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Extension of smooth functions in infinite dimensions, I:
unions of convex sets

by

C. J. Atkin (Wellington)

Abstract. Let f be a smooth function defined on a finite union U of open convex sets
in a locally convex Lindelöf space E. If, for every x ∈ U , the restriction of f to a suitable
neighbourhood of x admits a smooth extension to the whole of E, then the restriction of
f to a union of convex sets that is strictly smaller than U also admits a smooth extension
to the whole of E.

1. General remarks on extension problems. The guiding idea of
this paper, which is intended as the first of a series, is to see what can be done
to avoid the common and highly restrictive assumption that the model of a
smooth manifold admits C∞ (or Cp, for some p ≥ 1) partitions of unity. In
this first paper I shall be exclusively concerned with the models themselves,
and with some theorems which at first sight may seem too special to be of
much consequence. In later papers I shall show that they are, in fact, the
foundation of a substantial theory.

There has been much work done on the question of the existence or
non-existence of partitions of unity of various degrees of differentiability (in
the sense of Fréchet) in particular Banach spaces. Bonic and Frampton [1]
showed that there are restrictions on their existence in many classical spaces,
and pointed out some remarkable consequences of this fact. Toruńczyk [8]
showed that C∞ partitions of unity exist in Hilbert spaces of any dimen-
sion. A copious reference for the detailed and subtle theory of differentiable
functions in Banach spaces, as it has developed since then, is the book
of Deville, Godefroy, and Zizler [3]. (A perhaps more recent and startling
result is given by Deville [2], who shows that, if a Banach space E does
not contain a copy of c0, then the question of C∞ partitions of unity for
E is, as it were, determined at the level of polynomials.) In all this work,
however, some basic questions about Banach manifolds have remained un-
solved.
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The ideal theory of Banach manifolds, if such a thing may be imagined,
and if it were to generalize finite-dimensional constructions satisfactorily,
would be valid for all, or at least for all separable, Banach spaces as models; it
might, for instance, assert, irrespective of the existence of smooth partitions
of unity, that every separable C∞ Banach manifold is C∞-diffeomorphic to
a manifold of a certain standard kind, such as a closed submanifold of some
multiple of the model or an open subset of the model. Individual peculiari-
ties of the model should not unduly influence the basic theory, although they
must inevitably have consequences elsewhere. The crucial difficulty in the
way of such a theory is the absence, in general, of a suitably rich collection
of smooth functions with which to perform familiar constructions. C∞ parti-
tions of unity, when they exist, enable one to imitate many finite-dimensional
techniques, but their rarity is the reason why, for instance, Elworthy in [6]
employs considerable effort to weaken the differentiability class he requires.
As far as I know, even the question he raises in the introduction to [6],
whether every smooth Banach manifold (in fact he mentions only the mod-
els C and `1, which one would expect to be the most refractory) admits
a non-constant smooth function, has never been answered. In due course,
although not in this paper, I shall give a positive answer to this question,
at least for separable manifolds, and show that much more is true.

To establish results of such generality, hard analysis is unlikely to be ap-
propriate. Indeed, the arguments I employ might be described as “combina-
torical”—they prove that a positive solution to an extension problem in the
small leads, by a complicated procedure of piecing-together, to a positive
solution in the large. It will turn out in the end that such a technique is quite
adequate for many purposes, and it has the advantage of requiring only very
weak assumptions. Specifically, the model E must be at least a Lindelöf lo-
cally convex space (that is, one of which any open cover has a countable
subcover—see [7], 3.8, pp. 247 et seqq.; recall that any Lindelöf space is
paracompact). Any separable metrizable locally convex space is Lindelöf,
and so is the dual of any normed space in the weak* topology, since it is
σ-compact. I shall also assume, for verbal and conceptual convenience, that
E is Hausdorff. The arguments could easily be modified to the non-Hausdorff
case, which, in the natural situations where one is dealing with continuous
functions, is a trivial corollary anyway. The notion of “smoothness” need
not, however, be made precise, the only demands being that the class of
“smooth” functions should satisfy certain conditions which obviously ought
to hold, and do indeed hold, for most reasonable theories of differentiability,
and for many other classes of functions and their generalizations as well.

In this first paper, I shall consider an extension problem for finite unions
of convex sets in the model itself. If the model is paracompact and admits
partitions of unity of the appropriate kind, which can be used to piece to-
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gether functions in the usual way, the results presented here are quite trivial
and their limitation to convex sets is unnecessary. In general, however, even
these apparently weak results have surprisingly strong consequences.

It seems preferable for clarity’s sake not to present the construction at the
outset in the greatest generality possible; it can be adapted in many ways,
some of which will be studied later. I have, however, included some poten-
tially useful modifications of the basic idea that require relatively little extra
argument. The subset “X”, which appears in 3.1, 4.2, 5.1 and elsewhere, is
introduced with a view to classes of functions, such as Besov spaces, that
may be defined on “thin” subsets of Rn (see, for instance, Triebel [9], [10]),
and 4.6, 5.5 are motivated by the example of abstract Wiener manifolds, for
which the coordinate transformations preserve a dense subspace of the dual
([4], [5]). The countability restrictions on the model already appear several
times as an essential hypothesis.

The simplest extension problem is perhaps the following.

Problem 1.1. Let E,F be normed spaces, with E separable, and let
f : U → F be a C∞ map defined on the neighbourhood U of 0 in E. Does
there exist a C∞ map g : E → F which agrees with f on a neighbourhood
V of 0 in U?

In this formulation “C∞” is understood in the Fréchet sense. A similar
question might be asked about other classes of functions, such as C∞ maps
with compact derivatives at all points, or maps which are bounded or have
uniformly bounded derivatives. For the above case, one has for instance the
simple result

Theorem 1.2. Let E be a normed space in which there is a C∞ mapping
h : E → E that is the identity on some neighbourhood W of the origin, and
such that h(E) is bounded. Let F be any normed space. Then, if U is a
neighbourhood of 0 in E and f : U → F is C∞, there are a neighbourhood
V of 0 in U and a C∞ function g : E → F such that g|V = f |V .

Proof. Suppose that h|BE(0; ε) is the identity, where BE(0; ε) as usual
denotes the ball of radius ε about the origin in E, and that h(E) ⊆ BE(0; r).
(Thus r > ε, of course). Choose κ > 0 so that BE(0;κr) ⊆ U , and define

(∀x ∈ E) g(x) := f(κh(κ−1x)).

Then take V := BE(0;κε) and the result follows.

Remark 1.3. The proof of 1.2 shows also that, in this case, the extension
operator f 7→ g := Ef is linear (with respect to pointwise operations), and
that the image of Ef is included in the image of f . If, therefore, f is bounded
with respect to the norm in F , so is Ef , and its bound is no greater than that
of f . If the mapping h has other properties—for instance if its nth derivative
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is bounded on E for all n ≤ N—then E may have associated properties, such
as being bounded with respect to the CN norm on the space of functions on
U for which all derivatives up to the Nth are bounded on U .

The existence of a function such as h in many “classical” Banach spaces
is easily established; the most immediate example is C, in which h may
simply be composition with a bounded C∞ function R → R which is the
identity on a neighbourhood of 0. It is not much harder to construct a
C∞ function h in the other “extreme” space, `1. On the other hand, there
are classes of functions other than C∞, most obviously Cω, for which the
question analogous to 1.1 has, in general, a negative answer.

If one assumes in 1.1 that clE(V ) is included in U , f must behave well on
the boundary of V ; there can be no “local” obstruction to the extension, such
as a failure of local boundedness in E. It seems, therefore, quite conceivable,
although I think it unlikely, that the answer to 1.1 is positive in any normed
space. It is perhaps more plausible, especially in non-separable spaces, that
the class of all functions C∞ in the sense of Fréchet may be either too large
or too small to have satisfactory extension properties for all normed spaces
E and F , but that some other class contains all the mappings of practical
interest and has better properties. Generally speaking, the questions of the
form 1.1 for various choices of function class are all different.

I shall therefore develop a theory which, in essence, defines the question
away; my functions will have a suitable extension property by definition. It
will eventually appear that the results are much more satisfactory than one
might expect.

Definition 1.4. Let F be a class of functions defined on the open sets
of the topological space X. One may say that F is a class on X. F is said
to be locally defined if

(i) if f : U → Y is a function defined on the open set U such that, for
any x ∈ U , there is a neighbourhood V of x in U for which f |V ∈ F , then
necessarily f ∈ F ; and

(ii) if U, V are open in X, V ⊆ U , and f : U → Y is in F , then f |V ∈ F .

Definition 1.5. A function f : U → Y in the class F on X is F-
extensible, or extensible in F , if, for any x ∈ U , there are an open neigh-
bourhood V of x in U and a function g : X → Y in F such that g|V = f |V .
(If every function in F is F-extensible, F itself may be described as exten-
sible.)

Definition 1.6. A function f , defined on an open subset U of the locally
convex Hausdorff space E, is finitely determined if there are a continuous
linear surjection P : E → Rk (for some natural number k) and a function
φ on the open subset P (U) of Rk such that f = φ ◦ P . In effect, a finitely



Extension of smooth functions in infinite dimensions 205

determined function on U is one which may be expressed as a function of
finitely many continuous linear functionals. f will be described as Cp if and
only if φ is Cp. (This is consistent with any reasonable a priori definition.)

The finitely determined functions on U with values in a vector space F
clearly form a vector space; if they take values in an algebra, they form an
algebra. (It is also possible to restrict the linear surjections considered in the
definition, and thus have a somewhat larger class of admissible functions.
See 3.6.)

Definition 1.7. Let X be a subset of the locally convex space E, and
let Y be a convex set in a vector space F . The class F on X is Y -admissible
if it contains at least one mapping X → Y , and if, whenever f, g : X → Y
are mappings in F and ψ : W → [0, 1] is a finitely determined C∞ function
on an open subset W of E which includes X, then h : X → Y is also in F ,
where h is defined by

(∀x ∈ X) h(x) = ψ(x)f(x) + (1− ψ(x))g(x).

Lemma 1.8. Let the space X be a subset of a locally convex Hausdorff
space E, and let F be a Y -admissible class of mappings from the open
sets of X (in the subspace topology) to the convex subset Y of the vector
space F . Suppose that A is an open subset of E, B is a closed subset of
E, and B ⊆ A. Then, for any F-extensible f : A ∩ X → Y in F , and
any closed straight-line segment J := [a, b] in A, there exists a convex open
neighbourhood W of 0 in E such that J + W ⊆ A and there is a mapping
g : X → Y in F for which

g|(J +W ) ∩B ∩X = f |(J +W ) ∩B ∩X.
Proof. For each x ∈ A ∩ X, there is a convex open neighbourhood Ux

of 0 in E such that x + Ux ⊆ A, and there is a function hx : X → Y in F
such that

hx|(x+ Ux) ∩X = f |(x+ Ux) ∩X.
Define A1 :=

⋃
x∈B∩X

(
x+ 1

2Ux
)
, an open subset of A includingB ∩X.

Suppose that y ∈ E. If y 6∈ B, there is a neighbourhood Vy of 0 in E
such that (y+Vy)∩B = ∅. Take gy : X → Y in this case to be any mapping
in F (there is one, by Definition 1.7). If, on the other hand, y ∈ A1, then
there exists some x ∈ B ∩X such that y ∈ x+ 1

2Ux. Choose such an x, and
let Vy := 1

2Ux; hence y + Vy ⊆ x + Ux. By the definition of Ux, there is a
function hx : X → Y which agrees with f on (x+Ux)∩X. Let gy : X → Y
be hx. Since E \ B and A1 constitute an open cover of E, this defines, for
every y ∈ E, a neighbourhood Vy of 0 in E and a function gy : X → Y such
that gy|(y + Vy) ∩B ∩X = f |(y + Vy) ∩B ∩X.
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There will be no loss of generality in supposing that J is a rectilinear
segment of the form [−c, c], since this may be arranged by translating 1

2 (a+b)
to 0 and also translating the class F in the obvious way, if necessary. By
the compactness of J , there is an open symmetric convex neighbourhood
W of the origin in E such that, for any z ∈ J , there is a y ∈ J for which
z + 3W ⊆ y + Vy. There are two cases.

If W ∩ Rc is unbounded, then J ⊆ W , and J + W ⊆ 2W ⊆ y + Vy
for some y ∈ J . The conclusion of the lemma therefore follows on taking
g := gy.

If W ∩ Rc is bounded, let κc be a frontier point of W , and take φ to be
a support functional for W at κc, such that 1 = φ(κc) > φ(v) for all v ∈W .
(This is where the local convexity of E is needed.) Then

(1) φ(W ) = φ(W ∩ Rc) = (−1, 1).

Take x1, . . . , xn ∈ J so that {xi + W : 1 ≤ i ≤ n} covers J . For each i,
there is, by the choice of W, a function gi : X → Y in F which agrees with
f on (xi + 3W ) ∩B ∩X. Construct non-negative C∞ functions ψi on R so
that

(2)

suppψi ⊆ φ((xi +W ) ∩ Rc) = (φ(xi)− 1, φ(xi) + 1) for each i,
n∑

i=1

ψi(t) = 1 for each t ∈ [−1, 1],

and define g : X → Y by g(x) :=
∑n
i=1 ψi(φ(x))gi(x). As F is admissible,

g ∈ F , by Definition 1.7.
Suppose x ∈ (J + W ) ∩ B ∩ X and ψi(φ(x)) > 0. Then there is some

y ∈ J such that x ∈ y + W , and therefore |φ(x) − φ(y)| < 1. Since
φ(x) ∈ (φ(xi) − 1, φ(xi) + 1) by (2), it follows that |φ(y) − φ(xi)| < 2
and (by (1), as y, xi ∈ J) that y ∈ xi + 2W , whence x ∈ xi + 3W . Con-
sequently, gi(x) = f(x). This holds for each i for which ψi(φ(x)) > 0, and
therefore, as required,

g(x) =
n∑

i=1

ψi(φ(x))f(x) = f(x).

This proof is a prototype of the more complicated arguments which fol-
low. It admits many variants, some of which will be mentioned later.

2. Collections of convex sets

Definition 2.1. Let A,B be subsets of an abelian topological group G.
I shall say that A is strongly included in B, or B strongly includes A, as
subsets of G, and write A ≺ B, if there exists a neighbourhood U of the
identity in G such that A+ U ⊆ B.
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The definition holds automatically if A = ∅, when the sum is also empty.
It is an infinite-dimensional substitute for the relation which is familiar in
finite dimensions, that A should be a subset of a compact subset of B. Of
course I shall take G to be a locally convex Hausdorff space.

Lemma 2.2. Let A be a convex set in the locally convex Hausdorff
space E, and let Q ≺ A. Then there exists a closed convex set R such that
clE(Q) ≺ intE(R) and R ≺ A. In particular , the closed convex envelope of
Q is strongly included in A.

Proof. Let U be a convex open neighbourhood of 0 such that Q+U ⊆ A,
and define

R0 :=
{
x ∈ E : x+ 1

3U ⊆ A
}
.

Then R0 is convex, as is R := clE(R0), which is also strongly included in A,
as R + 1

4U ⊆ A, for instance. Furthermore, Q + 2
3U ⊆ R0, from which

trivially
clE(Q) ⊆ Q+ 1

3U, clE(Q) + 1
3U ⊆ R0,

so that clE(Q) ≺ clE(Q) + 1
3U ⊆ intE(R0) ⊆ intE(R).

Proposition 2.3. Let U be a convex open set in the normed space E,
and let C be a non-null convex subset of U which is closed in E. Then there
exists a convex set V open in E such that C ⊆ V and clE(V ) ⊆ U .

Proof. By translation, one may assume that 0 ∈ C. If U = E, there is
nothing to prove; so suppose that U 6= E. For each x ∈ U , define

(3) rU (x) := sup{δ ∈ R : BE(x; δ) ⊆ U},
which is finite. Then BE(x; rU (x)) ⊆ U , |rU (x) − rU (y)| ≤ ‖x − y‖, and
rU (αx + βy) ≥ αrU (x) + βrU (y) for x, y ∈ U and α, β ∈ [0, 1] such that
α+ β = 1. Now define

V :=
⋃

x∈C
BE
(
x; 1

3rU (x)
)
.

It is apparent that V is open in E.
Suppose y1, y2 ∈ V and α, β ≥ 0 and α + β = 1. Then there are points

x1, x2 ∈ C such that ‖yi − xi‖ < 1
3rU (xi) for i = 1, 2. But, therefore,

‖(αy1 + βy2)− (αx1 + βx2)‖ ≤ α‖y1 − x1‖+ β‖y2 − x2‖
< 1

3αrU (x1) + 1
3βrU (x2) ≤ 1

3rU (αx1 + βx2),

which, since αx1 + βx2 ∈ C, shows that V is convex.
Its closure in E is included in U . For suppose yn → y, where each

yn ∈ V . For each n, there is xn ∈ C such that yn ∈ BE
(
xn; 1

3rU (xn)
)
. If

δ := 1
2 lim supn→∞ rU (xn) > 0, one may take a subsequence and renumber
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to ensure that rU (xn) ≥ δ for all n. If n is so large that ‖yn− y‖ < 1
3δ, then

‖y − xn‖ ≤ ‖y − yn‖+ ‖yn − xn‖ < 1
3δ + 1

3rU (xn) ≤ 2
3rU (xn).

In view of the definition of rU , this proves that y ∈ U in this case. So
clE(V ) ⊆ U as required.

If, on the other hand, rU (xn)→ 0, then ‖xn − yn‖ → 0, and so xn → y
as well. As C is closed, this proves that y ∈ C ⊆ U in this case.

Definition 2.4. Let E be a normed space, and let C,U be sets in E
such that C ⊆ U . Then C is said to be boundedly strongly included in U
(which I write C � U) if, for every bounded subset Q of E, C ∩ Q ≺ U .
(This concept is only of importance in §5.)

Remark 2.5. The function rU defined at (3) can be used to express ≺
and �: C ≺ U is equivalent to “infx∈C rU (x) > 0”, and, consequently,
C � U is equivalent to “infx∈C∩Q rU (x) > 0 for all bounded sets Q”.

It appears that 2.3 cannot be directly generalized to locally convex
spaces. The difficulty arises when C has empty interior; otherwise, there
is the simple argument 2.7.

Lemma 2.6. Let E be a normed space, and let C and U be convex sets
such that C � U . Then there exists a convex set V open in E such that
C � V and clE(V ) � U .

Proof. Follow the proof of 2.3. That C � V is clear, since, for any
bounded Q, there exists ε > 0 such that rU (x) ≥ ε for all x ∈ C ∩ Q, and
therefore

V ⊇ (C ∩Q) +BE
(
0; 1

3ε
)
.

Now take some fixed y 6∈ U (the case U = E being trivial), and set
L := 1

2‖y‖. If x ∈ U , rU (x) ≤ 2L+‖x‖. IfK > 0 and z ∈ clE(V )∩BE(0; 2K),
there is a sequence (zn) in V ∩BE(0; 2K) such that zn → z. By the definition
of V , each zn ∈ xn +BE

(
0; 1

3rU (xn)
)

for some xn ∈ C, and

2K > ‖zn‖ > ‖xn‖ − 1
3rU (xn) ≥ ‖xn‖ − 1

3 (2L+ ‖xn‖),
so that xn ∈ C ∩BE(0; 3K+L). As C � U , there exists a δ > 0 (depending
only on K) such that rU (xn) > δ for all n, and then, for large enough n,

z +BE
(
0; 1

3δ
)
⊆ BE

(
zn; 2

3δ
)
⊆ BE

(
xn; 1

3rU (xn) + 2
3δ
)

⊆ BE(xn; rU (xn)) ⊆ U.
As this holds for all z ∈ clE(V ) ∩BE(0; 2K), it follows that clE(V ) � U .

Lemma 2.7. Let E be a locally convex space. Suppose C and U are con-
vex sets such that intE(C) 6= ∅, C is closed , U is open, and C ⊆ U . Then
there is a closed convex set V such that C ⊆ intE V and V ⊆ U .



Extension of smooth functions in infinite dimensions 209

Proof. Let the Minkowski functionals of C,U be pC , pU respectively.
Take V :=

{
x ∈ E : 1

2 (pC(x) + pU (x)) ≤ 1
}

.

Lemma 2.8. Let E be a normed space; suppose that B ≺ A, where B
is bounded , and A is convex and open, in E. Then there exists a bounded
convex open set A′ such that B ≺ A′ ⊆ A.

Proof. Let U be a bounded convex neighbourhood of 0 in E such that
B + U ⊆ A. Then take A′ to be the convex cover of B + U .

Definition 2.9. Suppose A := {A1, . . . , Au} is a finite indexed class
consisting of subsets of a set X. (The indices need not in principle be natural
numbers, or such a sequence {1, . . . , u}). By an analogy which will soon
become apparent, I shall call it a complex in X. The members of a complex
need not be distinct or non-empty. When X is a locally convex space E, a
second complex in E, B := {B1, . . . , Bv}, is described as strongly included
in A, which I write as B ≺ A, if it is indexed by exactly the same indices
as A and, for each index i, Bi ≺ Ai as subsets of E. In such case it is clear,
since the index set is finite, that there exists some neighbourhood V of the
origin in E such that Bi + V ⊆ Ai for all indices i simultaneously.

When X is a normed space E, I say that the complex B is boundedly
strongly included in the complex A, B � A, if A and B have the same
index sets and, for each index i, Bi � Ai; that is, for each bounded set
Q of E, there is a neighbourhood V of 0 in E such that, for each index i,
(Bi ∩Q) + V ⊆ Ai.

Definition 2.10. Let A := {A1, . . . , Av} be a complex in the set X.
For any ∆ ⊆ {1, . . . , v}, let A∆ :=

⋂
u∈∆Au. Then I call ∆ a simplex of A

whenever A∆ 6= ∅. (In particular, this definition makes ∅ a simplex). The
subsets Au, for u ∈ ∆, are called the vertices of the simplex ∆. The star of
a simplex ∆, or of any subset ∆ of the index set, is A∆ :=

⋃
u∈∆Au. The

dimension of a simplex of A is its cardinality diminished by 1; the dimension
of the complex A is the largest dimension of a simplex ∆ of A; a simplex is
maximal if it is not a proper subset of any other simplex. The order of A
is the number of distinct simplices whose dimension is the dimension of A.
(These names are obviously suggested by an imprecise analogy with the
nerves of coverings.) The carrier of A is the set A :=

⋃ v
u=1 Au = A{1,...,v}.

Analogous notations are to apply to other complexes; thus the complex
denoted by B gives B∆, B∆, B.

Remark 2.11. If A, B are complexes in a locally convex space E, and
B ≺ A, then B∆ ≺ A∆ and B∆ ≺ A∆ for each subset ∆ of the index set.
Indeed, there is a neighbourhood V of the origin inE such thatB∆+V ⊆ A∆
and B∆ + V ⊆ A∆ for all ∆.
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The main result of this paper will be Theorem 5.1, which says approxi-
mately that, if a complex B is strongly included in a complex A of convex
open sets in a locally convex Hausdorff space E, and if F is an admissible
class, then, for any F-extensible function f defined on the carrier of A, there
is a function in F defined on E and agreeing with f on the carrier of B.
The difficulty with the proof is that the complexes may have a complicated
combinatorical structure, that is, the convex sets may intersect in a way
that makes local extensions interfere with each other. There are therefore
two steps; in the first I consider what happens if the simplest case, that of
stars, is already known.

3. Extension (stars of simplices excepted)

Proposition 3.1. Let E be a locally convex space, and F a vector space,
with X a subset of E and Y a convex subset of F . Let F be a Y -admissible
class (see 1.7) of functions defined on the open subsets of X with values in
Y . Suppose that A := {Au : 1 ≤ u ≤ v} is a complex consisting of open
convex sets of E, and B is a complex of subsets of E, such that B ≺ A.
Then, for any map f : B ∩X → Y , and any family of maps f∆ : X → Y
in F , one for each simplex ∆ of A, such that f∆|B∆ ∩X = f |B∆ ∩X for
each ∆, there exists a map h : X → Y in F such that h|B ∩X = f |B ∩X.

Remark 3.2. Every simplex of B is a simplex of A, but the converse
is not true; that is, there may be many simplices ∆ of A (A∆ 6= ∅) for
which B∆ = ∅. It is also quite possible that B∆ ∩X = ∅, in which case the
condition on f∆ would be vacuously satisfied. The reason for introducing
X is (see §1) that there are some interesting classes of functions which can
only be reasonably defined on “thin” sets. See 3.3 for further comments.

Proof of 3.1. The argument is inductive, and will be presented in steps.

(a) If the dimension of A is −1, all its members and all the members
of B are null; and, whenever B = ∅, the proposition holds trivially because,
by 1.7, there is some map h : X → Y in F .

(b) If the dimension of A is greater than −1, there are some 0-simplices
in A, that is, indices u for which Au 6= ∅. Clearly, any other indices may
simply be ignored, so I shall assume henceforth that Au is non-null for
each u. Of course, some of the Bu may be null.

(c) If the dimension of A is v−1, every 0-simplex is a vertex of a unique
simplex ∆ of maximal dimension; the order of A must be 1, and A = A∆.
The proposition is trivially true, for it suffices to take h := f∆. In particular,
this applies if there is a single vertex (v = 1, d = 0, o = 1).

(d) Suppose now that the dimension of A is d ≥ 0 and the order of A
is o. The inductive hypothesis will be that the proposition has already been
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proved for any A and B satisfying the hypotheses, provided that A has
dimension less than d, or, when o ≥ 2, dimension equal to d and order less
than o. The cases d = −1 and d = 0, o = 1 have been proved at (a) and (c).

(e) (c) also applies when d+ 1 = v. So now, suppose d+ 1 < v. Renum-
bering, if necessary, I may suppose that

Q := A1 ∩ . . . ∩ Ad+1 6= ∅
is a simplex of the maximum dimension d. For each u with d + 1 < u ≤ v,
Q∩Au = ∅ (or there would be a simplex of dimension d+1). As Q and Au are
disjoint open non-empty convex sets, one has for each such u a continuous
non-zero linear functional λu on E, and a scalar %u, such that

(4) λu(Q) ⊆ {τ ∈ R : τ < %u}, λu(Au) ⊆ {τ ∈ R : τ > %u}.
The functionals λd+2, λd+3, . . . , λv ∈ E′ need not be linearly independent.
Choose from them a maximal linearly independent subset, which, by renum-
bering, may be denoted as {λv−k+1, . . . , λv}. Define

(5) P : E → Rk : x 7→ (λv−k+1(x), . . . , λv(x)).

Then P is a continuous epimorphism. Each of the functionals λu, λu+1, . . .
. . . , λv for d + 1 < u ≤ v is of the form µu ◦ P for some suitable non-zero
linear functional µu on Rk. Hence, from (4),

(6)
{
P (Q) ⊆ {ξ ∈ Rk : (∀u) d+ 1 < u ≤ v ⇒ µu(ξ) < %u},
P (Au) ⊆ {ξ ∈ Rk : µu(ξ) > %u} for d+ 1 < u ≤ v.

Now Bu ≺ Au for each u; there exists a convex neighbourhood V of 0
in E such that, for 1 ≤ u ≤ v, Bu + 3V ⊆ Au. For each u define

(7)




A′u := {x ∈ E : x+ V ≺ Au},
Q′ := A′1 ∩ . . . ∩ A′d+1; thus
Bu + V ⊆ A′u, A′u + V ⊆ Au,

so that Bu ≺ A′u ≺ Au, and A′u is an open convex set. Also, Q′ + V ⊆ Q.
It is of course possible that Q′ = ∅. Since the functionals λu = µu ◦ P are
non-zero, there exists ε > 0 such that µu(P (V )) ⊇ (−2ε, 2ε) for every u.
Consequently, (6) gives

(8)
{
P (Q′) ⊆ {ξ ∈ Rk : (∀u) d+ 1 < u ≤ v ⇒ µu(ξ) < %u − 2ε},
P (A′u) ⊆ {ξ ∈ Rk : µu(ξ) > %u + 2ε} for d+ 1 < u ≤ v.

For each subset T of {d+ 2, d+ 3, . . . , v}, set

(9)





T c := {d+ 2, d+ 3, . . . , v} \ T,
U(T ) := {ξ ∈ Rk : (∀r ∈ T ) (µr(ξ) > %r − 2ε)

& (∀r ∈ T c) (µr(ξ) < %r + 2ε)},
C(T ) := {ξ ∈ Rk : (∀r ∈ T ) (µr(ξ) ≥ %r − ε)

& (∀r ∈ T c) (µr(ξ) ≤ %r + ε)}.
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The sets C(T ) are closed in Rk; U(T ) is open and convex, C(T ) ≺ U(T ).
Define, for each T and for 1 ≤ u ≤ v,

(10) Au(T ) := A′u ∩ P−1(U(T )), Bu(T ) := Bu ∩ P−1(C(T )).

Thus the sets Au(T ) are open and convex in E.
There is a convex neighbourhood W of 0 in E such that W ⊆ V and,

for each u, λu(W ) ⊆ (−ε, ε). If x ∈ Bu(T ), then (see (7)) x+V ⊆ A′u. Also,
for all r > d+ 1, P (x) ∈ C(T ) and

λr(x+W ) ⊆ (λr(x)− ε, λr(x) + ε);

for r ∈ T , therefore, (9) shows (µr ◦P )(x+W ) ⊆ (%r−2ε,∞), whilst, when
r ∈ T c, (µr ◦P )(x+W ) ⊆ (−∞, %r +2ε). So P (Bu(T )+W ) ⊆ U(T ); hence,
Bu(T ) +W ⊆ Au(T ), and

B(T ) := {B1(T ), . . . , Bv(T )} ≺ A(T ) := {A1(T ), . . . , Av(T )}.
Each set of A(T ) or of B(T ) is a subset of the corresponding set of A or of B,
and each simplex of A(T ) is a simplex of A. Consequently, the hypotheses
of the proposition are satisfied for the pair A(T ),B(T ), if one takes instead
of f its restriction to B(T )∩X and the same f∆ as before for every simplex
∆ of A(T ).

(f) From (10) and (8), one sees that, for d+ 1 < u ≤ v,

λu(Au(∅)) ⊆ λu(A′u) ⊆ (%u + 2ε,∞).

But (9) and (10) ensure that λu(Au(∅)) ⊆ µu(U(∅)) ⊆ (−∞, %u + 2ε) for
d + 1 < u ≤ v. So Au(∅) = ∅ for d + 1 < u ≤ v, and the only 0-simplices
(non-null members) of A(∅) must be among A1(∅), . . . , Ad+1(∅). Therefore
either the dimension of A(∅) is d, and its order is 1, or its dimension is
less than d. The first case was discussed at (c). In the second case, the
inductive hypothesis (d) applies to the pair A(∅),B(∅). In both cases, there
is a function h∅ : X → Y such that h∅|B(∅) ∩X = f |B(∅) ∩X.

(g) If T 6= ∅, let r ∈ T . Then, for all u, 1 ≤ u ≤ v, (9) and (10) entail

(11) λr(Au(T )) ⊆ µr(U(T )) ⊆ (%r − 2ε,∞).

On the other hand, (10) and (8) show that, for d+ 1 < r ≤ v,

(12) λr

( d+1⋂

u=1

Au(T )
)
⊆ λr

( d+1⋂

u=1

A′u
)

= λr(Q′) ⊆ (−∞, %r − 2ε).

By (11) and (12), necessarily A1(T )∩ . . .∩Ad+1(T ) = ∅. Now every simplex
of A(T ) is a simplex of A, and at least one d-simplex of A is not a simplex
of A(T ); hence either the dimension of A(T ) is less than d or its order is
less than o. In either case, the inductive hypothesis (d) applies to the pair
A(T ),B(T ).
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(h) For all choices of T , then, there is a function hT : X → Y such that
hT |B(T ) ∩X = f |B(T ) ∩X. Note from (10) that

B(T ) = B ∩ P−1(C(T )).

From (9), any ξ ∈ Rk lies in the interior of C(Tξ), if Tξ denotes the set
of indices r ∈ {d+ 2, d+ 3, . . . , v} for which µr(ξ) ≥ %r. So the interiors of
the sets C(T ) cover Rk. There is a subordinate C∞ partition of unity {ψT }
on Rk, where C(T ) includes the support of ψT for each T . Certainly, ψT ◦P
is finitely determined (see 1.6). Thus h : X → Y , defined by

(13) h(x) :=
∑

T

ψT (P (x))hT (x),

where the sum extends over all 2v−d−1 choices of T ⊆ {d+ 2, d+ 3, . . . , v},
is in F by 1.7, and it takes values in Y because Y is convex. Suppose
x ∈ B ∩ X. For any T such that ψT (P (x)) 6= 0, then, P (x) ∈ C(T ) and,
from (10), x ∈ B(T ) ∩ X. Ergo, hT (x) = f(x) by the construction. So
h|B ∩X = f |B ∩X as required. This completes the inductive step, in the
only case (d + 1 < v) for which it was non-trivial. The proof is therefore
finished.

Remark 3.3. In the argument above, there is no need to assume any
countability hypothesis for E, or to demand that the class F be locally
defined, because the construction of h terminates after finitely many steps.
This is no longer true in §4. Also, notice that the only extensions of f that
are needed are explicitly demanded in the conditions of the theorem, and,
consequently, that f is automatically F-extensible.

As is evident in the proof, the rôle of the complex A in the statement
of the theorem is merely to furnish a convenient class of simplices to which
the conditions that have to be imposed may apply; it does not appear in the
conclusion. It would be more natural to begin with the complex consisting
of the convex envelopes Γ (B) of the elements B of B, but, no matter how
small a neighbourhood V of 0 were taken, the complex {Γ (B) +V : B ∈ B}
might have additional simplices.

The underlying idea is that linear functionals and smooth combinations
of them give a large enough class of C∞ functions for some purposes. Specif-
ically, the Hahn–Banach theorem enables one to use them to separate com-
binations of open convex sets. It might theoretically be possible to argue
similarly on the basis of other separation theorems, which might be a way
to improve the results and even to extend them to non-separable spaces;
but I do not know of any such theorems. For instance, can two disjoint
closed polynomially-convex sets always be separated by a smooth function?
As things are, the requirements that A be finite and consist of convex sets
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force the later discussion to be limited to spaces with some countability re-
striction; if, for instance, A could be locally finite but uncountable, more
might be proved.

There are several possible addenda to Proposition 3.1, two of which may
be given here. It is convenient to establish the notation F(M ;N) to mean
the set of functions M → N that belong to F . Any algebraic operations
in F(M ;N) are understood to be defined pointwise when they are defined.
The proof of 3.1 yields, without serious alteration:

Corollary 3.4. Let A,B and F , E, F,X be as in 3.1. Suppose that E
is a convex set of functions A∩X → F and that , for each simplex ∆ of A
and for each f ∈ E , there is an affine-linear mapping L∆ : E → F(X;F )
such that L∆(f)|B∆ ∩X = f |B∆ ∩X. Then there is an affine-linear map
L : E → F(X;F ) such that , for each f ∈ E , L(f)|B ∩ X = f |B ∩ X.
Furthermore, the image of L(f) is included in the convex envelope of all
the images of the mappings L∆(f).

Remark 3.5. The corollary arises from the observation that all the
constructions in the proof of 3.1—the linear functionals λu, the pairs
A(T ),B(T ), and the partition of unity ψT—are made to accord only with
the geometry of A and B, and do not depend on the functions f, f∆.

Definition 3.6. Suppose that G is a subspace of the topological dual
E′ of the locally convex Hausdorff space E. A linear surjection P : E → Rk
will be called a G-surjection if its composition with each of the coordinate
functions of Rk is a linear functional belonging to G. (Its composition with
any linear functional on Rk then also belongs to G.) A function f : U → R
defined on an open set U of E may be described as G-finitely determined if
there exist a G-surjection P : E → Rk and a function φ : P (U) → R such
that f = φ ◦ P . If X is a subset of E and Y is a convex set in the vector
space F , a class F of functionsX → Y is (G,Y )-admissible if, whenever f, g :
X → Y are mappings in F and ψ : W → [0, 1] is a G-finitely determined
C∞ function on an open subset W of E which includes X, then h : X → Y
is also in F , where

(∀x ∈ X) h(x) = ψ(x)f(x) + (1− ψ(x))g(x).

This is, of course, a less demanding condition, in principle, than the
Y -admissibility of 1.7.

Lemma 3.7. Suppose in 3.1 or in 3.4 that E is a normed space and
all the convex sets belonging to the complex A are bounded. Let G be a
norm-dense subspace of the dual space E′. Then the previous conclusions,
in 3.1 or in 3.4, hold on the weaker condition that F is (G,Y )-admissible
instead of Y -admissible.
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Proof. Suppose that all the sets of A lie in BE(0;L). Define the func-
tionals λu as at (4), and the sets A′u, Q

′ as at (7). Then there exists an ε > 0
such that, for each u such that d+ 1 < u ≤ v, supλu(Q′) + 6ε < inf λu(A′u).
If λ′u ∈ E′ and ‖λu − λ′u‖ < ε/L, then supλ′u(Q′) < supλu(Q′) + ε and
inf λ′u(Q′) > supλ′u(Q′) − ε for each u with d + 1 < u ≤ v. Hence, one
may choose elements λ′u of G such that supλ′u(Q′)+4ε < inf λ′u(A′u). Select
a maximal linearly independent subset (for infinite-dimensional E, the λ′u
might already have been chosen to be linearly independent), and proceed as
before; (8) becomes a consequence of the new construction.

Remark 3.8. What was needed at 3.1(e) was a condition on two disjoint
convex sets Q,R that would ensure the existence of λ ∈ E ′ such that the
intervals λ(Q), λ(R) of R are “separated”—in effect, have disjoint closures.
The condition used was that (Q+V )∩R = ∅ for some neighbourhood V of 0
in E, which one might call convex separation; then 3.7 says that, if Q and R
are non-null separated convex sets and bounded in the normed space E, the
set of possible λ is norm-open in E′. If Q is unbounded, there is often only
one possible λ, whilst, if Q and R are disjoint non-null, convex, bounded
and closed, but not separated, the set of separating linear functionals is not
norm-open.

4. Extension from stars of simplices. The question of existence of the
extension h is reduced by 3.1 to the existence of the functions f∆, the “ex-
tensions from stars” of f . From a logical point of view, it is slightly curious
that I now use 3.1 itself to construct extensions such as f∆. The argument
is made possible by 1.8, which furnishes extensions in special cases. The
construction is by an infinite induction; it assumes F is locally defined, and
E is to be Lindelöf ([7], 3.8), so that, at each stage, only finitely many sets,
all convex, need be considered. “Countable” arguments of a similar kind can
be carried out for some purposes in spaces that are merely paracompact, by
virtue of the theorem of Stone that open coverings have σ-discrete refine-
ments ([7], 5.1.12), but such refinements must be obtained by modifying the
geometrical shape of the original sets of the cover. One cannot assume here
that the sets of the refinement would still be convex. Moreover, at each stage
one may also have to deal with infinitely many “predecessors”, namely the
individual sets of the preceding discrete classes.

For remarks about the details of the proof below, see 4.3.

Remark 4.1. Let U ,V be open coverings of a topological space S. Then
V is a strong star-refinement of U if, whenever U ∈ V, there exists some
member T of U such that, whenever V,W ∈ V and U ∩ V 6= ∅ 6= V ∩W ,
necessarily U ∪ V ∪W ⊆ T .
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This is not quite the same as a “star-refinement” as usually defined
(see [7], 5.1.11, p. 376, and the discussion afterwards), but it remains true
that any open covering of a paracompact space has a strong star-refinement;
indeed, it suffices to take a star-refinement of a star-refinement.

Proposition 4.2. Let E be a Hausdorff locally convex Lindelöf space,
and F a vector space, with X a subset of E and Y a convex subset of F . Let
F be a Y -admissible (see 1.7) and locally defined (see 1.4) class of functions
on the open subsets of X in the subspace topology , with values in Y . Suppose
that A := {Au : 1 ≤ u ≤ v} is a complex consisting of open convex sets of E,
and B is a complex of subsets of E, such that B ≺ A and

⋂v
u=1 Au 6= ∅.

Write A :=
⋃v
u=1 Au and B :=

⋃v
u=1Bu (the carriers of A and B). If a

function f : A∩X → Y is F-extensible (see 1.5), then there exists a function
g : X → Y in F such that g|B ∩X = f |B ∩X.

Proof. (a) Since F itself may if necessary be translated, there is no loss
of generality in supposing 0 ∈ ⋂vu=1 Au. Thus N :=

⋂v
u=1Au is a convex

open neighbourhood of 0 in E.
As B ≺ A, there is a convex neighbourhood V of 0 in E such that

Bu + V ⊆ Au for each u, and, consequently,

(Bu ∪ {0}) + (V ∩N) ⊆ Au, Γ (Bu ∪ {0}) + (V ∩N) ⊆ Au.
Set

B′′u := Γ (Bu ∪ {0}) + 1
2 (V ∩N)

(“Γ” denotes the convex cover); this is a convex open neighbourhood of 0
in E. Let B′u := clE(B′′u) ⊆ B′′u + 1

6 (V ∩N), B∗u := B′u + 1
6 (V ∩N); thus

B∗u + 1
6 (V ∩N) ⊆ Au ∩ (2B′′u).

By taking Au ∩ (2B′′u) instead of Au, B′u instead of Bu, and V instead of
1
6 (V ∩N), I may therefore assume that, for each u,

(14)




Bu is a closed convex neighbourhood of 0;
B∗u is another, such that Bu + V ⊆ B∗u, B∗u + V ⊆ Au;
Au ⊆ 2(intE(Bu)).

The sets Au and Bu, and the unions A :=
⋃v
u=1 Au and B :=

⋃v
u=1Bu,

are then all star-shaped about 0 (a fact constantly employed below), and
1
2A ⊆ intE(B).

(b) There are two classes of points in E. The first class, which I shall
call X, consists of those points x (including 0) such that, for all t ∈ (0,∞),
tx ∈ A. The second, Y, consists of those y ∈ E \ {0} for which ty 6∈ A for
some t ∈ (0,∞).

Since A is a finite union of the sets Au, X =
⋃v
u=1 Xu, where Xu consists

of the elements x ∈ X such that (0,∞)x ⊆ Au. (This is not a disjoint union.)
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If y 6∈ Xu, there is some t > 0 such that ty 6∈ Au; then (t + 1)y 6∈ clE(Au),
and (t+1)z 6∈ clE(Au) for all z in a suitably small neighbourhood of y. Thus
Xu is closed in E. (It is a convex cone, since Au is convex, and, by (14), one
also has (0,∞)x ⊆ Bu for any x ∈ Xu). Hence Y, the complement of the
union of the Xu, is open in E.

(c) If y ∈ Y and 1 ≤ u ≤ v, there exists λu(y) > 0 such that λu(y)y
is in the frontier of B∗u in E; namely, λu(y) = (pu(y))−1, where pu is the
Minkowski functional of intE(B∗u), which takes positive values on Y by def-
inition. The function λu is continuous on Y, since pu is.

If ∂B∗ denotes the frontier of B∗ in E, then ∂B∗ ⊆ Y. In particular,
Y = (0,∞)∂B∗; to any y ∈ Y there corresponds a unique point Π(y) :=
λ(y)y of ∂B∗, where λ(y) ∈ (0,∞). It is clear that λ(y) = max1≤u≤v λu(y),
so that λ is a continuous positive-valued function on Y. Hence

(15)





the mapping (0,∞)× ∂B∗ → Y : (α, x) 7→ αx
is a homeomorphism when ∂B∗ is given the subspace topology;
its inverse is y 7→ (λ(y)−1, λ(y)y).

(d) For each y ∈ ∂B∗, the segment
[

1
2y, y

]
lies in A ∩ Y. There exists

some εy ∈
(
0, 1

6

)
such that

[(
1
2 − εy

)
y, (1 + εyg)y

]
⊆ A. Apply 1.8: there are

a convex open neighbourhood Wy of 0 in E and a function ky : X → Y in
F such that

(16)





[(
1
2 − εy

)
y, (1 + εy)y

]
+ 2Wy ⊆ A,

ky|
([(

1
2 − εy

)
y, (1 + εy)y

]
+Wy

)
∩B∗ ∩X

= f |
([(

1
2 − εy

)
y, (1 + εy)y

]
+Wy

)
∩B∗ ∩X.

I may also suppose that (y + 2Wy) ∩B = ∅, which necessarily implies that

(17) ([1,∞)(y + 2Wy)) ∩B = ∅.
By (15), and by compactness in the product space, there exists a relatively
open set W ∗y in ∂B∗ which satisfies

(18)
{
W ∗y ⊆ y +Wy,(

1
2 − εy, 1 + εy

)
W ∗y ⊆

[(
1
2 − εy

)
y, (1 + εy)y

]
+Wy

(the latter is open in Y). The sets Wy and W ∗y are to be chosen for each
y ∈ ∂B∗.

Now ∂B∗ is closed in E, which is Lindelöf; thus ∂B∗ is Lindelöf, and so
paracompact. The relatively open covering {W ∗y : y ∈ ∂B∗} of ∂B∗ has a
relatively open strong star-refinement {W ′′γ : γ ∈ Γ} (see 4.1 above).

Given z ∈ ∂B∗, take γ ∈ Γ such that z ∈ W ′′γ . By construction, W ′′γ is
included in some W ∗y . By (15),

(
1
2−εy, 1+εy

)
W ′′γ is an open neighbourhood

of z in Y. So there is an open convex neighbourhood Nz of 0 in E such that
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3Nz ⊆ B and

(19)
[

1
2 , 1
]
(z + 3Nz) ⊆

(
1
2 − εy, 1 + εy

)
W ′′γ

(notice that
[

1
2 , 1
]
(z + 3Nz) is open in E). Next, set

(20) D(z) :=
[

1
2 ,∞

)
(z +Nz), D∗(z) :=

[
1
2 ,∞

)
(z + 3Nz).

Notice that clE(D(z)) ⊆ D(z) +Nz ⊆ D∗(z).
Finally, as ∂B∗ is Lindelöf, its open cover {(z + Nz) ∩ ∂B∗ : z ∈ ∂B∗}

has a countable subcover {zn + Nzn : n = 1, 2, . . .}. Then {D(zn) : n ∈ N}
is an open cover of

[
1
2 ,∞

)
∂B∗ by convex sets, and

(21) Dn := D(zn) ≺ D∗n := D∗(zn) for each n ≥ 1.

If i, j, k ∈ N and D∗i ∩ D∗j 6= ∅ 6= D∗j ∩ D∗k, the construction above
gives corresponding γi, γj , γk ∈ Γ such that W ′′γi ∩W ′′γj 6= ∅ 6= W ′′γj ∩W ′′γk ;
the radial projection on ∂B∗ of a common point of the D∗s is a common
point of the W ′′s. Then, by construction, there is some y(i) ∈ ∂B∗ with
W ′′γi ∪W ′′γj ∪W ′′γk ⊆W ∗y(i). Let

(22) Zi :=
(

1
2 − εy(i),∞

)
(y(i) +Wy(i));

then, by (18) and (19),

(23) D∗i ∪D∗j ∪D∗k ⊆ Zi.
(e) For each n ≥ 1 and each u with 1 ≤ u ≤ v, [1,∞)(y(n) + 2Wy(n))

and Bu are open, convex, and disjoint by (17). Thus there are a continuous
linear functional λnu and a positive number εnu such that

λnu(x)
{
> 1 when x ∈ y(n) +Wy(n),
< 1− εnu when x ∈ Bu.

If x ∈ Zn and λnu(x) ≤ 1, then x ∈
(

1
2 − εy(n), 1

)
(y(n) + Wy(n)) ⊆ A (see

(22) and (16)).

(f) Consider now, for n = 0, 1, . . . , the three complexes

D(n) := {D1, . . . ,Dn}, D∗(n) := {D∗1 , . . . ,D∗n}, Z(n) := {Z1, . . . , Zn}.
For n = 0, these complexes are all empty.

Suppose that, for each simplex ∆ of D∗(n), a function gn(∆) : X → Y
in F is constructed in such a way that the following two conditions are
satisfied. If ∆ = ∅, and in particular when n = 0, gn(∆) may be arbitrary
(by 1.7, F 6= ∅).

(1) For any simplices ∆1,∆2 of D∗(n), and any i ∈ ∆1 ∩∆2,

gn(∆1)|Di ∩X = gn(∆2)|Di ∩X.
As a consequence, the mappings gn(∆) for the various simplices ∆ of D∗(n)
fit together to define a mapping gn : D(n) ∩ X → Y in F , although they
may not agree elsewhere. Recall from 2.10 that D(n) :=

⋃n
i=1 Di.
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(2) For 1 ≤ i ≤ n,

(24)





gn|Di ∩Rn ∩X = f |Di ∩Rn ∩X, where

Rn :=
n⋂

j=1

{
y ∈ E : (∃k)

(
1≤ k ≤ v & λjk(y)≤ 1− n

n+ 1
εjk

)}
.

Rn is closed in E, and a moment’s thought shows (with (e)) that

(25) Rn+1 ⊆ intE(Rn), Zn ∩Rn ⊆ B∗, B ⊆ Rn.
The aim now, given the inductive assumptions (f)(1) and (2), is to con-

struct gn+1(∆) for each simplex ∆ of D∗(n + 1). The induction may start
when n = 0; then D∗(0) = ∅ and D∗(0) = ∅, and the argument below still
works (rather trivially).

(g) Suppose first that ∆ is a maximal simplex of D∗(n + 1) such that
D∗(n + 1)∆ ∩ D∗n+1 = ∅. Then ∆ must be a (maximal) simplex of D∗(n).
Thus it makes sense to let gn+1(∆) := gn(∆).

(h) For convenience of notation, temporarily rearrange the indices
{1, . . . , n + 1} so that all the vertices of the simplices ∆ of D∗(n + 1) for
which D∗(n + 1)∆ ∩D∗n+1 6= ∅ are listed as {p + 1, p + 2, . . . , n + 1}, with
q + 1, q + 2, . . . , n + 1 all the indices j for which D∗j ∩ D∗n+1 6= ∅. (Here p
and q of course depend on n, and q ≥ p; furthermore, if q = n, then neces-
sarily p = q). Thus, whenever p < i ≤ n + 1, there are a maximal simplex
∆ 3 i in D∗(n + 1), and a vertex j ∈ ∆, such that q < j ≤ n + 1 and
D∗i ∩D∗j 6= ∅ 6= D∗j ∩D∗n+1. By the construction in (d), then,

(26) D∗n+1 ⊆ Zi and D∗i ⊆ Zn+1 for p ≤ i ≤ n+ 1.

(However, remember that the labels i and n+ 1 are only temporary.)

(i) Introduce the temporary notations D∗n,p := {D∗p+1, . . . ,D
∗
n} and

Dn,p := {Dp+1, . . . ,Dn}. These complexes may be empty, if p = n. Cer-
tainly, Dn,p ≺ D∗n,p, as was pointed out at (21). Any simplex ∆ of D∗n,p is
a simplex of D∗(n), so gn(∆) : X → Y is defined. The conditions of 3.1
are satisfied if I choose “A” to be D∗n,p and “B” to be Dn,p, and let the
function gn : Dn,p ∩X → Y (whose existence was assured by the inductive
hypothesis (f)(1); here Dn,p := Dp+1 ∪ . . . ∪Dn) take the place of the “f”
of 3.1. From 3.1, then, there exists a function, which I call hn : X → Y ,
in F , such that

(27) hn|Dn,p ∩X = gn|Dn,p ∩X.
However, I have no control over the behaviour of hn near the origin (see (20)).

In addition, Zn+1 was defined (see (16), (22), and (25)) so that there is
a function kn+1 : X → Y in F (previously called ky(n+1)) for which

(28) kn+1|Zn+1 ∩B∗ ∩X = f |Zn+1 ∩B∗ ∩X.
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(j) Let Λn : E → (Rv)n : x 7→ (λj1(x), . . . , λjv(x))nj=1. Represent (Rv)n
as the space of n × v matrices Mnv, denoting by eji : Mnv → R the map
which selects the (j, i)th entry.

Since the functionals λji may not be linearly independent, Λn need not
be surjective; call its image Tn ⊆Mnv, a finite-dimensional real vector space.
Let

Kn :=
{
ξ ∈ Tn : (∀j) (∃k) 1 ≤ k ≤ v & ejk(ξ) ≤ 1− n+ 1

n+ 2
εjk

}
,

Jn :=
{
ξ ∈ Tn : (∀j) (∃k) 1 ≤ k ≤ v & ejk(ξ) < 1− n

n+ 1
εjk

}
,

so that Jn,Kn are convex sets in Tn; Kn ≺ Jn, Kn is closed and Jn is
open. Construct a C∞ function ψn : Tn → [0, 1] with ψn(Kn) = {1} and
ψn(E \ Jn) = {0}. So, ψn ◦ Λn takes the value 1 on Rn+1 ⊆ Λ−1

n (Kn) (see
(24)) and the value 0 on E \ (intE(Rn)), since Λ−1

n (Jn) ⊆ intE(Rn). Now
combine the functions hn and kn of (i) by defining, for x ∈ X,

(29) h′n(x) := ψn(Λn(x))kn+1(x) + (1− ψn(Λn(x)))hn(x).

As F is admissible, h′n also belongs to F .

(k) If x ∈ Di ∩ X for some i with p < i ≤ n, there are two cases. If
x 6∈ intE(Rn), then (29) gives h′n(x) = hn(x) = gn(x), by (27) and (f)(1). If
x ∈ Di ∩ Rn+1 ∩ X, then gn(x) = f(x) by the inductive hypothesis (f)(2)
and therefore hn(x) = f(x) by (27). At the same time, from (23) and (25),

Di ∩Rn+1 ⊆ Zi ∩Ri ⊆ B∗,
so that Di ∩ Rn+1 ∩ X ⊆ Zn+1 ∩ B∗ ∩ X by (26). Consequently, by (28),
kn+1(x) = f(x) as well—so h′n(x) = gn(x) once more. Hence

(30)
{
h′n|Di ∩Rn+1 ∩X = f |Di ∩Rn+1 ∩X,
h′n|Di ∩X = gn|Di ∩X for p < i ≤ n.

If x ∈ Zn ∩ Rn+1 ∩ X, then h′n(x) = kn+1(x), by (29). From (26) and
(28),

(31) h′n|Dn+1 ∩Rn+1 ∩X = kn+1|Dn+1 ∩Rn+1 ∩X.
(l) If D∗(n + 1)∆ ∩ D∗n+1 6= ∅, where ∆ is a maximal simplex in the

complex D∗(n+1), then let gn+1(∆) := h′n, as just constructed in (k). This,
with (g), defines gn+1(∆) for all maximal simplices of D∗(n+ 1).

(m) With each non-maximal simplex ∆ of D∗(n + 1), associate (once
and for all) a maximal simplex ∆′ ⊇ ∆, and define gn+1(∆) := gn+1(∆′).

(n) If ∆1,∆2 are simplices of D∗(n+ 1) and i ∈ ∆1 ∩∆2, then take the
maximal simplices ∆′1,∆

′
2 of D∗(n + 1) that were fixed at (m); certainly,

i ∈ ∆′1 ∩ ∆′2. If the stars of both ∆′1 and ∆′2 meet D∗n+1, as at (l), then
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gn+1(∆′1) and gn+1(∆′2) are both h′n, and automatically

gn+1(∆′1)|Di ∩X = gn+1(∆′2)|Di ∩X.
If i ≤ n, (30) shows that both of them agree with gn|Di ∩X.

If only the star of ∆′1 in D∗(n+ 1) meets D∗n+1, then, again, i ≤ n and
∆′2 is a simplex of D∗(n) and gn+1(∆′2) = gn(∆′2) by (g); whilst, by (30),

gn+1(∆′1)|Di ∩X = h′n|Di ∩X = gn|Di ∩X = gn(∆′2)|Di ∩X.
Lastly, if the star in D∗(n+ 1) of neither ∆′1 nor ∆′2 meets D∗n+1, then,

by (g) and (f)(1),

gn+1(∆′1)|Di ∩X = gn(∆′1)|Di ∩X = gn(∆′2)|Di ∩X = gn+1(∆′2)|Di ∩X.
Thus the inductive hypothesis (f)(1) still holds when n is substituted by
n+ 1, and also gn+1|Di ∩X = gn|Di ∩X for 1 ≤ i ≤ n, or

(32) gn+1|D(n) ∩X = gn|D(n) ∩X.
(o) The hypothesis (f)(2) must also be considered. If 1 ≤ i ≤ p, and ∆

is a maximal simplex of D∗(n + 1) with i ∈ ∆, then (g) applies because of
the definition of p (see (h)). Thus

gn+1(∆)|Di ∩Rn+1 ∩X = gn(∆)|Di ∩Rn+1 ∩X = f |Di ∩Rn+1 ∩X,
by (f)(2)—recall from (24) that Rn+1 ⊆ Rn. If p < i ≤ n + 1, choose a
maximal simplex ∆ ⊆ {p+ 1, . . . , n+ 1} with i ∈ ∆ and D∗(n+ 1)∆ ∩D∗n+1
6= ∅, which is possible, again by the definition of p. Hence, by (k) and by
(30), for p < i ≤ n,

gn+1(∆)|Di ∩Rn+1 ∩X = h′n|Di ∩Rn+1 ∩X = f |Di ∩Rn+1 ∩X,
whilst, for i = n+ 1, (31), (26), and (28) yield

gn+1(∆)|Dn+1 ∩Rn+1 ∩X = kn+1|Dn+1 ∩Rn+1 ∩X = f |Di ∩Rn+1 ∩X.
In either case, the inductive hypothesis (f)(2) still holds when n + 1 takes
the place of n. Now restore the original order of the first n + 1 indices.
The inductive construction may be carried out for all n, giving a mapping
gn(∆) : X → Y for each n and each simplex ∆ of D∗(n).

(p) Let D(∞) :=
⋃∞
n=1Dn. By the definition of the sets Dn in (d),

D(∞) ⊇
[

1
2 ,∞

)
∂B∗. If x ∈ E \ D(∞), then either x ∈

(
0, 1

2

)
∂B∗ or

(0,∞)x ⊆ B∗. Since B∗ ⊆ A and 1
2A ⊆ B (see (14)), both these possi-

bilities give x ∈ intB; hence D(∞) ∪ (intB) = E. A mapping

g(∞) : D(∞) ∩X → Y

may be defined by setting g(x) := gn(x), where n is the first index such that
x ∈ D(n). Because of (32), any larger index could also be taken, so that
g(∞)|Dp = gp|Dp for any p; as gp ∈ F , Dp is open, and F is locally defined,
it follows that g(∞) is in F .
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However, by (f)(2) (with (25)), g(∞)|Dn∩B∩X = f |Dn∩B∩X for all n.
Thus g(∞) agrees with f on D(∞)∩B ∩X, and we may define g : X → Y
by

g|D(∞) ∩X = g(∞), g|(intB) ∩X = f |(intB) ∩X.
This function g is in F , and has the required properties.

Remark 4.3. The details of the proof could be varied in many ways. The
technical difficulty of the argument here is the necessity of obtaining strong
star-refinements by radial projection on ∂B∗, which is awkward because
the Dn have to be convex in E (to allow for the introduction of linear
functionals) as well as refining the cones on the W ′′γ .

The introduction of the sets Rn is needed to “correct” the mapping
kn given by 3.1, and ensure it agrees with f on B. It appears impossible to
arrange that gn(∆)|D∗(n) = gn+1(∆)|D∗(n) for all the simplices∆ ofD∗(n);
the reason is that the application of 3.1 preserves the restriction of the
function to D(n)∆, but may change it on the larger set D∗(n)∆.

In 3.1, the hypothesis that B ≺ A was important for (8). In 4.2, which is
perhaps only interesting in conjunction with 3.1, it is natural and convenient,
but not really necessary. The only point at which it is used seems to be the
construction in (a) of the “intermediate” closed convex sets B∗u such that
Bu ⊆ intE B∗u and B∗u ⊆ Au. If E is a normed space, 2.3 shows that this
construction is possible as soon as Bu is a closed convex subset of Au. I do
not know how this result can be extended to more general locally convex
spaces. However, if Bu has non-empty interior, 2.7 constructs B∗u.

On the other hand, the proof of 4.2 does not, in fact, require the con-
vexity of B∗u, but only the facts that it is star-shaped (about the origin, by
convention) and that its frontier meets each radius in at most one point.
The construction of a B∗u satisfying these weaker conditions can be carried
out much more generally. The interest of such questions is that, given some
specific class F on E, one would like to know for exactly which pairs (U,C)
of an open set U and a closed subset C in E any function f defined on U
and belonging to F corresponds to some function g of class F on E such
that g|C = f . The remarks at 3.3 on other notions of convexity are relevant
to this.

A rough summary of 4.2 and of 3.1 would be that a function which can
be extended locally to E (is “extensible”) can also be extended globally from
suitable sets. It is global extensibility which is required in practice.

Definition 4.4. Let F be an affine space of functions on the topological
space X, with values in the convex subset Y of the vector space F . Suppose
U is an open subset of X, and E is a convex set of functions U → F .
Then E is said to admit local affine F-extension operators if, for every point
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x ∈ U , there is an open neighbourhood V of x in U and an affine mapping
LV : E → F(X;Y ) such that, for each f ∈ E , LV (f)|V = f |V .

There is a similar definition for “linear extension operators”.

Corollary 4.5. Let A,B and F , E, F,X be as in 4.2, and let Y be a
convex set in F . Let F be a Y -admissible and locally defined affine space
of functions on the open sets of X, with images in Y . Suppose that E
is a convex set of functions A ∩ X → Y in F which admits local affine
F-extension operators. Then there is an affine-linear map L : E → F(X;Y )
such that L(f)|B ∩X = f |B ∩X for each f ∈ E.

Proof. Every step of the constructions in 1.8 and 4.2 is by a pointwise
convex combination of the values of extensions either already constructed or
given by the hypotheses. Where, at 4.2(i), appeal was made to 3.1, it should
now be made to 3.4.

There is of course a “linear” version, which is an easy corollary. Now
recall 3.6.

Lemma 4.6. Suppose in 4.2 or in 4.5 that E is a normed space and all
the convex sets belonging to the complex A are bounded. Let G be a norm-
dense subspace of the dual space E′. Then the previous conclusions in 4.2
or in 4.5 hold on the weaker condition that F is (G,Y )-admissible instead
of Y -admissible.

Proof. The use of 3.1 or of 3.4 at 4.2(i) should now be substituted
by 3.7. The neighbourhoods Wy of the origin may be norm-balls, which are
bounded, so that, as was shown in 3.7, the linear functionals λnu of 4.2(e)
may be chosen from G.

The full dual space E′ also appeared in the proof of 1.8, when φ was
chosen as a support functional for W at κc to arrange (1). However, one
might instead choose any φ ∈ G such that φ(κc) = 1, and substitute W ′ :=
W ∩ φ−1(−1, 1) for W throughout the rest of the proof. (W only had to be
sufficiently small, convex and symmetric.)

5. The main theorems

Theorem 5.1. Let E be a Hausdorff locally convex Lindelöf space, and
F a vector space, with X a subset of E and Y a convex subset of F . Let F
be a Y -admissible and locally defined class of functions on the open subsets
of X, with values in Y . Suppose that A := {A1, . . . , Av} is a complex of
open convex sets of E and B := {B1, . . . , Bv} ≺ A. Let A denote the carrier
of A and B the carrier of B, and suppose that there are given a mapping
f : B ∩ X → Y and , for each simplex ∆ of A, an F-extensible mapping
f∆ : A∆ ∩X → Y such that f∆|B∆ ∩X = f |B∆ ∩X. Then there exists a
function h : X → Y in F such that h|B ∩X = f |B ∩X.
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Proof. For each simplex ∆ of A, 4.2 may be applied to the complexes

A∆ := {Au : u ∈ ∆}, B∆ := {Bu : u ∈ ∆};
so there exists g∆ : X → Y in F such that g∆|B∆ ∩ X = f |B∆ ∩ X.
Proposition 3.1 may be applied in its turn to give the result.

The statement above is convenient for later applications, because it does
not require that the mappings f∆ should fit together to define a mapping
of the whole of A ∩X, but it is less striking than the following.

Corollary 5.2. Let A,B and F , E, F,X, Y,A,B be as in 5.1, and let
k : A ∩X → Y be F-extensible. Then there exists a function q : X → Y in
F such that q|B ∩X = k|B ∩X.

Proof. In 5.1 take f∆ := k|A∆ ∩X for each simplex ∆ of A.

Theorem 5.3. Let A,B and F , E, F,X, Y,A,B be as in 5.1. Let F be
a Y -admissible and locally defined affine space of functions on the open
sets of X, with images in Y . Suppose that E is a convex set of functions
A ∩X → Y which admits local affine F-extension operators. Then there is
an affine-linear map L : E → F(X;Y ) such that

L(f)|B ∩X = f |B ∩X
for each f ∈ E.

Proof. Collate 4.5 and 3.4, exactly as in the proof of 5.1.

Of course 5.2 is the special case of 5.3 when E := {f}.
Remark 5.4. In normed spaces, the results above may be improved;

that is, one may weaken the conditions on F to require only (G,Y )-admis-
sibility as defined at 3.6. This is probably a significant fact. At 3.7 and 4.6, it
depended on the boundedness of the sets of the complexes, but this restric-
tion can now be removed. (It is not clear, however, that the further theory
benefits substantially from this generalization).

A normed (or metric) space is Lindelöf if and only if it is separable.

Theorem 5.5. Let E be a separable normed space, and F a vector space,
with X a subset of E and Y a convex subset of F . Let G be a norm-dense
subspace of the dual space E′. Let F be a (G,Y )-admissible and locally de-
fined class of functions on the open subsets of X, with values in Y . Suppose
that A := {A1, . . . , Av} and B := {B1, . . . , Bv} are complexes of subsets
of E, where A consists of open convex sets of E and B � A (see 2.4
and 2.9), and let A denote the carrier of A and B the carrier of B. Let
E be a convex set of functions A ∩ X → Y in F which admits local affine
F-extension operators. Then there is an affine-linear map L : E → F(X;Y )
such that L(f)|B ∩X = f |B ∩X for each f ∈ E.



Extension of smooth functions in infinite dimensions 225

Proof. By 2.6, construct a sequence (Bn)∞n=1 of complexes of open con-
vex sets such that B � Bn+1 � Bn � A for all n. Here Bn stands for
{Bn1 , . . . , Bnv }. I shall write Bn for the carrier of Bn, and let B0 := A. De-
fine, for n = 0, 1, . . . ,

(33)





Cn := {BE(0;n), BE(0;n+ 2) ∩Bn1 , BE(0;n+ 2) ∩Bn2 , . . .
. . . , BE(0;n+ 2) ∩Bnv },

Dn := {BE(0;n− 1), BE(0;n+ 1) ∩Bn+1
1 , . . .

. . . , BE(0;n+ 1) ∩Bn+1
v },

where, of course, BE(0; %) = ∅ when % ≤ 0, and the index set of the com-
plexes is understood to be {0, 1, . . . , v}. It is clear that Dn ≺ Cn for all n,
and that all the sets in Cn are bounded. Let Cn,Dn denote the carriers of Cn
and of Dn.

There is an inductive procedure, which may be described as follows.
Suppose that f ∈ E ⊆ F(A ∩X;Y ). Since BE(0; 0) = ∅, we have C0 ∩X ⊆
A∩X, and there is a linear restriction operator i0, where i0(f) := f |C0∩X.
Set E0 := i0(E). Certainly, E0 admits local affine F-extension operators, and,
moreover, f0 := i0(f) agrees with f on D0∩X = BE(0; 1)∩B1∩X. Use 4.6
to construct a function f1 ∈ F(X;Y ) which depends linearly on f0, and
therefore on f , and agrees with f on D0 ∩X.

Inductively, suppose for n ≥ 1 that fn ∈ F(X;Y ) is given and depends
linearly on f ; and that fn agrees with f on BE(0;n + 1) ∩ Bn+1 ∩X. We
may then define gn ∈ F(Cn+1 ∩X;Y ) by

(34)
{
gn|BE(0;n+ 3) ∩Bn+1 ∩X = f |BE(0;n+ 3) ∩Bn+1 ∩X,
gn|BE(0;n+ 1) ∩X = fn|BE(0;n+ 1) ∩X.

As F is locally defined, the function thus defined is indeed in F , and it
admits local affine F-extension operators, as each of the restrictions does.

Since Dn+1 ≺ Cn+1, 4.6 now constructs a function fn+1 ∈ F(X;Y ) that
agrees with gn on Dn+1 ∩X. (I recall that this is for n ≥ 1.) Furthermore,
fn+1 depends linearly on f . This completes the inductive construction.

As fn+1|Dn+1 ∩X = gn|Dn+1 ∩X, (33) and (34) show that

fn+1|BE(0;n) ∩X = fn|BE(0;n) ∩X
for all n ≥ 1. One may therefore define a function g : X → Y by the
prescription

(35) g(x) := fn(x) when x ∈ BE(0;n) ∩X.
Since F is locally defined, g ∈ F(X;Y ), and it depends linearly on f ; we
may write L(f) := g. However, look at the “other part” of Dn+1 in (33)
and (34):
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fn+1|BE(0;n+ 2) ∩Bn+2 ∩X = gn|BE(0;n+ 2) ∩Bn+2 ∩X
= f |BE(0;n+ 2) ∩Bn+2 ∩X,

for all n ≥ 1. Hence, from definition (35) (recall B ⊆ Bn+2 for all n),

g|BE(0;n+ 1) ∩B ∩X = fn+1|BE(0;n+ 1) ∩B ∩X
= f |BE(0;n+ 1) ∩B ∩X,

which implies that g|B ∩X = f |B ∩X as required.

Conclusion 5.6. In the sequel, I shall show how the above results may
be extended to manifolds. The methods to be used are not unlike the proof
of 4.2; that is, they depend on an induction of a similar type. It is worth
noting that the proof of 5.5 already involves three inductions, none of them
altogether trivial.
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