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On certain products of Banach algebras with

applications to harmonic analysis

by

Mehdi Sangani Monfared (Windsor)

Abstract. Given Banach algebras A and B with spectrum σ(B) 6= ∅, and given θ ∈
σ(B), we define a product A×θ B, which is a strongly splitting Banach algebra extension
of B by A. We obtain characterizations of bounded approximate identities, spectrum,
topological center, minimal idempotents, and study the ideal structure of these products.
By assuming B to be a Banach algebra in C0(X) whose spectrum can be identified with X,
we apply our results to harmonic analysis, and study the question of spectral synthesis,
and primary ideals.

1. Introduction and preliminaries. The products A ×θ B of Ba-
nach algebras defined in this paper (Definition 2.1) were first introduced by
T. Lau [18] for a special class of Banach algebras that are pre-duals of von
Neumann algebras, and for which the identity of the dual is a multiplicative
linear functional. In this paper we show that these products can be defined
for Banach algebras in a fairly general setting. The resulting products can
be viewed as strongly splitting Banach algebra extensions.

The study of these products has significance in two respects. First, the
products exhibit many properties that are not shared in general by arbitrary
strongly splitting extensions. As a simple example, the algebra of upper tri-
angular matrices is a direct sum of diagonal matrices with strictly upper tri-
angular matrices. While both direct summands are commutative, the algebra
itself is not commutative. This is in contrast with the case of the extensions
A×θB (Proposition 2.3). Second, the products A×θB can serve as a source
of examples (or counterexamples) for various purposes in functional and har-
monic analysis. In this respect, they have found applications in the study of
character amenability, which is the subject of a forthcoming paper [21].
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We recall that the spectrum σ(B) of a Banach algebra B is the set
of all non-zero multiplicative linear functionals on B. If A is a commuta-
tive, semisimple Banach algebra, it can be viewed as a Banach algebra in
C0(σ(A)) via the Gelfand transformation a 7→ â. We say that A is regu-

lar Tauberian if Â = {â : a ∈ A} is regular (that is, separates points from

closed sets) and its elements with compact support are dense in Â. The
kernel of a closed set E ⊂ σ(A) is defined by k(E) = {a ∈ A : φ(a) =
0 for all φ ∈ E}. The hull of a set I ⊂ A is defined by h(I) = {φ ∈
σ(A) : φ(a) = 0 for all a ∈ I}. A closed set E ⊂ σ(A) is called a spectral

set of A if k(E) is the only closed ideal of A whose hull is equal to E.
Equivalently, E is a spectral set if for each a ∈ A such that â(E) = {0},

and each ε > 0, there exists b ∈ A such that b̂ has compact support
disjoint from E and ‖a − b‖ < ε. E is called a local spectral set if the
conditions in the definition hold under the additional assumption that a
has compact support. We say that spectral synthesis holds in A if ev-
ery closed subset of σ(A) is a spectral set [13, Sec. 39]. We denote by

k00(E) the set of all b ∈ A such that b̂ has compact support disjoint
from E.

Let X be a locally compact Hausdorff space and B a regular subalgebra
of C0(X). Suppose that B is a Banach algebra with respect to a certain
norm ‖ · ‖. For each x ∈ X, let ǫx denote the evaluation functional at x.
Then the map x 7→ ǫx is a homeomorphism from X into σ(B). If this map is
surjective, we say B is a Banach algebra in C0(X), where X is the spectrum
of B. For simplicity, if x0 ∈ X we write Ix0

in place of k({ǫx0
}), in other

words,

Ix0
= k({ǫx0

}) = {u ∈ B : u(x0) = 0}.

For a locally compact group G, the Fourier algebra A(G) consists of all
coefficients of the left regular representation of G [9]. The norm of A(G)
is defined by regarding it as the continuous linear functionals on the group
C∗-algebra, C∗(G). In other words, for u ∈ A(G),

‖u‖ = sup
f∈L1(G), ‖f‖Σ≤1

∣∣∣
\
G

f(x)u(x) dx
∣∣∣,

where Σ denotes the collection of all equivalence classes of continuous uni-
tary representations of G. When G is commutative, A(G) ∼= L1(Ĝ) via the
Fourier transformation. The spectrum of A(G) consists of all point evalu-
ation functionals {ǫx : x ∈ G}, and can be identified with G in a natural
way. For every x ∈ G, {x} is a set of spectral synthesis for A(G). It is well
known that A(G) has a bounded approximate identity if and only if G is
amenable.
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Recall that the dual of a Banach algebra A carries a natural left and
right A-module structure defined by

〈a · φ, b〉 = 〈φ, ba〉, 〈φ · a, b〉 = 〈φ, ab〉 (a, b ∈ A, φ ∈ A′).

The first Arens product 2 on A′′ is then defined by the following relations:

〈Φ2 Ψ, φ〉 = 〈Φ, Ψ ⊙ φ〉, 〈Ψ ⊙ φ, a〉 = 〈Ψ, φ · a〉.

Similarly, the second Arens product 3 on A′′ is defined by

〈Φ3 Ψ, φ〉 = 〈Ψ, φ⊙ Φ〉, 〈φ⊙ Φ, a〉 = 〈Φ, a · φ〉.

The (first) topological center Zt(A
′′) of A′′ is the set of all Φ ∈ A′′ such that

Φ2 Ψ = Φ3 Ψ for all Ψ ∈ A′′.

In general, the topological center is a closed subalgebra of (A′′,2) contain-
ing A. The algebra A is called Arens regular (respectively, strongly Arens

irregular) if Zt(A
′′) = A′′ (respectively, Zt(A

′′) = A). The notion of “strongly
Arens irregular” was introduced recently by Dales and Lau in [5].

A Banach algebra A is called amenable (respectively, contractible) if
for every Banach A-bimodule E, every continuous derivation d : A → E′

(respectively, d : A → E) is an inner derivation [14]. A is called weakly

amenable if every continuous derivation d : A → A′ is an inner derivation.
A derivation d : A→ A′ is called cyclic if

〈d(a), b〉 + 〈d(b), a〉 = 0 for all a, b ∈ A.

If every continuous cyclic derivation from A to A′ is inner, then A is called
cyclic amenable [11].

2. Definition and structural properties. Let A and B be Banach
algebras with σ(B) 6= ∅, and let φ, ψ ∈ σ(B). If we equip the set A×B with
the usual C-module structure, then the multiplication

(a, b) · (a′, b′) = (aa′ + φ(b)a′ + ψ(b′)a, bb′)

turns A × B into a non-associative algebra. One can then verify that if
A has non-trivial multiplication, a necessary and sufficient condition for
associativity of the multiplication is that φ = ψ. Since in this paper we deal
only with associative algebras, we are led to the following definition.

2.1. Definition. Let A and B be Banach algebras with σ(B) 6= ∅, and
let θ ∈ σ(B). The θ-Lau product A×θB is defined as the Cartesian product
A×B with the algebra multiplication

(1) (a, b) · (a′, b′) = (aa′ + θ(b)a′ + θ(b′)a, bb′),

and with the norm ‖(a, b)‖ = ‖a‖ + ‖b‖.

2.2. Remarks. (a) The space A ×θ B is a Banach algebra. If we allow
θ = 0, we obtain the usual direct product of Banach algebras. Since direct
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products often exhibit different properties, we have excluded the possibility
that θ = 0. If B = C and θ : C → C is the identity map, then A ×θ C

coincides with the unitization of A.
(b) In A×θ B we identify A×{0} with A, and {0}×B with B. Then A

is a closed ideal while B is a closed subalgebra of A×θ B, and

A×θ B/A ∼= B (isometric isomorphism).

In other words, A ×θ B is a strongly splitting Banach algebra extension of
B by A. We note that the multiplication of A ×θ B is not induced from a
two-cocycle T ∈ Z2(B,A), as the extension A ×θ B is not singular unless
A has trivial multiplication (for more on extensions of Banach algebras see
[1], [4]).

2.3. Proposition. Let A and B be a Banach algebras and θ ∈ σ(B).

(i) Given Banach algebras A, B, and given φ ∈ σ(B), the Banach al-

gebras A×θ B and A×φ B are isomorphic if and only if there exist

Banach algebra isomorphisms Ψ : A → A and Φ : B → B such that

θ = φ ◦ Φ.

(ii) A×θB is commutative if and only if both A and B are commutative.

(iii) (a0, b0) is an identity for A×θ B if and only if a0 = 0 and b0 = 1B
is an identity for B.

(iv) ((aα, bα))α is a bounded left (right , or two-sided) approximate iden-

tity for A×θ B if and only if ‖aα‖ → 0 and (bα)α is a bounded left

(right , or two-sided) approximate identity for B. A similar state-

ment is true for unbounded approximate identities.

Proof. For briefness we only give the proof for (iv). First assume that
((aα, bα))α is a bounded left approximate identity. Thus there exists M > 0
such that ‖bα‖ ≤ ‖aα‖ + ‖bα‖ ≤M for all α. Also for every b ∈ B we must
have

‖(aα, bα)(0, b) − (0, b)‖ = |θ(b)| ‖aα‖ + ‖bαb− b‖ → 0.

Since b is arbitrary we conclude that ‖aα‖ → 0, and (bα)α is a bounded left
approximate identity for B.

Conversely, if ‖aα‖ → 0 and (bα)α is a bounded left approximate identity
for B, then the net (aα, bα)α is bounded, and for every (a, b) ∈ A×θ B,

‖(aα, bα)(a, b)−(a, b)‖ ≤ ‖aα‖‖a‖+‖a‖|θ(bα)−1|+|θ(b)|‖aα‖+‖bαb−b‖ → 0,

since θ(bα) → 1.

The dual of the space A×θB can be identified with A′×B′ in the natural
way 〈(φ, ψ), (a, b)〉 = φ(a) + ψ(b). The dual norm on A′ × B′ is of course
the maximum norm ‖(φ, ψ)‖ = max{‖φ‖, ‖ψ‖}. We recall that on A′ × B′

the weak∗ topology coincides with the product of the weak∗ topologies of
A′ and B′ [17, (17.14), p. 161]. The following result identifies the spectrum
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of A ×θ B. We also provide a description of various neighborhood bases in
σ(A ×θ B) for our later purposes. Note that the topology of σ(A ×θ B) is
the induced weak∗ topology from A′ ×B′.

Part (i) of the following result is a generalization of a result proved by
Lau [18, Proposition 3.6, p. 166]

2.4. Proposition. Let A and B be Banach algebras with σ(B) 6= ∅. Let

θ ∈ σ(B) and

(2) E = {(φ, θ) : φ ∈ σ(A)}, F = {(0, ψ) : ψ ∈ σ(B)}.

Set E = ∅ if σ(A) = ∅. Then

(i) σ(A×θ B) = E ∪ F.
(ii) In σ(A×θ B), F is closed , while E ∪ {(0, θ)} is compact.

(iii) All sets of the form U×{θ}, where U is a neighborhood of φ in σ(A),
form a neighborhood base at (φ, θ). If ψ 6= θ, all sets of the form

{0} ×W , where W is a neighborhood of ψ in σ(B) not containing

θ, form a neighborhood base at (0, ψ). Finally , all sets of the form

(U ∩ σ(A)) × {θ} ∪ {0} ×W,

where U is a neighborhood of 0 in A′ and W is a neighborhood of θ
in σ(B), form a neighborhood base at (0, θ).

Proof. (i) We prove the inclusion σ(A×θB) ⊂ E∪F , the reverse inclusion
is easy to verify directly. Suppose that (φ, ψ) ∈ σ(A ×θ B). Then for every
(a, b), (a′, b′) ∈ A×θ B we have

〈(φ, ψ), (aa′ + θ(b)a′ + θ(b′)a, bb′)〉 = (φ(a) + ψ(b))(φ(a′) + ψ(b′)),

which implies

φ(aa′) + θ(b)φ(a′) + θ(b′)φ(a) + ψ(bb′)

= φ(a)φ(a′) + φ(a)ψ(b′) + ψ(b)φ(a′) + ψ(b)ψ(b′).

If we take b = b′ = 0, it follows that φ(aa′) = φ(a)φ(a′) for all a, a′ ∈ A,
and hence φ ∈ σ(A) ∪ {0}. Next, if we take a = a′ = 0, it follows that
ψ ∈ σ(B) ∪ {0}. But ψ = 0 implies that φ = 0, which is impossible since
(φ, ψ) 6= (0, 0). So we have shown that ψ ∈ σ(B). Now if φ = 0, then
(φ, ψ) = (0, ψ) ∈ F , which is what we want. If φ 6= 0, we can rewrite the
above equation as

(θ(b) − ψ(b))φ(a′) + (θ(b′) − ψ(b′))φ(a) = 0.

Choosing a′ = 0, and a such that φ(a) 6= 0, it follows that ψ(b′) = θ(b′) for
all b′ ∈ B, and hence ψ = θ. This means that (φ, ψ) = (φ, θ) ∈ E. Thus
σ(A×θ B) ⊂ E ∪ F .

The proofs of (ii) and (iii) are left for the reader.
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2.5. Note. For the rest of this paper, we shall use the letters E and F
exclusively to denote the sets defined in (2).

The following two results which are stated for left ideals are also true for
right or two-sided ideals.

2.6. Proposition. Let A and B be Banach algebras and θ ∈ σ(B).
Suppose that I is a left ideal of A, J is a left ideal of B, and M = I × J .

(i) If J ⊂ ker θ, then M is a left ideal in A×θ B.

(ii) If J 6⊂ ker θ, then M is a left ideal in A×θ B if and only if I = A.

The proof is routine and is omitted.

Next we consider the converse. Suppose that M is a left ideal of A×θ B
and

I = {a ∈ A : (a, b) ∈M for some b ∈ B},(3)

J = {b ∈ B : (a, b) ∈M for some a ∈ A}.(4)

The question is whether in general I and J are ideals and whetherM = I×J .
We will show by examples that in general we can neither expect I to be an
ideal, nor to have M = I × J (even if A is unital). However we have the
following result.

2.7. Proposition. Let M, I, and J be as above. Then

(i) J is a left ideal in B.

(ii) If J ⊂ ker θ, then I is a left ideal of A. Furthermore if A has a left

approximate identity and if M is closed , then M = I × J .

(iii) If J 6⊂ ker θ but I is a left ideal of A, then I = A.

Proof. (i) is easy.

For (ii) suppose that J ⊂ ker θ, and let a ∈ I. Then (a, b) ∈M for some
b ∈ J . Then for every a′ ∈ A,

(a′, 0)(a, b) = (a′a+ θ(b)a′, 0) = (a′a, 0) ∈M.

Thus a′a ∈ I, that is, I is a left ideal of A.

Next let (aα)α be a left approximate identity (not necessarily bounded)
for A, and suppose that a0 ∈ I, b0 ∈ J . We will show that (a0, b0) ∈ M ,
which provesM = I×J . Let b ∈ J and a ∈ I be such that (a0, b), (a, b0) ∈M .
Then (aα, 0)(a0, b) = (aαa0, 0) ∈M , and

‖(aαa0, 0) − (a0, 0)‖ = ‖aαa0 − a0‖ → 0.

Since M is closed it follows that (a0, 0) ∈ M . Similarly, we can show that
(a, 0) ∈M . Consequently, (a, b0) − (a, 0) = (0, b0) ∈M , and hence

(a0, 0) + (0, b0) = (a0, b0) ∈M.
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(iii) Suppose that b0 ∈ J − ker θ. Then (a0, b0) ∈ M for some a0 ∈ I.
Thus for every a ∈ A,

(a, 0)(a0, b0) = (aa0 + θ(b0)a, 0) ∈M.

Hence a ∈ I as aa0 ∈ I and θ(b0) 6= 0. That is, I = A.

2.8. Examples. The following two examples serve to show that the
condition J ⊂ ker θ is necessary in the second part of Proposition 2.7.

Let B be a regular Banach algebra in C0(X), where X is the spectrum
of B. Let x0 ∈ X, θ = ǫx0

, and consider the product B ×θ B.
(a) Let K be a proper compact subset of X containing x0 and at least

one other element. Define

I = {u ∈ B : u|K is a constant function},

M = {(u, v) ∈ B ×θ B : u ∈ I, v(x0) = −u(x0)}.

Regularity of B implies that I 6= ∅. If J is defined as in (4), then J = B 6⊂
ker θ. It is easy to check that M is a closed ideal of B ×θ B, while neither I
is an ideal of B, nor M = I × J .

(b) We modify the above example, by defining M to be

M = {(u, v) ∈ B ×θ B : v(x0) = −u(x0)}.

In this case M is closed ideal, and I = J = B (that is, both I and J are
ideals), but nonetheless M 6= I × J .

2.9. Remark. There does not seem to be an easy description for various
radicals of A×θB. However if R denotes either strong, or Jacobson, or prime
radical, and if R(B) = {0}, then

(5) R(A×θ B) = R(A).

It is easy to characterize the idempotent elements of A ×θ B. In the
following, we would like to characterize the minimal idempotents of these
algebras because of their importance in the ideal theory of A×θB. Suppose
that B is an algebra. We recall that a non-zero element µ ∈ B is called a
minimal idempotent if µ2 = µ and µBµ = Cµ. It is well known that when
B is semiprime, L is a minimal left (respectively, right) ideal of B if and
only if L = Bµ (respectively, L = µB), where µ is a minimal idempotent
in B [3, Proposition 6, p. 155]. In the group algebra L1(G) of a locally
compact group G, the minimal idempotents are the coefficients of integrable
representations of G [2]. For the Fourier algebra A(G), minimal idempotents
exist if and only if G is discrete, in which case the minimal idempotents are
given by characteristic functions χ{x} of single point sets [7, Theorem 5.5,
p. 360].

2.10. Theorem. An element (a0, b0) is a minimal idempotent of A×θB
if and only if one of the following conditions are satisfied :
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(i) b0 = 0 and a0 is a minimal idempotent of A.

(ii) a0 = 0, θ(b0) = 0, and b0 is a minimal idempotent of B.

(iii) b0 is a minimal idempotent such that b0bb0 = θ(b)b0 for all b ∈ B,
θ(b0) = 1, and a0 satisfies

(∗)

{
a2

0 = −a0,

a0aa0 + aa0 + a0a+ a = 0 for all a ∈ A.

Proof. The sufficiency part of the theorem is left for the reader. We prove
the necessity. Let (a0, b0) be a minimal idempotent; we show at least one of
the above three conditions holds.

The condition (a0, b0)
2 = (a0, b0) implies that

b20 = b0,(6)

a2
0 + 2θ(b0)a0 = a0.(7)

If (a, b) ∈ A×θ B is arbitrary, there must exist λa,b ∈ C such that

(a0, b0)(a, b)(a0, b0) = λa,b(a0, b0),

which is equivalent to

a0aa0 + θ(b0)(aa0 + a0a) + θ(b)a2
0 + θ(b0)

2a+ 2θ(b)θ(b0)a0 = λa,ba0,(8)

b0bb0 = λa,bb0.(9)

Comparing (6) and (9) it follows that either b0 = 0, or b0 is a minimal
idempotent of B with λa,b = λ0,b for all a ∈ A.

If we assume b0 = 0, then (7) implies a2
0 = a0, and (8) implies

a0aa0 + θ(b)a2
0 = λa,ba0 for all (a, b).

Upon substituting b = 0, we obtain a0aa0 = λa,0a0, for all a ∈ A. Thus a0

is a minimal idempotent, proving condition (i).

Alternatively if we assume b0 6= 0 is a minimal idempotent, and λa,b =
λ0,b for all a, then either θ(b0) = 0 or θ(b0) = 1. We consider two cases.

Case I: θ(b0) = 0. Then (7) and (8) imply

a2
0 = a0,(10)

a0aa0 + θ(b)a = λ0,ba0 for all a, b.(11)

Substituting a = 0 in the last equation implies λ0,ba0 = 0 for all b ∈ B,
which can be true only if a0 = 0 (the alternative λ0,b = 0 also leads to
a0 = 0 if we substitute a = a0, and b = 0 in (11)), thus proving (ii).

Case II: θ(b0) = 1. Then (7) implies a2
0 = −a0, and consequently upon

substituting b = 0 in (8) we get

(12) a0aa0 + aa0 + a0a+ a = λ0,0a0 for all a.
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If we set a = 0 in the above equation we conclude λ0,0 = 0, and therefore

(13) a0aa0 + aa0 + a0a+ a = 0 for all a.

Finally, from (9) and the fact that θ(b0) = 1 we get θ(b) = λ0,b for all b ∈ B,
hence proving (iii).

We remark that the conditions in (∗) do not imply that a is an idempo-
tent of A. For example when A has an identity eA, the only element of A
satisfying (∗) is −eA.

Next we turn our attention to the question of amenability and topological
center of A×θ B.

Amenability has well known hereditary properties [14, 4, 20]. In par-
ticular, since A ×θ B is a strongly splitting extension of B, it is amenable
(respectively, contractible) if and only if both A and B are amenable (re-
spectively, contractible).

With regard to weak amenability, although weak amenability of A and
B implies the weak amenability of A×θ B, the converse is not true in gen-
eral [15]. However, we can state the following theorem.

2.11. Theorem. Weak amenability of A×θB implies the weak amenab-

ility of B and cyclic amenability of A.

Proof. The weak amenability of B follows from a general result about
Banach algebra extensions proved in [19, Lemma 2.3, p. 183]. It remains to
prove the cyclic amenability of A. Let P : A ×θ B → A be the projection
on A, and let d : A→ A′ be a continuous cyclic derivation. Then we prove

D = tP ◦ d ◦ P : A×θ B → A′ ×B′

is a continuous derivation. In fact, for every (a, b), (a′, b′), and (c, e) inA×θB,
we have

〈D((a, b)(a′, b′)), (c, e)〉 = 〈d(aa′ + θ(b)a′ + θ(b′)a), c〉(14)

= 〈d(aa′) + θ(b)d(a′) + θ(b′)d(a), c〉.

On the other hand,

〈D(a, b) · (a′, b′), (c, e)〉 = 〈d(a), a′c+ θ(b′)c+ θ(e)a′〉(15)

= 〈d(a) · a′ + θ(b′)d(a), c〉 + 〈d(a)(a′)θ, e〉,

and

〈(a, b) ·D(a′, b′), (c, e)〉 = 〈d(a′), ca+ θ(e)a+ θ(b)c〉(16)

= 〈a · d(a′) + θ(b)d(a′), c〉 + 〈d(a′)(a)θ, e〉.

Adding (15) to (16) and comparing with (14) we conclude thatD is a deriva-
tion since d(a)(a′) + d(a′)(a) = 0. From the weak amenability of A ×θ B it
follows that D = δ(φ,ψ) for some (φ, ψ) ∈ A′ × B′. We claim that d = δφ;
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indeed, for all a, a′ ∈ A,

〈d(a), a′〉 = 〈tP ◦ d ◦ P (a, 0), (a′, 0)〉

= 〈(a, 0) · (φ, ψ) − (φ, ψ) · (a, 0), (a′, 0)〉

= 〈φ, a′a〉 − 〈φ, aa′〉

= 〈a · φ− φ · a, a′〉,

as we wanted to show.

To state our next result we note that if B is a Banach algebra and
θ ∈ σ(B), then θ ∈ σ(B′′) in a natural way, when B′′ is equipped with
either of its Arens products.

2.12. Proposition. Let A and B be Banach algebras and θ ∈ σ(B).
Suppose that A′′, B′′, and (A×θB)′′ are equipped with their first (or second)
Arens products. Then

(A×θ B)′′ ∼= A′′ ×θ B
′′ (isometric isomorphism).

Proof. Assume that A′′, B′′, and (A×θ B)′′ are equipped with the first
Arens product. The multiplication in A′′ ×θ B

′′ is given by

(17) (Φ, Ψ)(Φ′, Ψ ′) = (Φ2 Φ′ + Ψ(θ)Φ′ + Ψ ′(θ)Φ, Ψ 2 Ψ ′).

To compute the first Arens product in (A ×θ B)′′, let (a, b) ∈ A ×θ B,
(φ, ψ) ∈ A′ × B′, and (Φ, Ψ), (Φ′, Ψ ′) ∈ A′′ × B′′ be arbitrary. Then one can
calculate, respectively,

(φ, ψ) · (a, b) = (φ · a+ θ(b)φ, ψ · b+ φ(a)θ),

(Φ′, Ψ ′) ⊙ (φ, ψ) = (Φ′ ⊙ φ+ Ψ ′(θ)φ, Φ′(φ)θ + Ψ ′ ⊙ ψ),

(Φ, Ψ) 2 (Φ′, Ψ ′) = (Φ2 Φ′ + Ψ(θ)Φ′ + Ψ ′(θ)Φ, Ψ 2 Ψ ′).(18)

Comparing (17) with (18) shows that the identity mapping is an isometric
isomorphism between (A×θ B)′′ and A′′ ×θ B

′′.

Calculations with the second Arens product are similar. On one hand,
we have

(Φ, Ψ)(Φ′, Ψ ′) = (Φ3 Φ′ + Ψ(θ)Φ′ + Ψ ′(θ)Φ, Ψ 3 Ψ ′);

and on the other hand,

(a, b) · (φ, ψ) = (a · φ+ θ(b)φ, b · ψ + φ(a)θ),

(φ, ψ) ⊙ (Φ, Ψ) = (φ⊙ Φ+ Ψ(θ)φ, Φ(φ)θ + ψ ⊙ Ψ),

(Φ, Ψ) 3 (Φ′, Ψ ′) = (Φ3 Φ′ + Ψ(θ)Φ′ + Ψ ′(θ)Φ, Ψ 3 Ψ ′).

2.13. Corollary. Zt[(A ×θ B)′′] = Zt(A
′′) ×θ Zt(B

′′). In particular ,
A×θ B is Arens regular (respectively , strongly Arens irregular) if and only

if both A and B are Arens regular (respectively , strongly Arens irregular).
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3. Spectral synthesis. We start this section with the following result
which will be used throughout.

3.1. Theorem. Let A and B be commutative Banach algebras, and let

θ ∈ σ(B).

(i) A×θ B is semisimple if and only if both A and B are semisimple.

(ii) If A and B are semisimple, b ∈ B and its Gelfand transform b̂ has

compact support , then for every a ∈ A, (a, b)∧ = (â, b̂) has compact

support.

(iii) If A and B are semisimple, then A ×θ B is regular if and only if

both A and B are regular. If in addition B is Tauberian, then so is

A×θ B.

Proof. (i) Suppose that A and B are semisimple. Using the character-
ization of spectrum in Proposition 2.4, we verify that the Gelfand map is
injective; in fact, if (a, b)∧ = (â, b̂) = (0, 0) then

〈(â, b̂), (φ, θ)〉 = φ(a) + θ(b) = 0 (φ ∈ σ(A)),

〈(â, b̂), (0, ψ)〉 = ψ(b) = 0 (ψ ∈ σ(B)).

This implies that a = b = 0. The converse can be proved similarly.

(ii) Assume that b ∈ B and supp b̂ is compact in σ(B). Then for every
a ∈ A,

supp(â, b̂) ⊂ E ∪ {(0, θ)} ∪ {(0, ψ) : ψ ∈ supp b̂},

since by Proposition 2.4 the set on the right hand side is compact (hence

closed) and (â, b̂) is zero outside this set, proving that (â, b̂) has compact
support.

(iii) Suppose that both A and B are regular. Let S ⊂ σ(A ×θ B) be
closed and (φ0, ψ0) ∈ σ(A×θ B) − S. Define

S1 = S ∩ F, S2 = S ∩ E,

S′
1 = {ψ ∈ σ(B) : (0, ψ) ∈ S1}, S′

2 = {φ ∈ σ(A) : (φ, θ) ∈ S2}.

The sets S′
1 and S′

2 are closed subsets of σ(B) and σ(A), respectively. To
separate (φ0, ψ0) from S we consider several cases:

Case I: (φ0, ψ0) = (0, θ). In this case 0 is not in the closure of S′
2 in

σ(A) ∪ {0}, and hence S′
2 is compact in σ(A). Regularity of A implies that

there exists a0 ∈ A such that

〈â0, φ〉 = φ(a0) = −1 for all φ ∈ S′
2,

[13, Corollary 39.16, p. 493]. Next using regularity of B, we choose b0 ∈ B
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such that b̂0(θ) = 1 and b̂0(S
′
1) = {0}. Then

〈(â0, b̂0), (0, θ)〉 = b̂0(θ) = 1,

〈(â0, b̂0), (0, ψ)〉 = b̂0(ψ) = 0 for all ψ ∈ S′
1,

〈(â0, b̂0), (φ, θ)〉 = â0(φ) + b̂0(θ) = −1 + 1 = 0 for all φ ∈ S′
2.

This means that (â0, b̂0) separates (0, θ) from S.

Case II: (φ0, ψ0) = (0, ψ0) (ψ0 6= θ). Using regularity of B, choose
b0 ∈ B such that

b̂0(ψ0) = 1, b̂0(S
′
1 ∪ {θ}) = {0};

then of course (0, b̂0) separates (0, ψ0) from S.

Case III: (φ0, ψ0) = (φ0, θ). In this case φ0 6∈ S′
2. From regularity of A

there exists a0 ∈ A such that â0(φ0) = 1 and â0(φ) = 0 for all φ ∈ S′
2. Now

(â0, 0) separates (φ0, θ) from S.
The proofs of the rest of the statements in (iii) are left for the reader.

As a consequence of the abstract Tauberian theorem [13, Theorem 39.27,
p. 499] and the above result we obtain:

3.2. Corollary. Let A and B be commutative, semisimple, regular

Banach algebras, and suppose that B is Tauberian. Then the empty set ∅ is

a spectral set of A×θ B. In particular , every proper closed ideal in A×θ B
is contained in a maximal modular ideal.

For the rest of this section we assume that A and B are commutative,

semisimple, regular Banach algebras. We also recall our standing assumption
that E and F are used exclusively to denote

E = {(φ, θ) : φ ∈ σ(A)}, F = {(0, ψ) : ψ ∈ σ(B)}.

It follows from [13, Theorem 39.19, p. 494] that if K ⊂ σ(B) is a non-
spectral set for B, then {(0, ψ) : ψ ∈ K} is a non-spectral set for A×θ B.

We show in the next result that even a spectral set of B may no longer
be a spectral set for the extension A×θ B.

3.3. Proposition. Let A and B be commutative, semisimple, regular

Banach algebras, and suppose the empty set is not a spectral set for A. Then

the singleton {(0, θ)} is not a spectral set for A×θ B.

Proof. By our assumption, A has a proper closed ideal I such that h(I)
= ∅. Let J = ker θ = {b ∈ B : θ(b) = 0}, and M = I × J . By Proposition
2.6, M is a closed ideal of A ×θ B. If (0, ψ) ∈ h(M), then ψ(b) = 0 for all
b ∈ ker θ, and therefore by regularity of B, ψ = θ. That is, h(M) ∩ F =
{(0, θ)}. If however (φ, θ) ∈ h(M), then by definition of M , we must have
φ(a) = 0 for all a ∈ I, that is, φ ∈ h(I), which is impossible. This means
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that h(M)∩E = ∅. Thus h(M) = {(0, θ)}. Clearly M 6= k({(0, θ)}) = A×J .
Thus {(0, θ)} is not a spectral set.

As a consequence of the above result we can show Ditkin’s property
is not preserved under Banach algebra extensions. We recall the following
definition [13, p. 497].

Let A be a commutative semisimple Banach algebra. We say A satisfies
Ditkin’s condition if the following conditions hold.

(a) If a ∈ A and φ ∈ σ(A) is such that â(φ) = 0, then there exists a

sequence (bn) in A such that each b̂n vanishes in some neighborhood
of φ (depending on bn) and ‖abn − a‖ → 0.

(b) If σ(A) is non-compact, then for every a ∈ A there exists a sequence

(bn) in A such that each b̂n has compact support and ‖abn−a‖ → 0.

Ditkin’s condition has been studied for various algebras by many au-
thors. For example, in the context of the Fourier algebra A(G), it has been
studied by Derighetti, Forrest, Kaniuth, Lau and the author [6, 10, 16, 22].
In particular it is known that A(G) (or in general, Ap(G)) satisfies Ditkin’s
condition if G is amenable [22, Proposition 3.9, p. 420].

3.4. Corollary. Let A and B be commutative, semisimple, regular

Banach algebras, and suppose the empty set is not a spectral set for A.

Then A×θ B does not satisfy Ditkin’s condition.

Proof. By [13, Corollary 39.26, p. 498] if A ×θ B satisfies Ditkin’s con-
dition and if S is a closed subset of σ(A×θ B) whose boundary contains no
non-empty perfect set, then S is a spectral set; in particular, {(0, θ)} is a
spectral set. This of course contradicts the above proposition.

In our next theorem we assume B = A(G) is the Fourier algebra of a
locally compact group G, and characterize the circumstances under which
singletons are spectral sets in the extensions A×θB. It seems that our result
cannot be extended to a general commutative, semisimple, regular Banach
algebra B, unless some restrictive conditions are assumed. For this reason
we have decided to state our result for the case of the Fourier algebra, which
is of particular interest in harmonic analysis. We recall that A(G) is regular,
Tauberian and every singleton {x} in G is a spectral set of A(G) [8].

Without loss of generality, we assume θ = ǫe ∈ σ(A(G)), where e is the
identity of G.

3.5. Theorem. Let A be a commutative, semisimple, regular Banach

algebra with identity.

(i) If every singleton {φ} is a spectral set for A, then every singleton

{(φ, ψ)} is a spectral set for A×θ A(G).
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(ii) If every singleton {(φ, ψ)} is a local spectral set for A×θ A(G) then

every singleton {φ} is a spectral set for A.

Therefore every singleton {(φ, ψ)} is a spectral set for A×θA(G) if and only

if every singleton {φ} is a spectral set for A.

3.6. Remark. We note that as A is assumed to have identity, there is no
distinction between spectral sets and local spectral sets in σ(A). Statement
(ii) means that the converse of (i) is true under a weaker assumption (since
A×θ A(G) may not have an identity even if A has one—Proposition 2.3).

Proof of Theorem 3.5. (i) Case I: (φ, ψ) = (0, ǫx0
), x0 6= e. Let (a, u)∧ =

(â, û) be such that

〈(â, û), (0, ǫx0
)〉 = u(x0) = 0.

Since {x0} is a spectral set for A(G) there exists a sequence (un), each un
with compact support Kn disjoint from {x0}, such that ‖un − u‖ → 0. It
follows that (â, ûn) converges in norm to (â, û). Furthermore we have

supp(â, ûn) ⊂ E ∪ {(0, ǫe} ∪K
′
n

where K ′
n = {(0, ǫx) : x ∈ Kn} is itself a compact subset of σ(A ×θ A(G)).

Thus supp(â, ûn) is a compact set disjoint from {(0, ǫx0
)}.

Case II: (φ, ψ) = (0, ǫe). This is similar to the previous case if we replace
x with e in Case I, except in showing that the support of (â, ûn) is compact
we need to use the assumption that A has identity. In fact we can write

supp(â, ûn) = {(φ, ǫe) : φ(a) 6= 0} ∪ {(0, ǫx) : un(x) 6= 0} ⊂ E ∪K ′
n,

where the closures are in σ(A×θ A(G)), and the last inclusion follows since
A is unital and E = σ(A) × {ǫe} is compact in σ(A×θ A(G)). Of course as
before K ′

n is compact and disjoint from {(0, ǫe)}, and so is the support of
(â, ûn).

Case III: (φ, ψ) = (φ0, ǫe) for some φ0 ∈ σ(A). Let (â0, û0) be such that

〈(â0, û0), (φ0, ǫe〉 = φ0(a0) + u0(e) = 0.

We want to approximate (â0, û0) with a sequence (ân, ûn) such that each
term has a compact support disjoint from {(φ0, ǫe)}. Suppose that u0(e) 6= 0
(the other alternative can be handled in a similar fashion). Since both {φ0}
and {e} are spectral sets, we can find two sequences (ân), (ûn) with compact
supports in σ(A) and in σ(A(G)) respectively, and two sequences of open
neighborhoods, (Wn) and (Vn) of φ0 and ǫe respectively, such that

‖â0 − ân‖ → 0, ân|Wn = −u0(e),

‖û0 − ûn‖ → 0, ûn|Vn = u0(e).

Thus over the neighborhoodWn×{ǫe} of (φ0, ǫe) we have (ân, ûn)|Wn×{ǫe}=0.
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With regard to the support of (ân, ûn), let Kn be the compact support
of un. Then

supp(ân, ûn) = {(φ, ǫe) : φ(an) + un(e) 6= 0} ∪ {(0, ǫx) : un(x) 6= 0}

⊂ {(φ, ǫe) : φ(an) + u0(e) 6= 0} ∪K ′
n

= {φ ∈ σ(A) : φ(an) 6= −u0(e)} × {ǫe} ∪K
′
n.

But
Ln = {φ ∈ σ(A) : ân(φ) 6= −u0(e)}

is a closed subset of the compact support of ân, and hence is compact. Since

{φ ∈ σ(A) : φ(an) 6= −u0(e)} × {ǫe} ⊂ Ln × {ǫe}

the compactness of the support of (ân, ûn) follows.
It remains to show that (φ0, ǫe) 6∈ supp(ân, ûn). It suffices to show that

φ0 6∈ Ln. If φ0 ∈ Ln there exists a net φα such that φα → φ0 and φα(an) 6=
−u0(e) for all α. But as Wn is a neighborhood of φ0, φα is eventually in Wn

and hence for sufficiently large α,

ân(φα) = −u0(e), i.e. φα(an) = −u0(e).

This is of course a contradiction.
(ii) Let φ0 ∈ σ(A) and â0 ∈ k({φ0}). We want to approximate â0 by

a net (âα) in k00({φ0}) (that is, each âα must vanish on a neighborhood
of φ0—as σ(A) is compact we do not need to require that âα has compact
support). By our assumption {(φ0, ǫe)} is a local spectral set and of course

〈(â0, 0), (φ0, ǫe)〉 = φ0(a0) = 0.

Compactness of E implies the compactness of the support of (â0, 0). Hence
there exists a net (âα, ûα) ∈ k00({(φ0, ǫe)}) such that

‖(â0, 0) − (âα, ûα)‖ = ‖a0 − aα‖ + ‖uα‖ → 0.

Since sets like U × {ǫe} where U is a neighborhood of φ0 in σ(A) form a
neighborhood base at (φ0, ǫe) (Proposition 2.4), there exists one such set for
which

(âα, ûα)|U×{ǫe} = 0 and hence âα|U = −uα(e).

If 1A is the identity of A, then (âα + uα(e)1̂A)|U = 0, and

‖âα + uα(e)1̂A − â0‖ ≤ ‖âα − â0‖ + |uα(e)| ‖1̂A‖ → 0.

Thus {φ0} is a spectral set.

Our next theorem concerns primary ideals in A×θA(G). For this we need
a couple of preliminary results concerning the support of linear functionals
on regular Banach algebras of functions. The notion of support in this gen-
erality was defined by Herz in [12, p. 101]. But Herz does not indicate the
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properties that we require here. For this reason we mention the following
two results.

3.7. Lemma. Let A be a regular Banach algebra in C0(X) where X is

the spectrum of A. Let T ∈ A′ and a ∈ X. Then the following assertions are

equivalent :

(i) The linear functional ǫa : A→ C, ǫa(v) = v(a), is the weak∗ limit of

operators v ·T where v ∈ A (the product being the module product).
(ii) If u ∈ A and if u · T = 0, then u(a) = 0.
(iii) For every neighborhood V of a there exists a function v ∈ A with

supp v ⊂ V and 〈T, v〉 6= 0.

Proof. The proof of Eymard for A = A(G) in [8, Proposition 4.4, p. 225]
can be applied with natural modifications.

For A as in the above lemma, the support of an element T ∈ A′ is defined
as the set of all a ∈ X satisfying the equivalent conditions of the lemma.

3.8. Lemma. Let A be a regular Banach algebra in C0(X) where X is the

spectrum of A, and suppose that elements with compact support are dense

in A. If a singleton {x0} ⊂ X is a local spectral set and if T ∈ A′ is such

that suppT = {x0}, then T = λǫx0
for some λ ∈ C.

This result for the case of A = A(G) was proved in [8, Lemma 3.8, p. 221
and Proposition 4.8(6), p. 226]. Eymard uses the group structure of G and
so his proof does not seem to carry over to our general case. In our proof
however we avoid any use of group structure, and instead use a hint in [12,
p. 101] and Lemma 3.7.

Proof. We divide the proof into several steps. The idea in Steps 1–3 is
to show that

(19) v · T = v(x0)T for all v ∈ A.

Step 1. If u, v ∈ A ∩ C00(X) and if u = v on a compact neighborhood

of x0, then 〈T, u〉 = 〈T, v〉.

Note that x0 6∈ K = supp(u − v). So for every x ∈ K there exists
a neighborhood Ux such that for every w ∈ A with suppw ⊂ Ux we have
〈T,w〉 = 0. Let Vx be a compact neighborhood of x such that Vx ⊂ Ux. From
compactness of K, there exist x1, . . . , xn ∈ K such that K ⊂

⋃n
j=1 Vxj

. By
[13, Theorem 39.21, p. 495] the restricted algebra AK = {u|K : u ∈ A} is a
normal Banach algebra of functions on the compact space K, and therefore
by a partition of unity, there exist v1, . . . , vn in A such that

supp(vj |K) ⊂ Vxj
∩K,

n∑

j=1

vj |K = 1.
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Using regularity of A, let wj ∈ A be such wj |Vxj
= 1 and suppwj ⊂ Uxj

.

Let uj = vjwj for j = 1, . . . , n. Then

suppuj ⊂ Uj ,
n∑

j=1

uj |K = 1.

Since 〈T, (u− v)uj〉 = 0, we get

〈T, u− v〉 =

n∑

j=1

〈T, (u− v)uj〉 = 0,

as we wanted to show.

Step 2. If v ∈ A ∩ C00(X) and if v(x0) = 0 then v · T = 0.

Since {x0} is a local spectral set, v is the norm limit of a sequence
vn ∈ v ∈ A ∩ C00(X) such that supp vn is disjoint from {x0}. Then by
Step 1, vn · T = 0 for all n and hence v · T = 0.

Step 3. If v ∈ A ∩ C00(X), then v · T = v(x0)T .

Let v0 ∈ A∩ C00(X) be such that v0 = 1 on a neighborhood of x0. Then
by Step 1, v0 · T = T . On the other hand, by Step 2, (v − v(x0)v0) · T = 0
and hence v · T = v(x0)v0 · T = T .

Now we can easily prove (19) by using the fact that the elements with
compact support are dense in A. The proof of the lemma can now be com-
pleted as follows: since suppT = {x0}, by Lemma 3.7 there exists a net (vα)
in A such that ǫx0

= weak∗- limα vα · T. Thus for every u ∈ A,

u(x0) = 〈ǫx0
, u〉 = lim

α
〈vα · T, u〉 = lim

α
〈vα(x0)T, u〉 = µ〈T, u〉,

where µ = limα vα(x0). As µ 6= 0, we can set λ = 1/µ.

The following is a generalization of a famous result of Eymard [8, Corol-
lary 1, p. 229]. The proof of Eymard now carries over.

3.9. Theorem. Let A be a regular Banach algebra in C0(X) where X is

the spectrum of A and suppose that the elements with compact supports are

dense in A. Suppose that every singleton {x} is a local spectral set for A.

Then every closed primary ideal of A is a maximal modular ideal in A.

As a corollary of the above theorem and Theorem 3.5 we obtain:

3.10. Corollary. Let A be a commutative, semisimple, regular Banach

algebra with identity. Suppose that every singleton {φ} ⊂ σ(A) is a spectral

set for A. Then every closed primary ideal in A ×θ A(G) is a maximal

modular ideal.
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[9] —, Algèbres Ap et convoluteurs de L

p, in: Lecture Notes in Math. 180, Springer,
New York, 1971, 364–381.

[10] B. Forrest, Amenability and the structure of the algebras Ap(G), Trans. Amer. Math.
Soc. 343 (1994), 233–243.

[11] N. Grønbæk, Weak and cyclic amenability for non-commutative Banach algebras,
Proc. Edinburgh Math. Soc. 35 (1992), 315–328.

[12] C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973),
no. 3, 91–123.

[13] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 2, Springer, New York,
1970.

[14] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
[15] B. E. Johnson and M. C. White, A non-weakly amenable augmentation ideal, pre-

print.
[16] E. Kaniuth and A. T.-M. Lau, Spectral synthesis for A(G) and subspaces of V N(G),

Proc. Amer. Math. Soc. 129 (2001), 3253–3263.
[17] J. L. Kelley and I. Namioka, Linear Topological Spaces, Springer, New York, 1963.
[18] A. T.-M. Lau, Analysis on a class of Banach algebras with applications to harmonic

analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), 161–
175.

[19] A. T.-M. Lau and R. Loy, Weak amenability of Banach algebras on locally compact

groups, J. Funct. Anal. 145 (1997), 175–204.
[20] V. Runde, Lectures on Amenability, Springer, New York, 2002.
[21] M. Sangani-Monfared, Character amenability of Banach algebras, preprint.
[22] —, Extensions and isomorphims for the generalized Fourier algebras of a locally

compact group, J. Funct. Anal. 198 (2003), 413–444.

Department of Mathematics and Statistics
University of Windsor
Windsor, ON, N9B 3P4, Canada
E-mail: monfared@uwindsor.ca

Received May 25, 2006

Revised version October 26, 2006 (5928)


