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A characterization of evolution operators

by

Naoki Tanaka (Okayama)

Abstract. A class of evolution operators is introduced according to the device of
Kato. An evolution operator introduced here provides a classical solution of the linear
equation u′(t) = A(t)u(t) for t ∈ [0, T ], in a general Banach space. The paper presents a
necessary and sufficient condition for the existence and uniqueness of such an evolution
operator.

Introduction. Throughout this paper, let X and Y be real Banach
spaces such that Y is densely and continuously embedded in X. After a
pioneering work on “hyperbolic” equations by Kato [5], many authors in-
vestigated sufficient conditions for the existence of an evolution operator on
X which provides a classical solution of the linear evolution equation

(E) u′(t) = A(t)u(t) for t ∈ [0, T ],

where {A(t) : t ∈ [0, T ]} is a family of closed linear operators in X satisfying
the following condition:

(A) For t ∈ [0, T ], D(A(t)) ⊃ Y and A(t) is strongly continuous on [0, T ]
in B(Y,X).

Among others, Kobayasi [7] obtained a fundamental and important gener-
ation theorem of evolution operators under the stability condition in the
sense of Kato. For some related results we refer to the papers by Dorroh [1],
Ishii [4], Kato [6], and Yagi [12] and the books by Goldstein [2], Pazy [9]
and Tanabe [10].

Recently, the author [11] has proposed a new stability condition from
the viewpoint of finite difference approximations, and showed that evolu-
tion operators can be generated even if the new stability condition is as-
sumed instead of Kato’s stability condition. So far sufficient conditions for
the existence of evolution operators associated with (E) have been investi-
gated extensively. A Hille–Yosida type theory for evolutions was discussed
by Kōmura [8] and Herod and McKelvey [3] (see also the references cited
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therein), but it seems to the author that there is no characterization for the
Kato class of evolution operators.

We are interested in finding a necessary and sufficient condition for the
existence and uniqueness of an evolution operator introduced by Kato. In
Section 1, we introduce a class of evolution operators which provide us with
classical solutions of (E), according to the device of Kato [6], and give a
necessary condition for such evolution operators (which are called solution
operators) to exist (Proposition 1.2). Section 2 contains the construction of
approximate solutions for (E) which is used to get an approximation of the
desired evolution operator. Section 3 presents the main theorem (Theorem
3.1) and an extension of the main results of [6, 11] (Corollary 3.3).

1. A class of evolution operators. Throughout this paper, we use
another Banach space Z and a norm continuous family {S(t) : t ∈ [0, T ]} in
B(Y,Z) satisfying the following condition:

(S) There exist CS ≥ cS > 0 such that

cS‖u‖Y ≤ ‖u‖X + ‖S(t)u‖Z ≤ CS‖u‖Y
for u ∈ Y and t ∈ [0, T ].

Moreover, we assume that there exists a strongly continuous nonexpansive
homomorphism Ξ of the algebra B(X) into B(Z); that is, Ξ is an algebraic
homomorphism such that ΞI = IZ , ‖ΞB‖Z ≤ ‖B‖X for B ∈ B(X), and
if {Bn} is a sequence in B(X), then limn→∞Bnx = Bx for x ∈ X implies
limn→∞(ΞBn)z = (ΞB)z for z ∈ Z.

An evolution operator {U(t, s)} in B(X) defined on the triangle

∆ = {(t, s) : 0 ≤ s ≤ t ≤ T}
satisfying the following properties was introduced implicitly in Kato’s pa-
per [6]:

(E1) U(t, r)U(r, s) = U(t, s) and U(t, t) = I for (t, r), (r, s) ∈ ∆.
(E2) U(t, s) is strongly continuous on ∆ in B(X).
(E3) U(t, s)(Y ) ⊂ Y for (t, s) ∈ ∆, and U(t, s) is strongly continuous on

∆ in B(Y ).
(E4) For (s, y) ∈ [0, T )× Y , U(t, s)y is differentiable in t ∈ [s, T ], and

(∂/∂t)U(t, s)y = A(t)U(t, s)y for (t, s) ∈ ∆ and y ∈ Y .
(E5) The integral equality

S(t)U(t, s)y = ΞU(t, s)S(s)y +
t�

s

ΞU(t, σ)(B(σ)S(σ) + C(σ))U(σ, s)y dσ
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holds for (t, s) ∈ ∆ and y ∈ Y , where {B(t) : t ∈ [0, T ]} is a
strongly continuous family in B(Z) and {C(t) : t ∈ [0, T ]} is a
strongly continuous family in B(X,Z).

Proposition 1.1. An evolution operator satisfying (E1) through (E5) is
uniquely determined by {A(t) : t ∈ [0, T ]}.

In this paper, an evolution operator satisfying conditions (E1) through
(E5) is called a solution operator governed by {A(t) : t ∈ [0, T ]}.

Proof of Proposition 1.1. Let y ∈ Y and (t, s) ∈ ∆ with t 6= s. Then we
have, for h > 0 with (t, s+ h) ∈ ∆,

(U(t, s+ h)y − U(t, s)y)/h = U(t, s+ h)(y − U(s+ h, s)y)/h,

and as h ↓ 0 the right-hand side tends to −U(t, s)A(s)y, by condition (E4).
Since U(t, s)A(s)y is continuous on ∆ in X by condition (E2), we see that for
(t, y) ∈ (0, T ]×Y , U(t, s)y is differentiable in s ∈ [0, t] and (∂/∂s)U(t, s)y =
−U(t, s)A(s)y for (t, s) ∈ ∆ and y ∈ Y .

Now, let {V (t, s) : (t, s) ∈ ∆} be another evolution operator on X satis-
fying (E1) through (E5) with U(t, s) replaced by V (t, s). Then we have, by
the fact shown above and (E4),

(∂/∂σ)U(t, σ)V (σ, s)y = U(t, σ)(−A(σ) +A(σ))V (σ, s)y = 0

for (t, s) ∈ ∆ and y ∈ Y ; hence U(t, s) = V (t, s) for (t, s) ∈ ∆, because Y is
dense in X.

The purpose of this section is to investigate some properties deduced
from conditions (E1) through (E5).

Proposition 1.2. Let {U(t, s) : (t, s) ∈ ∆} be a solution operator gov-
erned by {A(t) : t ∈ [0, T ]} such that ‖U(t, s)‖X ≤ M for (t, s) ∈ ∆. Then
there exist ε0 > 0 and a family {J(t, s)} in B(X) defined on the set ∆0 =
{(t, s) ∈ ∆ : |t− s| ≤ ε0} such that the following conditions are satisfied :

(A1) The estimate ∥∥∥
k∏

i=1

J(ti, ti−1)
∥∥∥
X
≤M

holds for every finite sequence {ti}ki=0 such that (ti, ti−1) ∈ ∆0 for
i = 1, . . . , k.

(A2) J(t, s)(Y ) ⊂ Y for (t, s) ∈ ∆0, and J(t, s) is strongly continuous on
∆0 in B(Y ).

(A3) There exists a strongly continuous family {E1(t, s) : (t, s) ∈ ∆0} in
B(Y,X) satisfying E1(t, t) = 0 for t ∈ [0, T ] such that

(1.1) J(t, s)y = y + (t− s)A(t)J(t, s)y + (t− s)E1(t, s)y

for (t, s) ∈ ∆0 and y ∈ Y .
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(A4) There exists a strongly continuous family {E2(t, s) : (t, s) ∈ ∆0} in
B(Y,Z) satisfying E2(t, t) = 0 for t ∈ [0, T ] such that

S(t)J(t, s)y = ΞJ(t, s)S(s)y + (t− s)(B(t)S(t) + C(t))J(t, s)y(1.2)

+ (t− s)E2(t, s)y

for (t, s) ∈ ∆0 and y ∈ Y .

Proof. Set ε0 = T and ∆0 = ∆, and define J(t, s) = U(t, s) for (t, s) ∈
∆0. To check (A1), let {ti}ki=0 be such that (ti, ti−1) ∈ ∆0 for i = 1, . . . , k.
By condition (E1) we have

∏k
i=1 J(ti, ti−1) = J(tk, t0), from which condition

(A1) is deduced. Property (A2) is a direct consequence of (E3). Define E1 :
∆0 → B(Y,X) by

E1(t, s)y =
1

t− s

t�

s

(A(r)U(r, s)y − A(t)U(t, s)y) dr

for (t, s) ∈ ∆0 with t 6= s, and E1(t, t) = 0 for t ∈ [0, T ]. Property (A3)
follows easily from condition (E4). By condition (E5), a simple computation
yields that (A4) is satisfied with E2 : ∆0 → B(Y,Z) defined by

E2(t, s)y =
1

t− s

t�

s

(ΞU(t, r)(B(r)S(r) + C(r))U(r, s)y

− (B(t)S(t) + C(t))U(t, s)y) dr

for (t, s) ∈ ∆0 with t 6= s, and E2(t, t) = 0 for t ∈ [0, T ].

Proposition 1.3. Assume that J(t, t) = I for t ∈ [0, T ]. Then condition
(A1) is equivalent to the following condition:

(a1) There exists a family {Nt(·) : t ∈ [0, T ]} of norms in X such that

(i) ‖x‖X ≤ Nt(x) ≤M‖x‖X for x ∈ X and t ∈ [0, T ],
(ii) Nt(J(t, s)x) ≤ Ns(x) for x ∈ X and (t, s) ∈ ∆0.

Proof. Assume that (a1) is satisfied, and let {ti}ki=0 be such that (ti, ti−1)
∈ ∆0 for i = 1, . . . , k. By (ii) we have Nti(J(ti, ti−1)x) ≤ Nti−1(x) for x ∈ X
and i = 1, . . . , k, and so Ntk(

∏k
i=1 J(ti, ti−1)x) ≤ Nt0(x) for x ∈ X. This

fact and (i) together imply condition (A1).
Conversely, assume that (A1) holds, and for each t ∈ [0, T ] define a norm

Nt(·) in X by

Nt(x) = sup
{∥∥∥

k∏

i=1

J(ti, ti−1)x
∥∥∥
X

}
,

where the supremum is taken over all finite sequences {ti}ki=0 such that
t = t0 ≤ t1 ≤ . . . ≤ tk ≤ T and (ti, ti−1) ∈ ∆0 for i = 1, . . . , k. Let
t ∈ [0, T ] and consider the sequence {ti}ki=0 with ti = t for i = 0, 1, . . . , k.
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Then
∏k
i=0 J(ti, ti−1) = I, because J(t, t) = I for t ∈ [0, T ]. This implies

that ‖x‖X ≤ Nt(x) for x ∈ X. The fact that Nt(x) ≤ M‖x‖X for x ∈ X is
deduced easily from condition (A1).

To check (ii), let x ∈ X and (t, s) ∈ ∆0. For a finite sequence {ti}ki=0
with t = t0 ≤ t1 ≤ . . . ≤ tk ≤ T and (ti, ti−1) ∈ ∆0 for i = 1, . . . , k, the
sequence {sl}k+1

l=0 , defined by s0 = s and sl = tl−1 for l = 1, . . . , k+1, satisfies
s = s0 ≤ s1 ≤ . . . ≤ sk+1 ≤ T and (sl, sl−1) ∈ ∆0 for l = 1, . . . , k + 1. By
the definition of Ns(·), we have

∥∥∥
k∏

i=1

J(ti, ti−1)J(t, s)x
∥∥∥
X

=
∥∥∥
k+1∏

l=1

J(sl, sl−1)x
∥∥∥
X
≤ Ns(x);

hence Nt(J(t, s)x) ≤ Ns(x) for x ∈ X.

Proposition 1.4. Assume that condition (A1) is satisfied and J(t, s)(Y )
⊂ Y for (t, s) ∈ ∆0. Then conditions (A2) through (A4) hold if and only if
the following two conditions are satisfied :

(i) There exists a strongly continuous family {E3(t, s) : (t, s) ∈ ∆0} in
B(Y,X) satisfying E3(t, t) = 0 for t ∈ [0, T ] such that

(1.3) J(t, s)y = y + (t− s)A(s)y + (t− s)E3(t, s)y

for (t, s) ∈ ∆0 and y ∈ Y .
(ii) There exists a strongly continuous family {E4(t, s) : (t, s) ∈ ∆0} in

B(Y,Z) satisfying E4(t, t) = 0 for t ∈ [0, T ] such that

S(t)J(t, s)y = ΞJ(t, s)S(s)y + (t− s)ΞJ(t, s)(B(s)S(s) + C(s))y(1.4)

+ (t− s)E4(t, s)y

for (t, s) ∈ ∆0 and y ∈ Y .

Proof. Assume that conditions (A2) through (A4) are satisfied, and set

E3(t, s)y = E1(t, s)y − A(s)y + A(t)J(t, s)y

for (t, s) ∈ ∆0 and y ∈ Y . Equation (1.1) with t = s implies J(t, t) = I
for t ∈ [0, T ]. Clearly, E3(t, t) = 0 for t ∈ [0, T ], and the strong continuity
of E3(t, s) on ∆0 in B(Y,X) is deduced from condition (A2). By condition
(A3) we have (1.3). To prove (ii), set

E4(t, s)y = (B(t)S(t)+C(t))J(t, s)y−ΞJ(t, s)(B(s)S(s)+C(s))y+E2(t, s)y

for (t, s) ∈ ∆0 and y ∈ Y . Equation (1.4) is clearly satisfied. By condition
(A1) and the density of Y in X we deduce from (A2) that J(t, s) is strongly
continuous on ∆0 in B(X). This fact and the strong continuity of Ξ together
imply the strong continuity of ΞJ(t, s) on∆0 inB(Z). It follows that E4(t, s)
is strongly continuous on ∆0 in B(Y,Z).



290 N. Tanaka

Conversely, assume that (i) and (ii) are satisfied. The strong continuity of
J(t, s) in B(X) is deduced from (1.3), since ‖J(t, s)‖X is uniformly bounded
on ∆0 and Y is dense in X; hence ΞJ(t, s) is strongly continuous on ∆0 in
B(Z), by the strong continuity of Ξ. This fact together with (1.4) implies
the strong continuity of S(t)J(t, s) on ∆0 in B(Y,Z). Condition (A2) is
proved by using condition (S) and the norm continuity of S(t) on [0, T ] in
B(Y,Z). In a way similar to the argument in the preceding paragraph, (A3)
and (A4) are easily checked.

2. Discrete scheme for evolution operators. In this section we con-
struct a difference scheme to get solution operators governed by {A(t) : t ∈
[0, T ]}. For this purpose, conditions (A1) through (A4) are assumed through-
out this section.

Lemma 2.1. Let {ti}li=0 be a sequence such that (ti, ti−1) ∈ ∆0 for i =
1, . . . , l. Let x0 ∈ Y and set xi =

∏i
j=1 J(tj , tj−1)x0 for 1 ≤ i ≤ l. Then

xi ∈ Y for 1 ≤ i ≤ l, and there exist MY ≥ 1 and β ≥ 0 such that

(2.1) ‖xi‖Y ≤MY exp(β(ti − t0))‖x0‖Y
for 1 ≤ i ≤ l.

Proof. Let 1 ≤ i ≤ l and 1 ≤ j ≤ i, and set aj = ‖xj‖X + ‖S(tj)xj‖Z .
Using (1.4) with (t, s) = (tj , tj−1) and y = xj−1, we find

∥∥∥
i∏

k=j+1

ΞJ(tk, tk−1)S(tj)xj −
i∏

k=j

ΞJ(tk, tk−1)S(tj−1)xj−1

∥∥∥
Z

≤ (tj − tj−1)M((|||B|||Z ∨ |||C|||X,Z)aj−1 + |||E4|||Y,Z‖xj−1‖Y ).

Here we have used condition (A1) and the nonexpansiveness of the algebraic
homomorphism Ξ. By condition (S), the right-hand side of the inequality
above is bounded by β(tj − tj−1)aj−1, where β = M((|||B|||Z ∨ |||C|||X,Z) +
c−1
S |||E4|||Y,Z). We sum up the inequalities obtained for j = 1, . . . , i and

combine the resulting inequality with the estimate ‖xi‖X ≤M‖x0‖X , which
follows from (A1). This yields ai ≤ Ma0 +

∑i
j=1 β(tj − tj−1)aj−1. Denote

by bi the right-hand side. Then ai ≤ bi and

bi ≤ (1 + β(ti − ti−1))bi−1 ≤ exp(β(ti − ti−1))bi−1;

hence ai ≤ M exp(β(ti − t0))a0. The desired estimate (2.1) is obtained by
using condition (S).

Lemma 2.2. Let {ti}∞i=0 be a sequence such that (ti, ti−1) ∈ ∆0 for i ≥ 1.
Then the limit limi→∞

∏i
l=k+1ΞJ(tl, tl−1)z exists in Z, for all z ∈ Z and

k ≥ 0.
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Proof. Let y∈Y and k≥0 be an integer, and set xi=
∏i
l=k+1 J(tl, tl−1)y

for i ≥ k + 1, and xk = y. By condition (A3) we have

xl = xl−1 + (tl − tl−1)(A(tl)xl + E1(tl, tl−1)xl−1) for l ≥ k + 1.

We use the estimate (2.1) to find

‖xi − xj‖X ≤ (ti − tj)(|||A|||Y,X + |||E1|||Y,X)MY exp(βT )‖y‖Y
for i ≥ j ≥ k + 1. This implies that {xi} is a Cauchy sequence in X
because {ti}∞i=0 is an increasing bounded sequence (and so it is conver-
gent). Condition (A1) and the density of Y in X yield that the limit
limi→∞

∏i
l=k+1 J(tl, tl−1)x exists in X, for all x ∈ X. The desired claim

follows readily from the strong continuity of Ξ.

Proposition 2.3. Let (s, y) ∈ [0, T ) × Y and ε > 0. Then there exists
a sequence {ti}Ni=0 which has the following properties:

(i) s = t0 < t1 < . . . < tN = T .
(ii) ti − ti−1 ≤ ε and (ti, ti−1) ∈ ∆0 for i = 1, . . . , N .

(iii) xi :=
∏i
l=1 J(tl, tl−1)y ∈ Y for i = 1, . . . , N .

(iv) ‖xi − xi−1 − (ti − ti−1)A(ti)xi‖X ≤ (ti − ti−1)ε for i = 1, . . . , N ,
where x0 = y.

(v) ‖S(ti)xi − ΞJ(ti, ti−1)S(ti−1)xi−1 −
(ti − ti−1)(B(ti)S(ti) + C(ti))xi‖Z ≤ (ti − ti−1)ε for i = 1, . . . , N .

(vi) ‖xi − xi−1‖Y ≤ ε for i = 1, . . . , N .
(vii) ‖(A(t)− A(ti−1))xi−1‖X ≤ ε for t ∈ [ti−1, ti] and i = 1, . . . , N .

Proof. Set (t0, x0) = (s, y) and assume that a sequence {ti}k−1
i=0 has been

chosen so that properties (i) through (vii) hold for 0 ≤ i ≤ k−1, where k ≥ 1
is an integer. If tk−1 = T then the proof is complete. If tk−1 < T then we
define hk to be the largest number satisfying the following five conditions:

(2.2) 0 ≤ hk ≤ ε and (tk−1 + hk, tk−1) ∈ ∆0,

(2.3) ‖E1(tk−1 + hk, tk−1)xk−1‖X ≤ ε,
(2.4) ‖E2(tk−1 + hk, tk−1)xk−1‖Z ≤ ε,
(2.5) ‖J(tk−1 + hk, tk−1)xk−1 − xk−1‖Y ≤ ε,
(2.6) ‖(A(t)− A(tk−1))xk−1‖X ≤ ε for t ∈ [tk−1, tk−1 + hk].

Since xk−1 ∈ Y , we have hk > 0 by condition (A2) and our assumption on
strong continuity.

Now, we define tk = tk−1 +hk and xk = J(tk−1 +hk, tk−1)xk−1. Proper-
ties (iv) and (v) follow from conditions (A3) and (A4) respectively, by using
(2.3) and (2.4). All the other properties are clearly satisfied with i = k. We
have only to prove that there exists an integer N such that tN = T . Assume
to the contrary that ti < T for all i ≥ 1, and put t = limi→∞ ti. We first
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show that the sequence {xi}∞i=1 is convergent in Y as i → ∞. Using the
estimate (2.1) we have, by (iv),

‖xi − xi−1‖X ≤ (|||A|||Y,XMY exp(βT )‖y‖Y + ε)(ti − ti−1)

for i ≥ 1, which implies that {xi}∞i=1 is a Cauchy sequence in X. Let k < i
and k + 1 ≤ j ≤ i. By (v) we have
∥∥∥

i∏

l=j+1

ΞJ(tl, tl−1)S(tj)xj −
i∏

l=j

ΞJ(tl, tl−1)S(tj−1)xj−1

∥∥∥
Z

≤ (tj − tj−1)M((|||B|||Z ∨ |||C|||X,Z)CS‖xi‖Y + ε).

Here we have used the nonexpansiveness of Ξ and condition (A1). Since
‖xi‖Y ≤MY exp(βT )‖y‖Y for i ≥ 1, we find

∥∥∥S(ti)xi −
i∏

l=k+1

ΞJ(tl, tl−1)S(tk)xk
∥∥∥
Z

≤ (ti − tk)M((|||B|||Z ∨ |||C|||X,Z)CSMY exp(βT )‖y‖Y + ε),

by summing up the inequalities above for k + 1 ≤ j ≤ i. By Lemma 2.2 we
have

lim sup
i,j→∞

‖S(ti)xi − S(tj)xj‖Z

≤ 2(t− tk)M((|||B|||Z ∨ |||C|||X,Z)CSMY exp(βT )‖y‖Y + ε),

which tends to zero as k →∞. We therefore deduce from the norm continuity
of S(t) on [0, T ] in B(Y,Z) and condition (S) that the sequence {xi}∞i=1 is
convergent in Y as i→∞.

Now, we turn to the proof of the desired claim. For i ≥ 1 we set γi =
t − ti−1. Clearly, hi < γi for all i ≥ 1. Moreover, limi→∞ γi = 0, which
implies that 0 ≤ γi ≤ ε and (ti−1 + γi, ti−1) ∈ ∆0 for sufficiently large i. By
our assumption on strong continuity and the convergence of {xi} in Y , there
exists an integer i0 ≥ 1 such that if i ≥ i0 then conditions (2.2) through (2.5)
are satisfied with hk and k replaced by γi and i. We then deduce from the
definition of hi that for each i ≥ i0 there exists t̂i ∈ [ti−1, ti−1 +γi] such that
‖(A(t̂i)−A(ti−1))xi−1‖X > ε. Since t = limi→∞ t̂i, the strong continuity of
A(t) on [0, T ] in B(Y,X) implies ε ≤ 0, which is a contradiction.

3. A characterization of evolution operators. The main theorem
of this paper is given by

Theorem 3.1. Let {A(t) : t ∈ [0, T ]} be a family of closed linear opera-
tors in X satisfying condition (A). Then there exists a unique solution op-
erator {U(t, s) : (t, s) ∈ ∆} on X, satisfying ‖U(t, s)‖X ≤M for (t, s) ∈ ∆,
governed by {A(t) : t ∈ [0, T ]} if and only if there exist ε0 > 0 and a family



Characterization of evolution operators 293

{J(t, s)} in B(X) defined on the set ∆0 = {(t, s) ∈ ∆ : |t − s| ≤ ε0} such
that conditions (A1) through (A4) of Proposition 1.2 are satisfied.

It has already been shown that conditions (A1) through (A4) are neces-
sary for the existence of a solution operator governed by {A(t) : t ∈ [0, T ]}.
Now, to prove the sufficiency assume that conditions (A1) through (A4) are
satisfied.

Let P = {0 = s0 < s1 < . . . < sK = T} be a partition of [0, T ] such that
(si, si−1) ∈ ∆0 for i = 1, . . . ,K. For such a partition we define an operator
U(t, s;P ) on ∆ by

U(t, s;P ) =
i∏

l=p+1

J(sl, sl−1)

whenever t ∈ (si−1, si] ∩ [0, T ] and s ∈ (sp−1, sp] ∩ [0, T ]. Here and sub-
sequently, we set s−1 = −∞ for convenience. If F is an operator-valued
function on [0, T ] then we define a step function F (t;P ) by

F (t;P ) = F (si) for t ∈ (si−1, si] ∩ [0, T ] and i = 1, . . . ,K.

Lemma 3.2. Let (s, y) ∈ [0, T ) × Y and ε > 0. Let {(ti, xi)}Ni=0 be a
sequence in [s, T ] × Y as in Proposition 2.3, and define a step function
u : [s, T ]→ Y by

u(t) =
{
x0 for t = s,
xi for t ∈ (ti−1, ti] and i = 1, . . . , N .

If P = {0 = s0 < s1 < . . . < sK = T} is a partition of [0, T ] satisfying

(3.1) |P | := max
1≤k≤K

(sk − sk−1) ≤ min
1≤i≤N

(ti − ti−1),

then

(3.2) ‖u(t)− U(t, s;P )y‖X
≤ {CS +M((4 + 3|||A|||Y,X + |||E3|||Y,X)T + CS)}ε

+MT max
1≤i≤N

%(xi−1; |P |)

for t ∈ [s, T ], where for each w ∈ Y and r ≥ 0, %(w; r) is defined by

%(w; r) = sup{‖E3(t, s)w‖X : |t− s| ≤ r and (t, s) ∈ ∆0}.
Proof. Since P is a partition of [0, T ], there exists p ∈ {0, 1, . . . ,K}

such that t0 = s ∈ (sp−1, sp] ∩ [0, T ]. We note that p 6= K by (3.1). For
k = p+1, . . . ,K we define yk = J(sk, sk−1)yk−1 and yp = x0 = y. Moreover,
we use an auxiliary function v : [s, T ]→ Y defined by

v(t) = xi−1 + (t− ti−1)(xi − xi−1)/(ti − ti−1)

for t ∈ [ti−1, ti] and i = 1, . . . , N.
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If sk ∈ [ti−1, ti] for some i ∈ {1, . . . , N} then we have, for l = i− 1 and i,

(3.3) ‖v(sk)− xl‖Y = |sk − tl| · ‖xi − xi−1‖Y /(ti − ti−1) ≤ ε.
Here we have used (vi) of Proposition 2.3. Since sp ∈ [t0, t1] we have, by
(3.3) and condition (S),

(3.4) ‖v(sp)− yp‖X ≤ CSε.
For k = p+ 1, . . . ,K we set

zk = v(sk)− v(sk−1)− (sk − sk−1)(A(sk−1) + E3(sk, sk−1))v(sk−1).

Since v(sk) = J(sk, sk−1)v(sk−1) + zk by (1.3), we have

v(sk)− yk = J(sk, sk−1)(v(sk−1)− yk−1) + zk;

hence it is shown inductively that

(3.5) v(sk)− yk =
k∏

l=p+1

J(sl, sl−1)(v(sp)− yp) +
k∑

j=p+1

k∏

l=j+1

J(sl, sl−1)zj

for k = p, . . . ,K. We need to estimate zk for k = p + 1, . . . ,K. So, let
k ∈ {p+ 1, . . . ,K}. By (3.1), either (i) there exists i ∈ {1, . . . , N} such that
sk−1, sk ∈ [ti−1, ti], or else (ii) there exists i ∈ {1, . . . , N − 1} such that
sk−1 ∈ [ti−1, ti] and sk ∈ [ti, ti+1]. In both cases we have

(3.6) ‖(xi − xi−1)/(ti − ti−1)− (A(sk−1) + E3(sk, sk−1))v(sk−1)‖X
≤ (3 + 2|||A|||Y,X + |||E3|||Y,X)ε+ max

1≤i≤N
%(xi−1; |P |).

Indeed, since

A(ti)xi − (A(sk−1) + E3(sk, sk−1))v(sk−1)

= A(ti)(xi − xi−1) + (A(ti)− A(ti−1))xi−1 + (A(ti−1)− A(sk−1))xi−1

+ (A(sk−1) + E3(sk, sk−1))(xi−1 − v(sk−1))−E3(sk, sk−1)xi−1,

we have, by (vi) and (vii) of Proposition 2.3 and (3.3),

(3.7) ‖A(ti)xi − (A(sk−1) + E3(sk, sk−1))v(sk−1)‖X
≤ (2 + 2|||A|||Y,X + |||E3|||Y,X)ε+ max

1≤i≤N
%(xi−1; |P |).

This estimate and (iv) of Proposition 2.3 together imply (3.6).
We begin by considering the case of (ii). By the definition of v, zk is

written as

(v(sk)− v(ti)) + (v(ti)− v(sk−1))

− (sk − sk−1)(A(sk−1) + E3(sk, sk−1))v(sk−1),
or

(sk − ti)((xi+1 − xi)/(ti+1 − ti)− (A(sk−1) + E3(sk, sk−1))v(sk−1))

+ (ti − sk−1)((xi − xi−1)/(ti − ti−1)− (A(sk−1) +E3(sk, sk−1))v(sk−1)).
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Since (xi+1−xi)/(ti+1−ti)−A(ti)xi = (xi+1−xi)/(ti+1−ti)−A(ti+1)xi+1+
A(ti+1)(xi+1 − xi) + (A(ti+1)− A(ti))xi, we have, by (iv), (vi) and (vii) of
Proposition 2.3 and (3.7),

‖(xi+1 − xi)/(ti+1 − ti)− (A(sk−1) + E3(sk, sk−1))v(sk−1)‖X
≤ (4 + 3|||A|||Y,X + |||E3|||Y,X)ε+ max

1≤i≤N
%(xi−1; |P |).

By this estimate together with (3.6) we find

‖zk‖X ≤ (4 + 3|||A|||Y,X + |||E3|||Y,X)(sk − sk−1)ε(3.8)

+ (sk − sk−1) max
1≤i≤N

%(xi−1; |P |).

In the case of (i), we deduce from (3.6) that (3.8) is also valid, because
zk = (sk − sk−1)((xi−xi−1)/(ti− ti−1)− (A(sk−1) +E3(sk, sk−1))v(sk−1)).
We use condition (A1), (3.4) and (3.8) to estimate the quantity (3.5). This
yields

‖v(sk)− yk‖X ≤M{((4 + 3|||A|||Y,X + |||E3|||Y,X)(sk − sp) + CS)ε(3.9)

+ (sk − sp) max
1≤i≤N

%(xi−1; |P |)}

for k = p, . . . ,K.
Now, we turn to the proof of (3.2). Let t ∈ (s, T ]. Then there exists k ∈

{1, . . . ,K} such that t ∈ (sk−1, sk]. Since s ∈ (sp−1, sp] we have U(t, s;P )y =
yk. If sk ∈ (ti−1, ti] for some i ∈ {1, . . . , N} then u(t) = xi−1 or xi. It follows
from (3.3) that ‖v(sk)−u(t)‖X ≤ CSε. The desired estimate (3.2) is obtained
by combining this estimate and (3.9).

Proof of Theorem 3.1. Let x ∈ X, (s, y) ∈ [0, T ) × Y and ε > 0. If P
and P̂ are two partitions of [0, T ] then by Lemma 3.2 we have

lim sup
|P |,|P̂ |→0

(sup{‖U(t, s;P )x− U(t, s; P̂ )x‖X : t ∈ [s, T ]})

≤ 2{CS +M((4 + 3|||A|||Y,X + |||E3|||Y,X)T + CS)}ε+ 2M‖x− y‖X .
This implies that for x ∈ X and (t, s) ∈ ∆, the limit

U(t, s)x = lim
|P |→0

U(t, s;P )x

exists independently of the choice of the partition P of [0, T ]. Property (E1)
is satisfied because U(t, t;P ) = I and U(t, r;P )U(r, s;P ) = U(t, s;P ) for
(t, r), (r, s) ∈ ∆.

To prove (E2), let w ∈ Y and P = {0 = s0 < s1 < . . . < sK = T}
be a partition of [0, T ] such that (si, si−1) ∈ ∆0 for i = 1, . . . ,K. For
0 ≤ k ≤ j < i ≤ K we find, by using (1.1) with (t, s) = (sp, sp−1) and
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y =
∏p−1
l=k+1 J(sl, sl−1)w,

∥∥∥
p∏

l=k+1

J(sl, sl−1)w −
p−1∏

l=k+1

J(sl, sl−1)w
∥∥∥
X

≤ (sp − sp−1)(|||A|||Y,X + |||E1|||Y,X)MY exp(βT )‖w‖Y
for p = j + 1, . . . , i. Summing up these inequalities we have

(3.10) ‖U(t, s;P )w − U(t̂, s;P )w‖X
≤MY exp(βT )(|t− t̂|+ 2|P |)(|||A|||Y,X + |||E1|||Y,X)‖w‖Y

for (t, s), (t̂, s) ∈ ∆. In a way similar to the derivation of (3.10), we use (1.3)
with (t, s) = (sk, sk−1) and y = w to obtain

‖U(t, s;P )w− U(t, ŝ;P )w‖X ≤M(|s− ŝ|+ 2|P |)(|||A|||Y,X + |||E3|||Y,X)‖w‖Y
for (t, s), (t, ŝ) ∈ ∆. This estimate and (3.10) together imply the strong
continuity of U(t, s) on ∆ in B(X).

Now, to check properties (E3) through (E5) let (s, y) ∈ [0, T ) × Y and
ε > 0. If s > 0 then we choose a sequence {sεk}lεk=0 such that 0 = sε0 < sε1 <
. . . < sεlε = s and that sεk − sεk−1 ≤ ε and (sεk, s

ε
k−1) ∈ ∆0 for k = 1, . . . , lε.

We denote by Pε = {0 = sε0 < sε1 < . . . < sεKε = T} the partition of [0, T ]
which is constructed by appending points ti (i = 1, . . . , N) in [s, T ] satisfying
properties (i) through (vii) of Proposition 2.3 to the sequence {sεk} above.
We then deduce from the first part of the proof of the theorem that

(3.11) U(t, r)x = lim
ε↓0

U(t, r;Pε)x

for x ∈ X and (t, r) ∈ ∆. By (v) of Proposition 2.3 we have

∥∥∥
i∏

l=j+1

ΞJ(tl, tl−1)S(tj)xj −
i∏

l=j

ΞJ(tl, tl−1)S(tj−1)xj−1

− (tj − tj−1)
i∏

l=j+1

ΞJ(tl, tl−1)(B(tj)S(tj) + C(tj))xj
∥∥∥
Z
≤M(tj − tj−1)ε

for 1 ≤ j ≤ i. Summing up these inequalities we find
∥∥∥S(t;Pε)U(t, s;Pε)y − ΞU(t, s;Pε)S(s)y

−
ti�

s

ΞU(t, σ;Pε)(B(σ;Pε)S(σ;Pε)+C(σ;Pε))U(σ, s;Pε)y dσ
∥∥∥
Z
≤M(ti−s)ε

for t ∈ (ti−1, ti] ∩ [0, T ] where i ≥ 0 is an integer. On the other hand,
by a fixed point argument there exists a unique strongly continuous fam-
ily {V (t, r) : (t, r) ∈ ∆} in B(Y,Z) satisfying the Volterra type integral
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equation

V (t, r)w = ΞU(t, r)S(r)w +
t�

r

ΞU(t, σ)(B(σ)V (σ, r)w + C(σ)U(σ, r)w) dσ

for w ∈ Y and (t, r) ∈ ∆. Now, set

ϕ(t) = lim sup
ε↓0

‖S(t;Pε)U(t, s;Pε)y − V (t, s)y‖Z

for t ∈ [s, T ]. Then ϕ(t) ≤ M |||B|||Z � ts ϕ(σ) dσ for t ∈ [s, T ]. Here we have
used the fact that limε↓0 ΞU(t, r;Pε)z = ΞU(t, r)z in Z, for z ∈ Z and
(t, r) ∈ ∆, which follows from (3.11) and the strong continuity of Ξ. An
application of Gronwall’s inequality gives ϕ(t) = 0 for t ∈ [s, T ]. This
fact together with the norm continuity of S(t) implies that for t ∈ [s, T ],
limε↓0 U(t, s;Pε)y = U(t, s)y in Y and S(t)U(t, s)y = V (t, s)y. Properties
(E3) and (E5) are thus checked.

To prove (E4), we sum up (iv) of Proposition 2.3 from i = 1 to i = k.
This yields

∥∥∥U(t, s;Pε)y − y −
k∑

i=1

ti�

ti−1

A(σ;Pε)U(σ, s;Pε)y dσ
∥∥∥
X
≤ (tk − s)ε

for t ∈ (tk−1, tk] ∩ [0, T ] where k ≥ 0 is an integer. The desired property
(E4) is obtained by taking the limit as ε ↓ 0.

Finally, we give an extension of [11, Main Theorem] and [6, Appendix C].
According to Kato [6] we assume that the family {S(t) : t ∈ [0, T ]} also

has the property that for y ∈ Y , S(t)y is differentiable on [0, T ] in Z and

(3.12)
d

dt
S(t)y = Q(t)S(t)y +R(t)y for t ∈ [0, T ],

where {Q(t) : t ∈ [0, T ]} is a strongly continuous family in B(Z) and {R(t) :
t ∈ [0, T ]} is a strongly continuous family in B(X,Z). (The norm continuity
of S(t) on [0, T ] in B(Y,Z) follows automatically from (3.12).)

We make the following assumption on the stability condition, which was
proposed in [11] from the viewpoint of finite difference approximations.

(H1) There exist M ≥ 1 and λ0 > 0 such that (I − (ti − ti−1)A(ti))−1 ∈
B(X) and ‖∏k

i=1(I − (ti − ti−1)A(ti))−1‖X ≤ M for every finite
sequence {ti}ki=0 with 0 ≤ t0 < t1 < . . . < tk ≤ T and ti− ti−1 ≤ λ0

for i = 1, . . . , k.

Remark. By Proposition 1.3, condition (H1) is equivalent to the follow-
ing condition: There exist M ≥ 1, λ0 > 0 and a family {Nt(·) : t ∈ [0, T ]}
of norms in X such that

(i) ‖x‖X ≤ Nt(x) ≤M‖x‖X for t ∈ [0, T ] and x ∈ X;
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(ii) Nt((I − λA(t))−1x) ≤ Nt−λ(x) for t ∈ (0, T ], λ ∈ (0, λ0 ∧ t] and
x ∈ X.

The following condition corresponds to the “intertwining condition” in
the sense of Kato [6]:

(H2) For t ∈ (0, T ] and λ ∈ (0, λ0 ∧ t], (I − λA(t))−1(Y ) ⊂ Y and

(3.13) S(t)(I − λA(t))−1y

= Ξ(I − λA(t))−1(S(t)y + λP (t)S(t)(I − λA(t))−1y)

for y ∈ Y , where {P (t) : t ∈ [0, T ]} is a strongly continuous family
in B(Z).

Corollary 3.3. Under hypotheses (H1) and (H2), there exists a unique
solution operator on X governed by {A(t) : t ∈ [0, T ]}.

To prove Corollary 3.3 we set J(t, s) = (I − (t− s)A(t))−1 for (t, s) ∈ ∆
with 0 < t − s ≤ λ0, and J(t, t) = I for t ∈ [0, T ], and prove the strong
continuity of J(t, s) in B(Y ) in the following:

Lemma 3.4. Let ε0 = λ0 ∧ (1/(2M |||P |||Z)) and set ∆0 = {(t, s) ∈ ∆ :
|t− s| ≤ ε0}. Then the following assertions hold :

(i) The function (t, s) 7→ ΞJ(t, s) is strongly continuous on ∆0 in B(Z).
(ii) The function (t, s) 7→ J(t, s) is strongly continuous on ∆0 in B(Y ).

Proof. Let (t0, s0), (t, s) ∈ ∆0 and y ∈ Y . Since J(t, s)y − J(t0, s0)y =
J(t, s){(t − s)A(t) − (t0 − s0)A(t0)}J(t0, s0)y, we deduce from the strong
continuity of A(t) on [0, T ] in B(Y,X) that J(t, s) is strongly continuous on
∆0 in B(X). The strong continuity of Ξ implies (i). By (3.13) we have

S(t)J(t, s)y − S(t0)J(t0, s0)y

= ΞJ(t, s)S(t)y − ΞJ(t0, s0)S(t0)y

+ ((t− s)ΞJ(t, s)P (t)− (t0 − s0)ΞJ(t0, s0)P (t0))S(t0)J(t0, s0)y

+ (t− s)ΞJ(t, s)P (t)(S(t)J(t, s)y − S(t0)J(t0, s0)y).

Since (t− s)‖ΞJ(t, s)P (t)‖Z ≤ (t− s)M |||P |||Z < 1, it follows from (i) that
S(t)J(t, s) is strongly continuous on ∆0 in B(Y,Z). By using condition
(S), assertion (ii) is deduced from the fact above together with the norm
continuity of S(t) on [0, T ] in B(Y,Z).

Proof of Corollary 3.3. To apply Theorem 3.1 we prove that conditions
(A1) through (A4) are satisfied. Condition (A1) is a direct consequence of
(H1), and condition (A2) follows from (ii) of Lemma 3.4 and (H2). It is
easily seen that (A3) is satisfied with E1(t, s) = 0 for (t, s) ∈ ∆0.

To check (A4), let B(t) = P (t) + Q(t) and C(t) = R(t) for t ∈ [0, T ].
Clearly {B(t) : t ∈ [0, T ]} and {C(t) : t ∈ [0, T ]} are strongly continu-
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ous families on [0, T ] in B(Z) and B(X,Z), respectively. Equation (1.2) is
satisfied with E2 : ∆0 → B(Y,Z) defined by

E2(t, s)y =
1

t− s

t�

s

ΞJ(t, s)(Q(r)S(r)y +R(r)y) dr

− (B(t)S(t) + C(t))J(t, s)y + ΞJ(t, s)P (t)S(t)J(t, s)y

for (t, s) ∈ ∆0 with t 6= s, and E2(t, t) = 0 for t ∈ [0, T ].
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