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Moduli of smoothness of functions and their derivatives

by

Z. Ditzian (Edmonton) and S. Tikhonov (Pisa)

Abstract. Relations between moduli of smoothness of the derivatives of a function
and those of the function itself are investigated. The results are for Lp(T ) and Lp[−1, 1]
for 0 < p < ∞ using the moduli of smoothness ωr(f, t)p and ωr

ϕ(f, t)p respectively.

1. Introduction. For f, f (k) ∈ Lp(T ), 1 ≤ p ≤ ∞, the estimate (see
[De-Lo, p. 46])

(1.1) ωr(f, t)p ≤ Ctkωr−k(f (k), t)p for 1 ≤ k ≤ r

and its weak inverse (see [De-Lo, p. 178]) given by

(1.2) ωr−k(f (k), t)p ≤ C

t\
0

ωr(f, u)p

uk+1
du for 1 ≤ k < r

are well-known. (We note that (1.2) is sometimes called a Marchaud-type
inequality.) Here we extend the weak inverse (1.2) to the inequality, for
0 < p <∞,

(1.3) ωr−k(f (k), t)p ≤ C

{ t\
0

ωr(f, u)q
p

uqk+1
du

}1/q

, q = min(p, 2).

(For p = ∞ one still has only (1.2).) We recall that

(1.4)
ωr(f, t)p = sup

|h|<t
‖∆r

hf‖p,

∆hf(x) = f(x+ h) − f(x), ∆r
hf(x) = ∆h(∆r−1

h f(x)).

We note that (1.1) is not valid for 0 < p < 1 (see [Pe-Po, p. 188]).
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For 1 < p ≤ 2, Marcinkiewicz [Ma] proved

‖f ′‖p ≤ C

{ 1\
0

ω2(f, u)p
p

up+1
du

}1/p

,

which is related to (1.3) and, as will be shown in Corollary 3.8, is a corol-
lary of (1.3). For 1 < p < ∞ the inequality (1.3) is related to the work
of Besov [Be]. In the case of Lp(T ) our main result is when 0 < p < 1
(which was not attempted earlier). We give the complete proof of (1.3) for
1 < p <∞ as well, since we use the same technique again for ωr

ϕ(f, t)p in
Section 5 and we hope that it will have even further use.

The weighted Lp,w[−1, 1] is given by the norm or quasi-norm

(1.5) ‖f‖p,w =
{ 1\

−1

|f(x)|pw(x)p dx
}1/p

, 0 < p <∞,

and

‖f‖∞,w = ess sup
−1<x<1

|f(x)w(x)|.

The weighted moduli and main part moduli of smoothness ωr
ϕ(f, t)p,w and

Ωr
ϕ(f, t)p,w (see also [Di-To]) are given for ϕ(x)2 = 1−x2 and w(x) = ϕ(x)σ

(σ ≥ 0) by

(1.6)

ωr
ϕ(f, t)p,w ≡ sup

|h|≤t
‖∆r

hϕf‖Lp,w[I],

Ωr
ϕ(f, t)p,w ≡ sup

|h|≤t
‖∆r

hϕf‖Lp,w[I(h,r)]

where

I(h, r) = [−1 + 2h2r2, 1 − 2h2r2], I = [−1, 1],

and ∆r
hϕf(x) is given by

(1.7) ∆r
hϕf(x) =





r∑

l=0

(−1)l

(
r

l

)
f

(
x+

(
r

2
− l

)
hϕ(x)

)

for x± (r/2)hϕ(x) ∈ [−1, 1],

0 otherwise.

For w(x) = 1 (σ = 0) we write

ωr
ϕ(f, t)p,1 ≡ ωr

ϕ(f, t)p.

It is known (see [Di-To, Theorems 6.2.2 and 6.3.1]) that

(1.8) Ωr
ϕ(f, t)p ≤ Ctkωr−k

ϕ (f (k), t)p,ϕk for 1 ≤ p ≤ ∞
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and

(1.9) Ωr−k
ϕ (f (k), t)p,ϕk ≤ C

[ t\
0

Ωr
ϕ(f, u)p

uk+1
du

]
for 1 ≤ p ≤ ∞.

For 0 < p <∞ we will show

(1.10) Ωr−k
ϕ (f (k), t)p,ϕk ≤ C

[ t\
0

ωr
ϕ(f, u)q

p

uqk+1
du

]1/q

, q = min(p, 2).

(For p = ∞ one has (1.9) or (1.10) with p = ∞ and q = 1.) The inequality
(1.8) does not hold for 0 < p < 1.

For 1 ≤ p ≤ ∞ the kth derivative f (k) can be given as a distributional
derivative or by assuming that the (k− 1)th derivative in the classical sense
satisfies f (k−1) ∈ A.C.loc. This is not possible for 0 < p < 1 as f ∈ Lp does
not necessarily imply that f is a distribution. Moreover, even if f ′ ∈ Lp

(p < 1), it does not imply that f ∈ A.C.loc. In Section 2 we deal with Lp(T )
where 0 < p < 1 and prove a result that will be useful for the proof of the
inverse inequality. The sharp inverse inequality (1.3) is proved in Section 3.
Analogous results to those in Section 2 are proved for Lp[−1, 1], 0 < p < 1,
in Section 4. The sharp converse (1.10) is proved in Section 5.

2 Some positive and negative results for Lp(T ), 0 < p < 1. For
f ∈ Lp(T ), 0 < p ≤ ∞, we define the derivative of f as a function g satisfying

(2.1)

∥∥∥∥
1

h
(f(· + h) − f(·)) − g(·)

∥∥∥∥
Lp(T )

→ 0 as h→ 0,

in which case we write g = f ′. (For p ≥ 1, (2.1) is the commonly used strong
derivative of f.) The kth derivative is given as usual as the kth iterate of
the first derivative. When f is locally absolutely continuous (f ∈ A.C.loc)
the definition in (2.1) coincides with the classical definition of a derivative.
For 0 < p < 1 the derivative in Lp is problematic or, as Peetre described
it, “pathological” (see [Pe]) even when it is the derivative of a function
satisfying f ∈ A.C.loc.

Some aspects of the behaviour of derivatives were described earlier (see
for instance, [Pe], [Di-Hr-Iv], [Pe-Po] and [Di,95]). Here another aspect of
this anomaly is described. This may serve as a warning to ourselves and oth-
ers against using a certain type of argument which is absolutely acceptable
when 1 ≤ p ≤ ∞. In the following example when we say f ′ is a derivative of
f, it will be in the most elementary sense (f ∈ A.C.loc). We will prove our
result for [0, 1] but similar outcomes occur on [a, b] or T.

Theorem 2.1. When 0 < p < 1 it is possible for ϕn to converge to f in

Lp[0, 1], for ϕ′
n to converge to g in Lp[0, 1], and for f ′ to exist and belong

to Lp[0, 1], but f ′(x) 6= g(x).
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Remark 2.2. Other versions of Theorem 2.1 can be:

(I) When 0 < p < 1 it is possible that ϕn and ψn converge to f in
Lp[0, 1], that ϕ′

n converges to g1 in Lp[0, 1], and that ψ′
n converges

to g2 in Lp[0, 1], but g1 6= g2 in Lp[0, 1].
(II) When 0 < p < 1 it is possible that ϕn and ϕ′

n are Cauchy sequences
in Lp[0, 1], and hence ϕn → f, ϕ′

n → g but g is not the derivative
of f.

Proof of Theorem 2.1. We choose f(x) = x and ϕn(x) given by

ϕn(x) =





k

n
,

k

n
≤ x <

k + 1

n
− 1

n2
,

k

n
+

(
x− k + 1

n
+

1

n2

)
n,

k + 1

n
− 1

n2
≤ x <

k + 1

n
,

for k = 0, 1, . . . , n− 1, and

ϕ′
n(x) =




n,

k + 1

2
− 1

n2
≤ x <

k + 1

n
,

0, otherwise.

We clearly have ‖ϕn − f‖p ≤ 1/n (where ‖F‖p
p =

T1
0 |F (x)|p dx) and

‖ϕ′
n − 0‖p ≤

(
n

1

n2
np

)1/p

= n(p−1)/p → 0.

We note that this example covers Remark 2.2 as well where we choose
ψn(x) = x and ψ′

n(x) = 1.

For 1 ≤ p ≤ ∞ the situation is different from what is described in
Theorem 2.1, and for that reason some are inclined to believe in the opposite
of that theorem. Under some restrictions on ϕn and the rate of convergence
we have f ′ = g for 0 < p < 1 as well, and Theorem 2.1 was given mainly
to show that we need to prove the following result which will be useful in
Section 3.

Theorem 2.3. For f ∈ Lp(T ) and Tn a sequence of trigonometric poly-

nomials of degree n satisfying

(2.2) ‖f − Tn‖Lp(T ) = o

(
1

n

)
and ‖g − T ′

n‖Lp(T ) = o(1), n→ ∞,

we have f ′ = g, that is, g satisfies (2.1).

Proof. For 1 ≤ p ≤ ∞ the theorem is a special case of known results and
we prove it here only for 0 < p < 1. For any ε > 0 we choose n0 = n0(ε)
such that for n ≥ n0,

‖f − Tn‖Lp(T ) ≤ ε
1

n
and ‖g − T ′

n‖Lp(T ) ≤ ε.
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For h satisfying
√
ε/n ≤ h ≤ 1/n we have

(2.3)

∥∥∥∥
f(· + h) − f(·)

h
− Tn(· + h) − Tn(·)

h

∥∥∥∥
p

Lp(T )

≤ 2
εp

εp/2
= 2 εp/2.

Following [Di-Hr-Iv] (proof of Theorem 3.1 there), we have, for
√
ε/n ≤ h

≤ 2
√
ε/n,

∥∥∥∥
Tn(· + h) − Tn(·)

h
− T ′

n(·)
∥∥∥∥

p

Lp(T )

≤
∞∑

k=2

(
hk−1

k!

)p

‖T (k)
n ‖p

Lp(T )(2.4)

≤
∞∑

k=2

(hn)(k−1)p‖Tn‖p
Lp(T )

≤ 4εp 1

1 − 2pεp/2
‖Tn‖p

Lp(T )

≤ Cεp‖Tn‖p
Lp(T ).

We note that in (2.4) as well as in [Di-Hr-Iv] we utilized the important
inequality by Arestov [Ar] who established that

(2.5) ‖T ′
n‖Lp(T ) ≤ n‖Tn‖Lp(T )

for 0 < p < 1. Therefore, for
√
ε/n ≤ h < 2

√
ε/n we have

(2.6)

∥∥∥∥
f(· + h) − f(·)

h
− g

∥∥∥∥
p

Lp(T )

≤ C(εp/2 + εp‖f‖Lp(T ) + εp),

and as the right-hand side does not depend on n or Tn, we have g = f ′.

Repeating the process in Theorem 2.3, we obtain the following corollary.

Corollary 2.4. Suppose f, g1, . . . , gk ∈ Lp(T ) and Tn is a sequence of

trigonometric polynomials satisfying

‖f − Tn‖p = o

(
1

nk

)
, n→ ∞,(2.7)

‖gi − T (i)
n ‖p = o

(
1

nk−i

)
, n→ ∞, for i = 1, . . . , k.

Then gi = g′i−1 (f = g0) in the sense of (2.1).

3. Functions in Lp(T ). For Lp(T ) our estimate of ωr−k(f (k), t)p is given
in the following theorem.

Theorem 3.5. For f ∈ Lp(T ), 0 < p < ∞, and integers k, r satisfying

k < r we have

(3.1) ωr−k(f (k), t)p ≤ C

{ t\
0

ωr(f, u)q
p

uqk+1
du

}1/q

where q = min(p, 2).
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Remark 3.6. (I) In Theorem 3.5 inequality (3.1) means that if its right-
hand side converges, then f (k) exists in the sense of (2.1) (or for p ≥ 1 as a
distribution) and satisfies both f (k) ∈ Lp(T ) and inequality (3.1).

(II) For p = ∞ (and p = 1) we have q = 1, which is the classical
result (1.2).

(III) For 1 < p < 2, r = 2 and k = 1, (3.1) is essentially proved by
Marcinkiewicz in [Ma]. For 1 < p < ∞, (3.1) is related to a result of Besov
on the rate of best approximation by trigonometric polynomials (see [Be]).

(IV) For 1 < p < ∞, (3.1) is actually stronger than (1.2). This is illus-
trated by examining cases for which ωr(f, t)p ≤Mtk/|log t|α for t < 1/2. In
such a situation we need α > 1 for (1.2) to converge but only α > 1/q for
(3.1) to converge. Moreover, in this case using (3.1) (αq > 1), we obtain

ωr−k(f (k), t)p ≤M1
1

|log t|α−1/q
for t <

1

2
,

but using (1.2) (for α > 1), we have only

ωr−k(f (k), t)p ≤M1
1

|log t|α−1
for t <

1

2
.

We note that if ωr(f, t)p = O(tk+β) for some β > 0, then (3.1) does not have
an advantage over (1.2) for 1 < p <∞. While proving (3.1) for 1 ≤ p <∞,
we show that it implies (1.2) for 1 ≤ p <∞.

(V) For 0 < p < 1 no inverse inequality was proved earlier, and in fact
to call it an inverse result is a misnomer since the direct result (1.1) is not
valid when 0 < p < 1 (see [Pe-Po, p. 188]).

(VI) As an example of the use of (3.1) for 0 < p < 1 we set f(x) =
xr−1 sgnx for |x| < π and define f(x) by f(x + 2π) = f(x) elsewhere.
We have ωr(f, t)p ≈ tr−1+1/p (see [Pe-Po, p. 188]). For k < r, f (k)(x) =
(Γ (r)/Γ (r − k))xr−k−1 sgnx when |x| < π and hence ωr−k(f (k), t)p ≈
tr−k−1+1/p as expected by (3.1). For instance, if p = 1/2, r = 2 and k = 1,
we have ω2(f, t)p ≈ t3 and ω(f ′, t)p ≈ t2.

Proof of Theorem 3.5. Since ωm(F, t)p is nondecreasing and

(3.2) ωm(F, 2t)p ≤ 2mωm(F, t)p for 1 ≤ p ≤ ∞
while (see [Pe-Po, p. 187])

(3.3) ωm(F, 2t)p ≤ C(m, p)ωm(F, t)p for 0 < p < 1,

it is sufficient to prove (2.1) for t = 2−n. Using (3.2) and (3.3), we also have

(3.4)

{ 2−n\
0

ωr(f, u)q
p

uqk+1
du

}1/q

≈
{ ∞∑

l=n

2lqkωr(f, 2−l)q
p

}1/q
,
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and hence it is sufficient to prove that for all n,

(3.5) ωr−k(f (k), 2−n)p ≤ C
{ ∞∑

l=n

2lqkωr(f, 2−l)q
p

}1/q
.

Inequality (3.5) demonstrates that (3.1) for 1 < p < ∞ is stronger than
(1.2) as the l1 norm of the sequence {2lωr(f, 2−l)p}∞l=n is bigger than the lq
norm of that sequence. (That (3.1) is actually stronger in some cases was
shown in Remark 3.2(IV).)

Since for any trigonometric polynomial Qn of degree cn we have

ωr(Qn, u)p ≤ C(r, L, p)ur‖Q(r)
n ‖p, u ≤ L/n, p > 0

(see [St-Kr-Os] for r = 1 and [Di-Hr-Iv]), we have

(3.6) ωm(F, 1/n)p ≤M(‖F −Qn‖p + n−m‖Q(m)
n ‖p)

for 0 < p < ∞, and hence our task is to find Q2n of degree c2n (not
necessarily the best or near best c2n trigonometric approximant to f (k))

such that both ‖f (k) − Q2n‖p and 2−n(r−k)‖Q(r−k)
2n ‖p are bounded by the

right-hand side of (3.5).
We deal first with 0 < p < 1. Let Tn be the best nth degree trigonometric

polynomial approximant to f in Lp(T ), that is,

‖f − Tn‖p = inf
(
‖f − T‖p : T = a0 +

n∑

l=1

(al cos lx+ bl sin lx)
)

(3.7)

≡ En(f)p.

As trigonometric polynomials are dense in Lp, we have ‖f − T2l‖p → 0.
Clearly,

T2l − T2n =
l−1∑

m=n

(T2m+1 − T2m),

and if
∑∞

m=n ‖T2m+1 − T2m‖p
p converges for 0 < p ≤ 1, then

f − T2n =

∞∑

m=n

(T2m+1 − T2m) in Lp(T ) for 0 < p ≤ 1.

Following [Di-Hr-Iv], for 0 < p ≤ ∞, Tn of (3.7) and any integer r we have

(3.8) ‖f − T2m‖p + 2−mr ‖T (r)
2m ‖p ≈ ωr(f, 2−m)p

and hence
∞∑

m=n

‖T2m+1 − T2m‖p
p ≤ C

∞∑

m=n

ωr(f, 2−m)p
p ≤ C2−nkp

∞∑

m=n

2mkpωr(f, 2−m)p,

which converges assuming (3.1) and hence (3.5). In addition, the series∑∞
m=n(T2m+1−T2m) has k derivatives in Lp as the Bernstein inequality (2.5)
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implies
∞∑

m=n

‖T (k)
2m+1 − T

(k)
2m ‖p

p ≤
∞∑

m=n

(2m+1)kp‖T2m+1 − T2m‖p
p

≤ C1

∞∑

m=n

2mkpωr(f, 2−m)p
p,

which converges using (3.5). Therefore, there exists a function g ∈ Lp(T )
for which

‖g − T
(k)
2n ‖p = lim

l→∞
‖T (k)

2l − T
(k)
2n ‖p ≤ C

1/p
1

( ∞∑

m=n

2mkpωr(f, 2−m)p
p

)1/p
.

Using (3.8), we also have

2−n(r−k)‖(T (k)
2n )(r−k)‖p = 2−n(r−k)‖T (r)

n ‖p ≤ C22
nkωr(f, 2−n)p

≤ C2

( ∞∑

m=n

2mkpωr(f, 2−m)p
p

)1/p
.

If we show g = f (k), the above would imply the result of our theorem for

0 < p ≤ 1 viaQ2n = T
(k)
2n and (3.6). Following Theorem 2.3 and Corollary 2.4

(its iterate), we in fact have g = f (k).

We now turn to the case 1 ≤ p < ∞. For a function f ∈ Lp(T ) with
Fourier expansion

f(x) ∼ a0 +
∞∑

l=1

(al cos lx+ bl sin lx) =
∞∑

l=0

Pl(f)

the trigonometric polynomial ηNf is given by

(3.9) ηNf =

∞∑

l=0

η

(
l

N

)
Pl(f)

where η ∈ C∞[0,∞), η(x) = 1 for x ≤ 1/2 and η(x) = 0 for x ≥ 1. We
now have: (I) ηNf is a trigonometric polynomial of degree smaller than N ;
(II) ηNϕ = ϕ, where ϕ is a trigonometric polynomial of degree [N/2];
(III) ‖ηNf‖Lp(T ) ≤C‖f‖Lp(T ) for 1≤ p≤∞. Therefore, ηNf is a de la Vallée
Poussin-type operator and ‖ηNf−f‖Lp(T ) ≤ (C+1)EN/2(f)p for 1 ≤ p ≤ ∞
where El(f)p is the best rate of approximation of f by a trigonometric poly-
nomial of degree l in Lp(T ) (see (3.7)). We now choose the Qn of (3.6) for
F = f (k) to be (ηnf)(k). Clearly, ‖f − ηnf‖p = o(1) as n→ ∞. We estimate
η2lf − η2nf using

η2lf − η2nf =

l−1∑

m=n

(η2m+1f − η2mf) ≡
l−1∑

m=n

θmf.
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We now write

(η2lf)(k) − (η2nf)(k) =
l−1∑

m=n

(θmf)(k).

Following [Da-Di, Theorem 2.1], we have the Littlewood–Paley inequality

Bp‖(η2lf)(k) − (η2nf)(k)‖Lp(T ) ≤
∥∥∥
( l−1∑

m=n

{(θmf)(k)}2
)1/2∥∥∥

Lp(T )
(3.10)

≤ Ap‖(η2lf)(k) − (η2nf)(k)‖Lp(T )

with Ap and Bp independent of l, n, f or k. For 1 ≤ p < ∞, using [Da-Di,
Corollary 2.2], for any integer k we have

(3.11)
∥∥∥
( l−1∑

m=n

{(θmf)(k)}2
)1/2∥∥∥

Lp(T )

≤
( l−1∑

m=n

‖(θmf)(k)‖q
Lp(T )

)1/q
, q = min(p, 2).

The equivalence

(3.12) ωr(f, 1/n)p ≈‖f −ηnf‖Lp(T ) +n−r‖(ηnf)(r)‖Lp(T ) for 1≤ p≤∞
follows from the realization result in [Di-Hr-Iv] using the fact that ηnf
is a de la Vallée Poussin operator and hence near best approximant to f
in Lp(T ).

Using (3.10)–(3.12) and the Bernstein inequality, we have

‖(η2lf)(k) − (η2nf)(k)‖Lp(T ) ≤ C
( l−1∑

m=n

2mkq‖θm(f)‖q
Lp(T )

)1/q

≤ C1

( l−1∑

m=n

2mkqωr(f, 2−m)q
p

)1/q

with C1 independent of m, l and f (but it may depend on r, p and q). The
version of the right-hand side of (3.1) given in (3.4) establishes now the
convergence of (η2lf)(k) to f (k) and hence f (k) ∈ Lp. (Here, for 1 ≤ p ≤ ∞
the difficulty described in Section 2 does not exist.) We now use Q2n = η2nf
and (3.12) to obtain

2−n(r−k)‖((η2nf)(k))(r−k)‖Lp(T ) = 2−n(r−k)‖(η2nf)(r)‖Lp(T )

≤ C22
nkωr(f, 2−n)p

≤ C2

( ∞∑

m=n

2mkqωr(f, 2−m)q
p

)1/q
,

and thus complete the proof.
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Remark 3.7. We can combine Theorem 3.5 (using the weaker q =
min(p, 1)) with our earlier theorem [Di-Ti, Section 2] (d = 1) to obtain
a result with different norms. This will yield the inequality

(3.13) ωr−k(f (k), t)Lp1
(T ) ≤ C

{ t\
0

[u−k−1/p+1/p1ωr(f, u)Lp(T )]
q1
du

u

}1/q1

for k + 1/p− 1/p1 < r, 0 < p < p1 ≤ ∞ and

q1 =

{
p1, p1 <∞,

1, p1 = ∞.

Corollary 3.8. For f ∈ Lp(T ), 1 ≤ p < ∞, 0 < k < r and q =
min(p, 2) we have

(3.14) ‖f (k)‖p ≤ C

{ 1\
0

ωr(f, u)q
p

uqk+1
du

}1/q

.

Remark 3.9. For k = 1, r = 2 and 1 ≤ p ≤ 2 Corollary 3.8 is the
theorem of Marcinkiewicz given in [Ma]. For p = ∞, (3.14) holds with q = 1.

Proof of Corollary 3.8. We note that if f (k) ∈ Lp(T ) for some f ∈ Lp(T )
(1 ≤ p ≤ ∞), one has

(3.15)
1

2π

2π\
0

f (k)(x+ y) dy = 0.

Therefore

‖f (k)‖p =

∥∥∥∥f
(k)(·) − 1

2π

2π\
0

f (k)(· + y) dy

∥∥∥∥
p

≤ ω(f (k), 2π)p ≤ (2π + 1)ω(f (k), 1)p.

Using Theorem 3.5, we now have

‖f (k)‖p ≤ (2π + 1)C1

{ 1\
0

ωk+1(f, u)q
p

ukq+1
du

}1/q

,

which establishes (3.14) for k = r − 1. If r − 1 > k, we use [Di,83], which
establishes ‖f (k)‖p ≤ C2‖f (k+1)‖p for any f ∈ Lp(T ), and k > 0 satisfy-
ing (3.15).

4. Convergence of polynomials and their derivatives in Lp,

0 < p < 1. As explained in Section 2 (see also [Di,95]), one cannot expect
automatically that Pn → f and P ′

n → g in Lp (0 < p < 1) imply g = f ′.
However, if some additional conditions are satisfied, that is in fact the case.
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Theorem 4.10. Suppose −1 < a1 < a < b < b1 < 1 and Pn is a

sequence of polynomials of degree n satisfying

(4.1) ‖f − Pn‖Lp[a1,b1] = o(1/n), ‖g − P ′
n‖Lp[a1,b1] = o(1), n→ ∞.

Then

(4.2)

∥∥∥∥
f(x+ h) − f(x)

h
− g(x)

∥∥∥∥
Lp[a,b]

= o(1), h→ 0,

or , in other words, g is the derivative of f in Lp[a, b].

Proof. We follow the proof of Theorem 2.3 (with the appropriate modifi-

cations). For h satisfying h < min(b1− b, a−a1) ≡ d and
√
εd/n ≤ h ≤ 1/n,

and for f, g and Pn satisfying

(4.3) ‖f − Pn‖Lp[a1,b1] ≤ ε/n and ‖g − P ′
n‖Lp[a1,b1] ≤ ε

we have

(4.4)

∥∥∥∥
f(· + h) − f(·)

h
− Pn(· + h) − Pn(·)

h

∥∥∥∥
p

Lp[a,b]

≤ 2

(
ε

d

)p/2

.

We now follow [Di-Hr-Iv, Section 6] to obtain, for
√
εd/n < h ≤ 2

√
εd/n,

∥∥∥∥
Pn(· + h) − Pn(·)

h
− P ′

n(·)
∥∥∥∥

Lp[a,b]

≤
n+1∑

k=2

(
hk−1

k!

)p

‖P (k)
n ‖p

Lp[a,b] ≡ S.

Defining

(4.5) d̃(x) = (x− a1)(b1 − x) for x ∈ [a1, b1],

we have

S ≤ C

∞∑

k=2

(
hk−1

k!

)p

d−pk/2‖d̃(x)k/2P (k)
n ‖p

Lp[a1,b1] ≡ CS1.

Using the Bernstein inequality

‖ϕ(x)kP (k)
n ‖Lp[−1,1] ≤ Cnk‖Pn‖Lp[−1,1] with ϕ(x)2 = 1 − x2,

we have by a change of variable

‖d̃(x)k/2P (k)
n ‖Lp[a1,b1] ≤ Cnk‖Pn‖Lp[a1,b1].

Therefore,

S1 ≤ C
∞∑

k=2

(
hk−1

k!

)p

d−pk/2nkp‖Pn‖p
Lp[a1,b1]

= C(‖f‖p
Lp[a1,b1] + εp)

∞∑

k=2

(
hn√
d

)(k−1)p

≤ C1(‖f‖p
Lp[a1,b1] + εp)εp.
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Hence,

(4.6)

∥∥∥∥
f(· + h) − f(·)

h
− g(·)

∥∥∥∥
p

Lp[a,b]

≤ C2(ε
p(‖f‖Lp[a1,b1] + 1) + εp/2 + εp),

and as both sides of (4.6) do not depend on Pn or n, (4.6) implies (4.2).

We may iterate the result in Theorem 4.10 to obtain

Corollary 4.11. Suppose −1 < a1 < a < b < b1 < 1 and Pn is a

sequence of polynomials of degree n satisfying

(4.7)

‖f − Pn‖Lp[a1,b1] = o

(
1

nk

)
,

‖gi − P (i)
n ‖Lp[a1,b1] = o

(
1

nk−i

)
for i = 1, . . . , k.

Then gi is the derivative of gi−1 in Lp[a, b] in the sense of (4.2) (with

g0 = f).

For the proof of Corollary 4.11 we use a finite sequence of nested intervals
and the proof of Theorem 4.10.

We also have the following corollary of the above.

Corollary 4.12. Suppose Pn is a sequence of polynomials of degree n
satisfying

‖f − Pn‖Lp[−1,1] = o

(
1

nk

)
,(4.8)

‖ϕi(gi − P (i)
n )‖Lp[−1,1] = o

(
1

nk−i

)
for i = 1, . . . , k.

Then in any interval [a, b], −1 < a < b < 1, gi is the derivative of gi−1 and

g1 is the derivative of f in the sense of (4.2).

For the proof we just confirm that the conditions of Corollary 4.11 are
satisfied.

5. The estimate of Ωr−k
ϕ (f (k), t)p by ωr

ϕ(f, t)p. For a function f ∈
Lp[−1, 1] the inverse result of our paper is given in the following theorem.

Theorem 5.13. For f ∈ Lp[−1, 1], 0 < p < ∞, and integers k, r satis-

fying k < r, we have

(5.1) Ωr−k(f (k), t)p,ϕk ≤ C

{ t\
0

ωr
ϕ(f, u)q

p

uqk+1
du

}1/q

where q = min(p, 2).

Remark 5.14. For 1 ≤ p < ∞, (5.1) implies the inequality with q = 1
for that range but with q = 1 Theorem 5.13 is included in Theorem 6.3.1
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of [Di-To]. For q = 1 and p = ∞ we have the result in [Di-To, The-
orem 6.3.1(a)].

For the proof of Theorem 5.13 we need the following lemma.

Lemma 5.15. For 0 < p ≤ ∞, integer m and g ∈ Lp[a, b], for any

−1 < a < b < 1 and Qn a polynomial of degree n we have

(5.2) Ωm
ϕ (g, 1/n)p,ϕk

≤ C(‖ϕk(g −Qn)‖Lp[−1,1] + n−m‖ϕk+mQ(m)
n ‖Lp[−1,1]).

Proof. To prove (5.2) we observe that

Ωm
ϕ (g, 1/n)p,ϕk ≤ C1{Ωm

ϕ (g −Qn, 1/n)p,ϕk +Ωm
ϕ (Qn, 1/n)p,ϕk}

where C1 = 1 for 1 ≤ p ≤ ∞ and C1 = 21/p for 0 < p < 1. Following
[Di-Hr-Iv] with minor changes, we obtain

Ωm
ϕ (Qn, 1/n)p,ϕk ≤ C2n

−m‖ϕk+mQ(m)
n ‖Lp[−1,1].

To complete the proof of (5.2) we need to show that

Ωm
ϕ (g −Qn, 1/n)p,ϕk ≤ C3‖ϕk(g −Qn)‖Lp[−1,1].

To prove the last inequality, we note that all we need to show is that for
−1 + 2m2h2 ≤ x ≤ 1 − 2m2h2 and |α| ≤ m/2,

(5.3) A−1 ≤
(

ϕ(x)

ϕ(x+ αhϕ(x))

)l

≤ A

with A independent of x and h. Without loss of generality it is sufficient
to prove (5.3) for l = 2, h ≥ 0 and x ≤ 0. With the restriction on x, i.e.
−1 + 2m2h2 ≤ x ≤ 0, we have h < 1/

√
2m as otherwise (5.3) is vacuous.

For −m/2 ≤ α ≤ 0 (recall −1 + 2m2h2 ≤ x and hence 1 + x−mhϕ(x) ≥ 0)
we have

2

3
≤ 1

1 + m
2 h

≤ 1

1 + m
2 h

√
1+x
1−x

≤ 1 − x

1 − x+ m
2 hϕ(x)

≤ (1 − x)(1 + x)

(1 − x− αhϕ(x))(1 + x+ αhϕ(x))
≡ ϕ2(x)

ϕ2(x+ αhϕ(x))

≤ 1 + x

1 + x− m
2 hϕ(x)

≤ 2.

For 0 ≤ α ≤ m/2 (the simpler case when x < 0 and h > 0) we have

1 ≤ ϕ2(x)

ϕ2(x+ αhϕ(x))
≤ 1 − x

1 − x− m
2 hϕ(x)

≤ 2.

Proof of Theorem 5.13. The function ωl
ϕ(F, t)p is nondecreasing. We also

have

(5.4) ωl
ϕ(F, 2t)p ≤ Cωl

ϕ(F, t)p for 0 < p ≤ ∞,
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which follows for 1 ≤ p ≤ ∞ from the equivalence of ωl
ϕ(F, t)p with the

appropriate K-functional (see [Di-To]) and for 0 < p < 1 from [Dr-Hr-Iv,
Corollary 5.13, (5.13)].

Therefore,

(5.5)

{ 2−n\
0

ωr
ϕ(f, u)q

p

uqk+1
du

}1/q

≈
{ ∞∑

l=n

2lkqωr
ϕ(f, 2−l)q

p

}1/q
,

and as Ωr−k(F, t)p,ϕk and {
Tt
0

ωr
ϕ(f,u)q

p

uqk+1 du}1/q are monotonic in t, it is suffi-
cient to prove

(5.6) Ωr−k(f (k), 2−n)p,ϕk ≤ C
{ ∞∑

l=n

2lkqωr
ϕ(f, 2−l)q

p

}1/q
.

We note that monotonicity in t of Ωm(g, t)p,ϕk and of
Tt
0 · · · together with

(5.4)–(5.6) implies (5.1).

We first proceed with the proof for 0 < p < 1. We choose P2k to be the
best 2kth degree polynomial approximant to f in Lp[−1, 1]. As polynomials
are dense in Lp[−1, 1] for 0 < p < 1 (as well as for 1 ≤ p < ∞), we have
‖f − P2k‖Lp[−1,1] → 0. If

∞∑

l=n

‖P2l+1 − P2l‖p
Lp[−1,1] <∞,

we have

‖f − P2n‖p
Lp[−1,1] ≤

∞∑

l=n

‖P2l+1 − P2l‖p
Lp[−1,1], 0 < p < 1,

and, in other words,

f − P2n =

∞∑

l=n

(P2l+1 − P2l) in Lp[−1, 1] for 0 < p < 1.

Following [Di-Hr-Iv, Sections 5 and 6], we have

(5.7) ‖f − P2l‖Lp[−1,1] + 2−lr ‖ϕrP
(r)

2l ‖Lp[−1,1] ≈ ωr
ϕ(f, 2−l)p.

Hence with ‖ · ‖Lp[−1,1] ≡ ‖ · ‖p we write

∞∑

l=n

‖P2l+1 − P2l‖p
p ≤ C

∞∑

l=n

ωr
ϕ(f, 2−l)p

p

≤ C2−nkp
∞∑

l=n

2klpωr
ϕ(f, 2−l)p

p,

and as the sum on the right-hand side converges following (5.5), we have
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‖f − P2n‖p = o(2−nk) as n→ ∞. We now need the Bernstein inequality

(5.8) ‖ϕj+1Q′
n‖p ≤ C(p, j)n‖ϕjQn‖p

for Qn a polynomial of degree n (for 0 < p < 1 see for example [Di-Ji-Le,
(2.3)]). We use (5.8) to obtain

∞∑

l=n

‖ϕi(P
(i)

2l+1 − P
(i)

2l )‖p
p ≤ Ci

∞∑

l=n

2lipωr
ϕ(f, 2−l)p

p(5.9)

≤ Ci2
−n(k−i)p

∞∑

l=n

2lkpωr
ϕ(f, 2−l)p

p.

Hence ϕigi = ϕiP
(i)
2n + ϕi

∑∞
l=n(P

(i)

2l+1 − P
(i)

2l ) converges in Lp (for g0 = f it
was shown earlier) and

(5.10) ‖ϕi(gi − P
(i)
2n )‖p = o(2−n(k−i)), n→ ∞, for i = 0, 1, . . . , k,

which implies the condition of Corollary 4.12, and therefore gi is locally
the ith derivative of f in Lp. To complete the proof (for 0 < p < 1) we

apply Lemma 5.15 with g = gk, m = r − k, the integer 2n, and P
(k)
2n for the

polynomial Q2n of degree 2n. We now use (5.9) to obtain

‖ϕk(gk − P
(k)
2n )‖p

p ≤ Ck

∞∑

l=n

2lkpωr
ϕ(f, 2−l)p

p.

The equivalence (5.7) with l = n implies

2−n(r−k) ‖ϕ(x)r−k+k(P
(k)
2n )(r−k)‖Lp[−1,1] ≤ C 2nkωr

ϕ(f, 2−n)p.

The last two estimates yield (5.6) and our result is proved for 0 < p < 1.

Let us now proceed with the case 1 ≤ p < ∞. The function f has the
expansion

f ∼
∞∑

m=0

amψm

where ψm is the Legendre polynomial of degree n normalized to satisfy
‖ψm‖L2[−1,1] = 1, and where

am =

1\
−1

f(x)ψm(x) dx.

We choose Pn(f) = ηn(f) to be given by

(5.11) ηn(f) =
∞∑

m=0

η

(
m

n

)
amψm

where η ∈ C∞, η(x) = 1 for x ≤ 1/2 and η(x) = 0 for x ≥ 1.
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It is well-known that ηn(f) is a de la Vallée Poussin-type operator on
Lp[−1, 1], 1 ≤ p ≤ ∞, that is,

(I) ‖ηnf‖p ≤ C‖f‖p,

(II) ‖ηnf−f‖p ≤CEn/2(f)p ≡C inf
{
‖f−Ψn‖p : Ψn =

∑
m≤n/2 bmψm

}
,

(III) ηnf ∈ span{ψ0, . . . , ψn}.

We choose Q2n of (5.2) to be (ηnf)(k). Using (II) and the density of
polynomials in Lp[−1, 1], 1 ≤ p < ∞, we have ‖f − ηnf‖Lp[−1,1] = o(1) as
n→ ∞.

Following [Da-Di], we write

η2lf − η2nf =
l−1∑

m=n

(η2m+1f − η2mf) ≡
l−1∑

m=n

θmf.

We now write

ϕk{(η2lf)(k) − (η2nf)(k)} =
l−1∑

m=n

ϕk(θmf)(k).

Following [Da-Di, Theorem 2.1], we have the Littlewood–Paley inequality

(5.12) Bp‖ϕk{(η2lf)(k) − (η2nf)(k)}‖Lp[−1,1]

≤
∥∥∥
( l−1∑

m=n

{ϕk(θmf)(k)}2
)1/2∥∥∥

Lp[−1,1]

≤ Ap

∥∥∥ϕk{(η2lf)(k) − (η2nf)(k)}
∥∥∥

Lp[−1,1]

with Ap and Bp independent of l, n, f or k. Using [Da-Di, Corollary 2.2],
for 1 < p <∞ and q = min(p, 2) we have

∥∥∥
( l−1∑

m=n

{ϕk(θmf)(k)}2
)1/2∥∥∥

Lp[−1,1]
≤

( l−1∑

m=n

‖ϕk(θmf)(k)‖q
Lp[−1,1]

)1/q

≤ C
( l−1∑

m=n

2mkq‖θmf‖q
Lp[−1,1]

)1/q

(by the Bernstein inequality [Di-To, Chapter 7])

≤ C1

( l−1∑

m=n

2mkqωr
ϕ(f, 2−m)q

p

)1/q

(by the Jackson inequality [Di-To, Chapter 7]).



Moduli of smoothness 159

In view of (5.5), the last sum converges as l → ∞, and hence f (k) exists
and satisfies

‖ϕk(f (k) − η2nf (k))‖p = C1

( ∞∑

m=n

2mkqωr
ϕ(f, 2−m)q

p

)1/q
.

Using Lemma 5.15, we will complete the proof when we show

2−(r−k)n‖ϕr(η2nf)(r)‖p ≤ C2 2knωr
ϕ(f, 2−n)p

≤ C3

( ∞∑

m=n

2kmqωr
ϕ(f, 2−n)q

p

)1/q
.

The second inequality is clear, and the first follows from the realization
result in [Di-Hr-Iv] which holds for ηnf , as well as from

ωr
ϕ(f, 2−n)p ≈ ‖f − ηnf‖p +

1

2nr
‖ϕr(ηnf)(r)‖p.
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