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Abstract. We investigate the bounded Ciesielski systems, which can be obtained
from the spline systems of order (m, k) in the same way as the Walsh system arises
from the Haar system. It is shown that the maximal operator of the Fejér means of the
Ciesielski–Fourier series is bounded from the Hardy space Hp to Lp if 1/2 < p < ∞ and
m ≥ 0, |k| ≤ m+ 1. Moreover, it is of weak type (1, 1). As a consequence, the Fejér means
of the Ciesielski–Fourier series of a function f converges to f a.e. if f ∈ L1 as n→∞.

1. Introduction. Bounded Ciesielski systems can be obtained from the
spline systems of order (m,k) in the same way as the Walsh system arises
from the Haar system (see Ciesielski [2, 4, 6]). Ciesielski proved that the max-
imal operator of the Fourier series with respect to these bounded Ciesielski
systems is bounded on Lp (1 < p <∞) and so the Fourier series of a func-
tion f ∈ Lp converges to f a.e. and in Lp norm. Since the Ciesielski systems
are uniformly bounded, due to a theorem of Bochkarev [1], this theorem
does not hold for functions in L1. Moreover, there is f ∈ L1 such that the
Ciesielski–Fourier series diverges a.e. (see Kazarian and Sargsian [8]).

In this paper we extend the preceding convergence result to L1 as fol-
lows. We investigate the arithmetic or Fejér means σ(m,k)

n f of the Ciesielski–
Fourier series of f and verify that σ(m,k)

n f → f a.e. as n→∞ provided that
f ∈ L1.
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We also consider the Hardy spaces Hp on the unit interval and prove that
the maximal operator σ(m,k)

∗ is bounded from Hp to Lp for 1/2 < p < ∞,
if |k| ≤ m + 1. It follows by interpolation that σ(m,k)

∗ is also of weak type
(1, 1), i.e.

sup
%>0

%λ(σ(m,k)
∗ f > %) ≤ C‖f‖1 (f ∈ L1).

The usual density argument then implies the above convergence result.
The same results for the Fejér means of the Walsh–Fourier series are due

to the author [16].

I would like to thank Professor Ciesielski for helpful discussions while I
was visiting the Mathematical Institute in Sopot.

2. Hardy spaces on the unit interval. We consider the unit inter-
val [0, 1) with the Lebesgue measure λ. We briefly write Lp for the real
Lp([0, 1), λ) space; the norm (or quasinorm) of this space is defined by
‖f‖p := (

�
[0,1) |f |p dλ)1/p (0 < p ≤ ∞).

In order to have a common notation for the dyadic and classical Hardy
spaces we define the Poisson kernels P (m,k)

t . If k ≤ m then let

P
(m,k)
t (x) :=

ct

(t+ |x|2)
(x ∈ R, t > 0).

If k = m+ 1 then let

P
(m,k)
t (x) := 1[0,2−n)(x) if n ≤ t < n+ 1 (x ∈ R).

For a tempered distribution f the non-tangential maximal function is
defined by

f
(m,k)
∗ (x) := sup

t>0
|(f ∗ P (m,k)

t )(x)| (x ∈ R)

where ∗ denotes convolution.
For 0 < p < ∞ the Hardy space H

(m,k)
p (R) consists of all tempered

distributions f for which

‖f‖
H

(m,k)
p (R) := ‖f (m,k)

∗ ‖p <∞.
Now let

Hp := H(m,k)
p ([0, 1)) := {f ∈ H(m,k)

p (R) : supp f ⊂ [0, 1)}.
Obviously, Hp is the dyadic Hardy space if k = m + 1. It is known (see
Stein [13]) that the space Hp can be identified with Lp if 1 < p <∞.

A function a ∈ L∞ is called a p-atom if there exists an interval I ⊂ [0, 1)
such that

(i) supp a ⊂ I,
(ii) ‖a‖∞ ≤ |I|−1/p,
(iii)

�
I
a(x)xj dx = 0 where j ∈ N and j ≤ [1/p − 1], the integer part of

1/p− 1.
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In the dyadic case, i.e. if k = m+ 1, we consider only dyadic intervals I
and instead of (iii) we assume

(iii′)
�
I
a(x) dx = 0.

An operator V which maps the set of distributions into the collection of
measurable functions will be called p-quasi-local if there exists a constant
Cp > 0 such that �

[0,1)\16I

|V a|p dλ ≤ Cp

for every p-atom a with support in I; here 16I is the interval with the same
center as I and with length 16|I|. The following result can be found in Weisz
[16] (see also [15]):

Theorem A. Suppose that the operator V is sublinear and p-quasi-local
for all p0 < p ≤ 1. If V is bounded from L∞ to L∞ then

‖V f‖p ≤ Cp‖f‖Hp (f ∈ Hp).

Moreover , V is of weak type (1, 1), i.e. if f ∈ L1 then

sup
%>0

%λ(|V f | > %) ≤ C1‖f‖1.

3. Bounded Ciesielski systems. First we introduce the spline systems
as in Ciesielski [4]. Let us denote by D the differentiation operator and define
the integration operators

Gf(t) :=
t

�

0

f dλ, Hf(t) :=
1�

t

f dλ.

Let m ≥ −1 be a fixed integer and χn, n = 1, 2, . . . , be the Haar func-
tions. Applying the Schmidt orthonormalization to the linearly indepen-
dent functions 1, t, . . . , tm+1, Gm+1χn(t), n ≥ 2, we get the spline system
(f (m)
n , n ≥ −m) of order m. For 0 ≤ k ≤ m + 1 and n ≥ k −m define the

splines
f (m,k)
n := Dkf (m)

n , g(m,k)
n := Hkf (m)

n

of order (m,k). Let us normalize these functions and introduce a more uni-
fied notation:

h(m,k)
n :=

{
f

(m,k)
n ‖f (m,k)

n ‖−1
2 for 0 ≤ k ≤ m+ 1,

g
(m,−k)
n ‖f (m,−k)

n ‖2 for 0 ≤ −k ≤ m+ 1.

If m = −1 and k = 0 we get the Haar system, and if m = k = 0 the Franklin
system.
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In this paper the constants C and q depend only on m and the constants
Cp depend only on p and m and may be different in different contexts;
q always denotes a constant for which 0 < q < 1.

It is proved in Ciesielski [4] that

(1) |h(m,k)
2µ+ν (t)| ≤ C2µ/2q2µ|t−ν/2µ|

where m ≥ −1, |k| ≤ m+ 1, µ ∈ N and ν = 1, . . . , 2µ.
The partial sums and the maximal operator of the partial sums of the

spline Fourier series are defined by

P (m,k)
n f :=

n∑

i=|k|−m
(f, h(m,k)

i )h(m,−k)
i

and
P

(m,k)
∗ f := sup

n∈N
|P (m,k)
n f |

respectively, where m ≥ −1, |k| ≤ m+ 1 and (f, g) denotes the usual scalar
product

�
[0,1) fg dλ.

Starting with the spline system (h(m,k)
n , n ≥ |k| − m) we define the

bounded Ciesielski system (c(m,k)
n , n ≥ |k| − m) in the same way as the

Walsh system arises from the Haar system, namely,

c(m,k)
n := h(m,k)

n (n = |k| −m, . . . , 1)

and

c
(m,k)
2ν+i :=

2ν∑

j=1

A
(ν)
i,j h

(m,k)
2ν+j (1 ≤ i ≤ 2ν).

Since c(−1,0)
n = wn (n ≥ 1) is the usual Walsh system and h

(−1,0)
n = hn

(n ≥ 1) is the usual Haar system, it follows that A(ν)
i,j = (w2ν+i, h2ν+j). One

can show (see Ciesielski [2]) that

(2) A
(ν)
i,j = A

(ν)
j,i = 2−ν/2wi

(
2j − 1
2ν+1

)
.

The system (c(m,k)
n ) is uniformly bounded and it is biorthogonal to (c(m,−k)

n )
whenever |k| ≤ m+ 1.

The partial sums, the Fejér means and the maximal operators of the
Ciesielski–Fourier series are defined by

C(m,k)
n f(x) :=

n∑

i=|k|−m
(f, c(m,k)

i )c(m,−k)
i (x) =

1�

0

D(m,k)
n (t, x)f(t) dt,
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σ(m,k)
n f(x) :=

1
n

n∑

j=1

C
(m,k)
j (x) =

1�

0

K(m,k)
n (t, x)f(t) dt,

and
C

(m,k)
∗ f := sup

n∈N
|C(m,k)
n f |, σ

(m,k)
∗ f := sup

n∈N
|σ(m,k)
n f |,

respectively, where m ≥ −1 and |k| ≤ m+ 1. Here

D(m,k)
n (t, x) :=

n∑

i=|k|−m
c
(m,k)
i (t)c(m,−k)

i (x),

K(m,k)
n (t, x) :=

1
n

n∑

j=1

D
(m,k)
j (t, x)

are the Dirichlet and Fejér kernels.
Ciesielski [5, 6] proved that

(3) ‖P (m,k)
∗ f‖p, ‖C(m,k)

∗ f‖p ≤ Cp‖f‖p (1 < p <∞).

The Walsh–Dirichlet and Walsh–Fejér kernels D(−1,0)
n and K

(−1,0)
n are

denoted by Dn and Kn, respectively. It is known (Schipp, Wade, Simon and
Pál [11]) that

(4) D2n(x) =
{

2n if x ∈ [0, 2−n),
0 if x ∈ [2−n, 1),

(5) |Kn(x)| ≤ 2
N−1∑

j=0

2j−N
N−1∑

i=j

D2i(x +̇ 2−j−1),

where x ∈ [0, 1), 2N−1 ≤ n < 2N and

(6) K2n(x) = C
n∑

j=0

2j−nD2n(x +̇ 2−j−1).

Note that +̇ denotes dyadic addition (for the definition see e.g. Schipp,
Wade, Simon and Pál [11]).

4. Estimations of the Fejér kernel K(m,k)
n . Write n in the form

n = 2n1 +n(1) with 2n1 > n(1) and denote the Rademacher functions by rn.
Set

(7) G(m,k)
µ (t, s) := 2µ/2rµ(s)h(m,k)

2µ+ν (t) if
ν − 1

2µ
≤ s < ν

2µ
(1 ≤ ν ≤ 2µ).

Then, by (2), it is easy to see that

(8) c
(m,k)
2µ+ν (t) =

1�

0

wν(s)rµ(s)G(m,k)
µ (t, s) ds =

1�

0

w2µ+ν(s)G(m,k)
µ (t, s) ds

(see also Schipp [10] and Ciesielski, Simon and Sjölin [6]).
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Theorem 1. We have

nK(m,k)
n (t, x) = D

(m,k)
1 (t, x) + n(1)D

(m,k)
2n1 (t, x) +

n1−1∑

i=0

2iD(m,k)
2i (t, x)

+
n1−1∑

i=0

L
(m,k)
i (t, x) +M (m,k)

n (t, x)

where

L
(m,k)
i (t, x) :=

1�

0

1�

0

ri(s +̇ u)2iK2i(s +̇ u)G(m,k)
i (t, s)G(m,−k)

i (x, u) ds du,

M (m,k)
n (t, x) :=

1�

0

1�

0

rn1(s +̇u)n(1)Kn(1)(s +̇u)G(m,k)
n1

(t, s)G(m,−k)
n1

(x, u) ds du.

Proof. By definitions we have

(9) nK(m,k)
n (t, x) = 2n1K

(m,k)
2n1 (t, x) +

n(1)∑

j=1

D
(m,k)
2n1+j(t, x)

= 2n1K
(m,k)
2n1 (t, x) + n(1)D

(m,k)
2n1 (t, x) +

n(1)∑

j=1

(D(m,k)
2n1+j(t, x)−D(m,k)

2n1 (t, x)).

By (8),

D
(m,k)
2n1+j(t, x)−D(m,k)

2n1 (t, x) =
j∑

i=1

c
(m,k)
2n1+i(t)c

(m,−k)
2n1+i (x)

=
j∑

i=1

1�

0

1�

0

rn1(s)rn1(u)wi(s)wi(u)G(m,k)
n1

(t, s)G(m,−k)
n1

(x, u) ds du

and so

(10)
n(1)∑

j=1

(D(m,k)
2n1+j(t, x)−D(m,k)

2n1 (t, x))

=
1�

0

1�

0

rn1(s +̇ u)n(1)Kn(1)(s +̇ u)G(m,k)
n1

(t, s)G(m,−k)
n1

(x, u) ds du.

Similarly to (9) and (10),

2n1K
(m,k)
2n1 (t, x) = 2n1−1K

(m,k)
2n1−1(t, x) + 2n1−1D

(m,k)
2n1−1(t, x)

+
1�

0

1�

0

rn1−1(s +̇ u)2n1−1K2n1−1(s +̇ u)G(m,k)
n1−1 (t, s)G(m,−k)

n1−1 (x, u) ds du.
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Iterating this equality, we get

2n1K
(m,k)
2n1 (t, x) = K

(m,k)
1 (t, x) +

n1−1∑

i=0

2iD(m,k)
2i (t, x)

+
n1−1∑

i=0

1�

0

1�

0

ri(s +̇ u)2iK2i(s +̇ u)G(m,k)
i (t, s)G(m,−k)

i (x, u) ds du.

The theorem follows from (9) and (10) and from the fact that K(m,k)
1 (t, x) =

D
(m,k)
1 (t, x).

5. The boundedness of the maximal Fejér operator on Hp. Re-
cently the author [14] extended (3) and verified that

(11) ‖P (m,k)
∗ f‖p ≤ Cp‖f‖Hp (f ∈ Hp)

provided that m ≥ −1, −(m+ 1) ≤ k ≤ m and 1/(m− k + 2) < p <∞. If
k = m + 1 then (11) holds for all 0 < p < ∞. It is known (see Weisz [16])
that the Walsh–Fejér means satisfy

(12) ‖σ(−1,0)
∗ f‖p ≤ Cp‖f‖Hp (f ∈ Hp)

for 1/2 < p <∞.
In this section we extend this inequality to bounded Ciesielski systems.

To this end we need two lemmas.

Lemma 1. Suppose that m ≥ 0, |k| ≤ m + 1 and 1/2 < p < 1. If
2−K−1 < |I| ≤ 2−K for some K ∈ N then

�

(16I)c

sup
n≥2K

( �

I

1
n

n1−1∑

i=0

|L(m,k)
i (t, x)| dt

)p
dx ≤ Cp|I|,(13)

�

(16I)c

sup
n≥2K

( �

I

1
n
|M (m,k)

n (t, x)| dt
)p

dx ≤ Cp|I|.(14)

If k ≤ m then
�

(16I)c

sup
n<2K

( �

I

1
n

n1−1∑

i=0

|DtL
(m,k)
i (t, x)| dt

)p
dx ≤ Cp|I|1−p,(15)

�

(16I)c

sup
n<2K

( �

I

1
n
|DtM

(m,k)
n (t, x)| dt

)p
dx ≤ Cp|I|1−p,(16)

where Dt denotes the t-derivative.
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Proof. By (6), (7) and (1) we conclude

|DN
t L

(m,k)
i (t, x)|

≤ C2i
i∑

j=0

2j
2i∑

ν=1

2i∑

η=1

ν2−i�

(ν−1)2−i

η2−i�

(η−1)2−i

D2i(s +̇ u +̇ 2−j−1)

× |DNh
(m,k)
2i+ν (t)| · |h(m,−k)

2i+η (x)| ds du

≤ C2i(N+2)
i∑

j=0

2j
2i∑

ν=1

2i∑

η=1

ν2−i�

(ν−1)2−i

η2−i�

(η−1)2−i

D2i(s +̇ u +̇ 2−j−1)

× q2i|t−ν/2i|q2i|x−η/2i| ds du,

where N = 0, 1. It is easy to see by (4) that D2i(s +̇ u +̇ 2−j−1) = 0 if
|ν− η| 6= [2i−j−1], and D2i(s +̇u +̇ 2−j−1) = 2i if |ν− η| = [2i−j−1]. We can
suppose that s < u. Hence

|DN
t L

(m,k)
i (t, x)| ≤ C2i(N+1)

i∑

j=0

2j
2i∑

ν=1

q2i|t−ν/2i|q2i|x−(ν+2i−j−1)/2i|.

By the inequality

(17)
∞∑

k=1

q|i−k|+|j−k| ≤ C(r)r|i−j| (q < r < 1)

(see Ciesielski, Simon and Sjölin [6]), we obtain

(18)
1
n

n1−1∑

i=0

|DN
t L

(m,k)
i (t, x)| ≤ C2−n1

n1−1∑

i=0

2i(N+1)
i∑

j=0

2jq2i|x−t−2−j−1|.

Assume that n ≥ 2K and N = 0. The last sum can be split into the sum of

An(t, x) := C2−n1

K−1∑

i=0

2i
i∑

j=0

2jq2i|x−t−2−j−1|

and

Bn(t, x) := C2−n1

n1−1∑

i=K

2i
i∑

j=0

2jq2i|x−t−2−j−1|.

For the first sum we have

An(t, x) ≤ C2−K
K−1∑

i=0

2i
i∑

j=0

2jq2i|x−t−2−j−1|
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= C2−K
K−1∑

i=0

2i
i∑

j=0

2j1{2−j−1+8·2K−iI}(x)q2i|x−t−2−j−1|

+ C2−K
K−1∑

i=0

2i
i∑

j=0

2j1{2−j−1+8·2K−iI}c(x)q2i|x−t−2−j−1|

=: A1,n(t, x) + A2,n(t, x).

Obviously,

A1,n(t, x) ≤ C2−K
K−1∑

i=0

2i
i∑

j=0

2j1{2−j−1+8·2K−iI}(x).

Hence

(19)

�

(16I)c

sup
n≥2K

( �

I

A1,n(t, x) dt
)p
dx

≤ Cp2−Kp
�

(16I)c

K−1∑

i=0

2ip
i∑

j=0

2jp2−Kp1{2−j−1+8·2K−iI}(x)

≤ Cp2−2Kp
K−1∑

i=0

2ip
i∑

j=0

2jp2−i ≤ Cp|I|.

On the other hand, it is easy to see that

A2,n(t, x) ≤ C2−K
K−1∑

i=0

2i
i∑

j=0

2jqC2i|x−t0−2−j−1|,

where t0 is the center of I and t ∈ I. Therefore

(20)

�

I

A2,n(t, x) dt ≤ C|I|2
∞∑

i=0

2i
i∑

j=0

2jqC2i|x−t0−2−j−1| dt.

Assume that x 6∈ 16I and x > t0. If x−t0 ∈ [2−k, 2−k+1) for some 1 ≤ k ≤ K,
then

C|I|2
∞∑

i=0

2i
i∑

j=k

2jqC2i|x−t0−2−j−1| ≤ C|I|2
∞∑

i=0

22iqC2i|x−t0|

≤ C|I|2|x− t0|−2.

In the last step we have used the inequality

(21)
∞∑

µ=0

2µjq2µ|t−s| ≤ Cj |t− s|−j (j > 0),

which can be easily seen.



236 F. Weisz

On the other hand, (21) implies

C|I|2
∞∑

i=0

2i
(k−1)∧i∑

j=0

2jq2i|x−t0−2−j−1| ≤ C|I|2
k−1∑

j=0

2j |x− t0 − 2−j−1|−1.

Since 1/2 < p < 1, we obtain

(22)

�

(16I)c

sup
n≥2K

( �

I

A2,n(t, x) dt
)p
dx

≤ Cp|I|2p
�

(16I)c

|x− t0|−2p dx

+ Cp|I|2p
K∑

k=1

k−1∑

j=0

2jp
�

{x−t0∈[2−k,2−k+1)}
|x− t0 − 2−j−1|−p dx

≤ Cp|I|+ Cp|I|2p
K∑

k=1

k−1∑

j=0

2jp2−j(1−p) ≤ Cp|I|.

The expression Bn(t, x) can be split into the sum of

B1,n(t, x) := C2−n1

n1−1∑

i=K

2i
i∑

j=0

2j1{2−j−1+8I}(x)q2i|x−t−2−j−1|

and

B2,n(t, x) := C2−n1

n1−1∑

i=K

2i
i∑

j=0

2j1{2−j−1+8I}c(x)q2i|x−t−2−j−1|.

One can easily show that 1{2−j−1+8I}(x) = 0 if x 6∈ 16I and j ≥ K. Hence

B1,n(t, x) ≤ C
K−1∑

j=0

2j1{2−j−1+8I}(x)

and

(23)

�

(16I)c

sup
n≥2K

( �

I

B1,n(t, x) dt
)p
dx ≤ Cp

K−1∑

j=0

2jp2−Kp2−K ≤ Cp|I|.

Moreover,

B2,n(t, x) ≤ C2−K
∞∑

i=K

2i
i∑

j=0

2jqC2i|x−t0−2−j−1|
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and the inequality �

(16I)c

sup
n≥2K

( �

I

B2,n(t, x) dt
)p
dx ≤ Cp|I|

can be proved as above (cf. (20)). This together with (19), (22) and (23)
implies (13).

If n < 2K and N = 1 then let us estimate the right hand side of (18) by

Cn(t, x) := C
K−1∑

i=0

2i
i∑

j=0

2jq2i|x−t−2−j−1|.

The inequality �

(16I)c

sup
n<2K

( �

I

Cn(t, x) dt
)p
dx ≤ Cp|I|1−p

can be derived as above (see the definition of An(t, x)), which shows (15).
To prove (14) and (15) we have, by (5),

|DN
t M

(m,k)
n (t, x)| ≤ C2n1(N+2)

n1−1∑

i=0

i∑

j=0

2j
2n1∑

ν=1

2n1∑

η=1

ν2−n1�

(ν−1)2−n1

η2−n1�

(η−1)2−n1

×D2i(s +̇ u +̇ 2−j−1)q2n1 |t−ν/2n1 |q2n1 |x−η/2n1 | ds du

(N = 0, 1). Suppose again that ν < η. It is easy to see that for each ν
there exists a set Si,ν such that D2i(s +̇ u +̇ 2−j−1) = 2i if η ∈ Si,ν and
D2i(s +̇ u +̇ 2−j−1) = 0 if η 6∈ Si,ν . Moreover, |Si,ν | = 2n1−i and Si,ν ⊂
[ν + 2n1−j−1 − 2n1−i + 1, ν + 2n1−j−1 + 2n1−i − 1]. This and (17) imply

(24)
1
n
|DN

t M
(m,k)
n (t, x)|

≤ C2n1(N−1)
n1−1∑

i=0

2i
i∑

j=0

2j
2n1∑

ν=1

2n1−j−1+2n1−i−1∑

η−ν=2n1−j−1−2n1−i+1

q2n1 |t−ν/2n1 |q2n1 |x−η/2n1 |

≤ C2n1(N−1)
n1−1∑

i=0

2i
i∑

j=0

2j
2n1−i−1∑

l=−2n1−i+1

q2n1 |x−t−2−j−1−l/2n1 |.

For (14) suppose that n ≥ 2K and N = 0. The last term of (24) can be
split into the sum of

Dn(t, x) := C2−n1

K−1∑

i=0

2i
i∑

j=0

2j
2n1−i−1∑

l=−2n1−i+1

q2n1 |x−t−2−j−1−l/2n1 |
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and

En(t, x) := C2−n1

n1−1∑

i=K

2i
i∑

j=0

2j
2n1−i−1∑

l=−2n1−i+1

q2n1 |x−t−2−j−1−l/2n1 |.

With

D1,n(t, x) := C2−K
K−1∑

i=0

2i
i∑

j=0

2j

×
2n1−i−1∑

l=−2n1−i+1

1{2−j−1+8·2K−iI}(x)q2n1 |x−t−2−j−1−l/2n1 |,

D2,n(t, x) := C2−K
K−1∑

i=0

2i
i∑

j=0

2j

×
2n1−i−1∑

l=−2n1−i+1

1{2−j−1+8·2K−iI}c(x)q2n1 |x−t−2−j−1−l/2n1 |

we have
Dn(t, x) ≤ D1,n(t, x) +D2,n(t, x).

Then

D1,n(t, x) ≤ C2−K
K−1∑

i=0

2i
i∑

j=0

2j1{2−j−1+8·2K−iI}(x)

and so
�

(16I)c

sup
n≥2K

( �

I

D1,n(t, x) dt
)p
dx ≤ Cp2−2Kp

K−1∑

i=0

2ip
i∑

j=0

2jp2−i(25)

≤ Cp|I|.
By an easy calculation we conclude that

D2,n(t, x) ≤ C2−K
K−1∑

i=0

2i
i∑

j=0

2j

×
2n1−i−1∑

l=−2n1−i+1

1{2−j−1+8·2K−iI}c(x)qC2n1 |x−t0−2−j−1|

≤ C2n1−K
n1−1∑

i=0

i∑

j=0

2jqC2n1 |x−t0−2−j−1|

and
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�

I

D2,n(t, x) dt ≤ C|I|22n1

n1−1∑

i=0

i∑

j=0

2jqC2n1 |x−t0−2−j−1|.

Supposing again that x− t0 ∈ [2−k, 2−k+1) for some 1 ≤ k ≤ K, we get

C|I|22n1

n1−1∑

i=0

i∑

j=k

2jqC2n1 |x−t0−2−j−1| ≤ C|I|2
n1−1∑

i=0

2i−n122n1qC2n1 |x−t0|

≤ C|I|2
n1−1∑

i=0

2i−n1 |x− t0|−2

≤ C|I|2|x− t0|−2.

To investigate the remaining term, observe that

C|I|22n1

(n1−1)∧(k−1)∑

i=0

(k−1)∧i∑

j=0

2jqC2n1 |x−t0−2−j−1|

≤ C|I|2
(n1−1)∧(k−1)∑

j=0

(n1−1)∧(k−1)∑

i=j

2(j−n1)ε2j(1−ε)2n1(1+ε)qC2n1 |x−t0−2−j−1|

≤ C|I|2
k−1∑

j=0

2j(1−ε)|x− t0 − 2−j−1|−(1+ε),

where 0 < ε < 1 is to be chosen later. Moreover, if k < n then

C|I|22n1

n1−1∑

i=k

(k−1)∧i∑

j=0

2jqC2n1 |x−t0−2−j−1|

≤ C|I|2
k−1∑

j=0

n1−1∑

i=k

2(j−n1)ε2j(1−ε)|x− t0 − 2−j−1|−(1+ε)

≤ C|I|2
k−1∑

j=0

2j(1−ε)|x− t0 − 2−j−1|−(1+ε).

Since p < 1 we can choose ε such that (1 + ε)p < 1. Consequently,

(26)

�

(16I)c

sup
n≥2K

( �

I

D2,n(t, x) dt
)p
dx ≤ Cp|I|2p

�

(16I)c

|x− t0|−2p dx

+ Cp|I|2p
K∑

k=1

k−1∑

j=0

2j(1−ε)p
�

{x−t0∈[2−k,2−k+1)}
|x− t0 − 2−j−1|−(1+ε)p dx

≤ Cp|I|+ Cp|I|2p
K∑

k=1

k−1∑

j=0

2j(1−ε)p2−j(1−(1+ε)p) ≤ Cp|I|.
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Obviously,
En(t, x) = E1,n(t, x) + E2,n(t, x)

where

E1,n(t, x) := C2−n1

n1−1∑

i=K

2i
i∑

j=0

2j

×
2n1−i−1∑

l=−2n1−i+1

1{2−j−1+8I}(x)q2n1 |x−t−2−j−1−l/2n1 |,

E2,n(t, x) := C2−n1

n1−1∑

i=K

2i
i∑

j=0

2j

×
2n1−i−1∑

l=−2n1−i+1

1{2−j−1+8I}c(x)q2n1 |x−t−2−j−1−l/2n1 |.

We obtain

E1,n(t, x) ≤ C
K−1∑

j=0

2j1{2−j−1+8I}(x)

and so �

(16I)c

sup
n≥2K

( �

I

E1,n(t, x) dt
)p
dx ≤ Cp|I|.

Finally,

E2,n(t, x) ≤ C2−K
n1−1∑

i=K

2i
i∑

j=0

2j2n1−iqC2n1 |x−t0−2−j−1|

and �

(16I)c

sup
n≥2K

( �

I

E2,n(t, x) dt
)p
dx ≤ Cp|I|

can be shown as (26). This finishes the proof of (14).
For (16) suppose that n < 2K and N = 1. We estimate the last term of

(24) by

Fn(t, x) := C

n1−1∑

i=0

2i
i∑

j=0

2j
2n1−i−1∑

l=−2n1−i+1

q2n1 |x−t−2−j−1−l/2n1 |.

Comparing this expression with the definition of Dn(t, x) we obtain the
inequality �

(16I)c

sup
n<2K

( �

I

Fn(t, x) dt
)p
dx ≤ Cp|I|1−p,

which verifies (16). The proof of the lemma is complete.
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Lemma 2. If m ≥ 0 and |k| ≤ m+ 1 then

1�

0

1
n

n1−1∑

i=0

|L(m,k)
i (t, x)| dt ≤ C,(27)

1�

0

1
n
|M (m,k)

n (t, x)| dt ≤ C.(28)

Proof. Writing N = 0 in (18) and integrating in t we conclude that

1�

0

1
n

n1−1∑

i=0

|L(m,k)
i (t, x)| dt ≤ C2−n1

n1−1∑

i=0

2i
i∑

j=0

2j2−i ≤ C.

Inequality (28) can be proved similarly from (24).

Now we are ready to prove our main theorem.

Theorem 2. If m ≥ 0 and |k| ≤ m+ 1 then

(29) ‖σ(m,k)
∗ f‖p ≤ Cp‖f‖Hp (f ∈ Hp)

for all 1/2 < p <∞. In particular , if f ∈ L1 then

(30) λ(σ(m,k)
∗ f > %) ≤ C

%
‖f‖1 (% > 0).

Proof. Theorem 1 implies

|σ(m,k)
n f(x)| ≤ 2

n

n1∑

i=0

2i|C(m,k)
2i f(x)|+ 1

n

n1−1∑

i=0

∣∣∣
1�

0

L
(m,k)
i (t, x)f(t) dt

∣∣∣

+
1
n

∣∣∣
1�

0

M (m,k)
n (t, x)f(t) dt

∣∣∣.

We denote the second and third term on the right hand side by A(m,k)
n f(x)

and B
(m,k)
n f(x), respectively. Since C(m,k)

2n f = P
(m,k)
2n f , we have

|σ(m,k)
∗ f | ≤ 4P (m,k)

∗ f + sup
n∈N

A(m,k)
n f + sup

n∈N
B(m,k)
n f.

By Theorem A and (11) the proof of the theorem will be complete if we
show that the operators supn∈NA

(m,k)
n and supn∈NB

(m,k)
n are bounded on

L∞ and are p-quasi-local for each 1/2 < p < 1.
The boundedness follows from Lemma 2. Choose a p-atom a with support

I and assume that 2−K−1 < |I| ≤ 2−K (K ∈ N). It follows from the
definition of the atom and from (13) that
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�

(16I)c

sup
n≥2K

|A(m,k)
n a(x)|p dx

≤ |I|−1

�

(16I)c

sup
n≥2K

( �

I

1
n

n1−1∑

i=0

|L(m,k)
i (t, x)| dt

)p
dx ≤ Cp.

Now let n < 2K . If k = m + 1 then it is easy to see that L(m,k)
i (t, x)

(i = 0, . . . , n1− 1) and M (m,k)
n (t, x) is constant on the dyadic interval I and

so A(m,k)
n a = 0 and B

(m,k)
n a = 0 (n < 2K). Therefore we can suppose that

k ≤ m. For

A(x) :=
x

�

0

a(t) dt

we have suppA ⊂ I, A is zero at the endpoints of I and ‖A‖∞ ≤ |I|1−1/p.
Integrating by parts we can see that

A(m,k)
n a(x) =

1
n

n1−1∑

i=0

∣∣∣
�

I

DtL
(m,k)
i (t, x)A(t) dt

∣∣∣.

Thus (15) implies�

(16I)c

sup
n<2K

|A(m,k)
n a(x)|p dx

≤ |I|p−1

�

(16I)c

sup
n<2K

( �

I

1
n

n1−1∑

i=0

|DtL
(m,k)
i (t, x)| dt

)p
dx ≤ Cp,

which proves the p-quasi-locality of supn∈NA
(m,k)
n . Notice that by interpo-

lation we can suppose that p < 1. With the help of Lemma 1 the p-quasi-
locality of supn∈NB

(m,k)
n can be shown in the same way.

We note that (30) for the Walsh system is due to Schipp [9] (see also
Weisz [16]).

Observe that since P (m,k)
∗ is bounded on L∞ (see Weisz [14]), we have

‖σ(m,k)
∗ f‖∞ ≤ C‖f‖∞ (f ∈ L∞).

The usual density argument gives

Corollary 1. If m ≥ 0 and |k| ≤ m+ 1 then f ∈ L1 implies

σ(m,k)
n f → f a.e. as n→∞.

This convergence result for the Walsh system is due to Fine [7] (see also
Schipp [9] and Weisz [16]).
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Eötvös L. University
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