(-v'(r_n)/v(r_n))$. Fix r > 0 and $n \in \mathbb{Z}_+$ such that $r_{n-1} \leq r \leq r_n$. Then r is a global maximum point of $t^m v(t)$ for some $m \in [n-1, n]$. We have

$$-n\frac{v(r_n)}{v'(r_n)} = r_n \ge r = -m\frac{v(r)}{v'(r)}$$

which implies

$$-\frac{v'(r)}{v(r)} \ge -\frac{m}{n} \frac{v'(r_n)}{v(r_n)} \ge -\frac{n-1}{n} \frac{v'(r_n)}{v(r_n)}.$$

This proves (iv).

(iv) \Rightarrow (ii): According to Theorem 4.1, D is bounded. Finally, we show that the integration operatorion $I: Hv(\mathbb{C}) \to Hv(\mathbb{C})$ is bounded. Fix n and consider the operator T_n of (8). By Lemma 3.1(b) of [16], we have

$$M_{\infty}(T_n U_1 h, s) \le 2 \left(\frac{s}{t_n}\right)^{k_{n-2}-1} M_{\infty}(T_n U_1 h, t_n) \quad \text{if } t_n \ge s.$$

Hence

$$(12) \quad M_{\infty}(T_{n}Ih, t_{n})v(t_{n}) \leq \int_{0}^{t_{n}} M_{\infty}(T_{n}U_{1}h, s) \, ds \, v(t_{n}) \\ \leq 2M_{\infty}(T_{n}U_{1}h, t_{n}) \int_{0}^{t_{n}} \left(\frac{s}{t_{n}}\right)^{k_{n-2}-1} ds \, v(t_{n}) \\ \leq 2M_{\infty}(U_{-1}T_{n}U_{1}h, t_{n}) \frac{t_{n}}{k_{n-1}} \, v(t_{n}) \\ \leq c(M_{\infty}(T_{n}h, t_{n}) \\ + M_{\infty}(T_{n} - U_{-1}T_{n}U_{1}h, t_{n})) \frac{t_{n}}{k_{n-2}} \, v(t_{n}) \\ \leq c(M_{\infty}(T_{n}h, t_{n}) + M_{\infty}(h, t_{n})) \frac{t_{n}}{k_{n-2}} \, v(t_{n})$$

where c is a universal constant. (We have used (10).)

We claim that t_n/k_{n-2} is uniformly bounded. Fix n and let α be the constant of (v). Using (9) with $h(z) = z^k$ where $k = k_{n-2} + 1$ we see that, in view of (iv),

$$c_2 \ge \left(\frac{r_k}{t_n}\right)^k \frac{v(r_k)}{v(t_n)} \ge \left(\frac{t_n}{2t_n}\right)^k \frac{v(t_n/2)}{v(t_n)}$$
$$\ge \left(\frac{1}{2}\right)^k \exp(\alpha(t_n - t_n/2)) = \exp(-k\log 2 + \alpha t_n/2)$$

For the last inequality we have used $v(t_n/2)e^{\alpha t_n/2} \ge v(t_n)e^{\alpha t_n}$, which holds according to (v). So, for large n we have $t_n \le 3\alpha^{-1}k \log 2$ and hence t_n/k_{n-2} is uniformly bounded. Now (12) together with (8) shows that I is bounded.

Of course the standard example for Theorem 4.1 is $v(r) = e^{-r}$. Moreover, for $v(r) = \exp(-\log^2 r)$ the differentiation operator $D : Hv(\mathbb{C}) \to Hv(\mathbb{C})$ is bounded (in view of Theorem 2.1) but not surjective. For $v(r) = \exp(-e^r)$ the differentiation operator is unbounded since

$$\lim_{n \to \infty} -v'(s_n)/v(s_n) = \lim_{n \to \infty} e^{s_n} = \infty$$

for the global maximum points s_n of $r^n v(r)$ (Lemma 1.2).

References

- B. Berndtsson and J. Ortega Cerdà, On interpolation and sampling in Hilbert spaces of analytic functions, J. Reine Angew. Math. 464 (1995), 109–128.
- [2] O. Blasco and A. Galbis, On Taylor coefficients of entire functions integrable against exponential weights, Math. Nachr. 223 (2001), 5–21.
- K. Bogalska, Multiplication operators on weighted Banach spaces of analytic functions with exponential weights, Bull. Polish Acad. Sci. Math. 49 (2001), 409–416.
- [4] J. Bonet, Weighted spaces of holomorphic functions and operators between them, Colecc. Abierta 64, Univ. Sevilla Secr. Publ., Seville, 2003, 117–138.
- [5] J. Bonet, P. Domański and M. Lindström, Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions, Canad. Math. Bull. 42 (199), 139–148.
- [6] —, —, —, Pointwise multiplication operators on weighted Banach spaces of analytic functions, Studia Math. 137 (1999), 177–194.
- [7] J. Bonet, P. Domański, M. Lindström and J. Taskinen, Composition operators between weighted spaces of analytic functions, J. Austral. Math. Soc. 64 (1998), 101– 118.
- [8] J. Bonet and E. Wolf, A note on weighted Banach spaces of holomorphic functions, Arch. Math. (Basel) 81 (2003), 650–654.
- K. Cichoń and K. Seip, Weighted holomorphic spaces with trivial closed range multiplication operators, Proc. Amer. Math. Soc. 131 (2003), 201–207.
- [10] P. Domański and M. Lindström, Sets of interpolation and sampling for weighted Banach spaces of holomorphic functions, Ann. Polon. Math. 89 (2002), 233–264.
- [11] A. Galbis, Weighted Banach spaces of entire functions, Arch. Math. (Basel) 62 (1994), 58–64.
- [12] W. Kaballo, Lifting-Probleme für H^{∞} -Funktionen, ibid. 34 (1980), 540–549.
- [13] W. Lusky, Growth conditions for harmonic and holomorphic functions, in: Functional Analysis (Trier, 1994), S. Dierolf et al. (eds.), de Gruyter, 1996, 281–291.
- [14] —, On weighted spaces of harmonic and holomorphic functions, J. London Math. Soc. 59 (1995), 309–320.
- [15] —, On the Fourier series of unbounded harmonic functions, ibid. 61 (2000), 568–580.
- [16] —, On the isomorphism classes of weighted spaces of harmonic and holomorphic functions, Studia Math. 75 (2006), 19–45.
- [17] K. Seip, Density theorems for sampling and interpolation in the Bargmann-Fock space, Bull. Amer. Math. Soc. 26 (1992), 322–328.

- K. Seip, Beurling type density theorems in the unit disc, Invent. Math. 113 (1993), 21–39.
- [19] A. L. Shields and D. L. Williams, Bounded projections, duality and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287–302.
- [20] —, —, Bounded projections, duality and multipliers in spaces of harmonic functions, J. Reine Angew. Math. 299/300 (1978), 256–279.
- [21] —, —, Bounded projections and the growth of harmonic conjugates in the disc, Michigan Math. J. 29 (1982), 3–25.
- [22] J. Taskinen, Compact composition operators on general weighted spaces, Houston J. Math. 27 (2001), 203–218.

Faculty for Informatics and Applied Mathematics	Institute for Mathematics
University of Yerevan	University of Paderborn
Alek Manukian 1	Warburger Str. 100
Yerevan 25, Armenia	D-33098 Paderborn, Germany
E-mail: anahit@ysu.am	E-mail: lusky@uni-paderborn.de

Received December 8, 2006 Revised version November 16, 2007 (6065)