STUDIA MATHEMATICA 180 (2) (2007)

Moduli of smoothness of functions and their derivatives

by

Z. DITZIAN (Edmonton) and S. TIKHONOV (Pisa)

Abstract. Relations between moduli of smoothness of the derivatives of a function and those of the function itself are investigated. The results are for $L_p(T)$ and $L_p[-1, 1]$ for $0 using the moduli of smoothness <math>\omega^r(f, t)_p$ and $\omega^r_{\varphi}(f, t)_p$ respectively.

1. Introduction. For $f, f^{(k)} \in L_p(T), 1 \leq p \leq \infty$, the estimate (see [De-Lo, p. 46])

(1.1)
$$\omega^r(f,t)_p \le Ct^k \omega^{r-k} (f^{(k)},t)_p \quad \text{for } 1 \le k \le r$$

and its weak inverse (see [De-Lo, p. 178]) given by

(1.2)
$$\omega^{r-k} (f^{(k)}, t)_p \le C \int_0^t \frac{\omega^r (f, u)_p}{u^{k+1}} \, du \quad \text{for } 1 \le k < r$$

are well-known. (We note that (1.2) is sometimes called a Marchaud-type inequality.) Here we extend the weak inverse (1.2) to the inequality, for 0 ,

(1.3)
$$\omega^{r-k}(f^{(k)},t)_p \le C \left\{ \int_0^t \frac{\omega^r(f,u)_p^q}{u^{qk+1}} \, du \right\}^{1/q}, \quad q = \min(p,2).$$

(For $p = \infty$ one still has only (1.2).) We recall that

(1.4)
$$\omega^r(f,t)_p = \sup_{|h| < t} \|\Delta_h^r f\|_p,$$
$$\Delta_h f(x) = f(x+h) - f(x), \quad \Delta_h^r f(x) = \Delta_h(\Delta_h^{r-1} f(x)).$$

We note that (1.1) is not valid for 0 (see [Pe-Po, p. 188]).

[143]

²⁰⁰⁰ Mathematics Subject Classification: 26D10, 41A27, 41A28.

 $Key\ words\ and\ phrases:$ moduli of smoothness, sharp Marchaud inequality, inverse results.

Z. Ditzian was supported by NSERC Grant A4816 of Canada. S. Tikhonov was supported by the RFFI (grant 06-01-00268), the Leading Scientific Schools (NSH-4681.2006.1), and the Scuola Normale Superiore.

For 1 , Marcinkiewicz [Ma] proved

$$||f'||_p \le C \left\{ \int_0^1 \frac{\omega^2(f, u)_p^p}{u^{p+1}} \, du \right\}^{1/p},$$

which is related to (1.3) and, as will be shown in Corollary 3.8, is a corollary of (1.3). For 1 the inequality (1.3) is related to the work $of Besov [Be]. In the case of <math>L_p(T)$ our main result is when 0(which was not attempted earlier). We give the complete proof of (1.3) for $<math>1 as well, since we use the same technique again for <math>\omega_{\varphi}^r(f, t)_p$ in Section 5 and we hope that it will have even further use.

The weighted $L_{p,w}[-1,1]$ is given by the norm or quasi-norm

(1.5)
$$||f||_{p,w} = \left\{ \int_{-1}^{1} |f(x)|^p w(x)^p dx \right\}^{1/p}, \quad 0$$

and

$$||f||_{\infty,w} = \operatorname{ess\,sup}_{-1 < x < 1} |f(x)w(x)|.$$

The weighted moduli and main part moduli of smoothness $\omega_{\varphi}^{r}(f,t)_{p,w}$ and $\Omega_{\varphi}^{r}(f,t)_{p,w}$ (see also [Di-To]) are given for $\varphi(x)^{2} = 1 - x^{2}$ and $w(x) = \varphi(x)^{\sigma}$ ($\sigma \geq 0$) by

(1.6)
$$\omega_{\varphi}^{r}(f,t)_{p,w} \equiv \sup_{|h| \le t} \|\Delta_{h\varphi}^{r}f\|_{L_{p,w}[I]},$$
$$\Omega_{\varphi}^{r}(f,t)_{p,w} \equiv \sup_{|h| \le t} \|\Delta_{h\varphi}^{r}f\|_{L_{p,w}[I(h,r)]}$$

where

$$I(h,r) = [-1 + 2h^2r^2, 1 - 2h^2r^2], \quad I = [-1,1],$$

and $\Delta_{h\varphi}^r f(x)$ is given by

(1.7)
$$\Delta_{h\varphi}^{r}f(x) = \begin{cases} \sum_{l=0}^{r} (-1)^{l} \binom{r}{l} f\left(x + \left(\frac{r}{2} - l\right)h\varphi(x)\right) \\ & \text{for } x \pm (r/2)h\varphi(x) \in [-1,1], \\ 0 & \text{otherwise.} \end{cases}$$

For w(x) = 1 ($\sigma = 0$) we write

$$\omega_{\varphi}^{r}(f,t)_{p,1} \equiv \omega_{\varphi}^{r}(f,t)_{p}$$

It is known (see [Di-To, Theorems 6.2.2 and 6.3.1]) that

(1.8)
$$\Omega_{\varphi}^{r}(f,t)_{p} \leq Ct^{k}\omega_{\varphi}^{r-k}(f^{(k)},t)_{p,\varphi^{k}} \quad \text{for } 1 \leq p \leq \infty$$

and

(1.9)
$$\Omega_{\varphi}^{r-k}(f^{(k)},t)_{p,\varphi^k} \le C \left[\int_0^t \frac{\Omega_{\varphi}^r(f,u)_p}{u^{k+1}} \, du \right] \quad \text{for } 1 \le p \le \infty.$$

For 0 we will show

(1.10)
$$\Omega_{\varphi}^{r-k}(f^{(k)},t)_{p,\varphi^{k}} \le C \left[\int_{0}^{t} \frac{\omega_{\varphi}^{r}(f,u)_{p}^{q}}{u^{qk+1}} \, du \right]^{1/q}, \quad q = \min(p,2).$$

(For $p = \infty$ one has (1.9) or (1.10) with $p = \infty$ and q = 1.) The inequality (1.8) does not hold for 0 .

For $1 \leq p \leq \infty$ the kth derivative $f^{(k)}$ can be given as a distributional derivative or by assuming that the (k-1)th derivative in the classical sense satisfies $f^{(k-1)} \in A.C._{loc}$. This is not possible for $0 as <math>f \in L_p$ does not necessarily imply that f is a distribution. Moreover, even if $f' \in L_p$ (p < 1), it does not imply that $f \in A.C._{loc}$. In Section 2 we deal with $L_p(T)$ where 0 and prove a result that will be useful for the proof of theinverse inequality. The sharp inverse inequality (1.3) is proved in Section 3. $Analogous results to those in Section 2 are proved for <math>L_p[-1, 1]$, 0 ,in Section 4. The sharp converse (1.10) is proved in Section 5.

2 Some positive and negative results for $L_p(T)$, $0 . For <math>f \in L_p(T)$, 0 , we define the derivative of <math>f as a function g satisfying

(2.1)
$$\left\|\frac{1}{h}\left(f(\cdot+h)-f(\cdot)\right)-g(\cdot)\right\|_{L_p(T)}\to 0 \quad \text{as } h\to 0,$$

in which case we write g = f'. (For $p \ge 1$, (2.1) is the commonly used strong derivative of f.) The kth derivative is given as usual as the kth iterate of the first derivative. When f is locally absolutely continuous ($f \in A.C._{loc}$) the definition in (2.1) coincides with the classical definition of a derivative. For $0 the derivative in <math>L_p$ is problematic or, as Peetre described it, "pathological" (see [Pe]) even when it is the derivative of a function satisfying $f \in A.C._{loc}$.

Some aspects of the behaviour of derivatives were described earlier (see for instance, [Pe], [Di-Hr-Iv], [Pe-Po] and [Di,95]). Here another aspect of this anomaly is described. This may serve as a warning to ourselves and others against using a certain type of argument which is absolutely acceptable when $1 \le p \le \infty$. In the following example when we say f' is a derivative of f, it will be in the most elementary sense ($f \in A.C._{loc}$). We will prove our result for [0, 1] but similar outcomes occur on [a, b] or T.

THEOREM 2.1. When $0 it is possible for <math>\varphi_n$ to converge to f in $L_p[0,1]$, for φ'_n to converge to g in $L_p[0,1]$, and for f' to exist and belong to $L_p[0,1]$, but $f'(x) \neq g(x)$.

REMARK 2.2. Other versions of Theorem 2.1 can be:

- (I) When $0 it is possible that <math>\varphi_n$ and ψ_n converge to f in $L_p[0,1]$, that φ'_n converges to g_1 in $L_p[0,1]$, and that ψ'_n converges to g_2 in $L_p[0,1]$, but $g_1 \neq g_2$ in $L_p[0,1]$.
- (II) When $0 it is possible that <math>\varphi_n$ and φ'_n are Cauchy sequences in $L_p[0,1]$, and hence $\varphi_n \to f$, $\varphi'_n \to g$ but g is not the derivative of f.

Proof of Theorem 2.1. We choose f(x) = x and $\varphi_n(x)$ given by

$$\varphi_n(x) = \begin{cases} \frac{k}{n}, & \frac{k}{n} \le x < \frac{k+1}{n} - \frac{1}{n^2}, \\ \frac{k}{n} + \left(x - \frac{k+1}{n} + \frac{1}{n^2}\right)n, & \frac{k+1}{n} - \frac{1}{n^2} \le x < \frac{k+1}{n}, \end{cases}$$

for k = 0, 1, ..., n - 1, and

$$\varphi_n'(x) = \begin{cases} n, & \frac{k+1}{2} - \frac{1}{n^2} \le x < \frac{k+1}{n}, \\ 0, & \text{otherwise.} \end{cases}$$

We clearly have $\|\varphi_n - f\|_p \le 1/n$ (where $\|F\|_p^p = \int_0^1 |F(x)|^p dx$) and

$$\|\varphi'_n - 0\|_p \le \left(n \frac{1}{n^2} n^p\right)^{1/p} = n^{(p-1)/p} \to 0.$$

We note that this example covers Remark 2.2 as well where we choose $\psi_n(x) = x$ and $\psi'_n(x) = 1$.

For $1 \leq p \leq \infty$ the situation is different from what is described in Theorem 2.1, and for that reason some are inclined to believe in the opposite of that theorem. Under some restrictions on φ_n and the rate of convergence we have f' = g for 0 as well, and Theorem 2.1 was given mainlyto show that we need to prove the following result which will be useful inSection 3.

THEOREM 2.3. For $f \in L_p(T)$ and T_n a sequence of trigonometric polynomials of degree n satisfying

(2.2)
$$||f - T_n||_{L_p(T)} = o\left(\frac{1}{n}\right)$$
 and $||g - T'_n||_{L_p(T)} = o(1), \quad n \to \infty,$

we have f' = g, that is, g satisfies (2.1).

Proof. For $1 \le p \le \infty$ the theorem is a special case of known results and we prove it here only for $0 . For any <math>\varepsilon > 0$ we choose $n_0 = n_0(\varepsilon)$ such that for $n \ge n_0$,

$$||f - T_n||_{L_p(T)} \le \varepsilon \frac{1}{n}$$
 and $||g - T'_n||_{L_p(T)} \le \varepsilon$.

For h satisfying $\sqrt{\varepsilon}/n \le h \le 1/n$ we have

(2.3)
$$\left\|\frac{f(\cdot+h)-f(\cdot)}{h}-\frac{T_n(\cdot+h)-T_n(\cdot)}{h}\right\|_{L_p(T)}^p \le 2\frac{\varepsilon^p}{\varepsilon^{p/2}} = 2\varepsilon^{p/2}$$

Following [Di-Hr-Iv] (proof of Theorem 3.1 there), we have, for $\sqrt{\varepsilon}/n \le h \le 2\sqrt{\varepsilon}/n$,

$$(2.4) \qquad \left\| \frac{T_n(\cdot+h) - T_n(\cdot)}{h} - T'_n(\cdot) \right\|_{L_p(T)}^p \le \sum_{k=2}^\infty \left(\frac{h^{k-1}}{k!} \right)^p \|T_n^{(k)}\|_{L_p(T)}^p$$
$$\le \sum_{k=2}^\infty (hn)^{(k-1)p} \|T_n\|_{L_p(T)}^p$$
$$\le 4\varepsilon^p \frac{1}{1 - 2^p \varepsilon^{p/2}} \|T_n\|_{L_p(T)}^p$$
$$\le C\varepsilon^p \|T_n\|_{L_p(T)}^p.$$

We note that in (2.4) as well as in [Di-Hr-Iv] we utilized the important inequality by Arestov [Ar] who established that

(2.5) $||T'_n||_{L_p(T)} \le n ||T_n||_{L_p(T)}$

for $0 . Therefore, for <math>\sqrt{\varepsilon}/n \le h < 2\sqrt{\varepsilon}/n$ we have

(2.6)
$$\left\|\frac{f(\cdot+h)-f(\cdot)}{h}-g\right\|_{L_p(T)}^p \le C(\varepsilon^{p/2}+\varepsilon^p \|f\|_{L_p(T)}+\varepsilon^p),$$

and as the right-hand side does not depend on n or T_n , we have g = f'.

Repeating the process in Theorem 2.3, we obtain the following corollary.

COROLLARY 2.4. Suppose $f, g_1, \ldots, g_k \in L_p(T)$ and T_n is a sequence of trigonometric polynomials satisfying

(2.7)
$$\|f - T_n\|_p = o\left(\frac{1}{n^k}\right), \qquad n \to \infty,$$
$$\|g_i - T_n^{(i)}\|_p = o\left(\frac{1}{n^{k-i}}\right), \qquad n \to \infty, \text{ for } i = 1, \dots, k.$$

Then $g_i = g'_{i-1}$ $(f = g_0)$ in the sense of (2.1).

3. Functions in $L_p(T)$. For $L_p(T)$ our estimate of $\omega^{r-k}(f^{(k)}, t)_p$ is given in the following theorem.

THEOREM 3.5. For $f \in L_p(T)$, 0 , and integers <math>k, r satisfying k < r we have

(3.1)
$$\omega^{r-k}(f^{(k)},t)_p \le C \left\{ \int_0^t \frac{\omega^r(f,u)_p^q}{u^{qk+1}} \, du \right\}^{1/q}$$

where $q = \min(p, 2)$.

REMARK 3.6. (I) In Theorem 3.5 inequality (3.1) means that if its righthand side converges, then $f^{(k)}$ exists in the sense of (2.1) (or for $p \ge 1$ as a distribution) and satisfies both $f^{(k)} \in L_p(T)$ and inequality (3.1).

(II) For $p = \infty$ (and p = 1) we have q = 1, which is the classical result (1.2).

(III) For 1 , <math>r = 2 and k = 1, (3.1) is essentially proved by Marcinkiewicz in [Ma]. For 1 , (3.1) is related to a result of Besov on the rate of best approximation by trigonometric polynomials (see [Be]).

(IV) For $1 , (3.1) is actually stronger than (1.2). This is illustrated by examining cases for which <math>\omega^r(f,t)_p \leq Mt^k/|\log t|^{\alpha}$ for t < 1/2. In such a situation we need $\alpha > 1$ for (1.2) to converge but only $\alpha > 1/q$ for (3.1) to converge. Moreover, in this case using (3.1) ($\alpha q > 1$), we obtain

$$\omega^{r-k}(f^{(k)},t)_p \le M_1 \frac{1}{|\log t|^{\alpha-1/q}} \quad \text{for } t < \frac{1}{2},$$

but using (1.2) (for $\alpha > 1$), we have only

$$\omega^{r-k}(f^{(k)},t)_p \le M_1 \frac{1}{|\log t|^{\alpha-1}} \quad \text{for } t < \frac{1}{2}.$$

We note that if $\omega^r(f,t)_p = O(t^{k+\beta})$ for some $\beta > 0$, then (3.1) does not have an advantage over (1.2) for $1 . While proving (3.1) for <math>1 \le p < \infty$, we show that it implies (1.2) for $1 \le p < \infty$.

(V) For 0 no inverse inequality was proved earlier, and in fact to call it an inverse result is a misnomer since the direct result (1.1) is not valid when <math>0 (see [Pe-Po, p. 188]).

(VI) As an example of the use of (3.1) for $0 we set <math>f(x) = x^{r-1} \operatorname{sgn} x$ for $|x| < \pi$ and define f(x) by $f(x + 2\pi) = f(x)$ elsewhere. We have $\omega^r(f,t)_p \approx t^{r-1+1/p}$ (see [Pe-Po, p. 188]). For k < r, $f^{(k)}(x) = (\Gamma(r)/\Gamma(r-k))x^{r-k-1} \operatorname{sgn} x$ when $|x| < \pi$ and hence $\omega^{r-k}(f^{(k)},t)_p \approx t^{r-k-1+1/p}$ as expected by (3.1). For instance, if p = 1/2, r = 2 and k = 1, we have $\omega^2(f,t)_p \approx t^3$ and $\omega(f',t)_p \approx t^2$.

Proof of Theorem 3.5. Since $\omega^m(F,t)_p$ is nondecreasing and

(3.2)
$$\omega^m(F,2t)_p \le 2^m \omega^m(F,t)_p \quad \text{for } 1 \le p \le \infty$$

while (see [Pe-Po, p. 187])

(3.3)
$$\omega^m(F,2t)_p \le C(m,p)\omega^m(F,t)_p \quad \text{for } 0$$

it is sufficient to prove (2.1) for $t = 2^{-n}$. Using (3.2) and (3.3), we also have

(3.4)
$$\left\{ \int_{0}^{2^{-n}} \frac{\omega^{r}(f,u)_{p}^{q}}{u^{qk+1}} du \right\}^{1/q} \approx \left\{ \sum_{l=n}^{\infty} 2^{lqk} \omega^{r}(f,2^{-l})_{p}^{q} \right\}^{1/q},$$

and hence it is sufficient to prove that for all n,

(3.5)
$$\omega^{r-k}(f^{(k)}, 2^{-n})_p \le C \left\{ \sum_{l=n}^{\infty} 2^{lqk} \omega^r(f, 2^{-l})_p^q \right\}^{1/q}$$

Inequality (3.5) demonstrates that (3.1) for $1 is stronger than (1.2) as the <math>l_1$ norm of the sequence $\{2^l \omega^r (f, 2^{-l})_p\}_{l=n}^{\infty}$ is bigger than the l_q norm of that sequence. (That (3.1) is actually stronger in some cases was shown in Remark 3.2(IV).)

Since for any trigonometric polynomial Q_n of degree cn we have

$$\omega^r (Q_n, u)_p \le C(r, L, p) u^r ||Q_n^{(r)}||_p, \quad u \le L/n, \, p > 0$$

(see [St-Kr-Os] for r = 1 and [Di-Hr-Iv]), we have

(3.6)
$$\omega^m(F, 1/n)_p \le M(\|F - Q_n\|_p + n^{-m} \|Q_n^{(m)}\|_p)$$

for $0 , and hence our task is to find <math>Q_{2^n}$ of degree $c2^n$ (not necessarily the best or near best $c2^n$ trigonometric approximant to $f^{(k)}$) such that both $||f^{(k)} - Q_{2^n}||_p$ and $2^{-n(r-k)}||Q_{2^n}^{(r-k)}||_p$ are bounded by the right-hand side of (3.5).

We deal first with $0 . Let <math>T_n$ be the best *n*th degree trigonometric polynomial approximant to f in $L_p(T)$, that is,

(3.7)
$$\|f - T_n\|_p = \inf\left(\|f - T\|_p : T = a_0 + \sum_{l=1}^n (a_l \cos lx + b_l \sin lx)\right)$$
$$\equiv E_n(f)_p.$$

As trigonometric polynomials are dense in L_p , we have $||f - T_{2^l}||_p \to 0$. Clearly,

$$T_{2^{l}} - T_{2^{n}} = \sum_{m=n}^{l-1} (T_{2^{m+1}} - T_{2^{m}}),$$

and if $\sum_{m=n}^{\infty} \|T_{2^{m+1}} - T_{2^m}\|_p^p$ converges for 0 , then

$$f - T_{2^n} = \sum_{m=n}^{\infty} (T_{2^{m+1}} - T_{2^m})$$
 in $L_p(T)$ for $0 .$

Following [Di-Hr-Iv], for $0 , <math>T_n$ of (3.7) and any integer r we have

(3.8)
$$\|f - T_{2^m}\|_p + 2^{-mr} \|T_{2^m}^{(r)}\|_p \approx \omega^r (f, 2^{-m})_p$$

and hence

$$\sum_{m=n}^{\infty} \|T_{2^{m+1}} - T_{2^m}\|_p^p \le C \sum_{m=n}^{\infty} \omega^r (f, 2^{-m})_p^p \le C 2^{-nkp} \sum_{m=n}^{\infty} 2^{mkp} \omega^r (f, 2^{-m})^p,$$

which converges assuming (3.1) and hence (3.5). In addition, the series $\sum_{m=n}^{\infty} (T_{2^{m+1}} - T_{2^m})$ has k derivatives in L_p as the Bernstein inequality (2.5)

implies

$$\sum_{m=n}^{\infty} \|T_{2^{m+1}}^{(k)} - T_{2^m}^{(k)}\|_p^p \le \sum_{m=n}^{\infty} (2^{m+1})^{kp} \|T_{2^{m+1}} - T_{2^m}\|_p^p$$
$$\le C_1 \sum_{m=n}^{\infty} 2^{mkp} \omega^r (f, 2^{-m})_p^p,$$

which converges using (3.5). Therefore, there exists a function $g \in L_p(T)$ for which

$$\|g - T_{2^n}^{(k)}\|_p = \lim_{l \to \infty} \|T_{2^l}^{(k)} - T_{2^n}^{(k)}\|_p \le C_1^{1/p} \Big(\sum_{m=n}^{\infty} 2^{mkp} \omega^r (f, 2^{-m})_p^p\Big)^{1/p}.$$

Using (3.8), we also have

$$2^{-n(r-k)} \| (T_{2^n}^{(k)})^{(r-k)} \|_p = 2^{-n(r-k)} \| T_n^{(r)} \|_p \le C_2 2^{nk} \omega^r (f, 2^{-n})_p$$
$$\le C_2 \Big(\sum_{m=n}^{\infty} 2^{mkp} \omega^r (f, 2^{-m})_p^p \Big)^{1/p}.$$

If we show $g = f^{(k)}$, the above would imply the result of our theorem for $0 via <math>Q_{2^n} = T_{2^n}^{(k)}$ and (3.6). Following Theorem 2.3 and Corollary 2.4 (its iterate), we in fact have $g = f^{(k)}$.

We now turn to the case $1 \leq p < \infty$. For a function $f \in L_p(T)$ with Fourier expansion

$$f(x) \sim a_0 + \sum_{l=1}^{\infty} (a_l \cos lx + b_l \sin lx) = \sum_{l=0}^{\infty} P_l(f)$$

the trigonometric polynomial $\eta_N f$ is given by

(3.9)
$$\eta_N f = \sum_{l=0}^{\infty} \eta\left(\frac{l}{N}\right) P_l(f)$$

where $\eta \in C^{\infty}[0,\infty)$, $\eta(x) = 1$ for $x \leq 1/2$ and $\eta(x) = 0$ for $x \geq 1$. We now have: (I) $\eta_N f$ is a trigonometric polynomial of degree smaller than N; (II) $\eta_N \varphi = \varphi$, where φ is a trigonometric polynomial of degree [N/2]; (III) $\|\eta_N f\|_{L_p(T)} \leq C \|f\|_{L_p(T)}$ for $1 \leq p \leq \infty$. Therefore, $\eta_N f$ is a de la Vallée Poussin-type operator and $\|\eta_N f - f\|_{L_p(T)} \leq (C+1)E_{N/2}(f)_p$ for $1 \leq p \leq \infty$ where $E_l(f)_p$ is the best rate of approximation of f by a trigonometric polynomial of degree l in $L_p(T)$ (see (3.7)). We now choose the Q_n of (3.6) for $F = f^{(k)}$ to be $(\eta_n f)^{(k)}$. Clearly, $\|f - \eta_n f\|_p = o(1)$ as $n \to \infty$. We estimate $\eta_{2^l} f - \eta_{2^n} f$ using

$$\eta_{2^{l}}f - \eta_{2^{n}}f = \sum_{m=n}^{l-1} (\eta_{2^{m+1}}f - \eta_{2^{m}}f) \equiv \sum_{m=n}^{l-1} \theta_{m}f.$$

We now write

$$(\eta_{2^{l}}f)^{(k)} - (\eta_{2^{n}}f)^{(k)} = \sum_{m=n}^{l-1} (\theta_{m}f)^{(k)}$$

Following [Da-Di, Theorem 2.1], we have the Littlewood–Paley inequality

$$(3.10) \quad B_p \| (\eta_{2^l} f)^{(k)} - (\eta_{2^n} f)^{(k)} \|_{L_p(T)} \le \left\| \left(\sum_{m=n}^{l-1} \{ (\theta_m f)^{(k)} \}^2 \right)^{1/2} \right\|_{L_p(T)} \le A_p \| (\eta_{2^l} f)^{(k)} - (\eta_{2^n} f)^{(k)} \|_{L_p(T)}$$

with A_p and B_p independent of l, n, f or k. For $1 \le p < \infty$, using [Da-Di, Corollary 2.2], for any integer k we have

(3.11)
$$\left\| \left(\sum_{m=n}^{l-1} \{ (\theta_m f)^{(k)} \}^2 \right)^{1/2} \right\|_{L_p(T)} \le \left(\sum_{m=n}^{l-1} \| (\theta_m f)^{(k)} \|_{L_p(T)}^q \right)^{1/q}, \quad q = \min(p, 2).$$

The equivalence

(3.12) $\omega^r(f, 1/n)_p \approx ||f - \eta_n f||_{L_p(T)} + n^{-r} ||(\eta_n f)^{(r)}||_{L_p(T)}$ for $1 \le p \le \infty$ follows from the realization result in [Di-Hr-Iv] using the fact that $\eta_n f$ is a de la Vallée Poussin operator and hence near best approximant to f in $L_p(T)$.

Using (3.10)–(3.12) and the Bernstein inequality, we have

$$\begin{aligned} \|(\eta_{2^{l}}f)^{(k)} - (\eta_{2^{n}}f)^{(k)}\|_{L_{p}(T)} &\leq C \Big(\sum_{m=n}^{l-1} 2^{mkq} \|\theta_{m}(f)\|_{L_{p}(T)}^{q} \Big)^{1/q} \\ &\leq C_{1} \Big(\sum_{m=n}^{l-1} 2^{mkq} \omega^{r}(f, 2^{-m})_{p}^{q} \Big)^{1/q} \end{aligned}$$

with C_1 independent of m, l and f (but it may depend on r, p and q). The version of the right-hand side of (3.1) given in (3.4) establishes now the convergence of $(\eta_{2^l} f)^{(k)}$ to $f^{(k)}$ and hence $f^{(k)} \in L_p$. (Here, for $1 \leq p \leq \infty$ the difficulty described in Section 2 does not exist.) We now use $Q_{2^n} = \eta_{2^n} f$ and (3.12) to obtain

$$2^{-n(r-k)} \| ((\eta_{2^n} f)^{(k)})^{(r-k)} \|_{L_p(T)} = 2^{-n(r-k)} \| (\eta_{2^n} f)^{(r)} \|_{L_p(T)}$$

$$\leq C_2 2^{nk} \omega^r (f, 2^{-n})_p$$

$$\leq C_2 \Big(\sum_{m=n}^{\infty} 2^{mkq} \omega^r (f, 2^{-m})_p^q \Big)^{1/q},$$

and thus complete the proof. \blacksquare

REMARK 3.7. We can combine Theorem 3.5 (using the weaker $q = \min(p, 1)$) with our earlier theorem [Di-Ti, Section 2] (d = 1) to obtain a result with different norms. This will yield the inequality

$$(3.13) \qquad \omega^{r-k}(f^{(k)},t)_{L_{p_1}(T)} \le C \left\{ \int_0^t \left[u^{-k-1/p+1/p_1} \omega^r(f,u)_{L_p(T)} \right]^{q_1} \frac{du}{u} \right\}^{1/q_1}$$

for $k + 1/p - 1/p_1 < r, 0 < p < p_1 \le \infty$ and

$$q_1 = \begin{cases} p_1, & p_1 < \infty, \\ 1, & p_1 = \infty. \end{cases}$$

COROLLARY 3.8. For $f \in L_p(T)$, $1 \le p < \infty$, 0 < k < r and $q = \min(p, 2)$ we have

(3.14)
$$\|f^{(k)}\|_{p} \leq C \left\{ \int_{0}^{1} \frac{\omega^{r}(f, u)_{p}^{q}}{u^{qk+1}} \, du \right\}^{1/q}.$$

REMARK 3.9. For k = 1, r = 2 and $1 \le p \le 2$ Corollary 3.8 is the theorem of Marcinkiewicz given in [Ma]. For $p = \infty$, (3.14) holds with q = 1.

Proof of Corollary 3.8. We note that if $f^{(k)} \in L_p(T)$ for some $f \in L_p(T)$ $(1 \le p \le \infty)$, one has

(3.15)
$$\frac{1}{2\pi} \int_{0}^{2\pi} f^{(k)}(x+y) \, dy = 0.$$

Therefore

$$\|f^{(k)}\|_{p} = \left\|f^{(k)}(\cdot) - \frac{1}{2\pi} \int_{0}^{2\pi} f^{(k)}(\cdot + y) \, dy\right\|_{p}$$
$$\leq \omega(f^{(k)}, 2\pi)_{p} \leq (2\pi + 1)\omega(f^{(k)}, 1)_{p}.$$

Using Theorem 3.5, we now have

$$\|f^{(k)}\|_{p} \leq (2\pi+1)C_{1} \left\{ \int_{0}^{1} \frac{\omega^{k+1}(f,u)_{p}^{q}}{u^{kq+1}} \, du \right\}^{1/q},$$

which establishes (3.14) for k = r - 1. If r - 1 > k, we use [Di,83], which establishes $||f^{(k)}||_p \leq C_2 ||f^{(k+1)}||_p$ for any $f \in L_p(T)$, and k > 0 satisfying (3.15).

4. Convergence of polynomials and their derivatives in L_p , $0 . As explained in Section 2 (see also [Di,95]), one cannot expect automatically that <math>P_n \to f$ and $P'_n \to g$ in L_p (0) imply <math>g = f'. However, if some additional conditions are satisfied, that is in fact the case.

THEOREM 4.10. Suppose $-1 < a_1 < a < b < b_1 < 1$ and P_n is a sequence of polynomials of degree n satisfying

(4.1)
$$||f - P_n||_{L_p[a_1,b_1]} = o(1/n), \quad ||g - P'_n||_{L_p[a_1,b_1]} = o(1), \quad n \to \infty.$$

Then

(4.2)
$$\left\|\frac{f(x+h) - f(x)}{h} - g(x)\right\|_{L_p[a,b]} = o(1), \quad h \to 0,$$

or, in other words, g is the derivative of f in $L_p[a, b]$.

Proof. We follow the proof of Theorem 2.3 (with the appropriate modifications). For h satisfying $h < \min(b_1 - b, a - a_1) \equiv d$ and $\sqrt{\varepsilon d}/n \le h \le 1/n$, and for f, g and P_n satisfying

(4.3)
$$||f - P_n||_{L_p[a_1, b_1]} \le \varepsilon/n$$
 and $||g - P'_n||_{L_p[a_1, b_1]} \le \varepsilon$

we have

(4.4)
$$\left\|\frac{f(\cdot+h)-f(\cdot)}{h}-\frac{P_n(\cdot+h)-P_n(\cdot)}{h}\right\|_{L_p[a,b]}^p \le 2\left(\frac{\varepsilon}{d}\right)^{p/2}.$$

We now follow [Di-Hr-Iv, Section 6] to obtain, for $\sqrt{\varepsilon d}/n < h \leq 2\sqrt{\varepsilon d}/n$,

$$\left\|\frac{P_n(\cdot+h) - P_n(\cdot)}{h} - P'_n(\cdot)\right\|_{L_p[a,b]} \le \sum_{k=2}^{n+1} \left(\frac{h^{k-1}}{k!}\right)^p \|P_n^{(k)}\|_{L_p[a,b]}^p \equiv S.$$

Defining

(4.5)
$$\widetilde{d}(x) = (x - a_1)(b_1 - x) \text{ for } x \in [a_1, b_1],$$

we have

$$S \le C \sum_{k=2}^{\infty} \left(\frac{h^{k-1}}{k!}\right)^p d^{-pk/2} \|\widetilde{d}(x)^{k/2} P_n^{(k)}\|_{L_p[a_1,b_1]}^p \equiv CS_1.$$

Using the Bernstein inequality

$$\|\varphi(x)^k P_n^{(k)}\|_{L_p[-1,1]} \le C n^k \|P_n\|_{L_p[-1,1]} \quad \text{with} \quad \varphi(x)^2 = 1 - x^2,$$

we have by a change of variable

$$\|\widetilde{d}(x)^{k/2}P_n^{(k)}\|_{L_p[a_1,b_1]} \le Cn^k \|P_n\|_{L_p[a_1,b_1]}.$$

Therefore,

$$S_{1} \leq C \sum_{k=2}^{\infty} \left(\frac{h^{k-1}}{k!}\right)^{p} d^{-pk/2} n^{kp} \|P_{n}\|_{L_{p}[a_{1},b_{1}]}^{p}$$
$$= C(\|f\|_{L_{p}[a_{1},b_{1}]}^{p} + \varepsilon^{p}) \sum_{k=2}^{\infty} \left(\frac{hn}{\sqrt{d}}\right)^{(k-1)p}$$
$$\leq C_{1}(\|f\|_{L_{p}[a_{1},b_{1}]}^{p} + \varepsilon^{p})\varepsilon^{p}.$$

Hence,

(4.6)
$$\left\|\frac{f(\cdot+h) - f(\cdot)}{h} - g(\cdot)\right\|_{L_p[a,b]}^p \le C_2(\varepsilon^p(\|f\|_{L_p[a_1,b_1]} + 1) + \varepsilon^{p/2} + \varepsilon^p),$$

and as both sides of (4.6) do not depend on P_n or n, (4.6) implies (4.2).

We may iterate the result in Theorem 4.10 to obtain

COROLLARY 4.11. Suppose $-1 < a_1 < a < b < b_1 < 1$ and P_n is a sequence of polynomials of degree n satisfying

(4.7)
$$\|f - P_n\|_{L_p[a_1,b_1]} = o\left(\frac{1}{n^k}\right),$$
$$\|g_i - P_n^{(i)}\|_{L_p[a_1,b_1]} = o\left(\frac{1}{n^{k-i}}\right) \quad for \ i = 1, \dots, k.$$

Then g_i is the derivative of g_{i-1} in $L_p[a,b]$ in the sense of (4.2) (with $g_0 = f$).

For the proof of Corollary 4.11 we use a finite sequence of nested intervals and the proof of Theorem 4.10.

We also have the following corollary of the above.

COROLLARY 4.12. Suppose P_n is a sequence of polynomials of degree n satisfying

(4.8)
$$\|f - P_n\|_{L_p[-1,1]} = o\left(\frac{1}{n^k}\right),$$
$$\|\varphi^i(g_i - P_n^{(i)})\|_{L_p[-1,1]} = o\left(\frac{1}{n^{k-i}}\right) \quad for \ i = 1, \dots, k.$$

Then in any interval [a, b], -1 < a < b < 1, g_i is the derivative of g_{i-1} and g_1 is the derivative of f in the sense of (4.2).

For the proof we just confirm that the conditions of Corollary 4.11 are satisfied.

5. The estimate of $\Omega_{\varphi}^{r-k}(f^{(k)},t)_p$ by $\omega_{\varphi}^r(f,t)_p$. For a function $f \in L_p[-1,1]$ the inverse result of our paper is given in the following theorem.

THEOREM 5.13. For $f \in L_p[-1,1]$, 0 , and integers <math>k, r satisfying k < r, we have

(5.1)
$$\Omega^{r-k}(f^{(k)},t)_{p,\varphi^k} \le C \left\{ \int_0^t \frac{\omega_{\varphi}^r(f,u)_p^q}{u^{qk+1}} \, du \right\}^{1/q}$$

where $q = \min(p, 2)$.

REMARK 5.14. For $1 \le p < \infty$, (5.1) implies the inequality with q = 1 for that range but with q = 1 Theorem 5.13 is included in Theorem 6.3.1

of [Di-To]. For q = 1 and $p = \infty$ we have the result in [Di-To, Theorem 6.3.1(a)].

For the proof of Theorem 5.13 we need the following lemma.

LEMMA 5.15. For $0 , integer m and <math>g \in L_p[a, b]$, for any -1 < a < b < 1 and Q_n a polynomial of degree n we have (5.2) $\Omega_{\varphi}^m(g, 1/n)_{p,\varphi^k}$

$$\leq C(\|\varphi^{k}(g-Q_{n})\|_{L_{p}[-1,1]} + n^{-m}\|\varphi^{k+m}Q_{n}^{(m)}\|_{L_{p}[-1,1]}).$$

Proof. To prove (5.2) we observe that

$$\Omega^m_{\varphi}(g,1/n)_{p,\varphi^k} \le C_1 \{ \Omega^m_{\varphi}(g-Q_n,1/n)_{p,\varphi^k} + \Omega^m_{\varphi}(Q_n,1/n)_{p,\varphi^k} \}$$

where $C_1 = 1$ for $1 \le p \le \infty$ and $C_1 = 2^{1/p}$ for 0 . Following [Di-Hr-Iv] with minor changes, we obtain

$$\Omega_{\varphi}^{m}(Q_{n}, 1/n)_{p,\varphi^{k}} \leq C_{2}n^{-m} \|\varphi^{k+m}Q_{n}^{(m)}\|_{L_{p}[-1,1]}.$$

To complete the proof of (5.2) we need to show that

$$\Omega_{\varphi}^{m}(g - Q_{n}, 1/n)_{p,\varphi^{k}} \le C_{3} \|\varphi^{k}(g - Q_{n})\|_{L_{p}[-1,1]}.$$

To prove the last inequality, we note that all we need to show is that for $-1 + 2m^2h^2 \le x \le 1 - 2m^2h^2$ and $|\alpha| \le m/2$,

(5.3)
$$A^{-1} \le \left(\frac{\varphi(x)}{\varphi(x+\alpha h\varphi(x))}\right)^l \le A$$

with A independent of x and h. Without loss of generality it is sufficient to prove (5.3) for l = 2, $h \ge 0$ and $x \le 0$. With the restriction on x, i.e. $-1 + 2m^2h^2 \le x \le 0$, we have $h < 1/\sqrt{2}m$ as otherwise (5.3) is vacuous. For $-m/2 \le \alpha \le 0$ (recall $-1 + 2m^2h^2 \le x$ and hence $1 + x - mh\varphi(x) \ge 0$) we have

$$\frac{2}{3} \leq \frac{1}{1+\frac{m}{2}h} \leq \frac{1}{1+\frac{m}{2}h\sqrt{\frac{1+x}{1-x}}} \leq \frac{1-x}{1-x+\frac{m}{2}h\varphi(x)}$$
$$\leq \frac{(1-x)(1+x)}{(1-x-\alpha h\varphi(x))(1+x+\alpha h\varphi(x))} \equiv \frac{\varphi^2(x)}{\varphi^2(x+\alpha h\varphi(x))}$$
$$\leq \frac{1+x}{1+x-\frac{m}{2}h\varphi(x)} \leq 2.$$

For $0 \le \alpha \le m/2$ (the simpler case when x < 0 and h > 0) we have

$$1 \le \frac{\varphi^2(x)}{\varphi^2(x + \alpha h\varphi(x))} \le \frac{1 - x}{1 - x - \frac{m}{2}h\varphi(x)} \le 2. \quad \bullet$$

Proof of Theorem 5.13. The function $\omega_{\varphi}^{l}(F,t)_{p}$ is nondecreasing. We also have

(5.4)
$$\omega_{\varphi}^{l}(F,2t)_{p} \leq C \omega_{\varphi}^{l}(F,t)_{p} \quad \text{for } 0$$

which follows for $1 \leq p \leq \infty$ from the equivalence of $\omega_{\varphi}^{l}(F,t)_{p}$ with the appropriate K-functional (see [Di-To]) and for 0 from [Dr-Hr-Iv, Corollary 5.13, (5.13)].

Therefore,

(5.5)
$$\left\{ \int_{0}^{2^{-n}} \frac{\omega_{\varphi}^{r}(f, u)_{p}^{q}}{u^{qk+1}} \, du \right\}^{1/q} \approx \left\{ \sum_{l=n}^{\infty} 2^{lkq} \omega_{\varphi}^{r}(f, 2^{-l})_{p}^{q} \right\}^{1/q}$$

and as $\Omega^{r-k}(F,t)_{p,\varphi^k}$ and $\{\int_0^t \frac{\omega_{\varphi}^r(f,u)_p^q}{u^{qk+1}} du\}^{1/q}$ are monotonic in t, it is sufficient to prove

(5.6)
$$\Omega^{r-k}(f^{(k)}, 2^{-n})_{p,\varphi^k} \le C \Big\{ \sum_{l=n}^{\infty} 2^{lkq} \omega_{\varphi}^r(f, 2^{-l})_p^q \Big\}^{1/q}.$$

We note that monotonicity in t of $\Omega^m(g,t)_{p,\varphi^k}$ and of $\int_0^t \cdots$ together with (5.4)–(5.6) implies (5.1).

We first proceed with the proof for $0 . We choose <math>P_{2^k}$ to be the best 2^k th degree polynomial approximant to f in $L_p[-1, 1]$. As polynomials are dense in $L_p[-1, 1]$ for $0 (as well as for <math>1 \le p < \infty$), we have $||f - P_{2^k}||_{L_p[-1,1]} \to 0$. If

$$\sum_{l=n}^{\infty} \|P_{2^{l+1}} - P_{2^l}\|_{L_p[-1,1]}^p < \infty,$$

we have

$$||f - P_{2^n}||_{L_p[-1,1]}^p \le \sum_{l=n}^{\infty} ||P_{2^{l+1}} - P_{2^l}||_{L_p[-1,1]}^p, \quad 0$$

and, in other words,

$$f - P_{2^n} = \sum_{l=n}^{\infty} (P_{2^{l+1}} - P_{2^l})$$
 in $L_p[-1, 1]$ for $0 .$

Following [Di-Hr-Iv, Sections 5 and 6], we have

(5.7)
$$\|f - P_{2^l}\|_{L_p[-1,1]} + 2^{-lr} \|\varphi^r P_{2^l}^{(r)}\|_{L_p[-1,1]} \approx \omega_{\varphi}^r (f, 2^{-l})_p.$$

Hence with $\|\cdot\|_{L_p[-1,1]} \equiv \|\cdot\|_p$ we write

$$\begin{split} \sum_{l=n}^{\infty} \|P_{2^{l+1}} - P_{2^{l}}\|_{p}^{p} &\leq C \sum_{l=n}^{\infty} \omega_{\varphi}^{r}(f, 2^{-l})_{p}^{p} \\ &\leq C 2^{-nkp} \sum_{l=n}^{\infty} 2^{klp} \omega_{\varphi}^{r}(f, 2^{-l})_{p}^{p}, \end{split}$$

and as the sum on the right-hand side converges following (5.5), we have

$$\|f - P_{2^n}\|_p = o(2^{-nk}) \text{ as } n \to \infty. \text{ We now need the Bernstein inequality}$$

(5.8)
$$\|\varphi^{j+1}Q'_n\|_p \le C(p,j)n\|\varphi^j Q_n\|_p$$

for Q_n a polynomial of degree n (for 0 see for example [Di-Ji-Le, (2.3)]). We use (5.8) to obtain

(5.9)
$$\sum_{l=n}^{\infty} \|\varphi^{i}(P_{2^{l+1}}^{(i)} - P_{2^{l}}^{(i)})\|_{p}^{p} \leq C_{i} \sum_{l=n}^{\infty} 2^{lip} \omega_{\varphi}^{r}(f, 2^{-l})_{p}^{p}$$
$$\leq C_{i} 2^{-n(k-i)p} \sum_{l=n}^{\infty} 2^{lkp} \omega_{\varphi}^{r}(f, 2^{-l})_{p}^{p}.$$

Hence $\varphi^i g_i = \varphi^i P_{2^n}^{(i)} + \varphi^i \sum_{l=n}^{\infty} (P_{2^{l+1}}^{(i)} - P_{2^l}^{(i)})$ converges in L_p (for $g_0 = f$ it was shown earlier) and

(5.10)
$$\|\varphi^i(g_i - P_{2^n}^{(i)})\|_p = o(2^{-n(k-i)}), \quad n \to \infty, \text{ for } i = 0, 1, \dots, k,$$

which implies the condition of Corollary 4.12, and therefore g_i is locally the *i*th derivative of f in L_p . To complete the proof (for 0) we $apply Lemma 5.15 with <math>g = g_k$, m = r - k, the integer 2^n , and $P_{2^n}^{(k)}$ for the polynomial Q_{2^n} of degree 2^n . We now use (5.9) to obtain

$$\|\varphi^k(g_k - P_{2^n}^{(k)})\|_p^p \le C_k \sum_{l=n}^{\infty} 2^{lkp} \omega_{\varphi}^r(f, 2^{-l})_p^p.$$

The equivalence (5.7) with l = n implies

$$2^{-n(r-k)} \|\varphi(x)^{r-k+k} (P_{2^n}^{(k)})^{(r-k)}\|_{L_p[-1,1]} \le C \, 2^{nk} \omega_{\varphi}^r (f, 2^{-n})_p.$$

The last two estimates yield (5.6) and our result is proved for 0 .

Let us now proceed with the case $1 \le p < \infty$. The function f has the expansion

$$f \sim \sum_{m=0}^{\infty} a_m \psi_m$$

where ψ_m is the Legendre polynomial of degree *n* normalized to satisfy $\|\psi_m\|_{L_2[-1,1]} = 1$, and where

$$a_m = \int_{-1}^{1} f(x)\psi_m(x) \, dx.$$

We choose $P_n(f) = \eta_n(f)$ to be given by

(5.11)
$$\eta_n(f) = \sum_{m=0}^{\infty} \eta\left(\frac{m}{n}\right) a_m \psi_m$$

where $\eta \in C^{\infty}$, $\eta(x) = 1$ for $x \le 1/2$ and $\eta(x) = 0$ for $x \ge 1$.

It is well-known that $\eta_n(f)$ is a de la Vallée Poussin-type operator on $L_p[-1,1], 1 \le p \le \infty$, that is,

(I) $\|\eta_n f\|_p \leq C \|f\|_p$, (II) $\|\eta_n f - f\|_p \leq C E_{n/2}(f)_p \equiv C \inf \left\{ \|f - \Psi_n\|_p : \Psi_n = \sum_{m \leq n/2} b_m \psi_m \right\}$, (III) $\eta_n f \in \operatorname{span}\{\psi_0, \dots, \psi_n\}$.

We choose Q_{2^n} of (5.2) to be $(\eta_n f)^{(k)}$. Using (II) and the density of polynomials in $L_p[-1,1]$, $1 \leq p < \infty$, we have $||f - \eta_n f||_{L_p[-1,1]} = o(1)$ as $n \to \infty$.

Following [Da-Di], we write

$$\eta_{2^{l}}f - \eta_{2^{n}}f = \sum_{m=n}^{l-1} (\eta_{2^{m+1}}f - \eta_{2^{m}}f) \equiv \sum_{m=n}^{l-1} \theta_{m}f.$$

We now write

$$\varphi^k\{(\eta_{2^l}f)^{(k)} - (\eta_{2^n}f)^{(k)}\} = \sum_{m=n}^{l-1} \varphi^k(\theta_m f)^{(k)}.$$

Following [Da-Di, Theorem 2.1], we have the Littlewood–Paley inequality

(5.12)
$$B_{p} \| \varphi^{k} \{ (\eta_{2^{l}} f)^{(k)} - (\eta_{2^{n}} f)^{(k)} \} \|_{L_{p}[-1,1]} \\ \leq \left\| \left(\sum_{m=n}^{l-1} \{ \varphi^{k} (\theta_{m} f)^{(k)} \}^{2} \right)^{1/2} \right\|_{L_{p}[-1,1]} \\ \leq A_{p} \left\| \varphi^{k} \{ (\eta_{2^{l}} f)^{(k)} - (\eta_{2^{n}} f)^{(k)} \} \right\|_{L_{p}[-1,1]}$$

with A_p and B_p independent of l, n, f or k. Using [Da-Di, Corollary 2.2], for $1 and <math>q = \min(p, 2)$ we have

$$\leq C_1 \Big(\sum_{m=n}^{l-1} 2^{mkq} \omega_{\varphi}^r(f, 2^{-m})_p^q \Big)^{1/q}$$
 (by the Jackson inequality [Di-To, Chapter 7]).

In view of (5.5), the last sum converges as $l \to \infty$, and hence $f^{(k)}$ exists and satisfies

$$\|\varphi^k(f^{(k)} - \eta_{2^n} f^{(k)})\|_p = C_1 \Big(\sum_{m=n}^{\infty} 2^{mkq} \omega_{\varphi}^r(f, 2^{-m})_p^q\Big)^{1/q}$$

Using Lemma 5.15, we will complete the proof when we show

$$2^{-(r-k)n} \|\varphi^r(\eta_{2^n} f)^{(r)}\|_p \le C_2 \, 2^{kn} \omega_{\varphi}^r(f, 2^{-n})_p \\\le C_3 \Big(\sum_{m=n}^{\infty} 2^{kmq} \omega_{\varphi}^r(f, 2^{-n})_p^q\Big)^{1/q}.$$

The second inequality is clear, and the first follows from the realization result in [Di-Hr-Iv] which holds for $\eta_n f$, as well as from

$$\omega_{\varphi}^{r}(f, 2^{-n})_{p} \approx \|f - \eta_{n}f\|_{p} + \frac{1}{2^{nr}} \|\varphi^{r}(\eta_{n}f)^{(r)}\|_{p}.$$

References

[Ar] V. V. Arestov, On integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), 3–22 (in Russian); English transl.: Math. USSR-Izv. 18 (1982), 1–18. [Be] O. V. Besov, On some conditions for derivatives of periodic functions to belong to L_p, Nauchn. Dokl. Vyssh. Shkoly Fiz.-Mat. Nauki 1 (1959), 13-17 (in Russian). [Da-Di] F. Dai and Z. Ditzian, Littlewood-Paley theory and sharp Marchaud inequality, Acta Sci. Math. (Szeged) 20 (2005), 123–148. [De-Lo] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer, 1993.[Di,83] Z. Ditzian, On inequalities of periodic functions and their derivatives, Proc. Amer. Math. Soc. 87 (1983), 463-466. [Di,95] -, A note on simultaneous approximation in L_p , 0 , J. Approx.Theory 82 (1995), 317–319. [Di-Hr-Iv] Z. Ditzian, V. H. Hristov and K. G. Ivanov, Moduli of smoothness and K-functionals in L_p , 0 , Constr. Approx. 11 (1995), 67–83.[Di-Ji-Le] Z. Ditzian, D. Jiang and D. Leviatan, Inverse theorems for best polynomial approximation in L_p , 0 , Proc. Amer. Math. Soc. 120 (1994), 151–154.[Di-Ti] Z. Ditzian and S. Tikhonov, Ul'yanov and Nikolskii-type inequalities, J. Approx. Theory 133 (2005), 100–133. Z. Ditzian and V. Totik, Moduli of Smoothness, Springer, 1987. [Di-To] [Ma] J. Marcinkiewicz, Sur quelques intégrales du type de Dini, Ann. Soc. Polon. Math. 17 (1938), 42–50. [Pe] J. Peetre, A remark on Sobolev spaces. The case 0 , J. Approx.Theory 13 (1975), 218–228. [Pe-Po] P. P. Petrushev and V. A. Popov, Rational Approximation of Real Functions, Cambridge Univ. Press, 1987.

[St-Kr-Os] E. A. Storozhenko, V. G. Krotov and P. Oswald, Direct and inverse theorems of Jackson type in the spaces L_p , 0 , Mat. Sb. 98 (1975), 395–415.

Department of Mathematical Sciences University of Alberta Edmonton, Alberta Canada T6G 2G1 E-mail: zditzian@math.ualberta.ca Scuola Normale Superiore Piazza dei Cavalieri, 7 Pisa 56126, Italy E-mail: s.tikhonov@sns.it

Received August 22, 2006 Revised version March 8, 2007

(5981)