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Spectral projections for the twisted Laplacian

by

Herbert Koch (Dortmund) and Fulvio Ricci (Pisa)

Abstract. Let n ≥ 1, d = 2n, and let (x, y) ∈ R
n × R

n be a generic point in R
2n.

The twisted Laplacian

L = −
1

2

n
∑

j=1

[(∂xj
+ iyj)

2 + (∂yj
− ixj)

2]

has the spectrum {n + 2k = λ2 : k a nonnegative integer}. Let Pλ be the spectral projec-
tion onto the (infinite-dimensional) eigenspace. We find the optimal exponent ̺(p) in the
estimate

‖Pλu‖Lp(Rd) . λ̺(p)‖u‖L2(Rd)

for all p∈ [2,∞], improving previous partial results by Ratnakumar, Rawat and Thangavelu,
and by Stempak and Zienkiewicz. The expression for ̺(p) is

̺(p) =

{

1/p − 1/2 if 2 ≤ p ≤ 2(d + 1)/(d − 1),

(d − 2)/2 − d/p if 2(d + 1)/(d − 1) ≤ p ≤ ∞.

1. Introduction. Sharp L2-Lp-bounds for spectral projections onto
eigenspaces of elliptic differential operators L with a discrete spectrum have
attracted considerable attention in the last 20 years, starting with the work
of C. Sogge [5] on the spherical Laplacian (see also [4]). If Pλ is the spectral
projection corresponding to an eigenvalue λ2 of L and 2 ≤ p ≤ ∞, one looks
for the best possible exponent ̺(p) such that

(1) ‖Pλu‖p . λ̺(p)‖u‖2.

In general, ̺(p) is a convex function of 1/p. Strict convexity of ̺(p) at
some points is connected with dispersive estimates for L and in some cases to
phenomena in harmonic analysis such as restriction theorems for the Fourier
transform.
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We consider here the so-called twisted Laplacian

L = −1

2

n
∑

j=1

[(∂xj + iyj)
2 + (∂yj − ixj)

2]

in R
2n. In dimension 2 (i.e. n = 1), L can be viewed as a Schrödinger operator

with the magnetic potential A = (y,−x), inducing a constant magnetic field.
The sharp estimates (1) relative to L are as follows.

Theorem 1. With d = 2n and 2 ≤ p ≤ ∞, (1) holds with

(2) ̺(p) =















1

p
− 1

2
if 2 ≤ p ≤ 2(d + 1)

d − 1
,

d − 2

2
− d

p
if

2(d + 1)

d − 1
≤ p ≤ ∞,

and with no smaller exponent.

The first partial result in this direction is in [3], where the second expo-
nent in (2) was obtained for p larger than some p0 > 2(d+1)/(d−1). Later,
Stempak and Zienkiewicz [6] obtained (2) for p 6= 2(d + 1)/(d − 1).

Our approach is inspired by the recent work of Koch and Tataru [1] on
dispersive estimates and their application to the Hermite operator [2]. In
particular it is based on PDE techniques and it does not need the refined
estimates on Laguerre functions, which are used in [6].

The basic estimate is the local dispersive estimate (8) below, which im-
plies the endpoint result for p = 2(d + 1)/(d − 1) by a simple covering
argument. Weaker local estimates were also used by Thangavelu. The other
endpoint result at p = ∞ follows from the exact computation of the L2-L∞-
norm of Pλ (see (6) below).

The connection between L and Hermite operators is two-fold. On one
hand, if we decompose L2(R2n) as the orthogonal sum of the subspaces Vm

consisting of the functions f such that

f(eiθ1(x1+iy1), . . . , e
iθn(xn+iyn)) = ei(m1θ1+···+mnθn)f(x1+iy1, . . . , xn+iyn)

(m ∈ Z
n), we see that

L = −1

2
(∆R2n − |x|2 − |y|2) + i

n
∑

j=1

(xj∂yj − yj∂xj )

equals −1
2(∆R2n − |x|2 − |y|2) − ∑

mj on Vm.
On the other hand, the operators Xj = ∂xj + iyj and Yj = ∂yj − ixj

satisfy the canonical commutation relations [Xj, Yk] = −2iδj,k. This implies
that there is a unitary projective representation π of R

2n on L2(Rn) (with
variable ξ), called the Weyl representation, such that dπ(Xj) =

√
2 ∂ξj

,

dπ(Yj) = −i
√

2 ξj . Then dπ(L) = −∆Rn + |ξ|2. The Stone–von Neumann
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theorem establishes an isomorphism between L2(R2n) and L2(Rn)⊗L2(Rn),
which intertwines the action of the twisted Laplacian on the first space with
the action of the Hermite operator on the first factor in the tensor product.

Each of these arguments shows that L has a discrete spectrum, equal
to the set of integers λ2 = n + 2k, k ∈ N, and that each eigenspace is
infinite-dimensional. The precise description of the eigenspaces is given in
Section 2.

The twisted Laplacian also describes the action of the Heisenberg sub-
Laplacian on special classes of functions. On the reduced Heisenberg group
hn = R

n × R
n × T with product

(x, y, eiθ)(x′, y′, eiθ′) = (x + x′, y + y′, ei(θ+θ′+x′·y−x·y′)),

consider the left-invariant sub-Laplacian

L = −1

2

n
∑

j=1

[(∂xj + yj∂θ)
2 + (∂yj − xj∂θ)

2].

If f(x, y, eiθ) = g(x, y)eimθ with m ∈ Z, then

Lf(x, y, eiθ) = −1

2
eimθ

n
∑

j=1

[(∂xj + imyj)
2 + (∂yj − imxj)

2]g(x, y)

= eimθLmg(x, y).

One easily verifies that, for m 6= 0, the spectrum of Lm consists of the
integers |m|(n + 2k) with k ∈ N, and that the pairs (|m|(n + 2k), m) with
m ∈ Z\{0}, k ∈ N give the discrete joint spectrum of L and i−1∂θ. If Pm,k is
the orthogonal projection on the joint eigenspace, a simple scaling argument
shows that

‖Pm,ku‖Lp(hn) . (n + 2k)
1
2
̺(p)|m|σ(p)‖u‖L2(hn),

with ̺(p) as in (2) and σ(p) = (d/2)(1/2 − 1/p).
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mester on Harmonic Analysis at the Centro de Giorgi in Pisa. Both authors
are members of the European IHP network HARP “Harmonic Analysis and
Related Problems”. We acknowledge the support for this work by the Eu-
ropean Commission through the Network and the support by the Centro de
Giorgi in Pisa.

2. Spectrum, eigenfunctions and lower bounds for spectral pro-

jections. Here we introduce some notation, derive formulas for some eigen-
functions and calculate Lp-norms of them. This will imply that the bounds
are sharp.
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We identify R
n × R

n with C
n by z = x + iy and write

∂zj =
1

2
(∂xj − i∂yj), ∂z̄j =

1

2
(∂xj + i∂yj).

Then

−1

2
[(∂xj + iyj)

2 +(∂yj − ixj)
2] = −1

2
(2∂zj −zj)(2∂z̄j +zj)+1 =

1

2
D∗

j Dj +1,

with Dj = 2∂z̄j + zj. Since

Dj(f(z)e−|z|2/2) = 2∂z̄jf(z)e−|z|2/2,

for all holomorphic functions f ,

L[f(z)e−|z|2/2] = nf(z)e−|z|2/2.

On the other hand,\
Cn

(Lu)ū dz = n‖u‖2
L2 +

1

2

n
∑

j=1

‖Dju‖2
L2 ,

which shows that n is the smallest eigenvalue and that the corresponding
eigenfunctions are annihilated by Dj . An easy calculation shows

[Dj, D
∗
j ] = 4

and hence, if f is an eigenfunction with eigenvalue µ then

LD∗
jf = D∗

jLf + 2D∗
jf = (µ + 2)D∗

jf,

LDjf = DjLf − 2Djf = (µ − 2)Djf.

We obtain an orthogonal basis of eigenfunctions of the form

(3) fα,β(z) = (2−1D∗)α(zβe−|z|2/2) = (−1)|α|+|β|e|z|
2/2∂α

z ∂β
z̄ e−|z|2

with

Lfα,β = (n + 2|α|)fα,β.

In particular,

z̄k
1e−|z|2/2 = (−1)kf(k,0,... ),0(z)

is an eigenfunction with eigenvalue n + 2k. When we consider the twisted
Laplacian as a quantization of the motion of a charged particle in a constant
magnetic field, then this eigenfunction corresponds to the motion in a circle
of radius

√
k around zero and its maximal concentration (to scale 1) around

that circle is dictated by the uncertainty principle. Thus this eigenfunction
behaves like the characteristic function of a neighborhood of size 1 around
that circle.
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Its Lp-norm can be explicitly computed. Integrating in z1 first, we obtain\
C

|z1|kpe−p|z1|2/2 dz1 = 2π

∞\
0

rkp+1e−pr2/2 dr =
2π

p

(

2

p

)kp/2 ∞\
0

tkp/2e−t dt

=
2π

p

(

2

p

)kp/2

Γ

(

kp

2
+ 1

)

and hence

‖zk
1e−|z|2/2‖p

Lp(R2n)
=

(

2π

p

)n(

2

p

)kp/2

Γ

(

kp

2
+ 1

)

.

By Stirling’s formula
Γ (t + 1) ∼

√
2πt (t/e)t

and so

(4) ‖zk
1e−|z|2/2‖Lp(R2n)/‖zk

1e−|z|2/2‖L2(R2n) ∼ k(1/p−1/2)/2.

This proves that ̺(p) ≥ 1/p − 1/2.
We shall now need the L2-norms of all the fα,β . We can reduce ourselves

to one dimension, since

fα,β(z) =
n

∏

j=1

fαj ,βj
(zj).

In dimension n = 1, the computation in (4) shows that

‖f0,ℓ‖2
2 = πℓ!.

Observe next that

‖fk,ℓ‖2
2 =

1

4
‖D∗fk−1,ℓ‖2

2 =
1

4
〈fk−1,ℓ, DD∗fk−1,ℓ〉

=
1

4
〈fk−1,ℓ, (D

∗D + [D, D∗])fk−1,ℓ〉

=
1

4
〈fk−1,ℓ, (2L + 2)fk−1,ℓ〉 = k‖fk−1,ℓ‖2

2,

so that ‖fk,ℓ‖2
2 = πk!ℓ!, and, in n dimensions,

(5) ‖fα,β‖2
2 = πnα!β!.

As for the Hermite operator [2], we expect that radial eigenfunctions will
provide the sharp value of ̺(p) for p close to ∞.

For k ∈ N, consider

fk(z) = e|z|
2/2∆k

R2ne−|z|2 = 4−ke|z|
2/2

(

n
∑

j=1

∂zj∂z̄j

)k
e−|z|2

= 4−k
∑

|α|=k

(

k

α

)

fα,α(z).
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Then fk is radial, and it is an eigenfunction of L with eigenvalue n + 2k.
Since for radial functions the twisted Laplacian and the Hermite operator
coincide up to a factor 2, the fk are the unique (up to scalar multiples)
radial eigenfunctions of L.

By (5) and the orthogonality of the fα,α,

‖fk‖2
2 = 4−2kπn

∑

|α|=k

k!2 = 4−2kπnk!2
(

n + k − 1

k

)

.

From (3) we see that fα,α(0) = α!, hence

fk(0) = 4−kk!

(

n + k − 1

k

)

.

Thus

‖fk‖L∞

‖fk‖L2

≥ fk(0)

‖fk‖L2

= π−n/2

√

(

n + k − 1

k

)

∼ k(d−2)/4.

This proves that ̺(∞) ≥ (d − 2)/2.

It is not hard to see that the first inequality is in fact an equality, and
that the ratio ‖fk‖L∞/‖fk‖L2 coincides with the L2-L∞-norm of the spectral
projection. If f is an eigenfunction with eigenvalue n + 2k of the twisted
Laplacian with L2 norm 1 which maximizes the L∞ norm then we may
assume, after a twisted translation of the form f(x, y) 7→ ei(a·y−b·x)f(x −
a, y− b), that it assumes its maximum at z = 0. Averaging over the unitary
group U(n) we see that it has to be radial, hence a scalar multiple of fk.
Thus, for λ2 = n + 2k,

(6) ‖Pλ‖2→∞ = π−n

√

(

n + k − 1

k

)

.

We now look for an estimate from below of ‖fk‖p for p finite. Since fk is
radial we obtain by the divergence theorem, if |z| = r,

∂rfk(z) =
cd

rd−1

\
Sr

∂νfk(w) dσ(w) =
cd

rd−1

\
Br

∆fk(w) dw

=
cd

rd−1

\
Br

(−2L + |w|2)fk(w) dw

=
cd

rd−1

\
Br

(−2n − 4k + |w|2)fk(w) dw.

Thus, for r < 1,

|∂rfk(z)| ≤ Cr(n + 2k)‖fk‖∞ = Cr(n + 2k)fk(0),
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and

fk(z) ≥ fk(0)(1 − C(n + 2k)|z|2).
It follows that for |z| < rk = 1/

√

C(n + 2k), fk(z) > 1
2fk(0), so that

‖fk‖p ≥ Cr
d/p
k fk(0) ∼ k−d/2p+(d−2)/4‖fk‖2.

This shows that ̺(p) ≥ (d − 2)/2 − d/p.

3. Upper bounds for spectral projections. Let λ2 = n + 2k and

Lu = λ2u.

Because of (6) the assertion follows once we prove for all (x0, y0) that

(7) λ1/(d+1)‖u‖L2(d+1)/(d−1)(Bλ(x0,y0))
. ‖u‖L2(B2λ(x0,y0)).

We set

x = x0 + λx̄, y = y0 + λȳ ū(x̄, ȳ) = e−i(x0y−y0x)u(x, y).

Then

(λ−1∂x̄j +iλȳj)ū = (∂xj +i(yj−(y0)j)e
−i(x0y−y0x)u = e−i(x0y−y0x)(∂xj +iyj)u

and hence

L̄ū := −1

2

n
∑

j=1

(

(∂x̄j + iλ2ȳj)
2 + (∂ȳj − iλ2x̄j)

2
)

ū = λ4ū.

We drop the bar on x, y and u but not on L. Hence we study

L̄u = λ4u

in a ball of radius 2. The inequality (7) takes the form

(8) λ2/(d+1)‖u‖L2(d+1)/(d−1)(B1(0)) . λ‖u‖L2(B2(0)).

Actually a slightly stronger bound is true:

Lemma 2. Suppose that

Lµu := −1

2

n
∑

j=1

((∂x̄j + iµȳj)
2 + (∂ȳj − iµx̄j)

2)u − µ2u = f.

Then

µ1/(d+1)‖u‖L2(d+1)/(d−1)(B1(0)) . µ1/2‖u‖L2(B2(0)) + µ−1/2‖f‖L2(B2(0)).

The dispersive estimate (8) is an immediate consequence.

Proof. The statement of Lemma 2 follows from Theorem 2 of [1] in the
same way as Lemma 3.4 of [2] is deduced from the same result. The symbol
of Lµ is

p(x, y, ξ, η) =
1

2
(|ξ + y|2 + |η − x|2) − µ2,
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which is real. Keeping x and y fixed it vanishes on a sphere of radius µ,
which has 2n − 1 nonvanishing curvatures of size µ−1. This curvature leads
to the desired estimate.
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