Moduli of smoothness of functions and their derivatives

by
Z. Ditzian (Edmonton) and S. Tikhonov (Pisa)

Abstract

Relations between moduli of smoothness of the derivatives of a function and those of the function itself are investigated. The results are for $L_{p}(T)$ and $L_{p}[-1,1]$ for $0<p<\infty$ using the moduli of smoothness $\omega^{r}(f, t)_{p}$ and $\omega_{\varphi}^{r}(f, t)_{p}$ respectively.

1. Introduction. For $f, f^{(k)} \in L_{p}(T), 1 \leq p \leq \infty$, the estimate (see [De-Lo, p. 46])

$$
\begin{equation*}
\omega^{r}(f, t)_{p} \leq C t^{k} \omega^{r-k}\left(f^{(k)}, t\right)_{p} \quad \text { for } 1 \leq k \leq r \tag{1.1}
\end{equation*}
$$

and its weak inverse (see [De-Lo, p. 178]) given by

$$
\begin{equation*}
\omega^{r-k}\left(f^{(k)}, t\right)_{p} \leq C \int_{0}^{t} \frac{\omega^{r}(f, u)_{p}}{u^{k+1}} d u \quad \text { for } 1 \leq k<r \tag{1.2}
\end{equation*}
$$

are well-known. (We note that (1.2) is sometimes called a Marchaud-type inequality.) Here we extend the weak inverse (1.2) to the inequality, for $0<p<\infty$,

$$
\begin{equation*}
\omega^{r-k}\left(f^{(k)}, t\right)_{p} \leq C\left\{\int_{0}^{t} \frac{\omega^{r}(f, u)_{p}^{q}}{u^{q k+1}} d u\right\}^{1 / q}, \quad q=\min (p, 2) \tag{1.3}
\end{equation*}
$$

(For $p=\infty$ one still has only (1.2).) We recall that

$$
\begin{gather*}
\omega^{r}(f, t)_{p}=\sup _{|h|<t}\left\|\Delta_{h}^{r} f\right\|_{p} \tag{1.4}\\
\Delta_{h} f(x)=f(x+h)-f(x), \quad \Delta_{h}^{r} f(x)=\Delta_{h}\left(\Delta_{h}^{r-1} f(x)\right)
\end{gather*}
$$

We note that (1.1) is not valid for $0<p<1$ (see [Pe-Po, p. 188]).

[^0]For $1<p \leq 2$, Marcinkiewicz [Ma] proved

$$
\left\|f^{\prime}\right\|_{p} \leq C\left\{\int_{0}^{1} \frac{\omega^{2}(f, u)_{p}^{p}}{u^{p+1}} d u\right\}^{1 / p}
$$

which is related to (1.3) and, as will be shown in Corollary 3.8, is a corollary of (1.3). For $1<p<\infty$ the inequality (1.3) is related to the work of Besov [Be]. In the case of $L_{p}(T)$ our main result is when $0<p<1$ (which was not attempted earlier). We give the complete proof of (1.3) for $1<p<\infty$ as well, since we use the same technique again for $\omega_{\varphi}^{r}(f, t)_{p}$ in Section 5 and we hope that it will have even further use.

The weighted $L_{p, w}[-1,1]$ is given by the norm or quasi-norm

$$
\begin{equation*}
\|f\|_{p, w}=\left\{\int_{-1}^{1}|f(x)|^{p} w(x)^{p} d x\right\}^{1 / p}, \quad 0<p<\infty \tag{1.5}
\end{equation*}
$$

and

$$
\|f\|_{\infty, w}=\underset{-1<x<1}{\operatorname{ess} \sup _{1}}|f(x) w(x)| .
$$

The weighted moduli and main part moduli of smoothness $\omega_{\varphi}^{r}(f, t)_{p, w}$ and $\Omega_{\varphi}^{r}(f, t)_{p, w}\left(\right.$ see also [Di-To]) are given for $\varphi(x)^{2}=1-x^{2}$ and $w(x)=\varphi(x)^{\sigma}$ ($\sigma \geq 0$) by

$$
\begin{align*}
\omega_{\varphi}^{r}(f, t)_{p, w} & \equiv \sup _{|h| \leq t}\left\|\Delta_{h \varphi}^{r} f\right\|_{L_{p, w}[I]}, \\
\Omega_{\varphi}^{r}(f, t)_{p, w} & \equiv \sup _{|h| \leq t}\left\|\Delta_{h \varphi}^{r} f\right\|_{L_{p, w}[I(h, r)]} \tag{1.6}
\end{align*}
$$

where

$$
I(h, r)=\left[-1+2 h^{2} r^{2}, 1-2 h^{2} r^{2}\right], \quad I=[-1,1]
$$

and $\Delta_{h \varphi}^{r} f(x)$ is given by

$$
\Delta_{h \varphi}^{r} f(x)= \begin{cases}\sum_{l=0}^{r}(-1)^{l}\binom{r}{l} f\left(x+\left(\frac{r}{2}-l\right) h \varphi(x)\right) \tag{1.7}\\ 0 & \text { for } x \pm(r / 2) h \varphi(x) \in[-1,1] \\ \text { otherwise }\end{cases}
$$

For $w(x)=1(\sigma=0)$ we write

$$
\omega_{\varphi}^{r}(f, t)_{p, 1} \equiv \omega_{\varphi}^{r}(f, t)_{p}
$$

It is known (see [Di-To, Theorems 6.2.2 and 6.3.1]) that

$$
\begin{equation*}
\Omega_{\varphi}^{r}(f, t)_{p} \leq C t^{k} \omega_{\varphi}^{r-k}\left(f^{(k)}, t\right)_{p, \varphi^{k}} \quad \text { for } 1 \leq p \leq \infty \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega_{\varphi}^{r-k}\left(f^{(k)}, t\right)_{p, \varphi^{k}} \leq C\left[\int_{0}^{t} \frac{\Omega_{\varphi}^{r}(f, u)_{p}}{u^{k+1}} d u\right] \quad \text { for } 1 \leq p \leq \infty \tag{1.9}
\end{equation*}
$$

For $0<p<\infty$ we will show

$$
\begin{equation*}
\Omega_{\varphi}^{r-k}\left(f^{(k)}, t\right)_{p, \varphi^{k}} \leq C\left[\int_{0}^{t} \frac{\omega_{\varphi}^{r}(f, u)_{p}^{q}}{u^{q k+1}} d u\right]^{1 / q}, \quad q=\min (p, 2) \tag{1.10}
\end{equation*}
$$

(For $p=\infty$ one has (1.9) or (1.10) with $p=\infty$ and $q=1$.) The inequality (1.8) does not hold for $0<p<1$.

For $1 \leq p \leq \infty$ the k th derivative $f^{(k)}$ can be given as a distributional derivative or by assuming that the $(k-1)$ th derivative in the classical sense satisfies $f^{(k-1)} \in$ A.C.loc. This is not possible for $0<p<1$ as $f \in L_{p}$ does not necessarily imply that f is a distribution. Moreover, even if $f^{\prime} \in L_{p}$ $(p<1)$, it does not imply that $f \in$ A.C.loc. In Section 2 we deal with $L_{p}(T)$ where $0<p<1$ and prove a result that will be useful for the proof of the inverse inequality. The sharp inverse inequality (1.3) is proved in Section 3. Analogous results to those in Section 2 are proved for $L_{p}[-1,1], 0<p<1$, in Section 4. The sharp converse (1.10) is proved in Section 5.

2 Some positive and negative results for $L_{p}(T), 0<p<1$. For $f \in L_{p}(T), 0<p \leq \infty$, we define the derivative of f as a function g satisfying

$$
\begin{equation*}
\left\|\frac{1}{h}(f(\cdot+h)-f(\cdot))-g(\cdot)\right\|_{L_{p}(T)} \rightarrow 0 \quad \text { as } h \rightarrow 0 \tag{2.1}
\end{equation*}
$$

in which case we write $g=f^{\prime}$. (For $p \geq 1,(2.1)$ is the commonly used strong derivative of f.) The k th derivative is given as usual as the k th iterate of the first derivative. When f is locally absolutely continuous ($f \in$ A.C.loc) the definition in (2.1) coincides with the classical definition of a derivative. For $0<p<1$ the derivative in L_{p} is problematic or, as Peetre described it, "pathological" (see [Pe]) even when it is the derivative of a function satisfying $f \in$ A.C. ${ }_{\text {loc }}$.

Some aspects of the behaviour of derivatives were described earlier (see for instance, $[\mathrm{Pe}]$, $[\mathrm{Di}-\mathrm{Hr}-\mathrm{Iv}]$, $[\mathrm{Pe}-\mathrm{Po}]$ and $[\mathrm{Di}, 95])$. Here another aspect of this anomaly is described. This may serve as a warning to ourselves and others against using a certain type of argument which is absolutely acceptable when $1 \leq p \leq \infty$. In the following example when we say f^{\prime} is a derivative of f, it will be in the most elementary sense ($f \in \mathrm{~A}$.C. ${ }_{\text {loc }}$). We will prove our result for $[0,1]$ but similar outcomes occur on $[a, b]$ or T.

Theorem 2.1. When $0<p<1$ it is possible for φ_{n} to converge to f in $L_{p}[0,1]$, for φ_{n}^{\prime} to converge to g in $L_{p}[0,1]$, and for f^{\prime} to exist and belong to $L_{p}[0,1]$, but $f^{\prime}(x) \neq g(x)$.

Remark 2.2. Other versions of Theorem 2.1 can be:
(I) When $0<p<1$ it is possible that φ_{n} and ψ_{n} converge to f in $L_{p}[0,1]$, that φ_{n}^{\prime} converges to g_{1} in $L_{p}[0,1]$, and that ψ_{n}^{\prime} converges to g_{2} in $L_{p}[0,1]$, but $g_{1} \neq g_{2}$ in $L_{p}[0,1]$.
(II) When $0<p<1$ it is possible that φ_{n} and φ_{n}^{\prime} are Cauchy sequences in $L_{p}[0,1]$, and hence $\varphi_{n} \rightarrow f, \varphi_{n}^{\prime} \rightarrow g$ but g is not the derivative of f.
Proof of Theorem 2.1. We choose $f(x)=x$ and $\varphi_{n}(x)$ given by

$$
\varphi_{n}(x)= \begin{cases}\frac{k}{n}, & \frac{k}{n} \leq x<\frac{k+1}{n}-\frac{1}{n^{2}} \\ \frac{k}{n}+\left(x-\frac{k+1}{n}+\frac{1}{n^{2}}\right) n, & \frac{k+1}{n}-\frac{1}{n^{2}} \leq x<\frac{k+1}{n}\end{cases}
$$

for $k=0,1, \ldots, n-1$, and

$$
\varphi_{n}^{\prime}(x)= \begin{cases}n, & \frac{k+1}{2}-\frac{1}{n^{2}} \leq x<\frac{k+1}{n} \\ 0, & \text { otherwise }\end{cases}
$$

We clearly have $\left\|\varphi_{n}-f\right\|_{p} \leq 1 / n$ (where $\|F\|_{p}^{p}=\int_{0}^{1}|F(x)|^{p} d x$) and

$$
\left\|\varphi_{n}^{\prime}-0\right\|_{p} \leq\left(n \frac{1}{n^{2}} n^{p}\right)^{1 / p}=n^{(p-1) / p} \rightarrow 0
$$

We note that this example covers Remark 2.2 as well where we choose $\psi_{n}(x)=x$ and $\psi_{n}^{\prime}(x)=1$.

For $1 \leq p \leq \infty$ the situation is different from what is described in Theorem 2.1, and for that reason some are inclined to believe in the opposite of that theorem. Under some restrictions on φ_{n} and the rate of convergence we have $f^{\prime}=g$ for $0<p<1$ as well, and Theorem 2.1 was given mainly to show that we need to prove the following result which will be useful in Section 3.

Theorem 2.3. For $f \in L_{p}(T)$ and T_{n} a sequence of trigonometric polynomials of degree n satisfying

$$
\begin{equation*}
\left\|f-T_{n}\right\|_{L_{p}(T)}=o\left(\frac{1}{n}\right) \quad \text { and } \quad\left\|g-T_{n}^{\prime}\right\|_{L_{p}(T)}=o(1), \quad n \rightarrow \infty \tag{2.2}
\end{equation*}
$$

we have $f^{\prime}=g$, that is, g satisfies (2.1).
Proof. For $1 \leq p \leq \infty$ the theorem is a special case of known results and we prove it here only for $0<p<1$. For any $\varepsilon>0$ we choose $n_{0}=n_{0}(\varepsilon)$ such that for $n \geq n_{0}$,

$$
\left\|f-T_{n}\right\|_{L_{p}(T)} \leq \varepsilon \frac{1}{n} \quad \text { and } \quad\left\|g-T_{n}^{\prime}\right\|_{L_{p}(T)} \leq \varepsilon
$$

For h satisfying $\sqrt{\varepsilon} / n \leq h \leq 1 / n$ we have

$$
\begin{equation*}
\left\|\frac{f(\cdot+h)-f(\cdot)}{h}-\frac{T_{n}(\cdot+h)-T_{n}(\cdot)}{h}\right\|_{L_{p}(T)}^{p} \leq 2 \frac{\varepsilon^{p}}{\varepsilon^{p / 2}}=2 \varepsilon^{p / 2} \tag{2.3}
\end{equation*}
$$

Following [Di-Hr-Iv] (proof of Theorem 3.1 there), we have, for $\sqrt{\varepsilon} / n \leq h$ $\leq 2 \sqrt{\varepsilon} / n$,

$$
\begin{align*}
\left\|\frac{T_{n}(\cdot+h)-T_{n}(\cdot)}{h}-T_{n}^{\prime}(\cdot)\right\|_{L_{p}(T)}^{p} & \leq \sum_{k=2}^{\infty}\left(\frac{h^{k-1}}{k!}\right)^{p}\left\|T_{n}^{(k)}\right\|_{L_{p}(T)}^{p} \tag{2.4}\\
& \leq \sum_{k=2}^{\infty}(h n)^{(k-1) p}\left\|T_{n}\right\|_{L_{p}(T)}^{p} \\
& \leq 4 \varepsilon^{p} \frac{1}{1-2^{p} \varepsilon^{p / 2}}\left\|T_{n}\right\|_{L_{p}(T)}^{p} \\
& \leq C \varepsilon^{p}\left\|T_{n}\right\|_{L_{p}(T)}^{p}
\end{align*}
$$

We note that in (2.4) as well as in [Di-Hr-Iv] we utilized the important inequality by Arestov [Ar] who established that

$$
\begin{equation*}
\left\|T_{n}^{\prime}\right\|_{L_{p}(T)} \leq n\left\|T_{n}\right\|_{L_{p}(T)} \tag{2.5}
\end{equation*}
$$

for $0<p<1$. Therefore, for $\sqrt{\varepsilon} / n \leq h<2 \sqrt{\varepsilon} / n$ we have

$$
\begin{equation*}
\left\|\frac{f(\cdot+h)-f(\cdot)}{h}-g\right\|_{L_{p}(T)}^{p} \leq C\left(\varepsilon^{p / 2}+\varepsilon^{p}\|f\|_{L_{p}(T)}+\varepsilon^{p}\right) \tag{2.6}
\end{equation*}
$$

and as the right-hand side does not depend on n or T_{n}, we have $g=f^{\prime}$.
Repeating the process in Theorem 2.3, we obtain the following corollary.
Corollary 2.4. Suppose $f, g_{1}, \ldots, g_{k} \in L_{p}(T)$ and T_{n} is a sequence of trigonometric polynomials satisfying

$$
\begin{align*}
\left\|f-T_{n}\right\|_{p} & =o\left(\frac{1}{n^{k}}\right), & n \rightarrow \infty \tag{2.7}\\
\left\|g_{i}-T_{n}^{(i)}\right\|_{p} & =o\left(\frac{1}{n^{k-i}}\right), & n \rightarrow \infty, \text { for } i=1, \ldots, k
\end{align*}
$$

Then $g_{i}=g_{i-1}^{\prime}\left(f=g_{0}\right)$ in the sense of (2.1).
3. Functions in $L_{p}(T)$. For $L_{p}(T)$ our estimate of $\omega^{r-k}\left(f^{(k)}, t\right)_{p}$ is given in the following theorem.

Theorem 3.5. For $f \in L_{p}(T), 0<p<\infty$, and integers k, r satisfying $k<r$ we have

$$
\begin{equation*}
\omega^{r-k}\left(f^{(k)}, t\right)_{p} \leq C\left\{\int_{0}^{t} \frac{\omega^{r}(f, u)_{p}^{q}}{u^{q k+1}} d u\right\}^{1 / q} \tag{3.1}
\end{equation*}
$$

where $q=\min (p, 2)$.

Remark 3.6. (I) In Theorem 3.5 inequality (3.1) means that if its righthand side converges, then $f^{(k)}$ exists in the sense of (2.1) (or for $p \geq 1$ as a distribution) and satisfies both $f^{(k)} \in L_{p}(T)$ and inequality (3.1).
(II) For $p=\infty$ (and $p=1$) we have $q=1$, which is the classical result (1.2).
(III) For $1<p<2, r=2$ and $k=1$, (3.1) is essentially proved by Marcinkiewicz in [Ma]. For $1<p<\infty$, (3.1) is related to a result of Besov on the rate of best approximation by trigonometric polynomials (see [Be]).
(IV) For $1<p<\infty$, (3.1) is actually stronger than (1.2). This is illustrated by examining cases for which $\omega^{r}(f, t)_{p} \leq M t^{k} /|\log t|^{\alpha}$ for $t<1 / 2$. In such a situation we need $\alpha>1$ for (1.2) to converge but only $\alpha>1 / q$ for (3.1) to converge. Moreover, in this case using (3.1) $(\alpha q>1)$, we obtain

$$
\omega^{r-k}\left(f^{(k)}, t\right)_{p} \leq M_{1} \frac{1}{|\log t|^{\alpha-1 / q}} \quad \text { for } t<\frac{1}{2}
$$

but using (1.2) (for $\alpha>1$), we have only

$$
\omega^{r-k}\left(f^{(k)}, t\right)_{p} \leq M_{1} \frac{1}{|\log t|^{\alpha-1}} \quad \text { for } t<\frac{1}{2}
$$

We note that if $\omega^{r}(f, t)_{p}=O\left(t^{k+\beta}\right)$ for some $\beta>0$, then (3.1) does not have an advantage over (1.2) for $1<p<\infty$. While proving (3.1) for $1 \leq p<\infty$, we show that it implies (1.2) for $1 \leq p<\infty$.
(V) For $0<p<1$ no inverse inequality was proved earlier, and in fact to call it an inverse result is a misnomer since the direct result (1.1) is not valid when $0<p<1$ (see [Pe-Po, p. 188]).
(VI) As an example of the use of (3.1) for $0<p<1$ we set $f(x)=$ $x^{r-1} \operatorname{sgn} x$ for $|x|<\pi$ and define $f(x)$ by $f(x+2 \pi)=f(x)$ elsewhere. We have $\omega^{r}(f, t)_{p} \approx t^{r-1+1 / p}$ (see [Pe-Po, p. 188]). For $k<r, f^{(k)}(x)=$ $(\Gamma(r) / \Gamma(r-k)) x^{r-k-1} \operatorname{sgn} x$ when $|x|<\pi$ and hence $\omega^{r-k}\left(f^{(k)}, t\right)_{p} \approx$ $t^{r-k-1+1 / p}$ as expected by (3.1). For instance, if $p=1 / 2, r=2$ and $k=1$, we have $\omega^{2}(f, t)_{p} \approx t^{3}$ and $\omega\left(f^{\prime}, t\right)_{p} \approx t^{2}$.

Proof of Theorem 3.5. Since $\omega^{m}(F, t)_{p}$ is nondecreasing and

$$
\begin{equation*}
\omega^{m}(F, 2 t)_{p} \leq 2^{m} \omega^{m}(F, t)_{p} \quad \text { for } 1 \leq p \leq \infty \tag{3.2}
\end{equation*}
$$

while (see [Pe-Po, p. 187])

$$
\begin{equation*}
\omega^{m}(F, 2 t)_{p} \leq C(m, p) \omega^{m}(F, t)_{p} \quad \text { for } 0<p<1 \tag{3.3}
\end{equation*}
$$

it is sufficient to prove (2.1) for $t=2^{-n}$. Using (3.2) and (3.3), we also have

$$
\begin{equation*}
\left\{\int_{0}^{2^{-n}} \frac{\omega^{r}(f, u)_{p}^{q}}{u^{q k+1}} d u\right\}^{1 / q} \approx\left\{\sum_{l=n}^{\infty} 2^{l q k} \omega^{r}\left(f, 2^{-l}\right)_{p}^{q}\right\}^{1 / q} \tag{3.4}
\end{equation*}
$$

and hence it is sufficient to prove that for all n,

$$
\begin{equation*}
\omega^{r-k}\left(f^{(k)}, 2^{-n}\right)_{p} \leq C\left\{\sum_{l=n}^{\infty} 2^{l q k} \omega^{r}\left(f, 2^{-l}\right)_{p}^{q}\right\}^{1 / q} \tag{3.5}
\end{equation*}
$$

Inequality (3.5) demonstrates that (3.1) for $1<p<\infty$ is stronger than (1.2) as the l_{1} norm of the sequence $\left\{2^{l} \omega^{r}\left(f, 2^{-l}\right)_{p}\right\}_{l=n}^{\infty}$ is bigger than the l_{q} norm of that sequence. (That (3.1) is actually stronger in some cases was shown in Remark 3.2(IV).)

Since for any trigonometric polynomial Q_{n} of degree $c n$ we have

$$
\omega^{r}\left(Q_{n}, u\right)_{p} \leq C(r, L, p) u^{r}\left\|Q_{n}^{(r)}\right\|_{p}, \quad u \leq L / n, p>0
$$

(see [St-Kr-Os] for $r=1$ and [Di-Hr-Iv]), we have

$$
\begin{equation*}
\omega^{m}(F, 1 / n)_{p} \leq M\left(\left\|F-Q_{n}\right\|_{p}+n^{-m}\left\|Q_{n}^{(m)}\right\|_{p}\right) \tag{3.6}
\end{equation*}
$$

for $0<p<\infty$, and hence our task is to find $Q_{2^{n}}$ of degree $c 2^{n}$ (not necessarily the best or near best $c 2^{n}$ trigonometric approximant to $f^{(k)}$) such that both $\left\|f^{(k)}-Q_{2^{n}}\right\|_{p}$ and $2^{-n(r-k)}\left\|Q_{2^{n}}^{(r-k)}\right\|_{p}$ are bounded by the right-hand side of (3.5).

We deal first with $0<p<1$. Let T_{n} be the best nth degree trigonometric polynomial approximant to f in $L_{p}(T)$, that is,

$$
\begin{align*}
\left\|f-T_{n}\right\|_{p} & =\inf \left(\|f-T\|_{p}: T=a_{0}+\sum_{l=1}^{n}\left(a_{l} \cos l x+b_{l} \sin l x\right)\right) \tag{3.7}\\
& \equiv E_{n}(f)_{p}
\end{align*}
$$

As trigonometric polynomials are dense in L_{p}, we have $\left\|f-T_{2^{l}}\right\|_{p} \rightarrow 0$. Clearly,

$$
T_{2^{l}}-T_{2^{n}}=\sum_{m=n}^{l-1}\left(T_{2^{m+1}}-T_{2^{m}}\right)
$$

and if $\sum_{m=n}^{\infty}\left\|T_{2^{m+1}}-T_{2^{m}}\right\|_{p}^{p}$ converges for $0<p \leq 1$, then

$$
f-T_{2^{n}}=\sum_{m=n}^{\infty}\left(T_{2^{m+1}}-T_{2^{m}}\right) \quad \text { in } L_{p}(T) \text { for } 0<p \leq 1
$$

Following [Di-Hr-Iv], for $0<p \leq \infty, T_{n}$ of (3.7) and any integer r we have

$$
\begin{equation*}
\left\|f-T_{2^{m}}\right\|_{p}+2^{-m r}\left\|T_{2^{m}}^{(r)}\right\|_{p} \approx \omega^{r}\left(f, 2^{-m}\right)_{p} \tag{3.8}
\end{equation*}
$$

and hence

$$
\sum_{m=n}^{\infty}\left\|T_{2^{m+1}}-T_{2^{m}}\right\|_{p}^{p} \leq C \sum_{m=n}^{\infty} \omega^{r}\left(f, 2^{-m}\right)_{p}^{p} \leq C 2^{-n k p} \sum_{m=n}^{\infty} 2^{m k p} \omega^{r}\left(f, 2^{-m}\right)^{p}
$$

which converges assuming (3.1) and hence (3.5). In addition, the series $\sum_{m=n}^{\infty}\left(T_{2^{m+1}}-T_{2^{m}}\right)$ has k derivatives in L_{p} as the Bernstein inequality (2.5)
implies

$$
\begin{aligned}
\sum_{m=n}^{\infty}\left\|T_{2^{m+1}}^{(k)}-T_{2^{m}}^{(k)}\right\|_{p}^{p} & \leq \sum_{m=n}^{\infty}\left(2^{m+1}\right)^{k p}\left\|T_{2^{m+1}}-T_{2^{m}}\right\|_{p}^{p} \\
& \leq C_{1} \sum_{m=n}^{\infty} 2^{m k p} \omega^{r}\left(f, 2^{-m}\right)_{p}^{p}
\end{aligned}
$$

which converges using (3.5). Therefore, there exists a function $g \in L_{p}(T)$ for which

$$
\left\|g-T_{2^{n}}^{(k)}\right\|_{p}=\lim _{l \rightarrow \infty}\left\|T_{2^{l}}^{(k)}-T_{2^{n}}^{(k)}\right\|_{p} \leq C_{1}^{1 / p}\left(\sum_{m=n}^{\infty} 2^{m k p} \omega^{r}\left(f, 2^{-m}\right)_{p}^{p}\right)^{1 / p}
$$

Using (3.8), we also have

$$
\begin{aligned}
2^{-n(r-k)}\left\|\left(T_{2^{n}}^{(k)}\right)^{(r-k)}\right\|_{p} & =2^{-n(r-k)}\left\|T_{n}^{(r)}\right\|_{p} \leq C_{2} 2^{n k} \omega^{r}\left(f, 2^{-n}\right)_{p} \\
& \leq C_{2}\left(\sum_{m=n}^{\infty} 2^{m k p} \omega^{r}\left(f, 2^{-m}\right)_{p}^{p}\right)^{1 / p}
\end{aligned}
$$

If we show $g=f^{(k)}$, the above would imply the result of our theorem for $0<p \leq 1$ via $Q_{2^{n}}=T_{2^{n}}^{(k)}$ and (3.6). Following Theorem 2.3 and Corollary 2.4 (its iterate), we in fact have $g=f^{(k)}$.

We now turn to the case $1 \leq p<\infty$. For a function $f \in L_{p}(T)$ with Fourier expansion

$$
f(x) \sim a_{0}+\sum_{l=1}^{\infty}\left(a_{l} \cos l x+b_{l} \sin l x\right)=\sum_{l=0}^{\infty} P_{l}(f)
$$

the trigonometric polynomial $\eta_{N} f$ is given by

$$
\begin{equation*}
\eta_{N} f=\sum_{l=0}^{\infty} \eta\left(\frac{l}{N}\right) P_{l}(f) \tag{3.9}
\end{equation*}
$$

where $\eta \in C^{\infty}[0, \infty), \eta(x)=1$ for $x \leq 1 / 2$ and $\eta(x)=0$ for $x \geq 1$. We now have: (I) $\eta_{N} f$ is a trigonometric polynomial of degree smaller than N; (II) $\eta_{N} \varphi=\varphi$, where φ is a trigonometric polynomial of degree $[N / 2]$; (III) $\left\|\eta_{N} f\right\|_{L_{p}(T)} \leq C\|f\|_{L_{p}(T)}$ for $1 \leq p \leq \infty$. Therefore, $\eta_{N} f$ is a de la Vallée Poussin-type operator and $\left\|\eta_{N} f-f\right\|_{L_{p}(T)} \leq(C+1) E_{N / 2}(f)_{p}$ for $1 \leq p \leq \infty$ where $E_{l}(f)_{p}$ is the best rate of approximation of f by a trigonometric polynomial of degree l in $L_{p}(T)$ (see (3.7)). We now choose the Q_{n} of (3.6) for $F=f^{(k)}$ to be $\left(\eta_{n} f\right)^{(k)}$. Clearly, $\left\|f-\eta_{n} f\right\|_{p}=o(1)$ as $n \rightarrow \infty$. We estimate $\eta_{2^{l}} f-\eta_{2^{n}} f$ using

$$
\eta_{2^{l}} f-\eta_{2^{n}} f=\sum_{m=n}^{l-1}\left(\eta_{2^{m+1}} f-\eta_{2^{m}} f\right) \equiv \sum_{m=n}^{l-1} \theta_{m} f
$$

We now write

$$
\left(\eta_{2^{l}} f\right)^{(k)}-\left(\eta_{2^{n}} f\right)^{(k)}=\sum_{m=n}^{l-1}\left(\theta_{m} f\right)^{(k)}
$$

Following [Da-Di, Theorem 2.1], we have the Littlewood-Paley inequality

$$
\begin{align*}
B_{p}\left\|\left(\eta_{2^{l}} f\right)^{(k)}-\left(\eta_{2^{n}} f\right)^{(k)}\right\|_{L_{p}(T)} & \leq\left\|\left(\sum_{m=n}^{l-1}\left\{\left(\theta_{m} f\right)^{(k)}\right\}^{2}\right)^{1 / 2}\right\|_{L_{p}(T)} \tag{3.10}\\
& \leq A_{p}\left\|\left(\eta_{2^{l}} f\right)^{(k)}-\left(\eta_{2^{n}} f\right)^{(k)}\right\|_{L_{p}(T)}
\end{align*}
$$

with A_{p} and B_{p} independent of l, n, f or k. For $1 \leq p<\infty$, using [Da-Di, Corollary 2.2], for any integer k we have

$$
\begin{align*}
& \left\|\left(\sum_{m=n}^{l-1}\left\{\left(\theta_{m} f\right)^{(k)}\right\}^{2}\right)^{1 / 2}\right\|_{L_{p}(T)} \tag{3.11}\\
& \leq\left(\sum_{m=n}^{l-1}\left\|\left(\theta_{m} f\right)^{(k)}\right\|_{L_{p}(T)}^{q}\right)^{1 / q}, \quad q=\min (p, 2)
\end{align*}
$$

The equivalence

$$
\begin{equation*}
\omega^{r}(f, 1 / n)_{p} \approx\left\|f-\eta_{n} f\right\|_{L_{p}(T)}+n^{-r}\left\|\left(\eta_{n} f\right)^{(r)}\right\|_{L_{p}(T)} \quad \text { for } 1 \leq p \leq \infty \tag{3.12}
\end{equation*}
$$ follows from the realization result in [Di-Hr-Iv] using the fact that $\eta_{n} f$ is a de la Vallée Poussin operator and hence near best approximant to f in $L_{p}(T)$.

Using (3.10)-(3.12) and the Bernstein inequality, we have

$$
\begin{aligned}
\left\|\left(\eta_{2^{l}} f\right)^{(k)}-\left(\eta_{2^{n}} f\right)^{(k)}\right\|_{L_{p}(T)} & \leq C\left(\sum_{m=n}^{l-1} 2^{m k q}\left\|\theta_{m}(f)\right\|_{L_{p}(T)}^{q}\right)^{1 / q} \\
& \leq C_{1}\left(\sum_{m=n}^{l-1} 2^{m k q} \omega^{r}\left(f, 2^{-m}\right)_{p}^{q}\right)^{1 / q}
\end{aligned}
$$

with C_{1} independent of m, l and f (but it may depend on r, p and q). The version of the right-hand side of (3.1) given in (3.4) establishes now the convergence of $\left(\eta_{2^{l}} f\right)^{(k)}$ to $f^{(k)}$ and hence $f^{(k)} \in L_{p}$. (Here, for $1 \leq p \leq \infty$ the difficulty described in Section 2 does not exist.) We now use $Q_{2^{n}}=\eta_{2^{n}} f$ and (3.12) to obtain

$$
\begin{aligned}
2^{-n(r-k)}\left\|\left(\left(\eta_{2^{n}} f\right)^{(k)}\right)^{(r-k)}\right\|_{L_{p}(T)} & =2^{-n(r-k)}\left\|\left(\eta_{2^{n}} f\right)^{(r)}\right\|_{L_{p}(T)} \\
& \leq C_{2} 2^{n k} \omega^{r}\left(f, 2^{-n}\right)_{p} \\
& \leq C_{2}\left(\sum_{m=n}^{\infty} 2^{m k q} \omega^{r}\left(f, 2^{-m}\right)_{p}^{q}\right)^{1 / q}
\end{aligned}
$$

and thus complete the proof.

Remark 3.7. We can combine Theorem 3.5 (using the weaker $q=$ $\min (p, 1))$ with our earlier theorem [Di-Ti, Section 2] $(d=1)$ to obtain a result with different norms. This will yield the inequality

$$
\begin{equation*}
\omega^{r-k}\left(f^{(k)}, t\right)_{L_{p_{1}}(T)} \leq C\left\{\int_{0}^{t}\left[u^{-k-1 / p+1 / p_{1}} \omega^{r}(f, u)_{L_{p}(T)}\right]^{q_{1}} \frac{d u}{u}\right\}^{1 / q_{1}} \tag{3.13}
\end{equation*}
$$

for $k+1 / p-1 / p_{1}<r, 0<p<p_{1} \leq \infty$ and

$$
q_{1}= \begin{cases}p_{1}, & p_{1}<\infty, \\ 1, & p_{1}=\infty .\end{cases}
$$

Corollary 3.8. For $f \in L_{p}(T), 1 \leq p<\infty, 0<k<r$ and $q=$ $\min (p, 2)$ we have

$$
\begin{equation*}
\left\|f^{(k)}\right\|_{p} \leq C\left\{\int_{0}^{1} \frac{\omega^{r}(f, u)_{p}^{q}}{u^{q k+1}} d u\right\}^{1 / q} \tag{3.14}
\end{equation*}
$$

Remark 3.9. For $k=1, r=2$ and $1 \leq p \leq 2$ Corollary 3.8 is the theorem of Marcinkiewicz given in [Ma]. For $p=\infty$, (3.14) holds with $q=1$.

Proof of Corollary 3.8. We note that if $f^{(k)} \in L_{p}(T)$ for some $f \in L_{p}(T)$ $(1 \leq p \leq \infty)$, one has

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} f^{(k)}(x+y) d y=0 \tag{3.15}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
\left\|f^{(k)}\right\|_{p} & =\left\|f^{(k)}(\cdot)-\frac{1}{2 \pi} \int_{0}^{2 \pi} f^{(k)}(\cdot+y) d y\right\|_{p} \\
& \leq \omega\left(f^{(k)}, 2 \pi\right)_{p} \leq(2 \pi+1) \omega\left(f^{(k)}, 1\right)_{p} .
\end{aligned}
$$

Using Theorem 3.5, we now have

$$
\left\|f^{(k)}\right\|_{p} \leq(2 \pi+1) C_{1}\left\{\int_{0}^{1} \frac{\omega^{k+1}(f, u)_{p}^{q}}{u^{k q+1}} d u\right\}^{1 / q}
$$

which establishes (3.14) for $k=r-1$. If $r-1>k$, we use [Di,83], which establishes $\left\|f^{(k)}\right\|_{p} \leq C_{2}\left\|f^{(k+1)}\right\|_{p}$ for any $f \in L_{p}(T)$, and $k>0$ satisfying (3.15).
4. Convergence of polynomials and their derivatives in L_{p}, $0<p<1$. As explained in Section 2 (see also [Di,95]), one cannot expect automatically that $P_{n} \rightarrow f$ and $P_{n}^{\prime} \rightarrow g$ in $L_{p}(0<p<1)$ imply $g=f^{\prime}$. However, if some additional conditions are satisfied, that is in fact the case.

Theorem 4.10. Suppose $-1<a_{1}<a<b<b_{1}<1$ and P_{n} is a sequence of polynomials of degree n satisfying

$$
\begin{equation*}
\left\|f-P_{n}\right\|_{L_{p}\left[a_{1}, b_{1}\right]}=o(1 / n), \quad\left\|g-P_{n}^{\prime}\right\|_{L_{p}\left[a_{1}, b_{1}\right]}=o(1), \quad n \rightarrow \infty \tag{4.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\|\frac{f(x+h)-f(x)}{h}-g(x)\right\|_{L_{p}[a, b]}=o(1), \quad h \rightarrow 0 \tag{4.2}
\end{equation*}
$$

or, in other words, g is the derivative of f in $L_{p}[a, b]$.
Proof. We follow the proof of Theorem 2.3 (with the appropriate modifications). For h satisfying $h<\min \left(b_{1}-b, a-a_{1}\right) \equiv d$ and $\sqrt{\varepsilon d} / n \leq h \leq 1 / n$, and for f, g and P_{n} satisfying

$$
\begin{equation*}
\left\|f-P_{n}\right\|_{L_{p}\left[a_{1}, b_{1}\right]} \leq \varepsilon / n \quad \text { and } \quad\left\|g-P_{n}^{\prime}\right\|_{L_{p}\left[a_{1}, b_{1}\right]} \leq \varepsilon \tag{4.3}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left\|\frac{f(\cdot+h)-f(\cdot)}{h}-\frac{P_{n}(\cdot+h)-P_{n}(\cdot)}{h}\right\|_{L_{p}[a, b]}^{p} \leq 2\left(\frac{\varepsilon}{d}\right)^{p / 2} \tag{4.4}
\end{equation*}
$$

We now follow [Di-Hr-Iv, Section 6] to obtain, for $\sqrt{\varepsilon d} / n<h \leq 2 \sqrt{\varepsilon d} / n$,

$$
\left\|\frac{P_{n}(\cdot+h)-P_{n}(\cdot)}{h}-P_{n}^{\prime}(\cdot)\right\|_{L_{p}[a, b]} \leq \sum_{k=2}^{n+1}\left(\frac{h^{k-1}}{k!}\right)^{p}\left\|P_{n}^{(k)}\right\|_{L_{p}[a, b]}^{p} \equiv S
$$

Defining

$$
\begin{equation*}
\widetilde{d}(x)=\left(x-a_{1}\right)\left(b_{1}-x\right) \quad \text { for } x \in\left[a_{1}, b_{1}\right] \tag{4.5}
\end{equation*}
$$

we have

$$
S \leq C \sum_{k=2}^{\infty}\left(\frac{h^{k-1}}{k!}\right)^{p} d^{-p k / 2}\left\|\widetilde{d}(x)^{k / 2} P_{n}^{(k)}\right\|_{L_{p}\left[a_{1}, b_{1}\right]}^{p} \equiv C S_{1}
$$

Using the Bernstein inequality

$$
\left\|\varphi(x)^{k} P_{n}^{(k)}\right\|_{L_{p}[-1,1]} \leq C n^{k}\left\|P_{n}\right\|_{L_{p}[-1,1]} \quad \text { with } \quad \varphi(x)^{2}=1-x^{2}
$$

we have by a change of variable

$$
\left\|\widetilde{d}(x)^{k / 2} P_{n}^{(k)}\right\|_{L_{p}\left[a_{1}, b_{1}\right]} \leq C n^{k}\left\|P_{n}\right\|_{L_{p}\left[a_{1}, b_{1}\right]}
$$

Therefore,

$$
\begin{aligned}
S_{1} & \leq C \sum_{k=2}^{\infty}\left(\frac{h^{k-1}}{k!}\right)^{p} d^{-p k / 2} n^{k p}\left\|P_{n}\right\|_{L_{p}\left[a_{1}, b_{1}\right]}^{p} \\
& =C\left(\|f\|_{L_{p}\left[a_{1}, b_{1}\right]}^{p}+\varepsilon^{p}\right) \sum_{k=2}^{\infty}\left(\frac{h n}{\sqrt{d}}\right)^{(k-1) p} \\
& \leq C_{1}\left(\|f\|_{L_{p}\left[a_{1}, b_{1}\right]}^{p}+\varepsilon^{p}\right) \varepsilon^{p} .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left\|\frac{f(\cdot+h)-f(\cdot)}{h}-g(\cdot)\right\|_{L_{p}[a, b]}^{p} \leq C_{2}\left(\varepsilon^{p}\left(\|f\|_{L_{p}\left[a_{1}, b_{1}\right]}+1\right)+\varepsilon^{p / 2}+\varepsilon^{p}\right) \tag{4.6}
\end{equation*}
$$

and as both sides of (4.6) do not depend on P_{n} or n, (4.6) implies (4.2).
We may iterate the result in Theorem 4.10 to obtain
Corollary 4.11. Suppose $-1<a_{1}<a<b<b_{1}<1$ and P_{n} is a sequence of polynomials of degree n satisfying

$$
\begin{align*}
\left\|f-P_{n}\right\|_{L_{p}\left[a_{1}, b_{1}\right]} & =o\left(\frac{1}{n^{k}}\right) \\
\left\|g_{i}-P_{n}^{(i)}\right\|_{L_{p}\left[a_{1}, b_{1}\right]} & =o\left(\frac{1}{n^{k-i}}\right) \quad \text { for } i=1, \ldots, k \tag{4.7}
\end{align*}
$$

Then g_{i} is the derivative of g_{i-1} in $L_{p}[a, b]$ in the sense of (4.2) (with $\left.g_{0}=f\right)$.

For the proof of Corollary 4.11 we use a finite sequence of nested intervals and the proof of Theorem 4.10.

We also have the following corollary of the above.
Corollary 4.12. Suppose P_{n} is a sequence of polynomials of degree n satisfying

$$
\begin{align*}
\left\|f-P_{n}\right\|_{L_{p}[-1,1]} & =o\left(\frac{1}{n^{k}}\right) \tag{4.8}\\
\left\|\varphi^{i}\left(g_{i}-P_{n}^{(i)}\right)\right\|_{L_{p}[-1,1]} & =o\left(\frac{1}{n^{k-i}}\right) \quad \text { for } i=1, \ldots, k
\end{align*}
$$

Then in any interval $[a, b],-1<a<b<1, g_{i}$ is the derivative of g_{i-1} and g_{1} is the derivative of f in the sense of (4.2).

For the proof we just confirm that the conditions of Corollary 4.11 are satisfied.
5. The estimate of $\Omega_{\varphi}^{r-k}\left(f^{(k)}, t\right)_{p}$ by $\omega_{\varphi}^{r}(f, t)_{p}$. For a function $f \in$ $L_{p}[-1,1]$ the inverse result of our paper is given in the following theorem.

Theorem 5.13. For $f \in L_{p}[-1,1], 0<p<\infty$, and integers k, r satisfying $k<r$, we have

$$
\begin{equation*}
\Omega^{r-k}\left(f^{(k)}, t\right)_{p, \varphi^{k}} \leq C\left\{\int_{0}^{t} \frac{\omega_{\varphi}^{r}(f, u)_{p}^{q}}{u^{q k+1}} d u\right\}^{1 / q} \tag{5.1}
\end{equation*}
$$

where $q=\min (p, 2)$.
REmARK 5.14. For $1 \leq p<\infty$, (5.1) implies the inequality with $q=1$ for that range but with $q=1$ Theorem 5.13 is included in Theorem 6.3.1
of [Di-To]. For $q=1$ and $p=\infty$ we have the result in [Di-To, Theorem 6.3.1(a)].

For the proof of Theorem 5.13 we need the following lemma.
Lemma 5.15. For $0<p \leq \infty$, integer m and $g \in L_{p}[a, b]$, for any $-1<a<b<1$ and Q_{n} a polynomial of degree n we have

$$
\begin{align*}
& \Omega_{\varphi}^{m}(g, 1 / n)_{p, \varphi^{k}} \tag{5.2}\\
& \quad \leq C\left(\left\|\varphi^{k}\left(g-Q_{n}\right)\right\|_{L_{p}[-1,1]}+n^{-m}\left\|\varphi^{k+m} Q_{n}^{(m)}\right\|_{L_{p}[-1,1]}\right)
\end{align*}
$$

Proof. To prove (5.2) we observe that

$$
\Omega_{\varphi}^{m}(g, 1 / n)_{p, \varphi^{k}} \leq C_{1}\left\{\Omega_{\varphi}^{m}\left(g-Q_{n}, 1 / n\right)_{p, \varphi^{k}}+\Omega_{\varphi}^{m}\left(Q_{n}, 1 / n\right)_{p, \varphi^{k}}\right\}
$$

where $C_{1}=1$ for $1 \leq p \leq \infty$ and $C_{1}=2^{1 / p}$ for $0<p<1$. Following [Di-Hr-Iv] with minor changes, we obtain

$$
\Omega_{\varphi}^{m}\left(Q_{n}, 1 / n\right)_{p, \varphi^{k}} \leq C_{2} n^{-m}\left\|\varphi^{k+m} Q_{n}^{(m)}\right\|_{L_{p}[-1,1]}
$$

To complete the proof of (5.2) we need to show that

$$
\Omega_{\varphi}^{m}\left(g-Q_{n}, 1 / n\right)_{p, \varphi^{k}} \leq C_{3}\left\|\varphi^{k}\left(g-Q_{n}\right)\right\|_{L_{p}[-1,1]}
$$

To prove the last inequality, we note that all we need to show is that for $-1+2 m^{2} h^{2} \leq x \leq 1-2 m^{2} h^{2}$ and $|\alpha| \leq m / 2$,

$$
\begin{equation*}
A^{-1} \leq\left(\frac{\varphi(x)}{\varphi(x+\alpha h \varphi(x))}\right)^{l} \leq A \tag{5.3}
\end{equation*}
$$

with A independent of x and h. Without loss of generality it is sufficient to prove (5.3) for $l=2, h \geq 0$ and $x \leq 0$. With the restriction on x, i.e. $-1+2 m^{2} h^{2} \leq x \leq 0$, we have $h<1 / \sqrt{2} m$ as otherwise (5.3) is vacuous. For $-m / 2 \leq \alpha \leq 0$ (recall $-1+2 m^{2} h^{2} \leq x$ and hence $1+x-m h \varphi(x) \geq 0$) we have

$$
\begin{aligned}
\frac{2}{3} & \leq \frac{1}{1+\frac{m}{2} h} \leq \frac{1}{1+\frac{m}{2} h \sqrt{\frac{1+x}{1-x}}} \leq \frac{1-x}{1-x+\frac{m}{2} h \varphi(x)} \\
& \leq \frac{(1-x)(1+x)}{(1-x-\alpha h \varphi(x))(1+x+\alpha h \varphi(x))} \equiv \frac{\varphi^{2}(x)}{\varphi^{2}(x+\alpha h \varphi(x))} \\
& \leq \frac{1+x}{1+x-\frac{m}{2} h \varphi(x)} \leq 2
\end{aligned}
$$

For $0 \leq \alpha \leq m / 2$ (the simpler case when $x<0$ and $h>0$) we have

$$
1 \leq \frac{\varphi^{2}(x)}{\varphi^{2}(x+\alpha h \varphi(x))} \leq \frac{1-x}{1-x-\frac{m}{2} h \varphi(x)} \leq 2
$$

Proof of Theorem 5.13. The function $\omega_{\varphi}^{l}(F, t)_{p}$ is nondecreasing. We also have

$$
\begin{equation*}
\omega_{\varphi}^{l}(F, 2 t)_{p} \leq C \omega_{\varphi}^{l}(F, t)_{p} \quad \text { for } 0<p \leq \infty \tag{5.4}
\end{equation*}
$$

which follows for $1 \leq p \leq \infty$ from the equivalence of $\omega_{\varphi}^{l}(F, t)_{p}$ with the appropriate K-functional (see [Di-To]) and for $0<p<1$ from [Dr-Hr-Iv, Corollary 5.13, (5.13)].

Therefore,

$$
\begin{equation*}
\left\{\int_{0}^{2^{-n}} \frac{\omega_{\varphi}^{r}(f, u)_{p}^{q}}{u^{q k+1}} d u\right\}^{1 / q} \approx\left\{\sum_{l=n}^{\infty} 2^{l k q} \omega_{\varphi}^{r}\left(f, 2^{-l}\right)_{p}^{q}\right\}^{1 / q} \tag{5.5}
\end{equation*}
$$

and as $\Omega^{r-k}(F, t)_{p, \varphi^{k}}$ and $\left\{\int_{0}^{t} \frac{\omega_{\varphi}^{r}(f, u)_{p}^{q}}{u^{q k+1}} d u\right\}^{1 / q}$ are monotonic in t, it is sufficient to prove

$$
\begin{equation*}
\Omega^{r-k}\left(f^{(k)}, 2^{-n}\right)_{p, \varphi^{k}} \leq C\left\{\sum_{l=n}^{\infty} 2^{l k q} \omega_{\varphi}^{r}\left(f, 2^{-l}\right)_{p}^{q}\right\}^{1 / q} \tag{5.6}
\end{equation*}
$$

We note that monotonicity in t of $\Omega^{m}(g, t)_{p, \varphi^{k}}$ and of $\int_{0}^{t} \cdots$ together with (5.4)-(5.6) implies (5.1).

We first proceed with the proof for $0<p<1$. We choose $P_{2^{k}}$ to be the best 2^{k} th degree polynomial approximant to f in $L_{p}[-1,1]$. As polynomials are dense in $L_{p}[-1,1]$ for $0<p<1$ (as well as for $1 \leq p<\infty$), we have $\left\|f-P_{2^{k}}\right\|_{L_{p}[-1,1]} \rightarrow 0$. If

$$
\sum_{l=n}^{\infty}\left\|P_{2^{l+1}}-P_{2^{l}}\right\|_{L_{p}[-1,1]}^{p}<\infty
$$

we have

$$
\left\|f-P_{2^{n}}\right\|_{L_{p}[-1,1]}^{p} \leq \sum_{l=n}^{\infty}\left\|P_{2^{l+1}}-P_{2^{l}}\right\|_{L_{p}[-1,1]}^{p}, \quad 0<p<1
$$

and, in other words,

$$
f-P_{2^{n}}=\sum_{l=n}^{\infty}\left(P_{2^{l+1}}-P_{2^{l}}\right) \quad \text { in } L_{p}[-1,1] \text { for } 0<p<1
$$

Following [Di-Hr-Iv, Sections 5 and 6], we have

$$
\begin{equation*}
\left\|f-P_{2^{l}}\right\|_{L_{p}[-1,1]}+2^{-l r}\left\|\varphi^{r} P_{2^{l}}^{(r)}\right\|_{L_{p}[-1,1]} \approx \omega_{\varphi}^{r}\left(f, 2^{-l}\right)_{p} \tag{5.7}
\end{equation*}
$$

Hence with $\|\cdot\|_{L_{p}[-1,1]} \equiv\|\cdot\|_{p}$ we write

$$
\begin{aligned}
\sum_{l=n}^{\infty}\left\|P_{2^{l+1}}-P_{2^{l}}\right\|_{p}^{p} & \leq C \sum_{l=n}^{\infty} \omega_{\varphi}^{r}\left(f, 2^{-l}\right)_{p}^{p} \\
& \leq C 2^{-n k p} \sum_{l=n}^{\infty} 2^{k l p} \omega_{\varphi}^{r}\left(f, 2^{-l}\right)_{p}^{p}
\end{aligned}
$$

and as the sum on the right-hand side converges following (5.5), we have
$\left\|f-P_{2^{n}}\right\|_{p}=o\left(2^{-n k}\right)$ as $n \rightarrow \infty$. We now need the Bernstein inequality

$$
\begin{equation*}
\left\|\varphi^{j+1} Q_{n}^{\prime}\right\|_{p} \leq C(p, j) n\left\|\varphi^{j} Q_{n}\right\|_{p} \tag{5.8}
\end{equation*}
$$

for Q_{n} a polynomial of degree n (for $0<p<1$ see for example [Di-Ji-Le, (2.3)]). We use (5.8) to obtain

$$
\begin{align*}
\sum_{l=n}^{\infty}\left\|\varphi^{i}\left(P_{2^{l+1}}^{(i)}-P_{2^{l}}^{(i)}\right)\right\|_{p}^{p} & \leq C_{i} \sum_{l=n}^{\infty} 2^{l i p} \omega_{\varphi}^{r}\left(f, 2^{-l}\right)_{p}^{p} \tag{5.9}\\
& \leq C_{i} 2^{-n(k-i) p} \sum_{l=n}^{\infty} 2^{l k p} \omega_{\varphi}^{r}\left(f, 2^{-l}\right)_{p}^{p}
\end{align*}
$$

Hence $\varphi^{i} g_{i}=\varphi^{i} P_{2^{n}}^{(i)}+\varphi^{i} \sum_{l=n}^{\infty}\left(P_{2^{l+1}}^{(i)}-P_{2^{l}}^{(i)}\right)$ converges in L_{p} (for $g_{0}=f$ it was shown earlier) and

$$
\begin{equation*}
\left\|\varphi^{i}\left(g_{i}-P_{2^{n}}^{(i)}\right)\right\|_{p}=o\left(2^{-n(k-i)}\right), \quad n \rightarrow \infty, \text { for } i=0,1, \ldots, k \tag{5.10}
\end{equation*}
$$

which implies the condition of Corollary 4.12, and therefore g_{i} is locally the i th derivative of f in L_{p}. To complete the proof (for $0<p<1$) we apply Lemma 5.15 with $g=g_{k}, m=r-k$, the integer 2^{n}, and $P_{2^{n}}^{(k)}$ for the polynomial $Q_{2^{n}}$ of degree 2^{n}. We now use (5.9) to obtain

$$
\left\|\varphi^{k}\left(g_{k}-P_{2^{n}}^{(k)}\right)\right\|_{p}^{p} \leq C_{k} \sum_{l=n}^{\infty} 2^{l k p} \omega_{\varphi}^{r}\left(f, 2^{-l}\right)_{p}^{p}
$$

The equivalence (5.7) with $l=n$ implies

$$
2^{-n(r-k)}\left\|\varphi(x)^{r-k+k}\left(P_{2^{n}}^{(k)}\right)^{(r-k)}\right\|_{L_{p}[-1,1]} \leq C 2^{n k} \omega_{\varphi}^{r}\left(f, 2^{-n}\right)_{p}
$$

The last two estimates yield (5.6) and our result is proved for $0<p<1$.
Let us now proceed with the case $1 \leq p<\infty$. The function f has the expansion

$$
f \sim \sum_{m=0}^{\infty} a_{m} \psi_{m}
$$

where ψ_{m} is the Legendre polynomial of degree n normalized to satisfy $\left\|\psi_{m}\right\|_{L_{2}[-1,1]}=1$, and where

$$
a_{m}=\int_{-1}^{1} f(x) \psi_{m}(x) d x
$$

We choose $P_{n}(f)=\eta_{n}(f)$ to be given by

$$
\begin{equation*}
\eta_{n}(f)=\sum_{m=0}^{\infty} \eta\left(\frac{m}{n}\right) a_{m} \psi_{m} \tag{5.11}
\end{equation*}
$$

where $\eta \in C^{\infty}, \eta(x)=1$ for $x \leq 1 / 2$ and $\eta(x)=0$ for $x \geq 1$.

It is well-known that $\eta_{n}(f)$ is a de la Vallée Poussin-type operator on $L_{p}[-1,1], 1 \leq p \leq \infty$, that is,
(I) $\left\|\eta_{n} f\right\|_{p} \leq C\|f\|_{p}$,
(II) $\left\|\eta_{n} f-f\right\|_{p} \leq C E_{n / 2}(f)_{p} \equiv C \inf \left\{\left\|f-\Psi_{n}\right\|_{p}: \Psi_{n}=\sum_{m \leq n / 2} b_{m} \psi_{m}\right\}$,
(III) $\eta_{n} f \in \operatorname{span}\left\{\psi_{0}, \ldots, \psi_{n}\right\}$.

We choose $Q_{2^{n}}$ of (5.2) to be $\left(\eta_{n} f\right)^{(k)}$. Using (II) and the density of polynomials in $L_{p}[-1,1], 1 \leq p<\infty$, we have $\left\|f-\eta_{n} f\right\|_{L_{p}[-1,1]}=o(1)$ as $n \rightarrow \infty$.

Following [Da-Di], we write

$$
\eta_{2^{l}} f-\eta_{2^{n}} f=\sum_{m=n}^{l-1}\left(\eta_{2^{m+1}} f-\eta_{2^{m}} f\right) \equiv \sum_{m=n}^{l-1} \theta_{m} f
$$

We now write

$$
\varphi^{k}\left\{\left(\eta_{2^{l}} f\right)^{(k)}-\left(\eta_{2^{n}} f\right)^{(k)}\right\}=\sum_{m=n}^{l-1} \varphi^{k}\left(\theta_{m} f\right)^{(k)}
$$

Following [Da-Di, Theorem 2.1], we have the Littlewood-Paley inequality

$$
\begin{align*}
& B_{p}\left\|\varphi^{k}\left\{\left(\eta_{2^{l}} f\right)^{(k)}-\left(\eta_{2^{n}} f\right)^{(k)}\right\}\right\|_{L_{p}[-1,1]} \tag{5.12}\\
& \leq\left\|\left(\sum_{m=n}^{l-1}\left\{\varphi^{k}\left(\theta_{m} f\right)^{(k)}\right\}^{2}\right)^{1 / 2}\right\|_{L_{p}[-1,1]} \\
& \leq A_{p}\left\|\varphi^{k}\left\{\left(\eta_{2^{l}} f\right)^{(k)}-\left(\eta_{2^{n}} f\right)^{(k)}\right\}\right\|_{L_{p}[-1,1]}
\end{align*}
$$

with A_{p} and B_{p} independent of l, n, f or k. Using [Da-Di, Corollary 2.2], for $1<p<\infty$ and $q=\min (p, 2)$ we have

$$
\begin{gathered}
\left\|\left(\sum_{m=n}^{l-1}\left\{\varphi^{k}\left(\theta_{m} f\right)^{(k)}\right\}^{2}\right)^{1 / 2}\right\|_{L_{p}[-1,1]} \leq\left(\sum_{m=n}^{l-1}\left\|\varphi^{k}\left(\theta_{m} f\right)^{(k)}\right\|_{L_{p}[-1,1]}^{q}\right)^{1 / q} \\
\leq C\left(\sum_{m=n}^{l-1} 2^{m k q}\left\|\theta_{m} f\right\|_{L_{p}[-1,1]}^{q}\right)^{1 / q}
\end{gathered}
$$

(by the Bernstein inequality [Di-To, Chapter 7])
$\leq C_{1}\left(\sum_{m=n}^{l-1} 2^{m k q} \omega_{\varphi}^{r}\left(f, 2^{-m}\right)_{p}^{q}\right)^{1 / q}$
(by the Jackson inequality [Di-To, Chapter 7]).

In view of (5.5), the last sum converges as $l \rightarrow \infty$, and hence $f^{(k)}$ exists and satisfies

$$
\left\|\varphi^{k}\left(f^{(k)}-\eta_{2^{n}} f^{(k)}\right)\right\|_{p}=C_{1}\left(\sum_{m=n}^{\infty} 2^{m k q} \omega_{\varphi}^{r}\left(f, 2^{-m}\right)_{p}^{q}\right)^{1 / q}
$$

Using Lemma 5.15, we will complete the proof when we show

$$
\begin{aligned}
2^{-(r-k) n}\left\|\varphi^{r}\left(\eta_{2^{n}} f\right)^{(r)}\right\|_{p} & \leq C_{2} 2^{k n} \omega_{\varphi}^{r}\left(f, 2^{-n}\right)_{p} \\
& \leq C_{3}\left(\sum_{m=n}^{\infty} 2^{k m q} \omega_{\varphi}^{r}\left(f, 2^{-n}\right)_{p}^{q}\right)^{1 / q}
\end{aligned}
$$

The second inequality is clear, and the first follows from the realization result in [Di-Hr-Iv] which holds for $\eta_{n} f$, as well as from

$$
\omega_{\varphi}^{r}\left(f, 2^{-n}\right)_{p} \approx\left\|f-\eta_{n} f\right\|_{p}+\frac{1}{2^{n r}}\left\|\varphi^{r}\left(\eta_{n} f\right)^{(r)}\right\|_{p}
$$

References

[Ar] V. V. Arestov, On integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), 3-22 (in Russian); English transl.: Math. USSR-Izv. 18 (1982), 1-18.
[Be] O. V. Besov, On some conditions for derivatives of periodic functions to belong to L_{p}, Nauchn. Dokl. Vyssh. Shkoly Fiz.-Mat. Nauki 1 (1959), 13-17 (in Russian).
[Da-Di] F. Dai and Z. Ditzian, Littlewood-Paley theory and sharp Marchaud inequality, Acta Sci. Math. (Szeged) 20 (2005), 123-148.
[De-Lo] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer, 1993.
[Di,83] Z. Ditzian, On inequalities of periodic functions and their derivatives, Proc. Amer. Math. Soc. 87 (1983), 463-466.
[Di,95] -, A note on simultaneous approximation in $L_{p}, 0<p<1$, J. Approx. Theory 82 (1995), 317-319.
[Di-Hr-Iv] Z. Ditzian, V. H. Hristov and K. G. Ivanov, Moduli of smoothness and K-functionals in $L_{p}, 0<p<1$, Constr. Approx. 11 (1995), 67-83.
[Di-Ji-Le] Z. Ditzian, D. Jiang and D. Leviatan, Inverse theorems for best polynomial approximation in $L_{p}, 0<p<1$, Proc. Amer. Math. Soc. 120 (1994), 151-154.
[Di-Ti] Z. Ditzian and S. Tikhonov, Ul'yanov and Nikolskii-type inequalities, J. Approx. Theory 133 (2005), 100-133.
[Di-To] Z. Ditzian and V. Totik, Moduli of Smoothness, Springer, 1987.
[Ma] J. Marcinkiewicz, Sur quelques intégrales du type de Dini, Ann. Soc. Polon. Math. 17 (1938), 42-50.
[Pe] J. Peetre, A remark on Sobolev spaces. The case $0<p<1$, J. Approx. Theory 13 (1975), 218-228.
[Pe-Po] P. P. Petrushev and V. A. Popov, Rational Approximation of Real Functions, Cambridge Univ. Press, 1987.
[St-Kr-Os] E. A. Storozhenko, V. G. Krotov and P. Oswald, Direct and inverse theorems of Jackson type in the spaces $L_{p}, 0<p<1$, Mat. Sb. 98 (1975), 395-415.

Department of Mathematical Sciences
University of Alberta
Edmonton, Alberta
Canada T6G 2G1
Scuola Normale Superiore Piazza dei Cavalieri, 7

Pisa 56126, Italy
E-mail: zditzian@math.ualberta.ca

Received August 22, 2006
Revised version March 8, 2007

[^0]: 2000 Mathematics Subject Classification: 26D10, 41A27, 41A28.
 Key words and phrases: moduli of smoothness, sharp Marchaud inequality, inverse results.
 Z. Ditzian was supported by NSERC Grant A4816 of Canada. S. Tikhonov was supported by the RFFI (grant 06-01-00268), the Leading Scientific Schools (NSH4681.2006.1), and the Scuola Normale Superiore.

