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On the boundedness of the differentiation

operator between weighted spaces of holomorphic functions

by

Anahit Harutyunyan (Yerevan) and Wolfgang Lusky (Paderborn)

Abstract. We give necessary and sufficient conditions on the weights v and w such
that the differentiation operator D : Hv(Ω) → Hw(Ω) between two weighted spaces of
holomorphic functions is bounded and onto. Here Ω = C or Ω = D. In particular we
characterize all weights v such that D : Hv(Ω) → Hw(Ω) is bounded and onto where
w(r) = v(r)(1 − r) if Ω = D and w = v if Ω = C. This leads to a new description of
normal weights.

1. Introduction. Let Ω be the complex plane C or the open unit disk
D = {z ∈ C : |z| < 1}. A weight v on Ω is a continuous non-increasing
function v : [0, a[ → ]0,∞[ where a = 1 if Ω = D and a = ∞ if Ω = C. We
assume that limr→a v(r) = 0 if a = 1 and limr→a rmv(r) = 0 for all m ≥ 0
if a = ∞. For a function h : Ω → C and r ∈ [0, a[ put

M∞(h, r) = sup
|z|=r

|h(z)| and ‖h‖v = sup
0≤r<a

M∞(h, r)v(r).

We consider the Banach space

Hv(Ω) = {h : Ω → C holomorphic: ‖h‖v < ∞}

endowed with the norm ‖ · ‖v. Hence, a holomorphic function h satisfies
h ∈ Hv(Ω) if and only if M∞(h, r) = O(1/v(r)) as r → a.

There is an extensive literature about the Banach spaces Hv(Ω) and
their generalisations to other domains Ω ⊂ C

n or to corresponding spaces of
harmonic functions (see e.g. [19, 20, 21, 2, 11, 8, 12, 15, 16, 14]). Moreover,
many authors study special classes of operators between such spaces. For
example, the authors of [3, 6, 9] discuss multiplication operators Mϕf = ϕ·f ,
f ∈ Hv(Ω), where ϕ is a fixed holomorphic function. Other papers ([7, 5, 22]
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and many more) deal with composition operators Cϕf = f ◦ϕ, f ∈ Hv(Ω),
where ϕ : Ω → Ω is again a fixed holomorphic function.

Also, there is a vast literature on interpolation and sampling in these
weighted spaces of holomorphic functions (e.g. [17, 18, 1, 10]). Here the
operators

T : Hv(D) → l∞, f 7→ (f(zn)v(zn))n,

are studied where (zn)n ⊂ D is a given sequence, which is called a set of
interpolation if T is surjective and a sampling set if T is a monomorphism.
A nice survey of all these results is given in [4].

In our paper we discuss the question of what kind of growth condition
the derivative Dh = h′ satisfies. In Section 2 we introduce necessary and
sufficient conditions on weights v and w such that D : Hv(Ω) → Hw(Ω) is
bounded and sometimes onto. In Section 3 we investigate the case Ω = D

and w(r) = (1 − r)v(r) while in Section 4 we focus on Ω = C and w = v.
To this end we make some further assumptions on v which do not restrict

generality. We can always fix radii r1 < r2 < · · · < a such that v(rn) =
2v(rn+1) for all n and change v(r) keeping monotonicity for rn < r <
rn+1 without changing Hv(Ω). Therefore we can always assume that v is
continuously differentiable. Moreover in the following, for any n > 0, the
function γn(r) = rnv(r) plays an important role. Put

rn = min{r : r is a global maximum point of γn},

sn = max{r : r is a global maximum point of γn}.

1.1. Lemma. If m < n then sm ≤ rn.

Proof. We have

sn
mv(sm) ≤ rn

nv(rn) ≤ rn−m
n sm

mv(sm).

Hence sn−m
m ≤ rn−m

n and thus sm ≤ rn.

So, if rm < r < sm then r cannot be a global maximum point for γn

for any n 6= m. For those m with rm < sm we change v on the interval
[rm, sm]. Define ṽ(r) = (rm/r)mv(rm) if rm < r < sm. Then all r ∈ [rm, sm]
are global maximum points of rmṽ(r) and we obtain rmṽ(r) = rm

mv(rm).
Moreover, ṽ(rm) = v(rm) and ṽ(sm) = v(sm). According to [16, Corollary
5.4], ‖ · ‖v is equivalent to a norm which depends exclusively on the global
maximum points of the functions γm. So in the following we assume that
any r ∈ [rm, sm], for any m > 0, is a global maximum point of γm. This
is no loss of generality, otherwise we go over to ṽ where ‖ · ‖ṽ is equivalent
to ‖ · ‖v.

1.2. Lemma. We have limn→∞ rn = a.

Proof. According to Lemma 1.1, rn is increasing. Put r = limn→∞ rn

and assume r < a.



Boundedness of the differentiation operator 235

Case a = 1. Here we obtain

1 ≥

(
2−1(1 + r)

rn

)n v(2−1(1 + r))

v(rn)
.

Since

lim
n→∞

(
1

2

(
1

rn
+

r

rn

))n

= ∞ and lim
n→∞

v(rn) = v(r)

we arrive at a contradiction.

Case a = ∞. Here we have

1 ≥

(
1 + r

rn

)n v(r + 1)

v(rn)
≥

(
1

r
+ 1

)n v(r + 1)

v(rn)
.

Again we get a contradiction for large n.

According to our assumptions, any r in [0, a[ is a global maximum point
for some γn. We have γ′

n(r) = 0 if and only if −rv′(r)/v(r) = n. Hence if
γ′

n(r) = 0 then γ′
m(r) 6= 0 for any m 6= n. This means that r is a global

maximum point of γn and all local maximum points of γn are also global.

2. The differentiation and integration operators Hv(Ω)→Hw(Ω)
for general w. Let v and w be two weights. Assume that Hw(Ω) is iso-
morphic to l∞. For each n fix a maximum point rn of rnw(r). According to
[16] there are numbers 0 < m1 < m2 < · · · , tn,k ∈ R and operators

(Tnh)(z) =
∑

mn−1≤k<mn+1

tn,kαkz
k for h(z) =

∑

k

αkz
k

such that

(1) c1 sup
n

sup
rm

n−1
≤r≤rm

n+1

M∞(Tnh, r)w(r) ≤ ‖h‖w

≤ c2 sup
n

sup
rm

n−1
≤r≤rm

n+1

M∞(Tnh, r)w(r)

for all h ∈ Hw(Ω) and some c1, c2 > 0. Moreover there is a universal
constant γ > 0 such that

(2) M∞(Tnh, r) ≤ γM∞(h, r) for all n, h and r.

Finally, either

(3) sup
n

max

((
rmn

rmn−1

)mn w(rmn
)

w(rmn−1
)
,

(
rmn−1

rmn

)mn−1 w(rmn−1
)

w(rmn
)

)
< ∞

and

(3′) 0 < inf
n

mn+1 − mn

mn − mn−1
≤ sup

n

mn+1 − mn

mn − mn−1
< ∞,

or

(4) sup(mn+1 − mn−1) < ∞.
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In the latter case we can split Tn further, i.e. we can assume

(5) d1 sup
n∈Z+

|αn|r
n
nw(rn) ≤ ‖h‖w ≤ d2 sup

n∈Z+

|αn|r
n
nw(rn)

for some d1, d2 > 0 and all h =
∑

k αkz
k ∈ Hw(Ω). ((4) is not possible for

Ω = D, see [15].)

If (3) holds then we have

(6) sup
n

(
rmn

rmn−1

)mn−mn−1

< ∞.

Now [16, Lemma 3.1] implies, for any r ∈ [rmn−1
, rmn+1

],

M∞(Tnh, r)w(r) ≤ 2

(
r

rmn+1

)mn−1 w(r)

w(rmn+1
)
M∞(Tnh, rmn+1

)w(rmn+1
)

≤ 2

(
rmn−1

rmn+1

)mn−1 w(rmn−1
)

w(rmn+1
)

M∞(Tnh, rmn+1
)w(rmn+1

)

= 2

(
rmn−1

rmn

)mn−1 w(rmn−1
)

w(rmn
)

(
rmn

rmn+1

)mn w(rmn
)

w(rmn+1
)

(
rmn+1

rmn

)mn−mn−1

× M∞(Tnh, rmn+1
)w(rmn+1

)

≤ dM∞(Tnh, rmn+1
)w(rmn+1

)

for some universal constant d > 0.

For the last inequality we used (3), (3′) and (6). (According to (3′) there
is a universal constant c with mn − mn−1 ≤ c(mn+1 − mn) for all n. Hence

(
rmn+1

rmn

)mn−mn−1

≤

((
rmn+1

rmn

)mn+1−mn

)c

,

and this is uniformly bounded by (6).)

Therefore, in this case, (1) implies

c̃1 sup
n

M∞(Tnh, rmn+1
)w(rmn+1

) ≤ ‖h‖w(7)

≤ c̃2 sup
n

M∞(Tnh, rmn+1
)w(rmn+1

)

for some c̃1, c̃2 > 0.

It is known that Hw(Ω) is isomorphic to l∞ if and only if

∀b1 > 1 ∃b2 > 1 ∃c > 0 ∀m, n ≥ c,

|m − n| ≥ c and

(
rm

rn

)m w(rm)

w(rn)
≤ b1

⇒

(
rn

rm

)n w(rn)

w(rm)
≤ b2.
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Examples include (1 − r)α, α > 0, exp(−(1 − r)−1) on D, exp(−αr),
exp(− log2 r) on C.

If Hw(Ω) is not isomorphic to l∞ then it is isomorphic to the space
H∞ = {h : D → C : h holomorphic and bounded} (see [16]). Here we still
obtain estimates similar to (1) but (2)–(4) will fail to hold.

Now we investigate the differentiation operator D : Hv(Ω) → Hw(Ω).
Let h(z) =

∑
k αkz

k. For n > 0 define the Cesàro mean σn by

(σnh)(z) =
∑

k≤n

[n] − k

[n]
αkz

k,

where [n] is the largest integer ≤ n. Moreover, for j ∈ Z, define the shift Uj

by

(Ujh)(reiϕ) =
∑

k

αkr
kei(k+j)ϕ.

We formally extend the definition of Tn to TnUjh by putting

(TnUjh)(reiϕ) =
∑

mn−1≤k+j<mn

tn,kαkr
kei(k+j)ϕ.

Define g(̺eiϕ) = (Ujh)(̺reiϕ). Then (2) applied to g with ̺ = 1 implies

M∞(TnUjh, r) ≤ γM∞(Ujh, r) ≤ γM∞(h, r) for all r and n.

2.1. Theorem.

(a) Let Hw(Ω) be isomorphic to l∞. If

lim sup
r→a

(
−

w′(r)

v(r)

)
< ∞

then D : Hv(Ω) → Hw(Ω) is bounded.

(b) Let sn be a global maximum point of rnv(r). If D : Hv(Ω) → Hw(Ω)
is bounded then

lim sup
n∈Z+, n→∞

(
−

v′(sn)

v2(sn)
w(sn)

)
< ∞.

If , in addition, lim supn∈Z+, n→∞ sn+1/sn < ∞, then also

lim sup
r→a

(
−

v′(r)

v2(r)
w(r)

)
< ∞.

(In (b), Hw(Ω) need not be isomorphic to l∞.)

Proof. (a) Fix n. Assume that (7) holds. Then it suffices to consider
M∞(TnDh, rmn+1

)w(rmn+1
). We have

(TnDh)(z) =
mn+1

rmn+1

(U−1(id − σmn+1
)U1TnU−1h)(z)
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if |z| = rmn+1
. The operators Uk, k = ±1, TnU−1 and σmn+1

are uniformly
bounded with respect to M∞(·, r) for all r and the operator norms do not
depend on r. Hence there is a universal constant c with

M∞(TnDh, rmn+1
)w(rmn+1

) ≤ c
mn+1

rmn+1

M∞(h, rmn+1
)w(rmn+1

).

On the other hand we have (rmn+1w(r))′|r=rm
n+1

= 0 since rmn+1
is a

global maximum point of rmn+1w(r). This implies mn+1w(rmn+1
)/rmn+1

=
−w′(rmn+1

). Fix some r0 > 0. A change of v and w on [0, r0] does not af-
fect Hv(Ω) and Hw(Ω). Therefore we can assume that there is d > 0 with
−w′(r)/v(r) ≤ d for all r. Then we obtain

M∞(TnDh, rmn+1
)w(rmn+1

) ≤ cdM∞(h, rmn+1
)v(rmn+1

) ≤ cd‖h‖v.

By (7), D is bounded. The proof for the case (5) is the same.

(b) Fix r > 0. According to our general assumption r is a global max-
imum point for some function rnv(r). Hence we have s[n] ≤ r ≤ s[n]+1

with n = −rv′(r)/v(r). Assume that r is so large that 1 ≤ [n]. Consider
h(z) = z[n]. We have

‖h‖v = s
[n]
[n]v(s[n]) ≤

(
r

s[n]

)n−[n]

r[n]v(r)

and

[n]r[n]−1w(r) ≤ ‖Dh‖w ≤ ‖D‖ · ‖h‖v ≤ ‖D‖

(
r

s[n]

)n−[n]

r[n]v(r).

Hence

n

r

w(r)

v(r)
≤

n

[n]
‖D‖

(
r

s[n]

)n−[n]

and therefore

−
v′(r)

v2(r)
w(r) ≤

n

[n]
‖D‖

(
r

s[n]

)n−[n]

≤
n

[n]
‖D‖

(
s[n]+1

s[n]

)n−[n]

.

For r = s[n] we obtain the first assertion of (b). If supn s[n]+1/s[n] < ∞ then
the second assertion of (b) follows.

Recall that lim supn∈Z+, n→∞ sn+1/sn < ∞ always holds if Ω = D.

Let I be the integration operator, i.e. for a holomorphic function h we
put

(Ih)(z) =

z\
0

h(u) du

To decide whether the differentiation operator is surjective we prove
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2.2. Proposition.

(a) Let Hw(Ω) be isomorphic to l∞. Moreover , assume that

lim sup
r→a

(
−

w2(r)

w′(r)v(r)

)
< ∞.

Then I : Hv(Ω) → Hw(Ω) is bounded.

(b) Let sn be a global maximum point of rnv(r). If I : Hv(Ω) → Hw(Ω)
is bounded then

lim sup
n∈Z+, n→∞

(
−

w(sn)

v′(sn)

)
< ∞.

If , moreover , lim supn∈Z+, n→∞ sn+1/sn < ∞ then also

lim sup
r→a

(
−

w(r)

v′(r)

)
< ∞.

(In (b), Hw(Ω) need not be isomorphic to l∞.)

Proof. (a) We use (7) again. (The proof for the case (5) is the same.)
Fix n and consider h ∈ Hv(Ω). We have

(TnIh)(reiϕ) =

r\
0

(TnU1h)(seiϕ) ds.

Using [16, Lemma 3.1(a)], we see that, for any s ∈ [rmn−1
, rmn+1

],

M∞(TnU1h, s) = M∞(U−1TnU1h, s) ≤

(
s

rmn−1

)mn+1

M∞(TnU1h, rmn−1
).

In particular,

M∞(TnU1h, rmn+1
)w(rmn+1

)

≤

(
rmn+1

rmn−1

)mn+1 w(rmn+1
)

w(rmn−1
)
M∞(TnU1h, rmn−1

)w(rmn−1
)

=

(
rmn+1

rmn

)mn+1 w(rmn+1
)

w(rmn
)

(
rmn

rmn−1

)mn w(rmn
)

w(rmn−1
)

·

(
rmn

rmn−1

)mn+1−mn

M∞(TnU1h, rmn−1
)w(rmn−1

)

≤ dM∞(TnU1h, rmn−1
)w(rmn−1

)

for some universal constant d. (As before, the last inequality follows from
(3), (3′) and (6).) Hence in view of (7) it suffices to consider the right-hand
side of the preceding inequality. We have, using [16, Lemma 3.1(b)],

M∞(TnU1h, s) ≤ 2

(
s

rmn−1

)mn−1−1

M∞(TnU1h, rmn−1
)
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if s ≤ rmn−1
. (Recall that M∞(TnU1h, r) = M∞(U−1TnU1h, r) for any r,

and U−1TnU1h has the form (U−1TnU1h)(reiϕ) =
∑

k≥mn−1−1 αkr
keikϕ for

some αk.) This implies

M∞(TnIh, rmn−1
)w(rmn−1

) ≤

rm
n−1\
0

M∞(TnU1h, s) dsw(rmn−1
)

≤ 2M∞(TnU1h, rmn−1
)

rm
n−1\
0

(
s

rmn−1

)mn−1−1

dsw(rmn−1
)

≤ cM∞(h, rmn−1
)
rmn−1

mn−1
w(rmn−1

)

where c is a universal constant. Since rmn−1
/mn−1 = −w(rmn−1

)/w′(rmn−1
)

we conclude that

M∞(TnIh, rmn−1
)w(rmn−1

) ≤ cM∞(h, rmn−1
)

(
−

w2(rmn−1
)

w′(rmn−1
)

)
.

Our assumptions yield a universal constant c1 and r0 > 0 with −w2(r)/w′(r)
≤ c1v(r) for all r ≥ r0. We may assume again r0 = 0 (and perhaps change
v and w on [0, r0]). Then ‖Ih‖w ≤ d1‖h‖v for some universal constant d1.

(b) Fix r > 0. Then there is n > 0 such that r is a global maximum
point of rnv(r). We have s[n] ≤ r ≤ s[n]+1. With h(z) = z[n] we obtain

‖h‖v = s
[n]
[n]v(s[n]) and

1

[n] + 1
r[n]+1w(r) ≤ ‖Ih‖w ≤ ‖I‖s

[n]
[n]v(s[n]) ≤ ‖I‖

(
r

s[n]

)n−[n]

r[n]v(r).

This yields

r

n

w(r)

v(r)
≤

[n] + 1

n

(
r

s[n]

)n−[n]

‖I‖ ≤
[n] + 1

n

(
s[n]+1

s[n]

)n−[n]

‖I‖

and hence

−
w(r)

v′(r)
≤

[n] + 1

n

(
r

s[n]

)n−[n]

‖I‖ ≤
[n] + 1

n

(
s[n]+1

s[n]

)n−[n]

‖I‖,

which implies (b).

2.3. Corollary. Assume that Hv(Ω) and Hw(Ω) are isomorphic

to l∞. If

lim sup
r→a

(
−

w′(r)

v(r)

)
< ∞ and lim sup

r→a

(
−

v2(r)

v′(r)w(r)

)
< ∞

then D : Hv(Ω) → Hw(Ω) is bounded and surjective.



Boundedness of the differentiation operator 241

Proof. The boundedness follows from Theorem 2.1. According to Propo-
sition 2.2. the integration operator I : Hw(Ω) → Hv(Ω) is bounded, which
yields the surjectivity of D.

We deduce that, in view of the open mapping theorem, under the as-
sumptions of Corollary 2.3 there are universal constants c and d such that
c‖h‖v ≤ ‖h′‖w ≤ d‖h‖v whenever h ∈ Hv(Ω) and h(0) = 0.

3. The differentiation operator on holomorphic functions over

the unit disk. Here we consider Ω = D. First we show that D is never a
bounded endomorphism Hv(D) → Hv(D).

3.1. Proposition. For any weight v there exists a function h ∈ Hv(D)
such that h′ 6∈ Hv(D).

Proof. Otherwise we would have D(Hv(D)) ⊂ Hv(D) and, in view of the
closed graph theorem, D : Hv(D) → Hv(D) would be bounded. If rn is a
global maximum point of rnv(r) we would obtain nrn−1

n v(rn) ≤ ‖D‖rn
nv(rn)

for any n ∈ Z+. Hence n/‖D‖ ≤ rn ≤ 1 for all n, a contradiction.

If we consider w(r) = (1 − r)v(r) we obtain positive results. We extend
Theorem 3.1 of [13].

3.2. Theorem. Let v : [0, 1[ → ]0,∞[ be a weight and put w(r) =
(1 − r)v(r). Then the following are equivalent :

(i) If h ∈ Hv(D) then h′ ∈ Hw(D).
(ii) D : Hv(D) → Hw(D) is bounded.

(iii) lim sup
r→1

(
−

(1 − r)v′(r)

v(r)

)
< ∞.

(iv) v(r)/(1 − r)α is increasing on [r0, 1[ for some α > 0 and r0 > 0.

(v) sup
n

v(1 − 2−n)

v(1 − 2−n−1)
< ∞.

Proof. (i)⇒(ii) follows from the closed graph theorem; (ii)⇒(i) is obvi-
ous; (ii)⇒(iii) is a consequence of Theorem 2.1(b).

(iii)⇔(iv): Consider f(r) = log(v(r)(1 − r)−α). Then

f ′(r) =

(
α + (1 − r)

v′(r)

v(r)

)
1

1 − r
,

which proves the claim.
(iv)⇒(v) follows from [10, Lemma 1(a)], and (v)⇒(i) from [13, Theo-

rem 3.1].

Property (iv) of the preceding theorem is known as property (U) (see [10]).
To round out the discussion we mention the following result which was

essentially proved in [13].
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3.3. Theorem. Let v : [0, 1[ → ]0,∞[ be a weight and put w(r) =
(1 − r)v(r). Then the following are equivalent :

(i) h ∈ Hv(D) if and only if h′ ∈ Hw(D).

(ii) 0 < lim inf
r→1

(
−

(1 − r)v′(r)

v(r)

)
< lim sup

r→1

(
−

(1 − r)v′(r)

v(r)

)
< ∞.

(iii) v(r)/(1 − r)α is increasing and v(r)/(1 − r)β is decreasing on [r0, 1[
for some α > 0, β > 0 and r0 > 0.

(iv) sup
n

v(1 − 2−n)

v(1 − 2−n−1)
< ∞ and lim sup

n

v(1 − 2−n−k)

v(1 − 2−n)
< 1 for some

k ∈ Z+.

Proof. (ii)⇔(iii): Put

f(r) = log

(
v(r)

(1 − r)α

)
and g(r) = log

(
v(r)

(1 − r)β

)
.

Then

f ′(r) =

(
α + (1 − r)

v′(r)

v(r)

)
1

1 − r
and g′(r) =

(
β + (1 − r)

v′(r)

v(r)

)
1

1 − r
.

From this we derive the claim.

(iii)⇔(iv) is [10, Lemma 1].

(iv)⇒(i) is [13, Theorem 3.1].

(i)⇒(iv): According to Theorem 3.2 we have

sup
n

v(1 − 2−n)

v(1 − 2−n−1)
< ∞.

Then [13, Theorem 3.1] yields (iv).

Weights v with property (iii) of the preceding theorem are called normal

(see [19]). Note that here ‖h‖v is equivalent to |h(0)| + sup0≤r<1 M∞(h′, r)
× (1 − r)v(r).

Examples. v(r) = (1 − r)α for some α > 0 satisfies the assumptions
of Theorem 3.3; v(r) = (1 − log(1 − r))−1 satisfies the assumptions of The-
orem 3.2 but not of Theorem 3.3; v(r) = exp(−(1 − r)−1) does not even
satisfy the assumptions of Theorem 3.2.

4. The differentiation operator on entire functions. In contrast
to D, for Ω = C, we may have DHv(Ω) ⊂ Hv(Ω). We characterize these
weights. To this end we recall some facts for general weights v. Proposi-
tion 5.2 and Lemma 5.3 of [16] imply that there are constants c1, c2 > 0,
integers 0 ≤ k1 < k2 < · · · , radii 0 < t1 < t2 < · · · and numbers sn,j > 0
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such that the operators Tn with

(Tnh)(z) =
∑

kn−2<j≤kn+1

sn,jαjz
j for h(z) =

∑

j

αjz
j

satisfy

(8) c1 sup
n

M∞(Tnh, tn)v(tn) ≤ ‖h‖v ≤ c2 sup
n

M∞(Tnh, tn)v(tn)

for all h ∈ Hv(Ω). Moreover

(9) ‖h‖v ≤ c2M∞(h, tn)v(tn) whenever h ∈ TnHv(Ω)

and n = 1, 2, . . . (see also [16, Corollary 4.4]). Finally, the numbers sn,j are
such that the shifts U±1 satisfy
(10)

M∞((Tn − U−kTnUk)h, r) ≤ γM∞(h, r) for all n, h, r and k = ±1

where γ > 0 is a universal constant. (See the operators of [16, Lemma 5.3].)

4.1. Theorem. Let v : [0,∞[ → ]0,∞[ be a weight. Then the following

are equivalent :

(i) D : Hv(C) → Hv(C) is bounded ,
(ii) lim supr→∞(−v′(r)/v(r)) < ∞,
(iii) There are β, r0 > 0 such that v(r)eβr is increasing on [r0,∞[.

Proof. Let rn be a global maximum point of rnv(r).
(i)⇒(ii): Theorem 2.1(b) implies n/rn = −v′(rn)/v(rn) ≤ β for some

β and large enough n ∈ Z+. Now fix some r, say rn ≤ r ≤ rn+1 for some
n ∈ Z+. According to our assumptions on v there is m ∈ [n, n+1] such that
r is a maximum point for the function smv(s). We have

−n
v(rn)

v′(rn)
= rn ≤ r = −m

v(r)

v′(r)
.

This implies

−
v′(r)

v(r)
≤

m

n
β ≤

n + 1

n
β

and hence (ii).
(ii)⇔(iii): Put f(r) = log(v(r)eβr). Then f ′(r) = v′(r)/v(r) + β. Hence

v(r)eβr is increasing if and only if (ii) holds. This proves the claim.
(ii)⇒(i): We proceed as in the proof of 2.1 to show that D : Hv(C) →

Hv(C) is bounded. Fix n and consider the operator Tn of (8). We have

(11) (TnDh)(z) =
kn+1

tn
(U−1(id − σkn+1

)U1TnU−1h)(z)

if |z| = tn. We claim that kn+1/tn is uniformly bounded. First, (ii) implies

n

rn
= −

v′(rn)

v(rn)
≤ β
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for all n > 0 and some β > 0. Hence n/β ≤ rn. We may take β so large that
it satisfies the assertion of (iii) as well. Now fix n and assume kn+1/β ≥ tn.
Using (9) with h(z) = zkn+1 we see that

c2 ≥

(
rkn+1

tn

)kn+1 v(rkn+1
)

v(tn)
≥

(
kn+1

βtn

)kn+1 v(kn+1/β)

v(tn)

≥

(
kn+1

βtn

)kn+1

exp

(
β

(
tn −

kn+1

β

))
.

Here the second inequality follows by comparing the function rkn+1v(r) at
r = kn+1/β and at the maximum point r = rkn+1

. Using (iii), since kn+1/β ≥
tn we obtain the last inequality.

Hence
kn+1

tn
≤ βc

1/kn+1

2 exp(1).

If kn+1/β ≤ tn then kn+1/tn ≤ β. So (11) together with (10) imply

M∞(TnDh, tn)v(tn) ≤ c̃
kn+1

tn
M∞(U1TnU−1h, tn)v(tn)

≤ c̃
kn+1

tn
(M∞(Tnh, tn)

+ M∞(Tn − U1TnU−1h, tn)v(tn)

≤ cβ(M∞(Tnh, tn) + M∞(h, tn))v(tn)

where c̃ and c are universal constants. Here we used again the fact that Uk

and σkn+1
are uniformly bounded with respect to M∞(·, tn) and the operator

norms do not depend on n. Finally, (8) shows that D is bounded.

4.2. Theorem. Let v : [0,∞[ → ]0,∞[ be a weight. Then the following

are equivalent :

(i) h ∈ Hv(C) if and only if h′ ∈ Hv(C).
(ii) D : Hv(C) → Hv(C) is bounded and surjective.

(iii) There are c1, c2 > 0 such that , for all h ∈ Hv(C),

c1(‖h
′‖v + |h(0)|) ≤ ‖h‖v ≤ c2(‖h

′‖v + |h(0)|).

(iv) 0 < lim infr→∞(−v′(r)/v(r)) ≤ lim supr→∞(−v′(r)/v(r)) < ∞.

(v) There are α, β, r0 > 0 such that v(r)eαr is decreasing and v(r)eβr

is increasing on [r0,∞[.

Proof. The first three items are equivalent by the closed graph theorem
and the open mapping theorem.

Let rn be a global maximum point of rnv(r).

(iv)⇔(v): Put f(r) = log(v(r)eαr) and g(r) = log(v(r)eβr). Then we
have f ′(r) = v′(r)/v(r) + α and g′(r) = v′(r)/v(r) + β. Hence v(r)eαr is
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decreasing if and only if −v′(r)/v(r) ≥ α, and v(r)eβr is increasing if and
only if −v′(r)/v(r) ≤ β. This proves the claim.

(ii)⇒(iv): That lim supr→∞(−v′(r)/v(r)) < ∞ follows from Theorem
4.1. Proposition 2.2(b) yields 0< lim infn∈Z+,n→∞(−v′(rn)/v(rn)). Fix r>0
and n ∈ Z+ such that rn−1 ≤ r ≤ rn. Then r is a global maximum point of
tmv(t) for some m ∈ [n − 1, n]. We have

−n
v(rn)

v′(rn)
= rn ≥ r = −m

v(r)

v′(r)
,

which implies

−
v′(r)

v(r)
≥ −

m

n

v′(rn)

v(rn)
≥ −

n − 1

n

v′(rn)

v(rn)
.

This proves (iv).
(iv)⇒(ii): According to Theorem 4.1, D is bounded. Finally, we show

that the integration operatotion I : Hv(C) → Hv(C) is bounded. Fix n and
consider the operator Tn of (8). By Lemma 3.1(b) of [16], we have

M∞(TnU1h, s) ≤ 2

(
s

tn

)kn−2−1

M∞(TnU1h, tn) if tn ≥ s.

Hence

M∞(TnIh, tn)v(tn) ≤

tn\
0

M∞(TnU1h, s) ds v(tn)(12)

≤ 2M∞(TnU1h, tn)

tn\
0

(
s

tn

)kn−2−1

ds v(tn)

≤ 2M∞(U−1TnU1h, tn)
tn

kn−1
v(tn)

≤ c(M∞(Tnh, tn)

+M∞(Tn − U−1TnU1h, tn))
tn

kn−2
v(tn)

≤ c(M∞(Tnh, tn) + M∞(h, tn))
tn

kn−2
v(tn)

where c is a universal constant. (We have used (10).)
We claim that tn/kn−2 is uniformly bounded. Fix n and let α be the

constant of (v). Using (9) with h(z) = zk where k = kn−2 + 1 we see that,
in view of (iv),

c2 ≥

(
rk

tn

)k v(rk)

v(tn)
≥

(
tn
2tn

)k v(tn/2)

v(tn)

≥

(
1

2

)k

exp(α(tn − tn/2)) = exp(−k log 2 + αtn/2)
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For the last inequality we have used v(tn/2)eαtn/2 ≥ v(tn)eαtn , which holds
according to (v). So, for large n we have tn ≤ 3α−1k log 2 and hence tn/kn−2

is uniformly bounded. Now (12) together with (8) shows that I is bounded.

Of course the standard example for Theorem 4.1 is v(r) = e−r. Moreover,
for v(r) = exp(− log2 r) the differentiation operator D : Hv(C) → Hv(C) is
bounded (in view of Theorem 2.1) but not surjective. For v(r) = exp(−er)
the differentiation operator is unbounded since

lim
n→∞

−v′(sn)/v(sn) = lim
n→∞

esn = ∞

for the global maximum points sn of rnv(r) (Lemma 1.2).

References
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[9] K. Cichoń and K. Seip, Weighted holomorphic spaces with trivial closed range mul-

tiplication operators, Proc. Amer. Math. Soc. 131 (2003), 201–207.
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