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Dual Banah algebras: representations and injetivitybyMatthew Daws (Oxford)
Abstrat. We study representations of Banah algebras on re�exive Banah spaes.Algebras whih admit suh representations whih are bounded below seem to be a goodgeneralisation of Arens regular Banah algebras; this lass inludes dual Banah algebrasas de�ned by Runde, but also all group algebras, and all disrete (weakly anellative)semigroup algebras. Suh algebras also behave in a similar way to C∗- and W∗-algebras;we show that interpolation spae tehniques an be used in plae of GNS type arguments.We de�ne a notion of injetivity for dual Banah algebras, and show that this is equivalentto Connes-amenability. We onlude by looking at the problem of de�ning a well-behavedtensor produt for dual Banah algebras.1. Introdution. It has been known for some time (see [20℄ and [37℄)that a Banah algebra A whih admits a faithful representation on a re�ex-ive Banah spae has an intrinsi haraterisation, namely that the weaklyalmost periodi funtionals, written WAP(A′) (see below for the de�nition),separate the points of A. Similarly, if we wish to �nd an isometri representa-tion of this kind, we need only ask that WAP(A′) form a norming set for A.We shall all A a WAP-algebra when A admits an isomorphi representationon a re�exive Banah spae. Suh algebras seem not to have been studiedabstratly before, but they seem to be a good generalisation of Arens regularBanah algebras, and to form a good framework for studying dual Banahalgebras.We follow the notation of [8℄, writing 〈·, ·〉 for the dual pairing betweena Banah spae E and its dual, E′. We write κE : E → E′′ for the anonialmap given by 〈κE(x), µ〉 = 〈µ, x〉 for x ∈ E and µ ∈ E′. When E is re�exive,we tend to identify E with E′′. We write B(E,F ) for the spae of all boundedlinear operators between Banah spaes E and F , and we denote by F(E,F ),

A(E,F ), K(E,F ) and W(E,F ) the subspaes of, respetively, �nite-rank,2000 Mathematis Subjet Classi�ation: Primary 47L10; Seondary 46B70, 46H05,46H15, 46H99, 46M05, 43A10, 43A20, 46A25, 46A32, 46A35, 46L10, 46L06, 46M10.Key words and phrases: dual Banah algebra, von Neumann algebra, Connes-amenability, group algebra, unique predual.[231℄



232 M. Dawsapproximable, ompat and weakly ompat operators (so A(E,F ) is theoperator-norm losure of F(E,F ) in B(E,F )). We write B(E) for B(E,E),and so forth.A dual Banah algebra is a Banah algebra A suh that A = E′, as aBanah spae, for some Banah spae E, and suh that the multipliation on
A is separately weak∗-ontinuous. Reall that a W∗-algebra is a C∗-algebrawhih is a dual Banah algebra. However, it is known that the multipliation(and the involution) are automatially weak∗-ontinuous in this ase. We use[32℄ as general referenes for C∗- and W∗-algebras. Dual Banah algebraswere introdued in [30℄, but had been studied previously under di�erentnames.For a Banah algebra A, we turn A′ into an A-bimodule in the obviousway, by setting

〈a · µ, b〉 = 〈µ, ba〉, 〈µ · a, b〉 = 〈µ, ab〉 (a, b ∈ A, µ ∈ A′).We may then hek, for a dual Banah algebra A = E′, that κE(E) is asubmodule of A′ = E′′. We all E the predual of A, and write (A, E) if wewish to stress whih predual we are using, and often write A∗ for E. In thisspeial ase, we shall often suppress the map κA∗
, and speak of A∗ as beinga subspae of A′ (see De�nition 2.6 for a justi�ation of this). We later studywhen suh preduals are unique, both in the isometri sense (as is well-knownfor W∗-algebras) and the isomorphi sense, whih seems more natural forBanah algebras.When E is a re�exive Banah spae, the projetive tensor produt of Ewith its dual E′, denoted by E′ ⊗̂ E, is the anonial predual for B(E) (see[30℄). This indues a weak∗-topology on B(E). Reall that the norm on E′⊗̂Eis π(·), de�ned by

π(τ) = inf
{ n∑

k=1

‖xk‖ ‖yk‖ : τ =
n∑

k=1

xk ⊗ yk

}
(τ ∈ E′ ⊗ E).

We write E′ ⊗̂ E and not E ⊗̂ E′ as the former makes more sense when
E is not neessarily re�exive; the two spaes are isometrially isomorphi.Here and elsewhere, we refer the reader to [31℄, [13℄ or [14, Chapter VIII℄ forfurther details on tensor produts of Banah spaes.Let A be a Banah algebra, and for µ ∈ A′, de�ne Lµ, Rµ ∈ B(A,A′) by

Lµ(a) = µ · a, Rµ(a) = a · µ (a ∈ A).Then µ ∈ WAP(A′) if and only if Lµ ∈ W(A,A′) (whih is equivalent to
Rµ ∈ W(A,A′)). This notation di�ers from that sometimes used, but follows[28, Setion 4℄, for example. It may be easily heked (as we do below) thatfor a dual Banah algebra (A,A∗), we have A∗ ⊆ WAP(A′). It hene imme-diately follows from [37℄ that there exists a re�exive Banah spae E and an



Dual Banah algebras: representations and injetivity 233isometri representation π : A → B(E) (here representation simply means ahomomorphism to a Banah algebra of the form B(E)). However, it is notimmediately apparent if suh a representation need be weak∗-ontinuous. Asusual, we may regard representations and left modules as interhangeable,so this question is equivalent to E being normal in the sense of [28℄. Weshow below that we an indeed hoose E to be normal (atually, our argu-ment is very similar to that used by Kaijser and Young, but the requiredmahinery, interpolation spaes, shall be needed later anyway). This showsthat dual Banah algebras an be thought of as �abstrat� weak∗-losed sub-algebras of B(E) for re�exive Banah spaes E. This exatly mirrors the fatthat W∗-algebras are abstrat von Neumann algebras, that is, weak∗-losed(whih in this ontext agrees with weak operator topology losed) self-adjointsubalgebras of B(H) for a Hilbert spae H.A derivation from a Banah algebra A to an A-bimodule E is a boundedlinear map d suh that d(ab) = a · d(b) + d(a) · b. Fix x ∈ E, and de�ne
d by d(a) = a · x − x · a. Then d is a derivation, alled an inner deriva-tion. We say that A is amenable if every derivation from A to a dual A-bimodule E′ is inner. We refer the reader to [29℄ for details on amenabil-ity. Similarly, Runde de�nes a dual Banah algebra (A,A∗) to be Connes-amenable if every weak∗-ontinuous derivation to a normal, dual A-bimoduleis inner.For a W∗-algebra A, it is this notion of amenability whih seems mostnatural. One of the major ahievements of C∗-algebra theory has been togive equivalent natural onditions for a W∗-algebra to be Connes-amenable(see [29, Chapter 6℄). One of these is the notion of injetivity. We de�ne asimilar (though weaker) notion for dual Banah algebras, and show that itis equivalent to Connes-amenability.We �nish the paper with a study of tensor produts of dual Banah alge-bras. This last setion is slightly more speulative, but it is the author's opin-ion that fully understanding tensor produts seems entral to understandingnotions of amenability: ertainly the rather well-behaved tensor produts ofC∗-algebras play a entral role in the theory of amenability for suh algebras(for example, the fat that amenability is equivalent to nulearity).

2. Basi properties of WAP and dual Banah algebras. In thissetion, we shall study the basi properties of dual Banah algebras, andde�ne WAP-algebras.Following, for example, [8℄, in dealing with Banah algebras, we assume,by means of standard renormings, that the produt is ontrative (and notmerely bounded) and that a unit always has norm one. This philosophy isompatible with dual Banah algebras:



234 M. DawsProposition 2.1. Let E be a Banah spae suh that A = E′ admits abounded algebra produt. Then there is an equivalent norm on E suh that
A beomes a Banah algebra. If A has a unit eA, we may hoose this normsuh that ‖eA‖ = 1.Proof. Suppose that 1 < M = sup{‖ab‖ : a, b ∈ A, ‖a‖ = ‖b‖ = 1}, forif M ≤ 1, we have nothing to do. Then de�ne ‖µ‖0 = M−1‖µ‖ for µ ∈ E.For a ∈ A, we then have ‖a‖0 = sup{|〈a, µ〉| : ‖µ‖ ≤ M} = M‖a‖, so that
‖ab‖0 = M‖ab‖ ≤M2‖a‖ ‖b‖ = ‖a‖0‖b‖0.Now suppose that A has a unit eA. Let

X = convex{a · µ : ‖a‖0 = ‖µ‖0 ≤ 1} ⊆ E,so that for µ ∈ E, we have µ = eA · µ ∈ ‖eA‖0‖µ‖0X. Thus we an de�ne
‖ · ‖1 on E by

‖µ‖1 = inf{t > 0 : µ ∈ tX} (µ ∈ E),and �nd that ‖µ‖1 ≤ ‖eA‖0‖µ‖0. Conversely, we haveX⊆{µ∈E : ‖µ‖0≤1},so if ‖µ‖1 = 1, then for eah ε > 0, we see that µ ∈ (1 + ε)X ⊆ {(1 + ε)λ :
λ ∈ E, ‖λ‖0 ≤ 1}, and so ‖µ‖0 ≤ 1. Thus ‖ · ‖1 is equivalent to ‖ · ‖0 andhene also equivalent to ‖ · ‖.Then, for a ∈ A, we have
‖a‖1 = sup{|〈a, µ〉| : µ ∈ X} = sup

{∣∣∣
n∑

j=1

〈a, bj · µj〉
∣∣∣ :

n∑

j=1

‖bj‖0‖µj‖0 ≤ 1
}

= sup{|〈a, b · µ〉| : ‖b‖0 = ‖µ‖0 ≤ 1} = sup{‖ab‖0 : ‖b‖0 = 1}.Note that ‖ab‖0 ≤ ‖a‖1‖b‖0 for a, b ∈ A. Hene
‖ab‖1 = sup{‖abc‖0 : ‖c‖0 = 1} ≤ ‖a‖1 sup{‖bc‖0 : ‖c‖0 = 1} = ‖a‖1‖b‖1,and learly ‖eA‖1 = 1, as required.Let (A,A∗) be a dual Banah algebra, and let A♭

∗ be the Banah spae
A∗ ⊕ C with norm

‖(µ, α)‖ = max(‖µ‖, |α|) (µ ∈ A∗, α ∈ C).Then (A♭
∗)

′ = A⊕ C = A♭ with norm
‖(a, β)‖ = ‖a‖ + |β| (a ∈ A, β ∈ C).We turn A♭ into a Banah algebra by setting (a, α)(b, β) = (ab+βa+αb, αβ).It is a simple veri�ation that then (A♭,A♭

∗) is a dual Banah algebra.We set (A,A∗)
♯ to be (A,A∗) when A is unital, and to be (A♭,A♭

∗)otherwise. This gives us a (rather rude, it turns out) way to unitise a dualBanah algebra.Lemma 2.2. Let E be a Banah spae suh that A = E′ is a Banahalgebra. Then (A, E) is a dual Banah algebra if and only if κE(E) ⊆ A′ isa sub-A-bimodule.



Dual Banah algebras: representations and injetivity 235Proof. This is a routine alulation showing that the produt is sepa-rately weak∗-ontinuous if and only if E is an A-bimodule.We shall now reall the Arens produts whih shall allow us to prove somesimple fats about dual Banah algebras (muh in the spirit of [26℄). Most ofthe following results are folklore (ompare, for example, with [22, Setion 1℄)but do not appear to have formally been olleted together before.For a Banah algebra A, we turn A′ into a Banah A-bimodule in thestandard way (and hene A′′ as well). We then de�ne bilinear maps A′′×A′

→ A′ and A′ ×A′′ → A′ by
〈Φ · µ, a〉 = 〈Φ, µ · a〉, 〈µ · Φ, a〉 = 〈Φ, a · µ〉 (a ∈ A, µ ∈ A′, Φ ∈ A′′).We then de�ne two bilinear maps �,♦ : A′′ ×A′′ → A′′ by
〈Φ� Ψ, µ〉 = 〈Φ, Ψ · µ〉, 〈Φ ♦ Ψ, µ〉 = 〈Ψ, µ · Φ〉 (µ ∈ A′, Φ, Ψ ∈ A′′).We an then alulate

(µ · Φ) · Ψ = µ · (Φ ♦ Ψ), Φ · (Ψ · µ) = (Φ� Ψ) · µ (µ ∈ A′, Φ, Ψ ∈ A′′),from whih it follows that � and ♦ are Banah algebra produts, alledthe �rst and seond Arens produts respetively (see [25, Setion 1.4℄ or[8, Theorem 2.6.15℄ for further details). Furthermore, κA(a) � Φ = a · Φ =
κA(a) ♦ Φ for a ∈ A, Φ ∈ A′′, and similarly Φ� κA(a) = Φ · a = Φ ♦ κA(a).When � = ♦, we say that A is Arens regular, and in this ase, we may hekthat (A′′,A′) beomes a dual Banah algebra.Lemma 2.3. Let A be a Banah algebra, and let µ ∈ A′. Then µ ∈
WAP(A′) if and only if Rµ ∈ W(A,A′), whih happens if and only if
〈Φ� Ψ, µ〉 = 〈Φ ♦ Ψ, µ〉 for Φ, Ψ ∈ A′′.Proof. This is a simple alulation: see [9, Proposition 3.11℄. A key toolis Gantmaher's theorem, whih states that T ∈ W(E,F ) if and only if
T ′′(E′′) ⊆ κF (F ).We also de�ne the two topologial entres (see [23℄ or [9℄) by

Z
(1)
t (A′′) = {Φ ∈ A′′ : Φ� Ψ = Φ ♦ Ψ (Ψ ∈ A′′)},

Z
(2)
t (A′′) = {Φ ∈ A′′ : Ψ � Φ = Ψ ♦ Φ (Ψ ∈ A′′)}.Then the Arens produts agree on either of the topologial entres, eahtopologial entre is an algebra, and Z

(1)
t (A′′)∩Z

(2)
t (A′′) ⊇ κA(A) is an idealin A′′ with respet to either Arens produt.For a Banah spae E, a subspae F of E, and a subspae G of E′, wede�ne

F⊥ = {µ ∈ E′ : 〈µ, x〉 = 0 (x ∈ F )}, ⊥G = {x ∈ E : 〈µ, x〉 = 0 (µ ∈ G)}.



236 M. DawsIt is then standard that, when F is losed, F ′ is isometrially isomorphi to
E′/F⊥, while (E/F )′ is isometrially isomorphi to F⊥. The weak∗-losureof G in E′ is (⊥G)⊥.Proposition 2.4. Let A be a Banah algebra, and let X ⊆ A′ be alosed submodule. Then the following are equivalent :(1) the �rst Arens produt drops to a well-de�ned produt on X ′ =

A′′/X⊥ turning (X ′, X) into a dual Banah algebra;(2) X ⊆ WAP(A′).Furthermore, let A be a subalgebra of Z
(1)
t (A′′) ∩ Z

(2)
t (A′′), and suppose thatthe natural map A → X ′ is surjetive. Then (1) and (2) hold , and the algebraprodut given by (1) agrees with the produt indued by the map A → X ′.Proof. For Φ ∈ A′′ and µ ∈ X, suppose that Ψ ∈ A′′ is suh that

Φ+X⊥ = Ψ +X⊥, so that
〈Φ · µ, a〉 = 〈Φ, µ · a〉 = 〈Ψ, µ · a〉 = 〈Ψ · µ, a〉 (a ∈ A),as X is a submodule. Hene there is a well-de�ned map (A′′/X⊥)×A′ → A′given by (Φ+X⊥) ·µ = Φ ·µ, and similarly with orders reversed. It is henelear that � gives a well-de�ned produt on A′′/X⊥ if and only if Φ · µ ∈ Xfor Φ ∈ A′′ and µ ∈ X. If this holds, thenX is anX ′-module if and only if, foreah µ ∈ X and Φ ∈ A′′, there exists λ ∈ X suh that 〈Φ� Ψ, µ〉 = 〈Ψ, λ〉for Ψ ∈ A′′. In partiular, we see that 〈λ, a〉 = 〈Φ · a, µ〉 = 〈µ · Φ, a〉 for

a ∈ A, that is, λ = µ · Φ, and so we onlude that 〈Φ� Ψ, µ〉 = 〈Φ ♦ Ψ, µ〉for Φ, Ψ ∈ A′′, µ ∈ X, whih is equivalent to X ⊆ WAP(A′). Conversely,if (2) holds, then for Φ ∈ A′′, µ ∈ X and Ψ ∈ X⊥, we have 〈Ψ, Φ · µ〉 =
〈Ψ ♦ Φ, µ〉 = 〈Φ, µ · Ψ〉 = 0 as µ ·Ψ = 0, whih implies that Φ ·µ ∈ X. Heneonditions (1) and (2) are equivalent.If A → X ′ is surjetive, then for Φ, Ψ ∈ A′′, we an hoose a, b ∈ A suhthat a+X⊥ = Φ+X⊥ and b+X⊥ = Ψ +X⊥. Then, for µ ∈ X,

〈Φ� Ψ, µ〉 = 〈Φ, Ψ · µ〉 = 〈Φ, b · µ〉 = 〈Φ� b, µ〉 = 〈Φ ♦ b, µ〉 = 〈b, µ · Φ〉
= 〈b, µ · a〉 = 〈a ♦ b, µ〉 = 〈a� b, µ〉,where we use the fat that b ∈ Z

(2)
t (A′′). Thus the map A → X ′ gives awell-de�ned produt on X ′. We also see that

〈ab, µ〉 = 〈a, b · µ〉 = 〈a, Ψ · µ〉 = 〈a� Ψ, µ〉 = 〈a ♦ Ψ, µ〉
= 〈Ψ, µ · a〉 = 〈Ψ, µ · Φ〉 = 〈Φ ♦ Ψ, µ〉,as a ∈ Z

(1)
t (A′′). Hene µ ∈ WAP(A′), and (2) holds, as required.We note that in [20, Proposition 4.9℄, Kaijser explores similar ideas to theabove proposition. Furthermore, the equivalene of (1) and (2) is establishedin [22, Lemma 1.4℄ in the ase of ommutative Banah algebras.



Dual Banah algebras: representations and injetivity 237Corollary 2.5. Let A be a Banah algebra. Then WAP(A′)′ is a dualBanah algebra. Let A∗ ⊆ A′ be a losed submodule suh that , if π : A′′ →
A′′/A⊥

∗ = A′
∗ is the quotient map, then π ◦κA : A → A′

∗ is an isomorphism.Then A′
∗ is a dual Banah algebra.Conversely, suppose that (A,A∗) is a dual Banah algebra. Then it isa simple alulation (see [26℄) that κ′A∗

: A′′ → A is an algebra homomor-phism for either Arens produt. Hene we may (and shall) make the followingequivalent de�nition:Definition 2.6. Let A be a Banah algebra, let A∗ be a losed sub-module of A′, and let πA∗
: A′′ → A′′/A⊥

∗ = A′
∗ be the quotient map. When

πA∗
◦ κA : A → A′

∗ is an isomorphism, we say that A is a dual Banahalgebra with predual A∗.Lemma 2.7. Let A be a Banah algebra, and let B = WAP(A′)′. Then
B is unital if and only if there exists Φ ∈ A′′ with Φ · µ = µ · Φ = µ for eah
µ ∈ WAP(A′). When (A,A∗) is a dual Banah algebra, B is unital if andonly if A is unital.Proof. Let eB be the unit of B, so that for some Φ ∈ A′′, we have 〈Φ, µ〉 =
〈eB, µ〉 for µ ∈ WAP(A′). Thus, for Ψ ∈ A′′,
〈Ψ, µ〉 = 〈Ψ � Φ, µ〉 = 〈Ψ, Φ · µ〉 = 〈Φ ♦ Ψ, µ〉 = 〈Ψ, µ · Φ〉 (µ ∈ WAP(A′)),as required.Now suppose that A is a dual Banah algebra, and let (aα) be a boundednet inA tending to Φ ∈ A′′ in the weak∗-topology. Let e ∈ A be a weak∗-limitpoint of (aα). Then, for a ∈ A and µ ∈ A∗ ⊆ WAP(A′),

〈ae, µ〉 = 〈e, µ · a〉 = lim
α

〈aα, µ · a〉 = 〈Φ, µ · a〉 = 〈a, µ〉,so that ae = a. Similarly, ea = a, so that e is a unit for A.Thus looking at WAP(A′)′ is not useful for unitising a dual Banah al-gebra; instead, WAP(A′)′ is a useful way for embedding a Banah algebrain a dual Banah algebra.Lemma 2.8. Let A and B be Banah algebras, and let π : A → B be ahomomorphism. Then π′(WAP(B′)) ⊆ WAP(A′).Proof. Let µ ∈ WAP(B′), and let λ = π′(µ) ∈ A′, so that
〈Lλ(a), b〉 = 〈λ · a, b〉 = 〈µ, π(ab)〉 = 〈µ · π(a), π(b)〉 = 〈π′Lµπ(a), b〉.So Lλ = π′ ◦ Lµ ◦ π is weakly ompat, as Lµ is weakly ompat.Weak∗-ontinuous representations of WAP(A′)′ are losely related to on-tinuous representations of A, a fat �rst noted by Runde. The following is[28, Theorem 4.10℄.



238 M. DawsProposition 2.9. Let A be a Banah algebra, let (B,B∗) be a dual Ba-nah algebra, and let π : A → B be a homomorphism. Then there is a uniqueweak∗-ontinuous homomorphism π̂ : WAP(A′)′ → B suh that π̂ ◦ κA = π.In partiular , a weak∗-ontinuous homomorphism θ : WAP(A′)′ → B isuniquely determined by its restrition to A.Definition 2.10. Let A be a Banah algebra. We all WAP(A′)′ thedual Banah algebra (DBA) enveloping algebra of A. When the natural mapof A into WAP(A′)′ is bounded below, we say that A is a WAP algebra.We note that every dual Banah algebra, and every Arens regular Banahalgebra, is a WAP algebra. We shall shortly see that group algebras are alsoalways WAP algebras, even in the non-disrete ase, in whih ase theyare neither dual Banah algebras, nor Arens regular. The above propositionshows us that the weak∗-ontinuous theory of the DBA enveloping algebrais determined by A. We see from this, and from later results, that the DBAenveloping algebra plays muh the same role as the enveloping W∗-algebraof a C∗-algebra does (see [32, Chapter III, Setion 2℄).3. Representations for WAP algebras. We have already noted thatwork of Young shows that a WAP algebra A admits a representation π : A →
B(E) for some re�exive Banah spae E, suh that π is bounded below. Infat, Young e�etively shows that µ ∈ WAP(A′) if and only if there exists are�exive Banah spae E, a representation π : A → B(E), x ∈ E and λ ∈ E′with ‖x‖ ‖λ‖ = ‖µ‖ and suh that π′κE′⊗̂E(λ⊗x) = µ. In partiular, we seethat π′κE′⊗̂E maps E′ ⊗̂ E onto WAP(A′).In this setion, we shall use some interpolation spae theory to prove ananalogous result for dual Banah algebras whih does not seem to immedi-ately follow from the results of Young (although the method of proof is muhthe same). We shall later use interpolation spae theory for other reasons,so it is useful to de�ne some onepts now. Interpolation spae argumentsin this area go bak to [10℄; we follow the text [3℄ for results on interpolationspaes.Definition 3.1. Let (A,A∗) be a dual Banah algebra, and let µ ∈ A∗.Suppose that there exists a norm ‖ · ‖µ on A · µ = {a · µ : a ∈ A} suh thatthe ompletion of (A · µ, ‖ · ‖µ), denoted by Eµ, is re�exive, and suh that

‖ab · µ‖µ ≤ ‖a‖ ‖b · µ‖µ, ‖a · µ‖ ≤ ‖a · µ‖µ ≤ ‖a‖ ‖µ‖ (a, b ∈ A).Let ι : Eµ → A∗ be the norm-dereasing inlusion map, and suppose furtherthat ι is injetive. Then we say that ‖ · ‖µ is an admissible norm for µ.Example 3.2. Let (A,A∗) be a W∗-algebra, and let µ ∈ A∗ be a state.Then it is simple to hek that the usual GNS onstrution for µ (see [32,Chapter I, Setion 9℄) indues an admissible norm on A · µ.



Dual Banah algebras: representations and injetivity 239Example 3.3. We note that ‖ · ‖µ need not be unique (even in an iso-morphi sense). For example, let A = ℓ2(N) with pointwise multipliation,and let µ ∈ A′ = ℓ2 be suh that the map A → A′, a 7→ a · µ, is injetiveand ‖µ‖ = 1 (for example, µ = (2−n/2)n>0 ∈ ℓ2). Then de�ne
‖a · µ‖µ,1 = ‖a · µ‖, ‖a · µ‖µ,2 = ‖a‖ (a ∈ A),and let Eµ,1 and Eµ,2 be assoiated with ‖·‖µ,1 and ‖·‖µ,2 respetively. Then

Eµ,1 is the losure of A · µ in ℓ2, while Eµ,2 = A, whih are both re�exive,as ℓ2 is re�exive. We then hek that
‖ab · µ‖µ,1 = sup{|〈ab · µ, c〉| : ‖c‖ ≤ 1} = sup{|〈b · µ, d〉| : d = ca, ‖c‖ ≤ 1}

≤ sup{|〈b · µ, d〉| : ‖d‖ ≤ ‖a‖} = ‖a‖ ‖b · µ‖ = ‖a‖ ‖b · µ‖µ,1,while learly ‖ab · µ‖µ,2 ≤ ‖a‖ ‖b · µ‖µ,2. Hene both ‖ · ‖µ,1 and ‖ · ‖µ,2 areadmissible, but learly they are not equivalent norms.Lemma 3.4. Let (A,A∗) be a dual Banah algebra, let µ ∈ A∗ havean admissible norm, and let Eµ be a spae as de�ned above using someadmissible norm for µ. Then ι′ : A → E′
µ has dense range, the module ationof A on Eµ indues a weak∗-ontinuous representation A → B(Eµ), and thereexist x ∈ Eµ and λ ∈ E′

µ suh that ‖x‖ ‖λ‖ = ‖µ‖ and 〈λ, a · x〉 = 〈a, µ〉 for
a ∈ A.Proof. We may suppose that ‖µ‖ = 1. By the ondition on ‖ · ‖µ, we seethat ι is norm-dereasing, and the module ation inherited from A∗ induesa Banah left A-module ation on Eµ. Furthermore, ι′ has dense range ifand only if ι′′ : E′′

µ → A′ is injetive, whih, as Eµ is re�exive, is in turnequivalent to ι being injetive. We de�ne ψµ : E′
µ ⊗̂ Eµ → A∗ by

ψµ(ι′(a) ⊗ b · µ) = b · µ · a (a ∈ A, b · µ ∈ Eµ).Assuming this is bounded, ψµ extends by linearity and ontinuity to E′
µ⊗̂Eµ.Indeed, we have

‖b · µ · a‖ = sup{|〈acb, µ〉| : ‖c‖ ≤ 1} = sup{|〈a, cb · µ〉| : ‖c‖ ≤ 1}
≤ sup{|〈a, d · µ〉| : ‖d · µ‖Eµ ≤ ‖b · µ‖Eµ} = ‖ι′(a)‖E′

µ
‖b · µ‖Eµ ,as ‖cb ·µ‖Eµ ≤ ‖c‖ ‖b ·µ‖Eµ . Thus ψµ is norm-dereasing. Then let θµ = ψ′

µ :
A → B(Eµ), so that for a, b, c ∈ A,
〈ι′(b), θµ(a)(c · µ)〉 = 〈a, ψµ(ι′(b) ⊗ c · µ)〉 = 〈b, ac · µ〉 = 〈ι′(b), a · (c · µ)〉;hene θµ agrees with the left-module ation of A on Eµ, as required.Finally, we see that ψµ(ι′(eA) ⊗ eA · µ) = µ, where

‖ι′(eA)‖E′
µ

= sup{|〈eA, a · µ〉| : ‖a · µ‖Eµ ≤ 1}
≤ sup{|〈eA, a · µ〉| : ‖a · µ‖ ≤ 1} ≤ ‖eA‖ = 1,and ‖eA · µ‖Eµ ≤ ‖eA‖ ‖µ‖ = 1.



240 M. DawsTheorem 3.5. Let (A,A∗) be a dual Banah algebra suh that eahnorm-one member of A∗ has an admissible norm. Then A is isometri, via aweak∗-weak∗-ontinuous map, to a weak∗-losed subalgebra of B(E) for somere�exive Banah spae E.Proof. We may suppose that A is unital, as otherwise we may workwith (A,A∗)
♯, and then restrit the resulting representation to A. Let X =

{µ ∈ A∗ : ‖µ‖ = 1}, and let E = ℓ2(
⊕

µ∈X Eµ), so that E is a re�exiveBanah spae. De�ne ψ : E′ ⊗̂ E → A∗ by
ψ((λµ) ⊗ (xµ)) =

∑

µ∈X

ψµ(λµ ⊗ xµ) ((λµ) ∈ E′, (xµ) ∈ E).

This is norm-dereasing, as
∥∥∥

∑

µ∈X

ψµ(λµ ⊗ xµ)
∥∥∥ ≤

∑

µ∈X

‖λµ‖ ‖xµ‖ ≤
(∑

µ∈X

‖λµ‖2
)1/2(∑

µ∈X

‖xµ‖2
)1/2

.

Then let θ = ψ′ : A → B(E), so that θ is weak∗-ontinuous, and for a, b ∈ A,
(xµ) ∈ E and (λµ) ∈ E′, we have

〈(λµ), θ(b)(xµ)〉 =
∑

µ∈X

〈b, ψµ(λµ ⊗ xµ)〉 =
∑

µ∈X

〈λµ, θµ(b)(xµ)〉;

therefore θ(b)(xµ) = (θµ(b)(xµ)), and so θ is a homomorphism, as eah θµ isa homomorphism.It is a standard result that θ = ψ′ has a weak∗-losed image if and onlyif θ has a losed image, whih happens if and only if θ is bounded below. For
a ∈ A and ε > 0, there exists µ ∈ X suh that |〈a, µ〉| > (1 − ε)‖a‖. Then
µ = ψ(λµ ⊗ xµ) for some λµ ∈ E′

µ and xµ ∈ Eµ with ‖λµ‖ ‖xµ‖ = 1. Thus
‖θ(a)‖ ≥ ‖θµ(a)‖ ≥ |〈a, ψ(λµ ⊗ xµ)〉| > (1 − ε)‖a‖.As ε > 0 was arbitrary, we see that θ is an isometry onto its range.Of ourse, we have not shown that any dual Banah algebra (other thana W∗-algebra) admits suh a representation. We now remedy this situationby using some interpolation spae theory.Theorem 3.6. Let A be a unital dual Banah algebra with predual A∗.Then eah norm-one member of A∗ has an admissible norm.Proof. Let µ ∈ A∗ be suh that ‖µ‖ = 1, and for n ∈ N de�ne a newnorm on A′ by

‖λ‖n = inf{2−n/2‖b‖ + 2n/2‖λ− b · µ‖ : b ∈ A} (λ ∈ A′).Then, for a, b ∈ A and λ ∈ A′, we have ‖λ‖n ≤ 2n/2‖λ‖, ‖a ·µ‖n ≤ 2−n/2‖a‖,and ‖λ‖ ≤ ‖λ−b ·µ‖+‖b ·µ‖ ≤ 2n‖λ−b ·µ‖+‖b‖ so that 2−n/2‖λ‖ ≤ ‖λ‖n.
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Eµ =

{
λ ∈ A′ : ‖λ‖µ :=

( ∞∑

n=1

‖λ‖2
n

)1/2
<∞

}
.If λ ∈ Eµ, then there exists some sequene (bn) in A with 2n‖λ−bn ·µ‖2 → 0as n → ∞. In partiular, A · µ is dense in Eµ. Thus, for a ∈ A, we have

‖a · µ‖ ≤ ‖a · µ‖µ ≤ ‖a‖. We an also easily hek that ‖a · λ‖µ ≤ ‖a‖ ‖λ‖µfor a ∈ A and λ ∈ Eµ. Hene we need only show that Eµ is re�exive to verifythe onditions of De�nition 3.1.Reall that Rµ : A → A′ is de�ned by Rµ(a) = a ·µ. Then Rµ maps into
A∗ and is weakly ompat, as A∗ ⊆ WAP(A′). It follows from the work in[10℄ (see [25, Setion 1.7.8℄ for a sketh) that Eµ is re�exive, as the map Rµis weakly ompat.Notie that the above proof will work for any µ ∈ WAP(A′), whihre-reates Young's result.Remark 3.7. The above onstrution of Eµ is atually a Lions�Peetreinterpolation spae. Let A·µ be the subspae of A∗ spanned by {a·µ : a ∈ A}together with the norm ‖a ·µ‖A·µ = inf{‖b‖ : b ·µ = a ·µ}. Then we see that
Rµ : A → A · µ is norm-dereasing, and the indued map A/kerRµ → A · µis an isometry, showing that A · µ is a Banah spae.Following [3℄, we let S(A·µ,A∗) be the spae A∗ together with the norm

‖λ‖S = inf{‖a · µ‖A·µ + ‖φ‖ : λ = a · µ+ φ} (λ ∈ A∗).Then S is a Banah spae. Let 1 ≤ p < ∞, ξ0 < 0 and ξ1 > 0, and let
s+2 (p; ξ0,A · µ; ξ1,A∗) be the subspae of S suh that

‖λ‖s+

2

= inf
{

max
(( ∞∑

n=1

‖eξ0nan · µ‖p
A·µ

)1/p
,
( ∞∑

n=1

‖eξ1nφn‖p
)1/p)

:

λ = an · µ+ φn (n > 0)
}
<∞.In omparison, we see that Eµ is the subspae of S suh that

‖λ‖µ = inf
{( ∞∑

n=1

(2−n/2‖an·µ‖A·µ+2n/2‖φn‖)2
)1/2

: λ = an·µ+φn (n > 0)
}
.

We thus see that s+2 (2;− log
√

2,A · µ; log
√

2,A∗) is isomorphi to Eµ.It follows from [3, Setion 1.5, Proposition 1℄ that Eµ is a member of theisomorphi lass (A · µ,A∗)1/2,2, and hene [3, Setion 2.3, Proposition 1℄tells us that Eµ is re�exive if and only if the inlusion A · µ→ A∗ is weaklyompat, whih happens if and only if Rµ is weakly ompat, as before.Putting all these results together, we obtain the following.



242 M. DawsCorollary 3.8. Let (A,A∗) be a dual Banah algebra. Then A admitsan isometri, weak∗-weak∗-ontinuous representation on some re�exive Ba-nah spae.Proposition 3.9. Let (A,A∗) be a W ∗-algebra (that is, A is a C∗-al-gebra), and form E as above using only the µ ∈ A∗ whih are states. Then
E is isomorphi to a Hilbert spae, and our representation agrees with theusual universal representation for a W ∗-algebra.Proof. This follows from work in [12℄.4. Unique preduals. It is a standard result in the theory of W∗-algebrasthat a W∗-algebra has a unique predual, up to isometri lassi�ation. Thatis, if (A,A∗) is a W∗-algebra, E is a Banah spae, and θ : A → E′ isan isometri isomorphism, then θ is automatially weak∗-ontinuous. Thisfollows as we an use θ to indue a C∗-algebra struture on E′, showing that
E is also a predual for A.The theory of isometri preduals in Banah spaes has attrated someattention (see the survey [15℄). However, here we are interested in the iso-morphi and not isometri theory.Theorem 4.1. Let (A,A∗) be a ommutative W ∗-algebra, let (B,B∗) bea dual Banah algebra, and let θ : A → B be a Banah algebra isomorphism.Then θ is automatially weak∗-ontinuous.Proof. By [32, Theorem 1.18℄, A an be identi�ed with C(Ω) where Ω isthe harater spae of A, whih is a hyperstonian spae (see [2, Setion 8℄ forfurther details). In partiular, Ω is Stonian in that the losure of any openset is open. Then A′ is M(Ω), the spae of regular Borel measures on Ω. Wesay that a positive measure µ ∈M(Ω) is normal if µ(A) = 0 whenever A isnowhere dense, that is, the losure of A has empty interior. A general mea-sure is normal when its absolute value is normal. By [2, Theorem 8.2℄ thisde�nition agrees with the usual one for W∗-algebras (see also [32, Proposi-tion 1.11℄). Then the olletion of normal measures forms a losed subspaeof M(Ω) whih is equal to κA∗

(A∗).By reversing the argument whih led to De�nition 2.6, we need to showthat if E ⊆ A′ is a losed submodule suh that the natural map ιE : A →
E′ = A′′/E⊥ is an isomorphism, then E = κA∗

(A∗). The equivalene of thisstatement to the statement involving B omes from setting E = θ′κB∗
(B∗).Let E be as stated, and hoose λ ∈ E. We will show that λ is normal,whih will omplete the proof, as then E ⊆ A∗, and so neessarily E = A∗.Let A be a losed subset of Ω with empty interior, so we aim to show that

|λ|(A) = 0. Consider the family C of losed and open subsets of Ω whihontain A, partially ordered by reverse inlusion. For B ∈ C, let χB be the



Dual Banah algebras: representations and injetivity 243indiator funtion of B, so that χB ∈ C(Ω). As E is a predual, there existsa unique f ∈ C(Ω) suh that
〈µ, f〉 = lim

B∈C
〈µ, χB〉 (µ ∈ E).For C ∈ C, notie that

〈µ, χCf〉 = 〈µ · χC , f〉 = lim
B∈C

〈µ · χC , χB〉 = lim
B∈C

〈µ, χB〉 = 〈µ, f〉 (µ ∈ E),so that χCf = f , and hene, for x ∈ Ω \ C, f(x) = f(x)χC(x) = 0. Wehene see that f vanishes o� the set A0 :=
⋂

B∈C B.We laim that A0 = A, whih follows from some simple topology. Indeed,learly A ⊆ A0, and suppose towards a ontradition that there exists x ∈
A0 \ A. Thus, for eah open B ⊆ Ω with A ⊆ B, we have x ∈ B. As Ωis Hausdor�, for eah a ∈ A there exist disjoint open sets Ua and Va with
a ∈ Ua and x ∈ Va. As A is ompat, there exist a1, . . . , an in A suhthat A ⊆ U := Ua1

∪ · · · ∪ Uan . Clearly U is disjoint from the open set
V := Va1

∩ · · · ∩ Van , hene as x ∈ V , we see that x 6∈ U , a ontradition.Consequently, f is supported on A, and as A has empty interior and f isontinuous, we must have f = 0. Let λ = λr + iλi where λr and λi are realmeasures. Then, as limB∈C 〈λ, χB〉 = 0, we see that
lim
B∈C

〈λr, χB〉 = lim
B∈C

〈λi, χB〉 = 0,as χB is real-valued. There exists a Hahn deomposition (see [18, Setion 29℄)for λr, that is, measurable sets E+ and E− suh that Ω = E+∪E− and with
λ+(E) = λr(E ∩ E+), λ−(E) = −λr(E ∩ E−) (E ⊆ Ω),de�ning two positive measures λ+ and λ− with |λr| = λ+ + λ− and λr =

λ+ − λ−. As |λr| is regular, for eah ε > 0, there exists an open set U and alosed set K suh that K ⊆ E+ ⊆ U with |λr|(U \K) < ε. As Ω is Stonian,we an �nd an open and losed set V suh that K ⊆ V ⊆ U (this follows bya similar argument to that employed above to show that A0 = A). Then
|λr|(E+ \ V ) + |λr|(V \E+) ≤ |λr|(U \K) < ε.We hene see that for B ⊆ Ω,

λ+(B) = λ(B ∩E+) = |λr(B ∩ V ) + λr(B ∩ (E+\V )) − λr(B ∩ (V \E+))|
≤ ε+ |λr(B ∩ V )|.Consequently,

0 ≤ lim
B∈C

〈λ+, χB〉 ≤ ε+ lim
B∈C

〈λr, χV χB〉 = ε+ lim
B∈C

〈λr · χV , χB〉 = ε,so as ε > 0 was arbitrary, limB∈C 〈λ+, χB〉 = 0. We then have
0 ≤ λ+(A) ≤ inf

B∈C
λ+(B) = 0.



244 M. DawsA similar argument shows that λ−(A) = 0, therefore |λr|(A) = 0. Similarly,
|λi|(A) = 0, so that |λ|(A) = 0. Thus λ is normal, as required.We note that we annot drop the assumption that θ is an algebra ho-momorphism. This follows as, for example, Peªzy«ski showed in [27℄ that
ℓ∞ and L∞[0, 1] are isomorphi (but not isometri, and not isomorphias Banah algebras in their natural produts). However, of ourse, ℓ1 and
L1[0, 1] are not isomorphi, so no isomorphism ℓ∞ → L∞[0, 1] an be weak∗-ontinuous.Continuing the theme of unique preduals, we have the following, whihis [16, Proposition 5.10℄.Proposition 4.2. Let E be a re�exive Banah spae. Then the predual
E′⊗̂E is isometrially unique for B(E), meaning that when φ : F ′ → B(E) isan isometri isomorphism for some Banah spae F , there exists an isometry
ψ : E′ ⊗̂ E → F suh that ψ′ = φ.Definition 4.3. Let E be a Banah spae, and suppose that for eahompat set K ⊆ E and eah ε > 0, there exists a �nite-rank operator
T ∈ F(E) suh that ‖T (x)−x‖ < ε for eah x ∈ K. Then we say that E hasthe approximation property. When we an hoose T to be uniformly bounded,
E has the bounded approximation property , and when we an hoose T be aontration, E has the metri approximation property.See [31, Chapter 4℄ or [14, Chapter VIII, Setion 3℄ for further details.When E is a re�exive Banah spae, the approximation property implies themetri approximation property (see [31, Corollary 5.51℄). The approximationproperty is equivalent to the natural map E′ ⊗̂E → B(E) being injetive.Theorem 4.4. Let E be a re�exive Banah spae with the approximationproperty. Whenever (A,A∗) is a dual Banah algebra and θ : B(E) → A isa Banah algebra isomorphism, θ is weak∗-ontinuous.Proof. Again, we need to show that when X ⊆ B(E)′ is a predual, wehave X = κE′⊗̂E(E′ ⊗̂ E). As E is re�exive and has the approximationproperty, A(E)′ = E′ ⊗̂E and so A(E)′′ = B(E). We may hek that A(E)is Arens regular, and that the Arens produts on A(E)′′ agree with theusual produt on B(E). By standard results, as B(E) is unital, there existsa bounded approximate identity (eα) for A(E) (see [8, Proposition 2.9.16℄or [25, Setion 1.7.13℄ for further details).Let ι : A(E) → B(E) be the inlusion map, so that atually ι agrees withthe map κA(E). Then ι′ : B(E)′ → E′ ⊗̂ E satis�es ι′κE′⊗̂E = IE′⊗̂E . As Xis a predual, there exists a unique P ∈ B(E) suh that

〈µ, P 〉 = lim
α

〈µ, ι(eα)〉 = lim
α

〈ι′(µ), eα〉 = 〈IE , ι′(µ)〉 (µ ∈ X).
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〈µ, PT 〉 = 〈T · µ, P 〉 = lim

α
〈T · µ, ι(eα)〉 = lim

α
〈µ, ι(eαT )〉 = lim

α
〈ι′(µ), eαT 〉

= lim
α

〈T · ι′(µ), eα〉 = 〈IE , T · ι′(µ)〉 = 〈T, ι′(µ)〉and so, for eah α,
〈µ, P ι(eα)〉 = 〈ι(eα), ι′(µ)〉 = 〈µ, ι(eα)〉 (µ ∈ X),so that Pι(eα) = ι(eα). Similarly, ι(eα)P = ι(eα) for every α. Hene

〈µ, P 2〉 = lim
α

〈µ · P , ι(eα)〉 = lim
α

〈µ, P ι(eα)〉 = lim
α

〈µ, ι(eα)〉 = 〈µ, P 〉for µ ∈ X, hene P is a projetion. As (Pι(eα)) = (ι(eα)) is a boundedapproximate identity for A(E) ⊆ B(E), the image of P must be the wholeof E, that is, P is the identity. Thus
〈µ, T 〉 = 〈µ, PT 〉 = 〈T, ι′(µ)〉 = 〈κE′⊗̂Eι

′(µ), T 〉 (T ∈ B(E), µ ∈ X),and hene κE′⊗̂Eι
′ is the identity onX. This implies thatX ⊆ κE′⊗̂E(E′⊗̂E),so that X = κE′⊗̂E(E′ ⊗̂ E), as required.It would be nie to remove the ondition on E having the approxima-tion property, but this is utterly integral to the urrent proof. The generalquestion of whih dual Banah algebras have a unique predual seems veryinteresting. We have looked at, but have been unable to answer, the ques-tion of whether ℓ1(Z) has a unique predual. This is equivalent to the veryonrete question: let X ⊆ ℓ∞(Z) be a shift-invariant subspae suh that

X ′ is naturally identi�ed with ℓ1(Z). Is X = c0(Z)? Of ourse, as a Banahspae, ℓ1(Z) has plenty of preduals (see [15℄) but these do not appear to bepreduals whih make the produt on ℓ1(Z) weak∗-ontinuous.5. Dual Banah ∗-algebras. We start by studying dual Banah alge-bras (A,A∗) whih admit an involution, whih for us will be a ontinuous,onjugate-linear map ∗ : A → A suh that (ab)∗ = b∗a∗. Reall that we mayde�ne an involution ∗ on A′ by
〈µ∗, a〉 = 〈µ, a∗〉 (µ ∈ A′, a ∈ A).Then the involution is weak∗-ontinuous if and only if A∗ forms a self-adjointsubspae of A′.We shall now sketh some results on Banah spaes whih admit a sesqui-linear form whih is not neessarily positive (suh spaes are hene gener-alisations of Hilbert spaes). These are studied by Laustsen and the authorin [12℄. Let E be a Banah spae and let [·, ·] be a sesquilinear form on Ewhih is bounded in the sense that for some C > 0, |[x, y]| ≤ C‖x‖ ‖y‖ for

x, y ∈ E. There hene exists a bounded, onjugate-linear map J : E → E′



246 M. Dawssuh that [x, y] = 〈J(y), x〉 for any x, y ∈ E. Suppose that J is a homeomor-phism (whih fores E to be re�exive). Then there is an involution on B(E)given equivalently by
T ∗ = J−1 ◦ T ′ ◦ J or [T ∗(x), y] = [x, T (y)] (x, y ∈ E, T ∈ B(E)).It is shown in [12℄ that every bounded involution on B(E) arises in this way.Now let (A,A∗) be a dual Banah algebra with a ontinuous involution,let µ ∈ A∗ be self-adjoint and of norm one, and onsider the spae Eµ formedin Theorem 3.6. As this spae is isomorphi to a Lions�Peetre interpolationspae, it is isomorphi to the spaes onstruted in [12℄. In partiular, wemay de�ne a bounded form on Eµ by

[a · µ, b · µ] = 〈b∗a, µ〉 (a, b ∈ A)suh that the indued map J : E → E′ is a homeomorphism. It hene followsthat the representation A → B(E) is atually a ∗-homomorphism.The spae (E, [·, ·]) may ertainly fail to be a Hilbert spae. However, it isshown that in the speial ase when µ is a positive linear funtional, E is atleast isomorphi to the Hilbert spae generated by the GNS representationfor µ.Proposition 5.1. Let (A,A∗) be a dual Banah algebra with a ontin-uous involution. Then the following are equivalent :(1) the involution is weak∗-ontinuous;(2) A is weak∗-ontinuously ∗-isomorphi to a losed subspae of B(E)for some re�exive Banah spae E suh that B(E) admits an invo-lution.Proof. To show that (1) implies (2), by the preeding disussion, the onlything to hek is that the subset of A∗ of norm-one self-adjoint funtionalsnorms A. However, as the involution is weak∗-ontinuous, A∗ is itself self-adjoint, and hene every µ ∈ A∗ is of the form µ = µr + iµi for self-adjoint
µr, µi ∈ A∗. It hene follows that the quantity sup{|〈a, µ〉| : µ ∈ A∗, µ

∗ = µ,
‖µ‖ = 1} is at least equivalent to ‖a‖, as required.Now suppose that (2) holds. We an then identify A with its image in
B(E), so that A∗ beomes identi�ed with E′ ⊗̂E/⊥A∗. Let τ ∈ A∗, so thatas J is a homeomorphism, τ has a representation of the form

τ =
∞∑

n=1

J(xn) ⊗ yn + ⊥A∗,with ∑∞
n=1 ‖xn‖ ‖yn‖ <∞. Let

σ =

∞∑

n=1

J(yn) ⊗ xn + ⊥A∗ ∈ A∗.
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〈T, τ〉 =

∞∑

n=1

〈J(xn), T (yn)〉 =

∞∑

n=1

[T (yn), xn] =

∞∑

n=1

[T ∗(xn), yn] = 〈T ∗, σ〉,so that 〈T, σ∗〉 = 〈T ∗, σ〉 = 〈T, τ〉. Therefore σ∗ = τ , so τ∗ = σ, and hene
A∗ is self-adjoint, as required.It would be interesting to know if there exists a dual Banah algebra
(A,A∗) whih admits a ontinuous involution whih is not weak∗-ontinuous.Lemma 5.2. Let (A,A∗) be a dual Banah algebra, and suppose that Aadmits a weak∗-ontinuous involution. Then there is an equivalent norm ‖·‖0on A∗ suh that the involution beomes isometri on (A, ‖ · ‖∗0), where ‖ · ‖∗0is the dual norm to ‖ · ‖0.Proof. We would usually de�ne a new norm on A by setting |||a||| =
max(‖a‖, ‖a∗‖); we show here how to dualise this idea. For µ ∈ A∗, wede�ne

‖µ‖0 = inf{‖λ∗‖ + ‖µ− λ‖ : λ ∈ A∗},where, as A∗ is self-adjoint, λ∗ ∈ A∗. Clearly, ‖µ‖ ≤ ‖µ‖0 for µ ∈ A∗. Asthe involution is ontinuous, there exists M ≥ 1 suh that ‖a∗‖ ≤M‖a‖ foreah a ∈ A. Then ‖λ∗‖ ≤M‖λ‖ for eah λ ∈ A′, so that also ‖λ‖ ≤M‖λ∗‖.Thus
‖µ‖ ≤ ‖λ‖+ ‖µ−λ‖ ≤M‖λ∗‖+ ‖µ−λ‖ ≤M‖λ∗‖+M‖µ−λ‖ (λ ∈ A∗)so that ‖µ‖ ≤M‖µ‖0. Hene ‖ · ‖0 is equivalent to ‖ · ‖ on A∗.Then, for a ∈ A, we have

‖a‖∗0 = sup{|〈a, µ+ λ〉| : µ, λ ∈ A∗, ‖λ∗‖ + ‖µ‖ ≤ 1}
= sup{|〈a, µ〉| + |〈a, λ〉| : µ, λ ∈ A∗, ‖λ∗‖ + ‖µ‖ ≤ 1}
= max{sup{|〈a, µ〉| : ‖µ‖ ≤ 1}, sup{|〈a, λ〉| : ‖λ∗‖ ≤ 1}}
= max{‖a‖, sup{|〈a∗, λ〉| : ‖λ‖ ≤ 1}} = max(‖a‖, ‖a∗‖).Hene ‖a∗‖∗0 = ‖a‖∗0, as required.Following [8℄, we shall say that a Banah ∗-algebra is a Banah algebrawith an isometri involution. We now know that there is no loss of gen-erality to talk about dual Banah ∗-algebras as long as the involution isweak∗-ontinuous, whih in light of Proposition 5.1 seems neessary for ourpurposes. The next theorem shows that we an always embed a dual Banahalgebra with involution into a dual Banah algebra with weak∗-ontinuousinvolution. We remind the reader of Proposition 2.4.Theorem 5.3. Let (A,A∗) be a dual Banah algebra with a ontinuousinvolution. Then WAP(A′)′ admits a weak∗-ontinuous involution suh thatthe anonial map A → WAP(A′)′ beomes a ∗-homomorphism.



248 M. DawsProof. By Proposition 2.4, the �rst Arens produt on A′′ drops to a well-de�ned produt on WAP(A′)′ turning WAP(A′)′ into a dual Banah algebra.As shown in [12℄, it follows from Grothendiek's double limit riterion that
WAP(A′) is a self-adjoint subspae of A′; in partiular, this means that for
µ ∈ A∗, ertainly µ∗ ∈ WAP(A′).We de�ne an involution on A′′ by setting

〈Φ∗, λ〉 = 〈Φ, λ∗〉 (Φ ∈ A′′, λ ∈ A′).We then de�ne an involution on WAP(A′)′ by setting
(Φ+ WAP(A′)⊥)∗ = Φ∗ + WAP(A′)⊥ (Φ ∈ A′′),whih is well-de�ned, as WAP(A′) is self-adjoint. We may hek that, for

a ∈ A, λ ∈ WAP(A′) and Φ ∈ A′′, we have (a·λ)∗ = λ∗·a∗ and (λ·Φ)∗ = Φ∗·λ.We then see that for Φ, Ψ ∈ A′′ and λ ∈ WAP(A′),
〈(Φ� Ψ)∗, λ〉 = 〈Φ, Ψ · λ∗〉 = 〈Φ∗, (Ψ · λ∗)∗〉 = 〈Φ∗, λ · Ψ∗〉

= 〈Ψ∗ ♦ Φ∗, λ〉 = 〈Ψ∗ � Φ∗, λ〉,by Lemma 2.3. Thus WAP(A′)′ has a ontinuous involution whih, by de�-nition, is weak∗-ontinuous, and extends the involution on A.Instead of using WAP(A′) in the above onstrution, we ould insteadhave used X = A∗ + A∗
∗ ⊆ WAP(A′), whih has the advantage that if theinvolution on A is already weak∗-ontinuous, then X ′ = A.6. Connes-amenability and injetivity. We shall show below that if

A is Connes-amenable, then A is unital. In fat, a stronger result holds.Proposition 6.1. Let (A,A∗) be a dual Banah algebra suh that
(A♭,A♭

∗) is Connes-amenable. Then A is unital.Proof. Let E = A∗ as a Banah spae, and for µ ∈ A∗, write µ̂ for theanonial image of µ in E (and similarly for elements of A in E′). Then turn
E into an A♭-bimodule by setting

(a+ α) · µ̂ = â · µ+ αµ̂, µ̂ · (a+ α) = αµ̂ (a+ α ∈ A♭, µ̂ ∈ E).We laim that E′ then beomes a normal A♭-bimodule; for example, if
ai + αi → a+ α weak∗ in A♭ then, for µ̂ ∈ E and b̂ ∈ E′,

lim
i
〈̂b · (ai + αi), µ̂〉 = lim

i
〈̂b, âi · µ+ αiµ̂〉 = lim

i
〈bai + αib, µ〉

= 〈ba+ αb, µ〉 = 〈̂b · (a+ α), µ̂〉,so that b̂ · (ai + αi) → b̂ · (a+ α) weak∗ in E′, as required.Now let d : A♭ → E′ be de�ned by d(a+ α) = â. Then
d((a+ α)(b+ β)) = âb + αb̂+ βâ = â · (b+ β) + (a+ α) · b̂,



Dual Banah algebras: representations and injetivity 249so that d is a derivation. Clearly d is weak∗-ontinuous, hene as (A♭,A♭
∗) isConnes-amenable, d is inner, so that for some e ∈ A, we have

â = d(a+ α) = ê · (a+ α) − (a+ α) · ê = êa (a ∈ A).Thus A has a left identity, and in an analogous manner, A has a rightidentity, so that A is unital.Thus the naive unitisation is useless as far as Connes-amenability is on-erned.Let E be a Banah spae, and let A ⊆ B(E) be a subset. We de�ne theommutant of A to be
Ac = {T ∈ B(E) : TS = ST (S ∈ A)},so that Ac is a losed subalgebra of B(E). We then de�ne Acc = (Ac)c, andsee that A ⊆ Acc.Definition 6.2. Let E be a Banah spae, and let A ⊆ B(E) be asubalgebra. A quasi-expetation for A is a projetion Q : B(E) → Ac suhthat Q(cTd) = cQ(T )d for c, d ∈ Ac and T ∈ B(E).Proposition 6.3. Let A be a Banah algebra, and let π : A → B(E) bea homomorphism with E a re�exive Banah spae. Suppose that either(1) A is amenable, or(2) A is a dual Banah algebra, π is weak∗-ontinuous, and A is Connes-amenable.Then there exists a quasi-expetation Q : B(E) → π(A)c.Proof. We may either translate, almost verbatim, the proof of [5, Theo-rem 3℄, or else look at [29, Theorem 4.4.11℄.Very similar ideas to the above are onsidered by Corah and Galé in [7℄,and in partiular in Setion 3 of that paper, where they ask if the existene ofa quasi-expetation is equivalent to some form of amenability. We shall nowanswer this question in the a�rmative, showing that quasi-expetations andConnes-amenability are intimately linked (as is true in the von Neumannalgebra ase: see [5℄).Definition 6.4. Let (A,A∗) be a dual Banah algebra, and let E be aBanah A-bimodule. Then x ∈ σWC(E) if and only if the maps A → E,

a 7→ a · x, a 7→ x · a,are σ(A,A∗)-σ(E,E′) ontinuous.It is lear that σWC(E) is a losed submodule of E. The A-bimodulehomomorphism ∆A has adjoint ∆′
A : A′ → (A ⊗̂ A)′. In [28, Corollary 4.6℄it is shown that ∆′

A(A∗) ⊆ σWC((A ⊗̂A)′). Consequently, we an view ∆′
A



250 M. Dawsas a map A∗ → σWC((A ⊗̂A)′), denoted by ∆̃A, and hene we have a map
∆̃′

A : σWC((A ⊗̂ A)′)′ → A′
∗ = A. The following is [28, Theorem 4.8℄.Theorem 6.5. Let A be a dual Banah algebra with predual A∗. Thenthe following are equivalent :(1) A is Connes-amenable;(2) A has a σWC-virtual diagonal, whih is M ∈ σWC((A ⊗̂A)′)′ suhthat a ·M = M · a and a∆̃′

A(M) = a for eah a ∈ A.We an identify σWC((A ⊗̂ A)′)′ in a slightly more onrete way. Firstof all, reall that (A⊗̂A)′ = B(A,A′), where we hoose the onvention that
〈T, a⊗ b〉 = 〈T (b), a〉 (a⊗ b ∈ A ⊗̂ A, T ∈ B(A,A′)).Then, for µ ∈ A∗, we identify ∆̃A(µ) with the map b 7→ b · µ. The followingis [11, Proposition 3.2℄.Proposition 6.6. Let (A,A∗) be a dual Banah algebra. For T ∈

B(A,A′) = (A ⊗̂ A)′, de�ne maps φr, φl : A ⊗̂ A → A′ by
φr(a⊗ b) = T ′κA(a) · b, φl(a⊗ b) = a · T (b) (a⊗ b ∈ A ⊗̂ A).Then T ∈ σWC(B(A,A′)) if and only if φr and φl are weakly ompat andhave ranges ontained in κA∗

(A∗).As the unit ball of A⊗̂A is the losure of the onvex hull of {a⊗b : ‖a‖ =
‖b‖ ≤ 1}, we see that, for example, φl is weakly ompat if and only if theset {a · T (b) : ‖a‖ = ‖b‖ ≤ 1} is relatively weakly (sequentially) ompat.We shall now prove a representation result for maps in σWC(B(A,A′)).Firstly, we again apply some interpolation spae theory.Proposition 6.7. Let (A,A∗) be a unital dual Banah algebra, and let
T ∈ σWC(B(A,A′)). Then there exists an absolute onstant K > 0, a Ba-nah left A-module E and a Banah right A-module F suh that E and Fare normal and re�exive, and for some unit vetors µ0 ∈ E′ and λ0 ∈ F ′,we have

|〈T (b), a〉| ≤ K‖T‖ ‖µ0 · a‖E′‖b · λ0‖F ′ (a, b ∈ A).Furthermore, µ0 · A is dense in E′ and A · λ0 is dense in F ′.Proof. We may suppose that ‖T‖ = 1. Form φl using T , and for n ≥ 1de�ne a norm on A∗ by
‖µ‖n = inf{2−n/2‖τ‖ + 2n/2‖µ− φl(τ)‖ : τ ∈ A ⊗̂ A} (µ ∈ A∗).As in the proof of Theorem 3.6, we may hek that ‖ · ‖n is an equivalentnorm on A∗, and that we may de�ne

E =
{
µ ∈ A∗ : ‖µ‖E :=

(∑

n≥1

‖µ‖2
n

)1/2
<∞

}
.



Dual Banah algebras: representations and injetivity 251Then E is a Banah spae, φl(A ⊗̂ A) is dense in E, and for τ ∈ A ⊗̂ A, wehave ‖φl(τ)‖ ≤ ‖φl(τ)‖E ≤ ‖τ‖π. Furthermore, E is a Banah left A-moduleas φl is a left A-module homomorphism. Again, it follows from general in-terpolation spae results that E is re�exive, as φl is weakly ompat.Again, let ιE : E → A∗ be the inlusion map, so that ι′E : A → E′has dense range. Let µ ∈ E, ι′E(a) ∈ E′, and let (bα) be a net in A whihonverges weak∗ to b. Then
〈ι′E(a), bα · µ〉 = 〈abα, µ〉 → 〈ab, µ〉 = 〈ι′E(a), b · µ〉,so we see that the map A → E, b 7→ b · µ, is weak∗-ontinuous, that is, E isnormal. For eah n ≥ 1, let ‖ · ‖∗n be the dual norm to ‖ · ‖n, de�ned on A.For a ∈ A, we have

‖a‖∗n = sup{|〈a, µ+ φl(τ)〉| : 2−n/2‖τ‖ + 2n/2‖µ‖ ≤ 1}
= sup{2−n/2|〈a, µ〉| + 2n/2|〈φ′l(a), τ〉| : ‖τ‖ + ‖µ‖ ≤ 1}
= max(2−n/2‖a‖, 2n/2‖φ′l(a)‖).As E isometrially embeds into the ℓ2-diret sum of the spaes (A∗, ‖·‖n)n≥1,we see that E′ is isometrially a quotient of the ℓ2-diret sum of the spaes

(A, ‖ · ‖∗n)n≥1. We hene see that, if we drop the map ι′E and identify A witha dense subspae of E′, then for a ∈ A,
‖a‖E′ = inf

{(∑

n≥1

max(2−n/2‖an‖, 2n/2‖φ′l(an)‖)2
)1/2

: a =
∑

n≥1

an

}
.From [3, Setion 1.5, Proposition 1℄ it follows that there is an absolute on-stant K > 0 suh that if we de�ne

‖a‖1 = inf
{(∑

n≥1

(2−n/2‖a− an‖ + 2n/2‖φ′l(an)‖)2
)1/2

: (an) ⊆ A
}
,

then K−1‖ · ‖1 ≤ ‖ · ‖E′ ≤ K‖ · ‖1.We analogously use φr to form a re�exive, normal, Banah right A-module F , and we �nd a norm ‖·‖2 onA suh thatK−1‖·‖2 ≤ ‖·‖F ′ ≤ K‖·‖2.Notie that for a, b ∈ A, 〈T (b), a〉 = 〈φ′l(a)(b), eA〉 and
‖φ′l(a)(b)‖ = sup{|〈T (b), ac〉| : ‖c‖ ≤ 1} = sup{|〈φ′r(b)(eA), ac〉| : ‖c‖ ≤ 1}

≤ ‖φ′r(b)‖ ‖a‖.For a, b ∈ A and ε > 0, hoose (an), (bn) ⊆ A suh that a =
∑

n≥1 an and
(∑

n≥1

max(2−n/2‖an‖, 2n/2‖φ′l(an)‖)2
)1/2

≤ ‖a‖E′ + ε,

(∑

n≥1

(2−n/2‖b− bn‖ + 2n/2‖φ′r(bn)‖)2
)1/2

≤ ‖b‖2 + ε.



252 M. DawsWe then use the Cauhy�Shwarz inequality to see that
|〈T (b), a〉| ≤ ‖φ′l(a)(b)‖ ≤

∑

n≥1

‖φ′l(an)(b)‖

≤
∑

n≥1

‖φ′l(an)(bn − b)‖ + ‖φ′l(an)(bn)‖

≤
∑

n≥1

2n/2‖φ′l(an)‖2−n/2‖bn − b‖ +
∑

n≥1

2n/2‖φ′r(bn)‖2−n/2‖an‖

≤ 2(‖a‖E′ + ε)(‖b‖2 + ε).As ε > 0 was arbitrary, we see that |〈T (b), a〉| ≤ 2K‖a‖E′‖b‖F ′ . We mayhene set µ0 = ι′E(eA) and λ0 = ι′F (eA), so that as ι′E has dense range, µ0 ·Ais dense in E′, and similarly for A · λ0. It remains to hek that these areunit vetors. However, as ι′ is norm-dereasing, ‖µ0‖E′ ≤ 1, while onversely
‖ι′E(eA)‖ = sup{|〈eA, φl(τ)〉| : ‖φl(τ)‖E ≤ 1}

≥ sup{|〈eA, φl(a⊗ b)〉| : ‖a⊗ b‖π = ‖a‖ ‖b‖ ≤ 1}
= sup{|〈a, T (b)〉| : ‖a| = ‖b‖ = 1} = ‖T‖ = 1.Similarly, ‖λ0‖F ′ = 1, and the proof is omplete.Notie that if T = ∆̃A(µ) for some µ ∈ A∗, then φl(a⊗ b) = a · (b · µ) =

ab · µ. It hene follows that the spae E onstruted in the above proof isequal to the spae onstruted in Theorem 3.6.Theorem 6.8. Let (A,A∗) be a unital dual Banah algebra, and let T ∈
B(A,A′). Then the following are equivalent :(1) T ∈ σWC(B(A,A′));(2) there exist a normal re�exive Banah left A-module E, x ∈ E, µ ∈ E′and S ∈ B(E) suh that 〈T (b), a〉 = 〈µ · a, S(b · x)〉 for eah a, b ∈ A.Furthermore, in this ase, there is an absolute onstant K > 0 suh that wemay hoose E, x, µ and S with ‖x‖ ‖µ‖ ‖S‖ ≤ K‖T‖.Proof. If (2) holds, then let π : A → B(E) be the assoiated represen-tation, and let π∗ : E′ ⊗̂ E → A′ be the restrition of π′ to E′ ⊗̂ E. As Eis normal, the representation is weak∗-ontinuous, and so π∗ maps into A∗,and π′∗ = π. For a, b ∈ A, we have

〈T (b), a〉 = 〈µ, π(a)Sπ(b)(x)〉 = 〈a, π∗(Sπ(b)(x) ⊗ µ)〉
= 〈b, π∗(x⊗ S′π(a)′(µ))〉,so that T (A) ⊆ A∗ and T ′κA(A) ⊆ A∗.Let (an) and (bn) be bounded sequenes in A, and let x ∈ E. As Eis re�exive, the unit ball of E is weakly sequentially ompat, and so, by



Dual Banah algebras: representations and injetivity 253moving to subsequenes if neessary, we may suppose that for some y ∈ E,
〈µ, π(an)Sπ(bn)(x)〉 → 〈µ, y〉 (µ ∈ E′).Then, for c ∈ A and µ ∈ E′,

lim
n→∞

〈an · T (bn), c〉 = lim
n→∞

〈µ, π(can)Sπ(bn)(x)〉
= lim

n→∞
〈π(c)′(µ), π(an)Sπ(bn)(x)〉 = 〈π(c)′(µ), y〉 = 〈c, π∗(y ⊗ µ)〉.Combining this with the omments after Proposition 6.6, we see that φl (asde�ned using T ) is weakly ompat. A similar alulation shows that φr isweakly ompat, and so we onlude that T ∈ σWC(B(A,A′)) as required.Conversely, let T ∈ σWC(B(A,A′)), and form the spaes E and F usingProposition 6.7. The subspae µ0 ·A is dense in E′ and A·λ0 is dense in F ′.De�ne R ∈ (E′ ⊗̂ F ′)′ = B(F ′, E) by
〈R,µ0 · a⊗ b · λ0〉 = 〈T (b), a〉 (a, b ∈ A),so that ‖R‖ ≤ K‖T‖. Let G = E⊕2 F

′ (that is, the norm on G is ‖(e, f)‖ =
(‖e‖2 + ‖f‖2)1/2 for e ∈ E and f ∈ F ) so that G′ = E′ ⊕2 F , and G is anormal, re�exive, Banah left A-module. De�ne S ∈ B(G) by

S(z, b · λ0) = (R(b · λ0), 0) (z ∈ E, b · λ0 ∈ F ′),and let x = (0, λ0) ∈ G, µ = (µ0, 0) ∈ G′. Then, for a, b ∈ A,
〈µ · a, S(b · x)〉 = 〈(µ0 · a, 0), R(b · λ0, 0)〉 = 〈R,µ0 · a⊗ b · λ0〉 = 〈T (b), a〉,as required.Let A be a Banah algebra and E be a left A-module. Then we write

AB(E) for the olletion of left A-module homomorphisms, that is, maps T ∈
B(E) suh that T (a · x) = a · T (x) for a ∈ A and x ∈ E. Similarly, we de�ne
BA(E) and ABA(E) to be the olletion of right A-module homomorphismsand A-bimodule homomorphisms, respetively.Suppose now that A is a losed subalgebra of B(E) for some re�exiveBanah spae E. Then B(E) beomes a Banah A-bimodule and a Banah
Ac-bimodule in the obvious way. We turn AcBAc(B(E)) into a Banah A-module by setting

(a · S)(T ) = aS(T ), (S · a)(T ) = S(T )a (a ∈ A, T ∈ B(E))for S ∈ AcBAc(B(E)). Notie that B(B(E)) is a dual Banah spae withpredual B(E) ⊗̂ (E ⊗̂ E′). Let X ⊆ B(E) ⊗̂ (E ⊗̂ E′) be the losure of thelinear span of{
cT ⊗ x⊗ µ− T ⊗ x⊗ c′(µ),

T c⊗ x⊗ µ− T ⊗ c(x) ⊗ µ
: c ∈ Ac, T ∈ B(E), x ∈ E, µ ∈ E′

}
.Then, for example, if S ∈ B(B(E)) satis�es 〈S, cT ⊗ x⊗ µ− T ⊗ x⊗ c′(µ)〉

= 0 for eah c ∈ Ac, T ∈ B(E), x ∈ E and µ ∈ E′, then S(cT ) = cS(T ). We



254 M. Dawshene see that X⊥ = AcBAc(B(E)), so that AcBAc(B(E)) has the predual
B(E) ⊗̂E ⊗̂ E′/X.De�ne θ : A ⊗̂ A → AcBAc(B(E)) by

θ(a⊗ b)(T ) = aTb (a, b ∈ A, T ∈ B(E)),so that θ is an A-bimodule homomorphism. We then de�ne ψ : B(E) ⊗̂E ⊗̂
E′/X → B(A,A′) by, for a, b ∈ A, x ∈ E, µ ∈ E′ and T ∈ B(E),

〈ψ(T ⊗ x⊗ µ+X), a⊗ b〉 = 〈µ, θ(a⊗ b)(T )(x)〉 = 〈µ, aTb(x)〉.A simple hek shows that this is well-de�ned, and that ‖ψ‖ ≤ 1. We turn
B(E) ⊗̂E ⊗̂ E′ into a Banah A-bimodule by setting

a · (T ⊗ x⊗ µ) = T ⊗ a(x) ⊗ µ, (T ⊗ x⊗ µ) · a = T ⊗ x⊗ a′(µ)

(a ∈ A, T ∈ B(E), x ∈ E, µ ∈ E′).Then X is a sub-A-bimodule, and this module ation agrees with the moduleation already de�ned on AcBAc(B(E)). We may verify that ψ is an A-bimodule homomorphism.We now aim to onstrut a Banah spae E suh that ψ is a bijetion(onto a suitable losed subspae of B(A,A′)) for this E.Definition 6.9. For a Banah left A-module E, and x ∈ E, let A · xbe the losure of {a · x : a ∈ A}, so that A · x is a losed submodule of E.Similarly, for µ ∈ E′, de�ne µ · A. We then say that E is yli if, for some
x0 ∈ E, we have A · x0 = E; a similar de�nition holds for E′.For Banah spaes E and F , we let ℓ2(E ⊕ F ) = E ⊕2 F be the diretsum of E and F with the norm ‖(e, f)‖ = (‖e‖2 +‖f‖2)1/2 for e ∈ E, f ∈ F .When E and F are re�exive, normal, Banah left A-modules, it is learthat so is E ⊕2 F . We similarly de�ne ℓ2(⊕αEα), where (Eα) is a family ofBanah spaes.The following lemma is a tehnial result. It would be easier to de�ne Eto be the ℓ2-diret-sum of all re�exive, normal, Banah left A-modules, butthis olletion is not in general a set.Lemma 6.10. Let E be a set of re�exive, normal , yli, Banah left
A-modules. There exists a re�exive, normal , Banah left A-module E suhthat :(1) eah member of E is isometrially isomorphi to a 1-omplementedsubmodule of E;(2) for x1, x2 ∈ E and µ1, µ2 ∈ E′, if X(x1, x2) = {a · (x1, x2) : a ∈ A}

⊆ A · x1 ⊕2 A · x2 and Y (µ1, µ2) = {(µ1, µ2) · a : a ∈ A} ⊆ µ1 · A⊕2

µ2 · A, then X(x1, x2)⊕2 Y (µ1, µ2)
′ is isometrially isomorphi to a

1-omplemented submodule of E.



Dual Banah algebras: representations and injetivity 255Proof. Let E0 = E , and then use trans�nite indution to de�ne Eα, for anordinal α, as follows. If α is a limit ordinal, we let Eα =
⋃

λ<α Eλ. Otherwise,let Eα = ℓ2(
⊕

E∈Eα
E) and for x1, x2 ∈ Eα and µ1, µ2 ∈ E′

α, form X(x1, x2)and Y (µ1, µ2) as above. Then let Eα+1 be Eα unioned with the olletionof all suh spaes X(x1, x2) ⊕2 Y (µ1, µ2)
′. Notie that eah member of Eαis anonially a re�exive, normal, Banah A-module. Notie that X(x1, x2)is always a yli module, while Y (µ1, µ2)

′ is the dual of a yli (right)module.We then let E = ℓ2(
⊕

E∈Eℵ1

E) and give E the obvious left A-modulestruture. Then eah member of E is a 1-omplemented subspae of E. In-deed, we may view Eα = ℓ2(
⊕

E∈Eα
E) and E′

α as submodules of E and E′,respetively, for eah α<ℵ1. For notational onveniene, let Eℵ1
={Ei : i∈I}for some indexing set I. Then let x1, x2 ∈ E and µ1, µ2 ∈ E′, so that, for

k = 1, 2, xk = (x
(k)
i )i∈I with ‖xk‖ = (

∑
i∈I ‖x

(k)
i ‖2)1/2, and similarly for µk.As ℵ1 is the �rst unountable ordinal, we see that for some α < ℵ1, foreah k = 1, 2 the ondition x(k)

i 6= 0 or µ(k)
i 6= 0 implies that Ei ∈ Eα. Hene

x1, x2 ∈ Eα and µ1, µ2 ∈ E′
α, so that by onstrution, X(x1, x2)⊕2Y (µ1, µ2)

′is a 1-omplemented submodule of Eα+1 ⊆ E as required.Theorem 6.11. Let (A,A∗) be a unital dual Banah algebra. Thereexists an isometri, weak∗-ontinuous representation π : A → B(E) suhthat ψ (as assoiated with π) maps into σWC(B(A,A′)) and is a bijetion.Proof. By Theorem 6.8, we see that ψ maps into σWC(B(A,A′)) forany isometri weak∗-ontinuous representation π : A → B(E). Let E bethe olletion of Banah spaes onstruted in Theorem 6.8 for eah norm-one member of σWC(B(A,A′)). Then let E be the Banah spae given byLemma 6.10, so that it is lear that ψ is surjetive, by Theorem 6.8. Hene
ψ′ is an isomorphism onto its range. We shall now show that ψ′ is surjetive,whih will omplete the proof.Fix S ∈ AcBAc(B(E)), and de�ne M ∈ σWC(B(A,A′))′ in the followingway. For eah T ∈ σWC(B(A,A′)), let x ∈ E, µ ∈ E′ and S ∈ B(E)be suh that 〈T, a⊗ b〉 = 〈µ · a, S(b · x)〉 for eah a, b ∈ A. Then de�ne
〈M,T 〉 = 〈µ,S(S)(x)〉. Suppose that this is well-de�ned. Then, for eah
x ∈ E, µ ∈ E′ and S ∈ B(E),

〈ψ′(M), S ⊗ x⊗ µ+X〉 = 〈M,ψ(S ⊗ x⊗ µ+X)〉 = 〈µ,S(S)(x)〉
= 〈S, S ⊗ x⊗ µ+X〉,so that ψ′(M) = S as required.We shall now show that M is well-de�ned, at least for our spei� E.Let T ∈ σWC(B(A,A′)), and suppose that, for i = 1, 2, we have xi ∈ E,

µi ∈ E′ and Si ∈ B(E) suh that 〈T, a⊗ b〉 = 〈µi · a, Si(b · xi)〉 for a, b ∈ A.Pik t ∈ (0, 1) suh that t‖S1‖ = (1− t)‖S2‖. A quik alulation shows that



256 M. Dawsthen K := t‖S1‖ = ‖S1‖ ‖S2‖(‖S1‖ + ‖S2‖)−1. For eah a, b ∈ A, by theCauhy�Shwarz inequality,
|〈T, a⊗ b〉| = t|〈µ1 · a, S1(b · x1)〉| + (1 − t)|〈µ2 · a, S2(b · x2)〉|

≤ t‖S1‖ ‖µ1 · a‖ ‖b · x1‖ + (1 − t)‖S2‖ ‖µ2 · a‖ ‖b · x2‖
≤ K(‖µ1 · a‖2 + ‖µ2 · a‖2)1/2(‖b · x1‖2 + ‖b · x2‖2)1/2.Let F be the losure of A · (x1, x2) in A · x1 ⊕2 A · x2, and let G be thelosure of (µ1, µ2) · A in µ1 · A⊕2 µ2 · A. The above alulation allows us tode�ne R ∈ (G ⊗̂ F )′ = B(F,G′) by

〈R, (µ1 · a, µ2 · a) ⊗ (b · x1, b · x2)〉 = 〈T, a⊗ b〉 (a, b ∈ A),and we see that ‖R‖ ≤ K. Then set H = G′ ⊕2 F , and let PF and PG′ bethe projetions onto F and G′ respetively. As H ′ = G⊕2F
′, let PG and PF ′be de�ned similarly, so PG = P ′

G′ and PF ′ = P ′
F . Let x0 = (0, (x1, x2)) ∈ H,

µ0 = ((µ1, µ2), 0) ∈ H ′, and de�ne S0 ∈ B(H) by S0(g
∗, f) = (R(f), 0) for

g∗ ∈ G′ and f ∈ F . Then, for a, b ∈ A,
〈µ0 · a, S0(b · x0)〉 = 〈(µ1 · a, µ2 · a), R(b · x1, b · x2)〉 = 〈T, a⊗ b〉.By Lemma 6.10, H is a 1-omplemented submodule of E, so we an �ndnorm-dereasing left A-module homomorphisms P : E → H and ι : H → Esuh that Pι = IH . For i = 1, 2, we may de�ne maps Ui ∈ AB(H,A · xi) and

Vi ∈ BA(H ′, µi · A) by, for a ∈ A, f∗ ∈ F ′ and g∗ ∈ G′,
Ui(g

∗, a · (x1, x2)) = a · xi, Vi((µ1, µ2) · a, f∗) = µi · a.Then, by onstrution, Ui and Vi are norm-dereasing. For a, b ∈ A, we seethat
〈T, a⊗ b〉 = 〈µi · a, Si(b · xi)〉 = 〈µ0 · a, V ′

i SiUi(b · x0)〉
= 〈µ0 · a, PG′V ′

i SiUiPF (b · x0)〉 = 〈µ0 · a, PG′S0PF (b · x0)〉.As A·x0 is dense in F and µ0 ·A is dense in G, we onlude that PG′V ′
i SiUiPF

= PG′S0PF . As S ∈ AcBAc(B(E)), we see that
〈µi,S(Si)(xi)〉 = 〈ViPG(µ0),S(Si)UiPF (x0)〉

= 〈µ0, P ιPG′V ′
i S(Si)UiPFPι(x0)〉

= 〈µ0, PS(ιPG′V ′
i SiUiPFP )ι(x0)〉

= 〈µ0, PS(ιPG′S0PFP )ι(x0)〉.We hene onlude that 〈µi,S(Si)(xi)〉 has the same value for i = 1 as for
i = 2, and hene that M is well-de�ned, as required.Definition 6.12. Let (A,A∗) be a dual Banah algebra. We say that
A is injetive if whenever π : A → B(E) is a weak∗-ontinuous, unitalrepresentation, there is a quasi-expetation Q : B(E) → π(A)c.



Dual Banah algebras: representations and injetivity 257Theorem 6.13. Let (A,A∗) be a unital dual Banah algebra. Then A isConnes-amenable if and only if A is injetive.Proof. We have already seen that when A is Connes-amenable, A isinjetive. Conversely, onsider the weak∗-ontinuous representation π : A →
B(E) onstruted in Theorem 6.11, so that ψ′ is an isomorphism. As A isinjetive, there exists a quasi-expetation Q : B(E) → π(A)c. Let M =
(ψ′)−1(Q) ∈ σWC((A⊗̂A)′)′. As Q maps into π(A)c, it follows that a ·Q =
Q · a for a ∈ A, so that a ·M = M · a.The unit ball of A⊗̂A is weak∗-dense in the unit ball of σWC((A⊗̂A)′)′,so there exists a bounded net (τα) in A ⊗̂A suh that M is the weak∗-limitof (τα). For eah α, let τα =

∑
n≥1 a

(α)
n ⊗ b

(α)
n . For x ∈ E and µ ∈ E′, thereexists λ ∈ A∗ suh that 〈a, λ〉 = 〈µ, π(a)(x)〉 for a ∈ A. We then see that for

a, b ∈ A,
〈ab, λ〉 = 〈∆̃A(λ), a⊗ b〉 = 〈µ, π(ab)(x)〉 = 〈µ, π(a)IEπ(b)(µ)〉.Then, from the proof of Theorem 6.11, we dedue that

〈µ,Q(IE)(x)〉 = 〈M, ∆̃A(λ)〉 = 〈∆̃′
A(M), λ〉 = lim

α

∑

n≥1

〈µ, π(a(α)
n b(α)

n )(x)〉.

As Q is a projetion onto π(A)c and IE ∈ π(A)c, we see Q(IE) = IE , andso, as x and µ were arbitrary, we must have limα
∑

n≥1 a
(α)
n b

(α)
n = eA in theweak∗-topology on A. That is, ∆̃′

A(M) = eA, showing that M is a σWC-virtual diagonal, whih implies that A is Connes-amenable, as required.There exists a rather strong deomposition theory for weak∗-ontinuoushomomorphisms between von Neumann algebras (see [32, Theorem 5.5℄).From this, it follows that if A ⊆ B(H) is a von Neumann algebra admittinga quasi-expetation, and A is isomorphi to B ⊆ B(K), then B admits aquasi-expetation (see [29, Lemma 6.1.2℄). Hene we need only look at onerepresentation for A to deide if A is Connes-amenable.In ontrast, it follows from [30, Corollary 4.5℄ that A = B(ℓp ⊕ ℓq) is notConnes-amenable when p, q ∈ (1,∞) \ {2} are distint, while trivially, thereis a quasi-expetation for A under the trivial representation to B(ℓp ⊕ ℓq).Our theorem shows that there exists some re�exive Banah spae E andsome weak∗-ontinuous representation π : A → B(E) suh that A has noquasi-expetation for B(E). It would be interesting to determine the Banahspae properties of E.There exists a more ategory-theoreti de�nition of injetivity for vonNeumann algebras (see [33, Chapter XV, Setion 1℄): namely, they are in-jetive in the usual mapping sense, with respet to ompletely positive maps.Does a similar de�nition hold for dual Banah algebras?



258 M. DawsRemark 6.14. Let (A,A∗) be a dual Banah algebra, and let π : A →
B(E) be the representation given by Theorem 6.11. Then suppose that B =
Acc is Connes-amenable, so that there exists a quasi-projetion Q : B →
(Acc)c = Ac. Thus A♯ is Connes-amenable by Theorem 6.13, whih impliesin partiular that A is unital. Hene, if we wish to unitise A by using Acc,then we need to onsider �smaller� representations.Proposition 6.15. Let A be a Banah algebra. Then the following areequivalent :(1) WAP(A′)′ is Connes-amenable;(2) whenever π : A → B(E) is a ontinuous representation on a re�exiveBanah spae E, there exists a quasi-expetation Q : B(E) → π(A)c.Proof. Let π : A → B(E) be a ontinuous representation on a re�ex-ive Banah spae E, so that by Proposition 2.9, there is a unique weak∗-ontinuous representation π̂ : WAP(A′)′ → B(E) extending π. It is henesu�ient to show that π(A)c = π̂(WAP(A′)′)c. The inlusion ⊇ is lear.Conversely, let T ∈ π(A)c, so that

〈Tπ(a), τ〉 = 〈π(a)T , τ〉 (a ∈ A, τ ∈ E′ ⊗̂ E).Then let Φ ∈ WAP(A′)′ and let (aα) be a bounded net in A whih onvergesto Φ in the weak∗-topology on WAP(A′)′. Consequently, for x ∈ E, µ ∈ E′and T ∈ π(A)c,
〈µ, T π̂(Φ)(x)〉 = 〈Φ, π∗(T ′(µ) ⊗ x)〉 = lim

α
〈π∗(T ′(µ) ⊗ x), aα〉

= lim
α

〈µ, Tπ(aα)(x)〉 = lim
α

〈µ, π(aα)T (x)〉
= lim

α
〈π∗(µ⊗ T (x)), aα〉 = 〈Φ, π∗(µ⊗ T (x))〉

= 〈µ, π̂(Φ)T (x)〉,so that T ∈ π̂(WAP(A′)′)c, as required.7. WAP-ompati�ations for semigroups. Semigroup algebras �tvery niely into our framework, and the theory is well-explored. Here weshall sketh some results on ompati�ations; for further details, see [4℄.Let S be a semigroup whih is also a topologial spae. Then S is asemitopologial semigroup when the left and right ations of S are ontinuous,while S is a topologial semigroup when the multipliation map S × S → Sis ontinuous.We write ℓ∞(S) for the ommutative C∗-algebra of all bounded funtionson S. For s ∈ S, de�ne ̺s : S → S by ̺s(t) = ts for t ∈ S. De�ne Rs :
ℓ∞(S) → ℓ∞(S) by

Rs(f) = f ◦ ̺s (s ∈ S, f ∈ ℓ∞(S)),



Dual Banah algebras: representations and injetivity 259Let C(S) ⊆ ℓ∞(S) be the spae of ontinuous, bounded funtions on S.For f ∈ ℓ∞(S), we say that f is weakly almost periodi, denoted by f ∈
WAP(S), when f ∈ C(S), and RS(f) := {Rs(f) : s ∈ S} is relativelyweakly ompat in ℓ∞(S). As noted in [4, Chapter 4℄, if Sd denotes thesemigroup S with the disrete topology, then WAP(S) = WAP(Sd)∩C(S).Theorem 7.1. Let S be a semitopologial semigroup, and let f ∈ C(S).Then f ∈ WAP(S) if and only if

lim
n→∞

lim
m→∞

f(smtn) = lim
m→∞

lim
n→∞

f(smtn)whenever (sm) and (tn) are sequenes of distint elements of S, and theiterated limits exist. Then WAP(S) is a translation invariant sub-C∗-algebraof ℓ∞(S) whih ontains the onstant funtions.We shall now onentrate on the ase when S is disrete. We turn ℓ1(S)into a Banah algebra with the onvolution produt in the usual way (see[9℄ for further details about suh algebras). Using the double limit riterionabove, it is a simple matter to hek that WAP(S) = WAP(ℓ∞(S)) wherewe treat ℓ∞(S) as an ℓ1(S)-bimodule. Thus, we see that the Arens produtsdrop to a well-de�ned produt on WAP(S)′ turning WAP(S)′ into a dualBanah algebra.Similar onlusions an be drawn when S is a loally ompat group (see[9, Chapter 7℄ for example) but the arguments involved are more intriate.For example, in [36℄, it is shown that WAP(L∞(G)) = WAP(G) for a loallyompat group G. The argument there seems to rely upon ertain propertiesof groups, and it is far from lear that an analogous result will hold insituations where L1(T ) makes sense for a topologial semigroup T . See [21℄for reent progress in the study of when L1(T ) makes sense for suh a semi-group T .Let SWAP be the harater spae of the C∗-algebra WAP(S). De�ne amap ǫ : S → SWAP by letting ǫ(s) be point evaluation at s ∈ S. We mayhek that the produt on WAP(S)′ restrits to the harater spae SWAP ,so that SWAP beomes a semigroup, and ǫ beomes a homomorphism.For a semitopologial semigroup S, a semitopologial semigroup ompat-i�ation of S is a pair (ψ, T ) where T is a ompat, Hausdor�, semitopolog-ial semigroup, and ψ : S → T is a ontinuous homomorphism with denserange. We do not require that ψ be injetive, so this di�ers from the notionof a ompati�ation of a topologial group. A semitopologial semigroupompati�ation (ψ, T ) is universal if whenever R is another ompat semi-topologial semigroup and φ : S → R is a homomorphism, φ fators through
(ψ, T ). Clearly any two universal ompati�ations are isomorphi.Theorem 7.2. With notation as above, (ǫ, SWAP) is a universal semi-topologial semigroup ompati�ation of S.



260 M. DawsWe shall heneforth drop the ǫ and write SWAP for the WAP-ompat-i�ation of S. Notie that WAP(S) is isomorphi to C(SWAP) and so
WAP(S)′ is isomorphi to M(SWAP). We may hek that the produt on
WAP(S)′ agrees with the natural onvolution produt on M(SWAP).Example 7.3. Let S be a disrete semigroup. Then ℓ1(S) is a Banahalgebra, and c0(S) is a predual for the Banah spae ℓ1(S). We see that theprodut is weak∗-ontinuous if and only if S is a weakly anellative disretesemigroup, that is, the left and right ations are �nite-to-one maps. Thisfollows by an easy alulation: see [11, Proposition 5.1℄ for example.Example 7.4. Let S = (N,max), so that ℓ1(S) is a dual Banah algebrawith predual c0(S). Then SWAP is a ompat semitopologial semigroupontaining S as a dense subsemigroup. We may hek that SWAP is equalto S with an adjoined zero, denoted by ∞, whih satis�es ∞n = n∞ = ∞for n ∈ SWAP . The topology is then simply the one-point ompati�ation.Example 7.5. Let S = (N,min), so that ℓ1(S) is a Banah algebra, butas S is not weakly anellative, ℓ1(S) is not a dual Banah algebra withrespet to c0(S). We may hek that SWAP is equal to S with an adjoinedidentity, denoted again by ∞, so that ∞n = n∞ = n for n ∈ SWAP . Thetopology is again the one-point ompati�ation.For example, the WAP-ompati�ation of (Z,+) is a muh more mys-terious objet.7.1. Injetivity and semigroup algebras. We now apply the idea of in-jetivity to some semigroup algebras. As will be seen, the results we get arerather simple, while the neessary Banah spae mahinery is fairly involved,all suggesting that we really need some further tools to make this approahworthwhile.Let E be a Banah spae with a normalised basis (en). See [24℄ for furtherdetails on bases in Banah spaes. For eah n, there is a linear funtional
e∗n ∈ E′ given by 〈e∗n,

∑
i xiei〉 = xn. By a standard renorming of E, we maysuppose that the projetion onto the linear span of (ei)

n
i=1 is norm-dereasing.Let S = (N,min). There is then a natural representation π : ℓ1(S) →

B(E) given by
π(δn)(em) =

{
em, m ≤ n,
0, m > n, (n,m ∈ N)and linearity. That is, π(δn) is the projetion onto the linear span of the �rst

n basis elements. Let A = π(ℓ1(S)) ⊆ B(E).Eah element of B(E) has a natural representation as a matrix withrespet to the basis (en). We laim that Ac is just the diagonal matriesin B(E). Clearly a diagonal matrix is in Ac, while onversely, sine π(n) −
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π(n− 1) = e∗n ⊗ en, we see that for T ∈ Ac,
T (e∗n⊗en)(em) = δn,mT (en) = (e∗n⊗en)T (em) = 〈e∗n, T (em)〉en (n,m ∈ N);here δ denotes the Kroneker delta. We hene see that T (en) ∈ Cen for eah
n ∈ N, as required.We now laim that if there exists a quasi-expetation Q : B(E) → Ac,then Q must be the anonial projetion onto the diagonal of B(E). Let
n,m ∈ N, let a = e∗n ⊗ en, b = e∗m ⊗ em ∈ Ac and let T ∈ B(E). Then

〈e∗n, T (em)〉Q(e∗m ⊗ en) = Q(aTb) = aQ(T )b = 〈e∗n,Q(T )(em)〉e∗m ⊗ en,so that, if n 6= m, then e∗m ⊗ en 6∈ Ac, so 〈e∗n,Q(T )(em)〉 = 0. Thus
Q(T )(en) ∈ Cen for eah n, and we see that

〈e∗n, T (en)〉e∗n ⊗ en = 〈e∗n, T (en)〉Q(e∗n ⊗ en) = 〈e∗n,Q(T )(en)〉e∗n ⊗ en,and hene Q(T )(en) = 〈e∗n, T (en)〉, as required.Theorem 7.6. Let S = (N,min). Then WAP(ℓ1(S)′)′ is not Connes-amenable.Proof. By Proposition 6.15 (but really by Proposition 6.3) it su�esto �nd a re�exive Banah spae with a basis (en) suh that the anonialprojetion from B(E) onto its diagonal is not bounded.Following [24, Proposition 2.b.11℄, there exists a sequene (βn)n∈N ofpositive reals tending to in�nity suh that, for eah n ∈ N, we an �nd aBanah spae Hn suh that:1. there is an isomorphism φn : Hn → ℓ22n (that is, the spae C2n with theusual Eulidean norm) suh that ‖φn‖ ‖φ−1
n ‖ ≤ K for some absoluteonstant K > 0;2. Hn has a normalised basis (in our sense, as above) (ek)

2n
k=1;3. there exists (ak)

2n
k=1 ⊆ C with
∥∥∥

n∑

k=1

a2k−1e2k−1

∥∥∥ ≥ βn

∥∥∥
2n∑

k=1

akek

∥∥∥.Let Kn be the subspae spanned by (e2k−1)
n
k=1. As Hn is isomorphi to

ℓ22n, let Pn be the orthogonal projetion onto Kn (pulled bak by φn), sothat ‖Pn‖ ≤ K. Then Pn(ek) = ek when k is odd, while for even k, learly
〈e∗k, Pn(ek)〉 = 0, as Pn(ek) ∈ Kn. Let Qn be the anonial projetion of
B(Hn) onto its diagonal, so that Qn(Pn) =

∑n
k=1 e

∗
2k−1 ⊗ e2k−1. Then let

x =
∑2n

k=1 akek, so that
‖Qn(Pn)(x)‖ =

∥∥∥
n∑

k=1

a2k−1e2k−1

∥∥∥ ≥ βn‖x‖,so ‖Qn(Pn)‖ ≥ βn, and hene ‖Qn‖ ≥ K−1βn.



262 M. DawsLet E be the ℓ2-diret sum of the Hn, so that if Q is the anonialprojetion from B(E) onto its diagonal, we see that ‖Q‖ ≥ βn for every n,whih gives a ontradition. We hene see that WAP(ℓ1(S)′)′ is not Connes-amenable when S = (N,min).Notie that when π : ℓ1(N,min) → B(E) is a representation, then π isa well-de�ned linear operator ℓ1(N,max) → B(E), and it is easily hekedthat the map ℓ1(N,max) → B(E), δn 7→ IE − π(n), is a homomorphism.The ommutant for either of these maps is equal, and hene we see that
WAP(ℓ1(N,max)′)′ is also not Connes-amenable.It seems quite possible that various interesting Banah spaes will begenerated by starting with a omplex semigroup S for whih we know that
WAP(ℓ1(S)′)′ is not Connes-amenable, and then looking at the representa-tions generated by our results.We now brie�y mention how to use the notion of injetivity to show that adual Banah algebra is Connes-amenable. For example, let π : ℓ1(Z) → B(E)be a representation on some re�exive Banah spae E. We onstrut a quasi-expetation Q : B(E) → π(ℓ1(Z))c by

Q(T ) = lim
n→∞

1

n

n∑

k=1

π(δ−k)Tπ(δk),where the limit is in the weak∗-topology on B(E). Then, for m ≥ 0,
‖π(δm)Q(T ) −Q(T )π(δm)‖

= lim
n→∞

∥∥∥∥
1

n

n∑

k=1

(π(δm−k)Tπ(δk) − π(δ−k)Tπ(δk+m))

∥∥∥∥

= lim
n→∞

∥∥∥∥
1

n

m∑

k=1

π(δm−k)Tπ(δk)

∥∥∥∥ ≤ lim
n→∞

m

n
‖T‖ ‖π‖2 = 0,and a similar argument holds when m < 0. Thus Q is a projetion onto

π(ℓ1(Z))c, and it is simple to verify that Q is a quasi-projetion. Of ourse,in this argument, we have really used, rather diretly, the fat that Z is anamenable group.It seems more natural and pro�table to study the Connes-amenability ofalgebras of operators via injetivity, something we hope to pursue in futureresearh.8. Tensor produts. In this setion, we shall sketh some ideas abouttensor produts of Banah algebras whih behave well with respet to weaklyalmost periodi funtionals, and then go on to give a theory of tensor prod-uts of dual Banah algebras.We start by skething some results on tensor produts of Banah spaes.



Dual Banah algebras: representations and injetivity 263We follow the notation used in Banah spae theory, namely that foundin [31℄, and in [13℄ (exept where this lashes with notation in [31℄). Notethat this notation is di�erent from that found in [32℄, for example.Let E and F be Banah spaes. We have previously de�ned the projetivetensor produt E ⊗̂ F . The injetive tensor norm, ǫ, is de�ned by, for τ =∑n
k=1 xk ⊗ yk ∈ E ⊗ F ,
ǫ(τ) = sup

{∣∣∣
n∑

k=1

〈µ, xk〉〈λ, yk〉
∣∣∣ : µ ∈ E′, λ ∈ F ′, ‖µ‖ = ‖λ‖ = 1

}
.We write E ̂

⊗ F for the ompletion of E ⊗ F with respet to ǫ. Notie thatif we identify E ⊗ F with a subspae of the �nite rank operators F(E′, F ),then ǫ is the norm indued by the operator norm under this identi�ation.Let α be a norm on E⊗F . Then α is a reasonable rossnorm when ǫ(τ) ≤
α(τ) ≤ π(τ) for eah τ ∈ E ⊗ F . In this ase, learly α(x ⊗ y) = ‖x‖ ‖y‖for x ∈ E and y ∈ F . We write E ⊗̂α F for the ompletion of E ⊗ F withrespet to α.A uniform rossnorm is an assignment, to eah pair of Banah spaes
E and F , of a norm α with the following mapping property. Let G and Hbe Banah spaes, let T ∈ B(E,G) and S ∈ B(F,H), and de�ne T ⊗ S :
E⊗F → G⊗H by (T⊗S)(x⊗y) = T (x)⊗S(y) and linearity. Then we insistthat T ⊗S extends by ontinuity to a bounded linear map E ⊗̂αF → G⊗̂αHwith norm ‖T‖ ‖S‖. In the speial ase when this mapping property holdswith E = G, F = H and α a reasonable rossnorm on E ⊗ F , we say (in anon-standard way) that α is a quasi-uniform rossnorm.We de�ne an ation of E′ ⊗ F ′ on E ⊗ F by setting

〈µ⊗ λ, x⊗ y〉 = 〈µ, x〉〈λ, y〉 (x ∈ E, y ∈ F, µ ∈ E′, λ ∈ F ′),and extending by linearity. We de�ne the dual norm αs on E′ ⊗ F ′ by
αs(σ) = sup{|〈σ, τ〉| : τ ∈ E ⊗ F, α(τ) ≤ 1} (σ ∈ E′ ⊗ F ′).Then it may be heked that αs is a reasonable rossnorm when α is, andsimilarly for uniform rossnorms. When E and F are re�exive, and α is aquasi-uniform rossnorm, then αs is also quasi-uniform. Then πs = ǫ for allBanah spaes, but ǫs = π only in speial ases.A tensor norm is then a uniform rossnorm whih respets �nite-dimen-sional subspaes in a ertain sense. We shall not have use of this idea, butdo note that many of the norms we onstrut in this setion are not aswell-behaved as those studied in [31℄ and [13℄.As explained before, it is standard that (E ⊗̂ F )′ = B(E,F ′) for Banahspaes E and F . For any reasonable rossnorm α on E ⊗ F , as the formalinlusion map E ⊗̂F → E ⊗̂α F is norm-dereasing, we may use the adjointto identify (E ⊗̂α F )′ with a subspae of B(E,F ′), together with the dual



264 M. Dawsnorm. For example, the dual of E ̂
⊗ F is I(E,F ′), the integral operatorsfrom E to F ′ (see [31, Chapter 3℄ for further details).As explained above, ǫs = π only in speial ases, whih means that in gen-eral, the natural map E′⊗̂F ′ → (E

̂
⊗F )′ = I(E,F ′) is only norm-dereasing.An important speial ase is when E or F has themetri approximation prop-erty, in whih ase E′⊗̂F ′ is, isometrially, a losed subspae of I(E,F ′). See[31, Setion 4℄ for further details. Another way to state this result is to on-sider the natural map from E′ ⊗̂ F ′ to B(E,F ′), whih has range N (E,F ′),the nulear operators. Thus N (E,F ′) is losed in I(E,F ′) when E or F hasthe metri approximation property.Example 8.1. Let X and Y be loally ompat Hausdor� spaes. Then

C0(X)

̂
⊗ C0(Y ) = C0(X × Y ) under the obvious identi�ation (see [31,Setion 3.2℄). As C(X) has the metri approximation property, we �nd that

M(X) ⊗̂M(Y ) forms a losed subspae of M(X × Y ). We shall see belowthat we an fail to have equality.Similarly, let µ and ν be measures. Then L1(µ) ⊗̂ L1(ν) = L1(µ × ν)under the obvious identi�ation (see [31, Chapter 2℄).Hene, if X and Y are disrete sets, then c0(X)

̂
⊗ c0(Y ) = c0(X × Y )and c0(X)′ ⊗̂ c0(Y )′ = ℓ1(X) ⊗̂ ℓ1(Y ) = ℓ1(X × Y ) = c0(X × Y )′.8.1. Tensor produts of algebrasDefinition 8.2. Let A and B be Banah algebras, and de�ne an algebraprodut on A⊗B by (a⊗ b)(c⊗ d) = ac⊗ bd, and linearity, for a, c ∈ A and

b, d ∈ B. Then an algebra rossnorm on A⊗ B is a reasonable rossnorm αsuh that A ⊗̂α B beomes a Banah algebra.Notie that the projetive tensor norm is always an algebra rossnorm,but that the injetive tensor norm may not be (indeed, it is shown in [6℄that only four of Grothendiek's fourteen �natural� tensor norms are alwaysalgebra rossnorms).We have shown that WAP algebras are isomorphi (but maybe not iso-metri) to losed subalgebras of B(E) for suitable re�exive E. In this setion,it is onvenient to suppose that a WAP algebra A is isometri to a losed sub-algebra of B(E) for suitable E. This an learly be ahieved by onsideringa suitable renorming of A.Definition 8.3. Let A and B be WAP algebras. A WAP-rossnorm on
A ⊗ B is an algebra rossnorm α suh that, if we form the natural hainof natural inlusion maps WAP(A′) ⊗ WAP(B′) ⊆ A′ ⊗ B′ ⊆ A′ ⊗̂αs B′ ⊆
(A⊗̂αB)′, then we atually map into WAP((A⊗̂αB)′), and that furthermore,
WAP(A′) ⊗ WAP(B′) is norming for A ⊗̂α B.We shall see that the ondition on WAP(A′)⊗WAP(B′) is natural whenwe ome to onsider dual Banah algebras.



Dual Banah algebras: representations and injetivity 265Example 8.4. Let K and L be ompat Hausdor� spaes, and onsiderthe injetive tensor produt C(K)

̂
⊗C(L) = C(K×L). As these are ommu-tative C∗-algebras, they are Arens regular, and so WAP(C(K)′) = M(K),

WAP(C(L)′) = M(L), and hene M(K) ⊗M(L) ⊆ WAP(C(K × L)). Asexplained above, we indue the projetive tensor norm on M(K) ⊗M(L)by embedding it into C(K × L)′ = M(K × L). Then (M(K) ⊗̂M(L))′ =
B(M(K),M(L)′), and so we get the hain of isometri inlusions

C(K)

̂
⊗ C(L) ⊆ A(M(K), C(L)) ⊆ A(M(K),M(L)′)

⊆ B(M(K),M(L)′).ThusM(K)⊗M(L) is norming for C(K×L). We ould also see this diretlyby onsidering point masses in M(K) and M(L).However, M(K) ⊗M(L) is not in general dense in M(K × L). Let Lbe a ompat Hausdor� spae suh that M(L) does not have the Radon�Nikodým property (see [14℄ for what this tehnial ondition is). For example,[14, Chapter VII℄ shows that this holds when there is a separable subspaeof C(L) without a separable dual. As indiated in [14, Chapter VI, Corol-lary 6℄, there then exists an integral, non-nulear operator from C(K) to
M(L) whenever K ontains a perfet subset (that is, a losed subset with noisolated points). For example, let T = {z ∈ C : |z| = 1}, so that T is perfet,and M(T) does not have the Radon�Nikodým property. ThusM(T)⊗M(T)is not dense in (C(T)

̂
⊗ C(T))′.Example 8.5. Let S and T be disrete semigroups, so that WAP(ℓ1(S)′)

= C(SWAP). Then ℓ1(S) ⊗̂ ℓ1(T ) = ℓ1(S × T ) as a Banah algebra, and so
WAP(ℓ1(S×T )′) = C((S×T )WAP). We laim that (S×T )WAP = SWAP ×
TWAP, whih follows easily by the universality property of (S×T )WAP . Wethen see that

WAP(ℓ1(S)′)

̂
⊗ WAP(ℓ1(T )′) = C(SWAP)

̂
⊗ C(TWAP)

= C(SWAP × TWAP) = C((S × T )WAP)

= WAP((ℓ1(S) ⊗̂ ℓ1(T ))′),so ertainly WAP(ℓ1(S)′)⊗WAP(ℓ1(T )′) is dense in WAP((ℓ1(S) ⊗̂ ℓ1(T ))′).As before, this argument also works for general loally ompat groups
G and H.Example 8.6. Let S and T be disrete weakly anellative semigroups,so that c0(S)

̂
⊗ c0(T ) = c0(S×T ), and hene (c0(S)

̂
⊗ c0(T ))′ = ℓ1(S×T ) =

ℓ1(S) ⊗̂ ℓ1(T ) is a dual Banah algebra.Similarly, let S and T be loally ompat groups, so that M(S) has thepredual C0(S), and similarly for M(T ) (see [30℄). Then, as above, we seethat M(S) ⊗̂M(T ) is a losed, norming (and hene weak∗-dense) subspaeof M(S × T ) = C0(S × T )′ = (C0(S)

̂
⊗ C0(T ))′.



266 M. DawsProposition 8.7. Let A and B be Banah algebras. Then the naturalmap WAP(A′)⊗WAP(B′) → A′ ⊗̂πs B′ maps into WAP((A⊗̂B)′). If A and
B are Arens regular and one has the metri approximation property , then πis a WAP-rossnorm on A⊗ B.Proof. Reall that πs = ǫ, and let µ ∈ WAP(A′) and λ ∈ WAP(B′). Thenthere exists a re�exive Banah spae E and maps Sµ : A → E and Tµ : E →
A′ suh that TµSµ = Lµ, that is, TµSµ(a) = a · µ for a ∈ A. Similarly thereexists a re�exive Banah spae F and maps Sλ and Tλ. We shall see belowthat there exists a uniform rossnorm α suh that E ⊗̂α F is re�exive. As
ǫ ≤ α ≤ π, we see that we an fator the map Lµ ⊗Lλ : A⊗̂B → A′

̂
⊗ B′ as

A ⊗̂ B
Sµ⊗Sλ

// E ⊗̂ F → E ⊗̂α F
Tµ⊗Tλ

// A′ ⊗̂α B′ → A′

̂
⊗ B′,and so Lµ ⊗ Lλ = Lµ⊗λ is weakly ompat. By linearity, the argument isomplete.Suppose now that A has the metri approximation property. By [31,Theorem 4.14℄, the anonial map A ⊗̂ B → (A′

̂
⊗ B′)′ is an isometry, sothat A′

̂
⊗ B′ is norming for A ⊗̂ B. As A and B are Arens regular, we seethat π is indeed a WAP-rossnorm on A ⊗ B. The ase for B follows bysymmetry.Example 8.8. Let c = C(N∞) be the spae of onvergent sequenes,where N∞ is the one-point ompati�ation of N. Then c′ = ℓ1 naturally,and so (c ⊗̂ c)′ = B(c, ℓ1) = A(c, ℓ1) = ℓ1

̂
⊗ ℓ1. Then π is a WAP-rossnormfor c⊗ c as c is Arens regular. In fat, c ⊗̂ c is Arens regular.For general ompat Hausdor� spaesK and L, by the above proposition,we see that π is a WAP-rossnorm on C(K) ⊗ C(L). However, as noted in[34℄, when G is a ompat group, the algebra C(G) ⊗̂C(G) ontains a opyof A(G), the Fourier algebra of G, so that C(G)⊗̂C(G) is not Arens regular.Hene M(G) ⊗M(G) ⊆ (C(G) ⊗̂ C(G))′ annot be dense.See [35℄ for details about when A⊗̂B is Arens regular, but bear in mindthe orretion [34℄.It seems that in general, WAP(A′)

̂
⊗ WAP(B′) need not be norming for

A ⊗̂B. Also, we see no way to adapt the above proof to the ase A ⊗̂β B foran arbitrary algebra rossnorm β.Proposition 8.9. Given re�exive Banah spaes E and F , there existsa tensor norm α on E ⊗ F suh that E ⊗̂α F is re�exive, and suh that
E′ ⊗ F ′ is dense in (E ⊗̂α F )′.Proof. For example, for 1 < p <∞, let gp and dp be the Chevet�Saphartensor norms, as de�ned in [31, Chapter 6℄ or [1℄. Then, by [1, Corollary 3.2℄,we �nd that E ⊗̂gp F is re�exive whenever E and F are, and similarly for dp.



Dual Banah algebras: representations and injetivity 267Furthermore, E′⊗F ′ is indeed dense in (E ⊗̂gpF )′ and (E ⊗̂dp
F )′. As E′⊗F ′is dense in (E ⊗̂α F )′, we see that (E ⊗̂α F )′ = E′ ⊗̂αs F ′.Remark 8.10. One disadvantage of the Chevet�Saphar tensor norms isthat they are not symmetri, in that E ⊗̂gp F is not in general isomorphi to

F ⊗̂gp E (in ontrast to the injetive or projetive tensor norms). However,
d2 and g2 behave rather niely, in that ds

2 = g2, gs
2 = d2, and H ⊗̂d2

K =
H ⊗̂g2

K = H ⊗2 K whenever H and K are Hilbert spaes (here H ⊗2 Kis the usual Hilbertian tensor produt). If we interpolate between d2 and g2then we an verify that we end up with a symmetri tensor norm α suh that
E ⊗̂α F is re�exive when E and F are, and suh that H ⊗̂αK = H ⊗2K forHilbert spaes H and K.Let A be a Banah algebra suh that there is a re�exive Banah spae
E and an isometri representation πA : A → B(E) suh that π′AκE′⊗̂E takesthe unit ball of E′ ⊗̂ E onto the unit ball of WAP(A′). From our previouswork, this is equivalent to WAP(A′) being norming for A. Suppose that
B is similar, with πB : B → B(F ), say. Now let α be some quasi-uniformrossnorm satisfying the onlusions of Proposition 8.9. Then π = πA⊗ πB :
A⊗ B → B(E ⊗̂α F ), de�ned by
π(a⊗ b)(x⊗ y) = πA(a)(x) ⊗ πB(b)(y) (a ∈ A, b ∈ B, x ∈ E, y ∈ F ),is a representation. Use this to indue a norm ‖ · ‖π,α on A⊗B, and denotethe ompletion by A ⊗̂π,α B.Proposition 8.11. With notation as above, ‖·‖π,α is a WAP-rossnormon A⊗ B.Proof. By assumption, ‖a⊗b‖π,α = ‖πA(a)‖ ‖πB(b)‖ = ‖a‖ ‖b‖ for a ∈ Aand b ∈ B, so the triangle inequality implies that ‖ · ‖π,α ≤ π(·). Let λA ∈ A′and λB ∈ B′ be suh that ‖λA‖ = ‖λB‖ = 1. As WAP(A′) is normingfor A, the unit ball of WAP(A′) is weak∗-dense in the unit ball of A′, and sothere exists a net (µAα ) in WAP(A′) suh that ‖µAα ‖ ≤ ‖λA‖ for eah α, and

limα 〈µAα , a〉 = 〈λA, a〉 for a ∈ A. By the assumption on πA, for eah α, wean �nd σAα ∈ E′ ⊗̂E with ‖σAα ‖ = ‖µAα ‖ and π′AκE′⊗̂E(σAα ) = µAα . Similarly,we an �nd (σBβ ) ⊆ F ′ ⊗̂ F for λB. Then, for τ =
∑n

k=1 ak ⊗ bk ∈ A⊗ B,
〈λA ⊗ λB, τ〉 =

n∑

k=1

lim
α

〈µAα , ak〉 lim
β

〈µBβ , bk〉

=
n∑

k=1

lim
α

〈πA(ak), σ
A
α 〉 lim

β
〈πB(bk), σ

B
β 〉

= lim
α

lim
β

〈π(τ), σAα ⊗ σBβ 〉.



268 M. DawsBy taking the supremum over ‖λA‖ = ‖λB‖ = 1, we onsequently onludethat ǫ(·) ≤ ‖ · ‖π,α. Thus ‖ · ‖π,α is a reasonable rossnorm, and so learly itis an algebra rossnorm.Now let G = E ⊗̂α F and C = A ⊗̂π,α B. We may treat π as an isometryfrom C into B(G), and so π′κG′⊗̂G is a norm-dereasing map from G′ ⊗̂ Gto C′. De�ne
X={π′κG′⊗̂G((µE⊗µF )⊗(xE⊗xF )) : µE ∈ E′, µF ∈ F ′, xE ∈ E, xF ∈ F},so that learly X ⊆ WAP(C′). For µE ∈ E′, µF ∈ F ′, xE ∈ E and xF ∈ F ,we have, for a ∈ A and b ∈ B,

〈π′κG′⊗̂G((µE ⊗ µF ) ⊗ (xE ⊗ xF )), a⊗ b〉
= 〈π′A(µE ⊗ xE), a〉〈π′B(µF ⊗ xF ), b〉.Hene, by the assumptions on πA and πB, the linear span of X is dense in

WAP(A′)⊗WAP(B′), and so WAP(A′)⊗WAP(B′) ⊆ WAP(C′), as required.Finally, almost by de�nition, the linear span of X is norming for π(A⊗ B),and so ‖ · ‖π,α is a WAP-rossnorm.Conversely, suppose that β is some WAP-rossnorm on A ⊗ B, so thatthere exists a re�exive Banah spae G and an isometri representation π :
A⊗̂β B → B(G). However, it need not be the ase that G = E ⊗̂αF for someBanah spaes E and F , and some uniform rossnorm α, with π = πA ⊗ πBfor suitable πA : A → B(E) and πB : A → B(F ).This mirrors the behaviour of C∗-algebras. Reall that the minimal C∗-tensor produt of two C∗-algebras A and B is that de�ned by taking faithful
∗-representations of A and B on Hilbert spaes H and K, respetively, andletting A⊗min B be the losure of A⊗B in B(E⊗2 F ). It turns out that thisis independent of the ∗-representations taken (as long as they are faithful).The maximal C∗-tensor produt is that de�ned by taking the supremum overany ∗-representation of A ⊗ B. As indiated by their names, the minimaland maximal C∗-tensor norms are indeed the smallest and greatest normson A⊗B whih satisfy the C∗-ondition ‖τ∗τ‖ = ‖τ‖2 for τ ∈ A⊗B. Thena C∗-algebra A is nulear if A⊗minB = A⊗maxB for all C∗-algebras B. Thisis atually equivalent to A being amenable (see [29℄).As C∗-algebras are always Arens regular, we see that a C∗-tensor norm
α on A⊗B is a WAP-rossnorm if and only if A′⊗B′ is norming for A⊗̂αB.However, this is always true for A′⊗minB′, essentially for the same reasons asin the proof of Proposition 8.11. By [32, Proposition 4.10℄, the norm induedonA′⊗B′ byA⊗maxB always agrees with that indued byA⊗minB, so if α is aC∗-tensor norm, then as min ≤ α ≤ max, we see that A′⊗̂αsB′ = A′⊗̂minsB′.Hene α is a WAP-rossnorm, as we might hope.We may be tempted to de�ne the minimal and maximal WAP-rossnormsin a similar fashion, given that we know that at least one WAP-rossnorm



Dual Banah algebras: representations and injetivity 269must exist. However, it is rather unlear if suh minimal and maximal normsexist.Proposition 8.12. Let A and B be Banah algebras. There exists analgebra rossnorm max on A⊗ B suh that if α is any WAP-rossnorm on
A⊗ B, then α ≤ max, and suh that A ⊗̂max B is a WAP-algebra.Proof. De�ne max on A ⊗ B by max(τ) = sup{‖π(τ)‖}, the supremumbeing taken over all algebra homomorphisms π : A ⊗ B → B(E), where
E is a re�exive Banah spae, and ‖π(a ⊗ b)‖ = ‖a‖ ‖b‖ for a ∈ A and
b ∈ B. Let ‖ · ‖π,α be a WAP-rossnorm given by Proposition 8.11, so that
ǫ ≤ ‖ · ‖π,α ≤ max. As max(a ⊗ b) = ‖a‖ ‖b‖ for a ∈ A and b ∈ B, we seethat max ≤ π, so that max is a reasonable rossnorm. Clearly then max isan algebra rossnorm.Let α be some WAP-rossnorm on A⊗B, so we an �nd a representation
π : A ⊗̂α B → B(E) for some re�exive Banah spae E, suh that π′ takesthe unit ball of E′ ⊗̂E onto the unit ball of WAP((A⊗̂αB)′). As WAP(A′)⊗
WAP(B′) ⊆ WAP((A ⊗̂α B)′) is norming for A ⊗̂α B, we see that π is anisometry. Consequently, α ≤ max.For eah τ ∈ A ⊗ B and eah ε > 0, let πτ,ε : A⊗ B → B(Eτ,ε) be somerepresentation on a re�exive Banah spae suh that ‖πτ,ε(τ)‖ > max(τ)−ε.Let F = ℓ2(

⊕
τ,εEτ,ε), so that π =

⊕
πτ,ε is a representation of A ⊗ B on

B(F ). Clearly then, for τ ∈ A ⊗ B, ‖π(τ)‖ = sup ‖πτ,ε(τ)‖ = max(τ), andso π extends to an isometri representation π : A ⊗̂max B → B(F ).In general, however, we see no way to show that this norm is a WAP-rossnorm.8.2. Dual Banah algebras. Reall that for twoW ∗-algebras (A,A∗) and
(B,B∗), we let X = A⊗min B, and then regard A∗ ⊗B∗ as a subspae of X ′,with losure A∗ ⊗ B∗. Then A ⊗ B, the W ∗-tensor produt of A and B, isthe dual of A∗ ⊗ B∗. It may be heked that A⊗ B beomes a weak∗-densesubalgebra of A ⊗ B. For example, when H and K are Hilbert spaes, wehave B(H) ⊗ B(K) = B(H ⊗2 K); in partiular, B(H) ⊗ B(K) need not benorm-dense in B(H) ⊗ B(K) (see [19, Exerise 11.5.7℄).Let (A,A∗) and (B,B∗) be dual Banah algebras, and let β be a WAP-rossnorm on A⊗B. By assumption, WAP(A′) ⊗̂βs WAP(B′) is norming for
A ⊗̂β B and maps into WAP((A ⊗̂β B)′). Hene we see that X = A∗ ⊗̂βs B∗is a losed A⊗̂β B-submodule of WAP((A⊗̂β B)′). Thus, by Proposition 2.4,
(X ′, X) beomes a dual Banah algebra. Notie that the norm on X =
A∗ ⊗̂βs B∗ is given by

‖τ‖X = sup{|〈τ, u〉| : u ∈ A⊗ B, β(u) ≤ 1} (τ ∈ X).It is hene immediate that A ⊗ B is weak∗-dense in X ′, so we may regard
X ′ as a dual Banah algebra tensor produt of A and B, and denote X ′ by
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A⊗β B. When A∗ ⊗̂βs B∗ is norming for A ⊗̂β B, we see that A ⊗̂β B is evena losed subspae of A⊗β B.Example 8.13. Let G and H be loally ompat groups, so that M(G)is a dual Banah algebra with predual C0(G), and similarly for H (see Ex-ample 8.6). By Proposition 8.7, WAP(M(G)′) ⊗ WAP(M(H)′) maps into
WAP((M(G) ⊗̂M(H))′). As the map M(G) ⊗̂M(H) → (C0(G)

̂
⊗ C0(H))′is an isometry, we see that

C0(G) ⊗ C0(H) ⊆ C0(G)

̂
⊗ C0(G) ⊆ (M(G) ⊗̂M(H))′ = B(M(G),M(H)′)is norming forM(G)⊗̂M(H). Thus π is a WAP-rossnorm onM(G)⊗M(H).We may hene formM(G)⊗πM(H). By de�nition, it is the weak∗-losureof M(G) ⊗M(H) in the dual of C0(G)

̂
⊗ C0(H), that is, in M(G × H).As explained in Example 8.6, M(G) ⊗ M(H) is ertainly weak∗-dense in

M(G×H), and so M(G) ⊗π M(H) = M(G×H) as we might hope.Given dual Banah algebras (A,A∗) and (B,B∗), we an �nd weak∗-weak∗-ontinuous representations πA : A → B(E) and πB : B → B(F ). Wemay hene de�ne the WAP-rossnorm β := ‖ · ‖π,α as in Proposition 8.11,leading to A ⊗̂π,α B and hene A⊗β B. Alternatively, we may simply de�ne
A⊗π,α B to be the weak∗-losure of πA(A) ⊗ πB(B) in B(E ⊗̂α F ).Proposition 8.14. With notation as above, there is a natural norm-dereasing map from A∗ ⊗̂βs B∗ to (A ⊗π,α B)∗ whih has dense range. If
A∗ ⊗̂βs B∗ is norming for A ⊗̂β B, then this map is an isometry.Proof. We identify A with its weak∗-losed image under πA : A → B(E),and hene we identify A∗ with a quotient of E′ ⊗̂ E, namely E′ ⊗̂ E/⊥A,and similarly for B. Then A ⊗̂β B is the losure of A ⊗ B in B(E ⊗̂α F ).We dedue that (A⊗π,α B)∗ = B(E ⊗̂α F )∗/

⊥(A⊗B) where B(E ⊗̂α F )∗ =
(E′ ⊗̂αs F ′) ⊗̂ (E ⊗̂α F ).We de�ne a natural map θ : A∗ ⊗ B∗ → (A ⊗π,α B)∗ as follows. For
τ ∈ A∗, σ ∈ B∗ and ε > 0, we have representations
τ =

∞∑

n=1

xE
n ⊗µE

n +⊥A ∈ E′ ⊗̂E/⊥A, σ =
∞∑

n=1

xF
n ⊗µF

n +⊥B ∈ F ′ ⊗̂F/⊥B,where ∑∞
n=1 ‖xE

n ‖ ‖µE
n ‖ < ‖τ‖+ε and ∑∞

n=1 ‖xF
n ‖ ‖µF

n ‖ < ‖σ‖+ε. Then let
θ(τ ⊗ σ) = u =

∞∑

n=1

∞∑

m=1

(xE
n ⊗ xF

m) ⊗ (µE
n ⊗ µF

m) + ⊥(A⊗ B) ∈ (A⊗π,α B)∗,so that ‖u‖ ≤ ∑∞
n=1

∑∞
m=1 ‖xE

n ‖ ‖xF
m‖ ‖µE

n ‖ ‖µF
m‖ < (‖σ‖+ ε)(‖τ‖+ ε). For

a ∈ A and b ∈ B, we see that
〈a⊗ b, u〉 =

∞∑

n=1

∞∑

m=1

〈a, xE
n ⊗ µE

n 〉〈b, xF
m ⊗ µF

m〉 = 〈a, τ〉〈b, σ〉 = 〈a⊗ b, τ ⊗ σ〉.



Dual Banah algebras: representations and injetivity 271In partiular, u does not depend upon the hoie of representatives for τand σ, and so θ is well-de�ned. Notie also that for ψ ∈ A∗ ⊗ B∗,
βs(ψ) = sup{|〈ψ, v〉| : v ∈ A⊗ B, β(v) ≤ 1}

= sup{|〈θ(ψ), v〉| : v ∈ A⊗ B ⊆ B(E ⊗̂α F ), ‖v‖ ≤ 1} ≤ ‖θ(ψ)‖,so that θ extends to a norm-dereasing map A∗ ⊗̂βsB∗ → (A⊗π,αB)∗. Notiethat if we knew that the unit ball of A⊗B were weak∗-dense in the unit ballof A⊗π,αB (that is, A∗ ⊗̂βs B∗ were norming for A⊗̂β B), then θ would evenbe an isometry. This is the ase for von Neumann algebras, for example, bythe Kaplansky density theorem ([32, Setion II, Theorem 4.8℄).We shall now show that A∗ ⊗ B∗ is dense in (A ⊗π,α B)∗, whih willomplete the proof. Let τ ∈ (A⊗π,α B)∗, and pik a representation
τ =

∞∑

n=1

un ⊗ vn + ⊥(A⊗ B),

with (un) ⊆ E′ ⊗̂αs F ′ and (vn) ⊆ E ⊗̂α F satisfying ∑∞
n=1 α

s(un)α(vn)
<∞. By approximation, we may atually suppose that (un) ⊆ E′ ⊗ F ′ and
(vn) ⊆ E ⊗ F . We an then �nd representations

un =
∞∑

k=1

φ
(n)
k ⊗ ψ

(n)
k , vn =

∞∑

k=1

x
(n)
k ⊗ y

(n)
k ,

where for eah n, eventually φ(n)
k = 0, and so forth. For eah n, de�ne

µn =
∞∑

k=1

φ
(n)
k ⊗ x

(n)
k + ⊥A ∈ A∗, λn =

∞∑

k=1

ψ
(n)
k ⊗ y

(n)
k + ⊥B ∈ B∗,notiing that eah of these is a �nite sum. For a ∈ A and b ∈ B, we see that

〈a⊗ b, µn ⊗ λn〉 =
∞∑

k=1

〈a, φ(n)
k ⊗ x

(n)
k 〉〈b, ψ(n)

k ⊗ y
(n)
k 〉 = 〈a⊗ b, un ⊗ vn〉for n ≥ 1. Consequently, for c ∈ A⊗π,αB and N ≥ 1, as A⊗B is weak∗-densein A⊗π,α B,

∣∣∣〈c, τ〉 −
N∑

n=1

〈c, µn ⊗ λn〉
∣∣∣ =

∣∣∣
∞∑

n=N+1

〈c, un ⊗ vn〉
∣∣∣ ≤ ‖c‖

∞∑

n=N+1

αs(un)α(vn).

Thus A∗ ⊗ B∗ is indeed dense in (A⊗π,α B)∗.As indiated, the lak of a generalisation of the Kaplansky density theo-rem shows that in general A⊗β B and A⊗π,α B are di�erent. The followingprovides an example of a general Banah algebra in whih the theory workswell.



272 M. DawsProposition 8.15. Let E and F be re�exive Banah spaes, and let αbe a tensor norm on E ⊗ F satisfying the onlusions of Proposition 8.9.Form the tensor produts B(E) ⊗β B(F ) and B(E) ⊗π,α B(F ) by using thetrivial representations of B(E) on itself , and the same for B(F ). Then thesetensor produts agree with B(E ⊗̂α F ).Proof. By Proposition 8.14, B(E)∗ ⊗ B(F )∗ is dense in the predual of
B(E)⊗π,αB(F ). Furthermore, E′⊗E⊗F ′⊗F is dense in both B(E)∗⊗B(F )∗and B(E⊗̂αF )∗. So if our natural map is an isometry, that is, B(E)∗⊗̂βsB(F )∗is norming for B(E) ⊗̂β B(F ), then the proof is omplete.If we identify B(E) ⊗ B(F ) as a subalgebra of B(E ⊗̂α F ) then β agreeswith the operator norm. Let u ∈ B(E)⊗B(F ) and ε > 0, so we may �nd σ ∈
E′ ⊗F ′ and τ ∈ E ⊗F with αs(σ) ≤ 1, α(τ) ≤ 1 and |〈σ, u(τ)〉| > β(u)− ε.Let

σ =
n∑

i=1

µi ⊗ λi, τ =
m∑

j=1

xj ⊗ yj ,and de�ne
v =

n∑

i=1

m∑

j=1

(µi ⊗ xj) ⊗ (λi ⊗ yj) ∈ (E′ ⊗ E) ⊗ (F ′ ⊗ F ) ⊆ B(E)∗ ⊗ B(F )∗.A simple alulation shows that 〈w, v〉 = 〈σ,w(τ)〉 for any w ∈ B(E)⊗B(F ),so that
βs(v) = sup{|〈w, v〉| : w ∈ B(E) ⊗ B(F ), β(w) ≤ 1}

= sup{|〈σ,w(τ)〉| : ‖w‖ ≤ 1} ≤ ‖σ‖ ‖τ‖ ≤ 1.It hene follows that the norm of u as a member of the dual spae of
B(E)∗ ⊗̂βs B(F )∗ is at least β(u) − ε. The proof is omplete, as ε > 0 wasarbitrary.It would be nie if we ould �nd a universal way to take the tensorprodut of two dual Banah algebras. For example, the projetive tensorprodut of two Banah algebras always gives a Banah algebra (although itis not always the most natural norm to use, for example for C(K) spaes).This problem is related to the fat that we annot �nd maximal or minimalWAP-rossnorms.Let A and B be WAP-algebras, and let α be a WAP-rossnorm on
A⊗ B. It would be natural if there was some onnetion between the DBAenveloping algebra WAP((A ⊗̂α B)′)′ and the dual Banah algebra ten-sor produt WAP(A′)′ ⊗α WAP(B′)′. However, this latter algebra is thedual of WAP(A′) ⊗̂αs WAP(B′), whih is only a norming submodule of
WAP((A ⊗̂α B)′). Hene, in general, WAP(A′)′ ⊗α WAP(B′)′ is only a quo-tient of WAP((A ⊗̂α B)′)′. Example 8.4 shows that this is true even forommutative C∗-algebras.



Dual Banah algebras: representations and injetivity 2738.3. Appliation to Connes-amenabilityTheorem 8.16. Let A and B be Connes-amenable dual Banah algebras,and let β be a reasonable rossnorm on A∗ ⊗ B∗ whih turns (A∗ ⊗̂β B∗)
′ =

A ⊗ B into a dual Banah algebra ontaining A ⊗̂βs B as a weak∗-denseBanah algebra (so that βs is an algebra rossnorm on A⊗B). Then A⊗Bis Connes-amenable.Proof. Let E be a re�exive Banah spae, and let π : A⊗ B → B(E) bea weak∗-ontinuous representation. As in the proof of Proposition 6.15, welaim that π(A⊗ B)c = π(A⊗ B)c, whih follows as π is weak∗-ontinuousand A⊗ B is weak∗-dense in A⊗ B. We wish to show that there is a quasi-expetation Q : B(E) → π(A⊗ B)c.As A and B are Connes-amenable, they are unital, with units eA and eB,say. We may de�ne a homomorphism φ : A → A⊗ B by φ(a) = a ⊗ eB for
a ∈ A. Then, for τ =

∑n
k=1 µk ⊗ λk ∈ A∗ ⊗ B∗, we see that

〈φ(a), τ〉 = 〈a⊗ eB, τ〉 =
n∑

k=1

〈a, µk〉〈eB, λk〉 = 〈a, φ∗(τ)〉 (a ∈ A),where φ∗(τ) =
∑n

k=1 〈eB, λk〉µk ∈ A∗. Clearly φ∗ is bounded (as β is areasonable rossnorm), so φ∗ extends to A∗ ⊗̂β B∗ = (A ⊗ B)∗, and we seethat φ′∗ = φ, so that φ is weak∗-ontinuous. A similar remark holds for B.Consider the representation πA : A → B(E) given by πA(a) = π(a⊗ eB).This is weak∗-ontinuous by the preeding paragraph, so identify A with itsimage in B(E). As A is Connes-amenable, there is a quasi-expetation QA :
B(E) → Ac. Analogously, there exists a quasi-expetation QB : B(E) → Bc.Notie that A ⊆ Bc, B ⊆ Ac and (A⊗ B)c = Ac ∩ Bc.LetQ = QBQA, so that Q is bounded, and Q(a) = a for eah a ∈ Ac∩Bc.Let T ∈ B(E), let x = QA(T ) ∈ Ac, and let b = QB(x) = Q(T ) ∈ Bc. Let
a ∈ A, so that ax = xa, and as A ⊆ Bc,

QB(a(b− x)) = aQB(b− x) = 0 = QB(b− x)a

= QB((b− x)a).As ab, ba ∈ Bc, we see that ab = QB(ab) = QB(ba) = ba, so we onludethat b ∈ Ac. Thus Q maps into Ac ∩ Bc, and so we onlude that Q is aprojetion onto Ac ∩ Bc. Now let a, b ∈ Ac ∩ Bc, and let T ∈ B(E), so that
Q(aTb) = QBQA(aTb) = QB(aQA(T )b) = aQ(T )b,and we onlude that Q is a quasi-expetation, as required.Notie that this proof will also show that C is Connes-amenable whenever

C is a dual Banah algebra ontaining A⊗ B as a dense subalgebra, and issuh that the map A → C, a 7→ a ⊗ eB, is weak∗-ontinuous (and similarlyfor B).



274 M. DawsCorollary 8.17. Let r, s ∈ (1,∞), and let α be some quasi-uniformrossnorm on ℓr ⊗ ℓs suh that ℓr ⊗̂α ℓ
s is re�exive, and (ℓr)′⊗ (ℓs)′ is densein (ℓr ⊗̂α ℓ

s)′. Then B(ℓr ⊗̂α ℓ
s) is Connes-amenable.Proof. By Proposition 8.15, we have B(ℓr ⊗̂α ℓ

s) = B(ℓr)⊗α B(ℓs). Thenthe theorem applies, as B(ℓr) and B(ℓs) are Connes-amenable, by resultsin [30℄.This orollary is omparable to [17, Theorem 2.2℄, as a quasi-uniformtensor norm is tight in the sense of [17℄, and by [30℄, the amenability of
A(E) is equivalent to the Connes-amenability of B(E), at least when E isre�exive and has the approximation property.It is interesting to note that our proof of Theorem 8.16 is rather morealgebrai than an analogous von Neumann result (ompare to [33, Chap-ter XV, Proposition 3.2℄). Our approah is more in line with that of [29,Proposition 6.3.17℄.Aknowledgements. The author would like to thank the anonymousreviewer for muh helpful advie.
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