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A characterization of evolution operators
by

NaokI TANAKA (Okayama)

Abstract. A class of evolution operators is introduced according to the device of
Kato. An evolution operator introduced here provides a classical solution of the linear
equation u'(t) = A(t)u(t) for t € [0,T], in a general Banach space. The paper presents a
necessary and sufficient condition for the existence and uniqueness of such an evolution
operator.

Introduction. Throughout this paper, let X and Y be real Banach
spaces such that Y is densely and continuously embedded in X. After a
pioneering work on “hyperbolic” equations by Kato [5], many authors in-
vestigated sufficient conditions for the existence of an evolution operator on
X which provides a classical solution of the linear evolution equation

(E) u'(t) = A(t)u(t) for t € [0,T],

where {A(t) : t € [0,T]} is a family of closed linear operators in X satisfying
the following condition:

(A) Fortel0,T], D(A(t)) DY and A(t) is strongly continuous on [0, 7]
in B(Y, X).

Among others, Kobayasi [7] obtained a fundamental and important gener-
ation theorem of evolution operators under the stability condition in the
sense of Kato. For some related results we refer to the papers by Dorroh [1],
Ishii [4], Kato [6], and Yagi [12] and the books by Goldstein [2], Pazy [9]
and Tanabe [10].

Recently, the author [11] has proposed a new stability condition from
the viewpoint of finite difference approximations, and showed that evolu-
tion operators can be generated even if the new stability condition is as-
sumed instead of Kato’s stability condition. So far sufficient conditions for
the existence of evolution operators associated with (E) have been investi-
gated extensively. A Hille-Yosida type theory for evolutions was discussed
by Komura [8] and Herod and McKelvey [3] (see also the references cited
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therein), but it seems to the author that there is no characterization for the
Kato class of evolution operators.

We are interested in finding a necessary and sufficient condition for the
existence and uniqueness of an evolution operator introduced by Kato. In
Section 1, we introduce a class of evolution operators which provide us with
classical solutions of (E), according to the device of Kato [6], and give a
necessary condition for such evolution operators (which are called solution
operators) to exist (Proposition 1.2). Section 2 contains the construction of
approximate solutions for (E) which is used to get an approximation of the
desired evolution operator. Section 3 presents the main theorem (Theorem
3.1) and an extension of the main results of [6, 11] (Corollary 3.3).

1. A class of evolution operators. Throughout this paper, we use
another Banach space Z and a norm continuous family {S(¢) : ¢t € [0,7]} in
B(Y, Z) satisfying the following condition:

(S)  There exist C's > ¢g > 0 such that

csllully < llullx +[[S#)ullz < Cs|lully
forueY and t € [0,T].
Moreover, we assume that there exists a strongly continuous nonexpansive
homomorphism = of the algebra B(X) into B(Z); that is, = is an algebraic
homomorphism such that =1 = Iz, |[EB|z < ||B|x for B € B(X), and
if {B,} is a sequence in B(X), then lim, . B,z = Bz for x € X implies
lim,, oo (EBp)z = (EB)z for z € Z.
An evolution operator {U(t,s)} in B(X) defined on the triangle

A={(t,s):0<s<t<T}
satisfying the following properties was introduced implicitly in Kato’s pa-
per [6]:

(E1) U(t,r)U(r,s) =U(t,s) and U(t,t) = I for (t,r),(r,s) € A.

(E2) U(t,s) is strongly continuous on A in B(X).

(E3) U(t,s)(Y) CY for (t,s) € A, and U(t, s) is strongly continuous on
A'in B(Y).

(E4)  For (s,y) € [0,T) x Y, U(t, s)y is differentiable in ¢ € [s,T], and

(0/ot)U(t,s)y = A(t)U(t,s)y for (t,s) e AandyeY.
(E5)  The integral equality

t

S
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holds for (¢,s) € A and y € Y, where {B(t) : ¢
strongly continuous family in B(Z) and {C(t) : t
strongly continuous family in B(X, 7).
PROPOSITION 1.1. An evolution operator satisfying (E1) through (E5) is
uniquely determined by {A(t) : t € [0,T]}.
In this paper, an evolution operator satisfying conditions (E1) through
(E5) is called a solution operator governed by {A(t) : t € [0,T]}.

Proof of Proposition 1.1. Let y € Y and (t,s) € A with t # s. Then we
have, for h > 0 with (t,s+ h) € A,

(U(tv s+ h)y - U(t’ S)y)/h = U(t7 s+ h)(y - U(S + h, S)y)/h7

and as h | 0 the right-hand side tends to —U (¢, s) A(s)y, by condition (E4).
Since U(t, s)A(s)y is continuous on A in X by condition (E2), we see that for
(t,y) € (0,T]x Y, U(t, s)y is differentiable in s € [0,¢] and (0/9s)U(t, s)y =
—Ul(t,s)A(s)y for (t,s) e Aand y €Y.

Now, let {V(t,s) : (t,s) € A} be another evolution operator on X satis-
fying (E1) through (E5) with U(t, s) replaced by V (¢, s). Then we have, by
the fact shown above and (E4),

(0/00)U(t,0)V(o,s)y =U(t,0)(—A(c) + A(o))V(o,s)y =0
for (t,s) € A and y € Y; hence U(t,s) = V(t,s) for (¢,s) € A, because Y is
dense in X. m

The purpose of this section is to investigate some properties deduced
from conditions (E1) through (E5).

PRrROPOSITION 1.2. Let {U(t,s) : (t,s) € A} be a solution operator gov-
erned by {A(t) : t € [0,T]} such that ||U(t,s)||x < M for (t,s) € A. Then
there exist g > 0 and a family {J(t,s)} in B(X) defined on the set Ay =
{(t,s) € A: |t —s| <eo} such that the following conditions are satisfied:

(A1)  The estimate .
Tt b H <M
I,

holds for every finite sequence {t;}¥_, such that (t;,t;_1) € Ag for
i=1,... k.
(A2)  J(t,s)(Y)CY for(t,s) € Ap, and J(t,s) is strongly continuous on
(A3)  There exists a strongly continuous family {E1(t,s) : (t,s) € Ao} in
B(Y, X) satisfying E1(t,t) =0 fort € [0,T] such that

(1.1) J(t,s)y =y + (t—s)AX)J(t,s)y + (t — s)Er(t, s)y
for (t,s) € Ay andy €Y.
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(A4)  There exists a strongly continuous family {Es(t,s) : (t,s) € Ap} in
B(Y, Z) satisfying E2(t,t) =0 fort € [0,T)] such that
(1.2) S)J(t,s)y = ZJ(t,5)S(s)y + (¢ = s)(BE)S() + C(t) I (¢, s)y
+ (t —s)Ea(t, s)y
for (t,s) € Ag andy €Y.

Proof. Set ¢g =T and Ay = A, and define J(t,s) = U(t, s) for (¢,s) €
Ap. To check (A1), let {t;}¥_, be such that (¢;,t;_1) € Ag fori =1,...,k.
By condition (E1) we have Hle J(ti ti—1) = J(tg, to), from which condition
(A1) is deduced. Property (A2) is a direct consequence of (E3). Define Ej :
t
VAU (r,5)y — AR)U(t, 5)y) dr
for (t,s) € Ay with t # s, and Eq(t,t) = 0 for t € [0,T]. Property (A3)
follows easily from condition (E4). By condition (E5), a simple computation
yields that (A4) is satisfied with Es : Ay — B(Y, Z) defined by

t

— [(EUE(BE)S() + CE)U G s)y

1
t—s

El(tv S)y =

E2 (ta S)y =

—(B(t)S(t)+ C(t))U(t,s)y)dr
for (t,s) € Ag with t # s, and Eq(t,t) =0 for t € [0,T]. =

PROPOSITION 1.3. Assume that J(t,t) = I fort € [0,T]. Then condition
(A1) is equivalent to the following condition:

(al)  There exists a family {N¢(-) : t € [0,T]} of norms in X such that
() lz]lx < Nie(z) < M||z||x forz € X and t € [0,T],
(i1) Ni(J(t,s)x) < Ns(z) for x € X and (t,s) € Ayp.
Proof. Assume that (al) is satisfied, and let {t;}*_, be such that (¢;,;_1)
€ Agfori=1,..., k. By (ii) we have Ny, (J(t;, ti—1)x) < Ny, , () forz € X
and i = 1,...,k, and so Ntk(Hle J(ti,ti—1)x) < Ny (z) for € X. This
fact and (i) together imply condition (Al).
Conversely, assume that (A1) holds, and for each t € [0, T] define a norm

3w = sup | TT 7ot 20e] )

where the supremum is taken over all finite sequences {t;}*_, such that
t=ts < t1 < ...<tt <T and (ti,tifl) S AQ for ¢+ = 1,...,]€. Let
t € [0,7] and consider the sequence {t;}¥ , with t; =t for i = 0,1,...,k.
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Then Hl oJ(tisti—1) = I, because J(t,t) = I for t € [0,7]. This implies
that ||z||x < N¢(x) for x € X. The fact that Ny(z) < M||z||x for z € X is
deduced easily from condition (A1l).

To check (ii), let * € X and (t,5) € Ap. For a finite sequence {t;}¥_
witht =t < t;1 <... <t <T and (ti7ti—1) € Ag for i = 1,...,k, the
sequence {sl}fiol, defined by sg = sand s; = t;_1 forl = 1,..., k+1, satisfies
s=50<s1 <...<8gy1 <Tand (s,8-1) € Ag forl =1,...,k+ 1. By
the definition of Ng(-), we have

HHJtz,tzl (t s —HHJsl,sll 2 < No@);

hence N¢(J(t,s)x) < Ng(z) for x € X. m

PROPOSITION 1.4. Assume that condition (A1) is satisfied and J(t,s)(Y)
CY for(t,s) € Ag. Then conditions (A2) through (A4) hold if and only if
the following two conditions are satisfied:

(i) There exists a strongly continuous family {Es(t,s) : (t,s) € Ap} in
B(Y, X) satisfying Es(t,t) =0 fort € [0,T] such that
(1.3) J(t,s)y =y + (t —5)A(s)y + (£ — s)Es(t, s)y
for (t,s) € Ay andy €Y.

(ii) There exists a strongly continuous family {E4(t,s) : (t,s) € Ao} in
B(Y, Z) satisfying E4(t,t) =0 fort € [0,T] such that

(1.4)  St)J(t,s)y =E=EJ(t,s)S(s)y + (t —s)=J(t,s)(B(s)S(s) + C(s))y
+ (t — s)Eal(t, s)y
for (t,s) € Ag andy € Y.
Proof. Assume that conditions (A2) through (A4) are satisfied, and set
Es(t, s)y = Ex(t, s)y — A(s)y + A()J (L, s)y

for (t,s) € Ag and y € Y. Equation (1.1) with ¢ = s implies J(¢,t) = [
for t € [0,T]. Clearly, E5(t,t) = 0 for t € [0,T], and the strong continuity
of E5(t,s) on Ay in B(Y, X) is deduced from condition (A2). By condition
(A3) we have (1.3). To prove (ii), set

Ey(t,s)y = (B@)S(t)+C(t))J(t,s)y—=J(t,s)(B(s)S(s)+C(s))y+Eal(t, s)y

for (t,s) € Ag and y € Y. Equation (1.4) is clearly satisfied. By condition
(A1) and the density of Y in X we deduce from (A2) that J(t, s) is strongly
continuous on Ag in B(X). This fact and the strong continuity of = together
imply the strong continuity of ZJ (¢, s) on Ay in B(Z). It follows that E4(t, s)
is strongly continuous on Aq in B(Y, Z).
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Conversely, assume that (i) and (ii) are satisfied. The strong continuity of
J(t,s) in B(X) is deduced from (1.3), since ||J (¢, s)|| x is uniformly bounded
on Agp and Y is dense in X; hence ZJ(¢,s) is strongly continuous on 4 in
B(Z), by the strong continuity of =. This fact together with (1.4) implies
the strong continuity of S(t)J(t,s) on Ay in B(Y, Z). Condition (A2) is
proved by using condition (S) and the norm continuity of S(¢) on [0,77] in
B(Y,Z). In a way similar to the argument in the preceding paragraph, (A3)
and (A4) are easily checked. m

2. Discrete scheme for evolution operators. In this section we con-
struct a difference scheme to get solution operators governed by {A(t) : t €
[0, T]}. For this purpose, conditions (A1) through (A4) are assumed through-
out this section.

LEMMA 2.1. Let {t;}\_, be a sequence such that (t;,t;—1) € Ag fori =
1,...,0. Let x9p € Y and set z; = H;‘:1 J(tj,tj—1)zo for 1 < i <. Then
x; €Y for1 <i<I, and there exist My > 1 and 8 > 0 such that

(2.1) [@i]ly < My exp(B(t; — to))l|zolly
for1<i<lI.

Proof. Let 1 <i <land 1< j <i, and set a; = ||z;||x + ||S(¢;)z;lz-
Using (1.4) with (¢,s) = (¢;,t;—1) and y = x;_1, we find

H I1 EJ(tk,tk,l)S(tj)xj—HEJ(tk,tk,l)S(tj,l)mj,lu
k=j+1 k=j “

< (t; =t ) M((IBlliz VICllx.2)a;—1 + I Eally.zllzj-lly)-

Here we have used condition (A1) and the nonexpansiveness of the algebraic
homomorphism =. By condition (S), the right-hand side of the inequality
above is bounded by §(t; — tj_1)a;_1, where 5 = M((| Bz V |IClx,z) +
¢5 |1 E4lly,z). We sum up the inequalities obtained for j = 1,...,i and
combine the resulting inequality with the estimate ||z;||x < M]||zo| x, which
follows from (A1). This yields a; < Mag + Z;:l B(t; —tj—1)aj—1. Denote
by b; the right-hand side. Then a; < b; and

bi < (1+ B(ti —ti—1))bi—1 < exp(B(ti — ti—1))bi—1;
hence a; < M exp(B(t; — to))ag. The desired estimate (2.1) is obtained by
using condition (S). m

LEMMA 2.2. Let {t;}3%, be a sequence such that (t;,t;—1) € Ag fori > 1.
Then the limit lim;_, o H;:k-&-l EJ(ti, t1—1)z exists in Z, for all z € Z and
k>0.
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Proof. Let yeY and k>0 be an integer, and set xi:]_l;:kH J(t,ti—1)y
for i > k+ 1, and z; = y. By condition (A3) we have

rp=x1-1 + (i —ti—1)(A(t)z + E1(t, ti—1)x—q)  for I > k+1.
We use the estimate (2.1) to find

[z = 2jllx < (i = ) (1Ally.x + [ Erlly,x) My exp(BT)|lylly

for i > j > k + 1. This implies that {z;} is a Cauchy sequence in X
because {t;}°, is an increasing bounded sequence (and so it is conver-
gent). Condition (Al) and the density of Y in X yield that the limit
lim; 0 H;:k-&-l J(t,t1—1)x exists in X, for all x € X. The desired claim
follows readily from the strong continuity of =. m

PROPOSITION 2.3. Let (s,y) € [0,T) xY and e > 0. Then there exists
a sequence {ti}fio which has the following properties:

(i)s=to<t1<...<tny=T.

(11) ti—ti_1 <e and (ti,ti—l) € Ay fori=1,...,N.

(iii) @ == [[j_, J(ti,ti1)y €Y fori=1,...,N.

(IV) H:IZ@ — X1 — (ti - ti,l)A(ti)xiHX < (ti - ti,1)€ fOT’ 1= 1, NN ,N,
where xg = y.

(V) HS(ti)SCi - EJ(ti,tifl)S(tifl)fEifl -

(ti — ti_l)(BOfi)S(ti) + C(tl))szz < (ti — ti_l)e’f fO?" i1=1,...,N.

(Vi) ||zi — xica]|ly <e fori=1,...,N.

(Vll) H(A(t) — A(tifl))xiflux <e fOT’ te [tifl,ti] and i = 17 ey N.

Proof. Set (to, o) = (s,y) and assume that a sequence {t;}*~) has been
chosen so that properties (i) through (vii) hold for 0 <i < k—1, where k > 1
is an integer. If ;1 = T then the proof is complete. If {1 < T then we
define hj to be the largest number satisfying the following five conditions:

(2.2) 0<hg<e and (tk—1+ hk,tpr—1) € Ay,

(2.3) | B1(te—1 + hey te—1)zp—1]|x <&,

(2.4) |EB2(tk—1 + hi,th—1)zr—1lz <€,

(2.5) I (tg—1 + hiyth—1)Tr—1 — zp—1|ly <e,

(2.6) I(A(t) — A(tg—1))xk-1]|x <e fort € [ty_1,tk—1 + hil.

Since xx_1 € Y, we have hy > 0 by condition (A2) and our assumption on
strong continuity.

Now, we define ty, = tx—1 + hy and x = J(tx—1+ hg, tk—1)xk—1. Proper-
ties (iv) and (v) follow from conditions (A3) and (A4) respectively, by using
(2.3) and (2.4). All the other properties are clearly satisfied with i = k. We
have only to prove that there exists an integer IV such that ¢ = T. Assume
to the contrary that t; < T for all 4+ > 1, and put t = lim;_,., t;. We first
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show that the sequence {z;}$°, is convergent in Y as i — oo. Using the
estimate (2.1) we have, by (iv),

i = zi1llx < ([Allv.x My exp(BT)|lylly +€)(t; — ti-1)

for ¢ > 1, which implies that {x;}°, is a Cauchy sequence in X. Let k < i
andk:—{—l <j<i. By (v )Wehave

H H EJ(t, ti—1) HuJ (ti,ti—1)S(t;— 1)%‘4”2

l=j+1
< (t; — tj—l) ((IBllz vV ICIx.2)Csl|x:lly +¢).

Here we have used the nonexpansiveness of = and condition (Al). Since
llzi|ly < My exp(BT)|ly|ly for ¢ > 1, we find

HS(ti)xi - lz];[+1 =J, tl,l)S(tk)kaZ

< (ti — te) M((|Bllz VI Cll x,2)Cs My exp(BT) [|lylly +¢),
by summing up the inequalities above for k + 1 < j < i. By Lemma 2.2 we
have
limsup [|S(t;)z; — S(t;)z;l 2

,]*)OO

<20 = ti)M((I1Bllz V ICllx.2)Cs My exp(BT)lylly + ),

which tends to zero as k — oo. We therefore deduce from the norm continuity
of S(t) on [0,T] in B(Y,Z) and condition (S) that the sequence {z;}5°, is
convergent in Y as ¢ — oo.

Now, we turn to the proof of the desired claim. For ¢ > 1 we set v; =
t —t;_1. Clearly, h; < ~y; for all @ > 1. Moreover, lim; .o, y; = 0, which
implies that 0 <~; < e and (t;-1 + 74, ti—1) € Ap for sufficiently large i. By
our assumption on strong continuity and the convergence of {z;} in Y, there
exists an integer 79 > 1 such that if ¢ > iy then conditions (2.2) through (2.5)
are satisfied with hj and k replaced by ~; and L. We then deduce from the
definition of h; that for each 7 > ij there exists t € [ti—1,ti—1 4] such that
(A(t;) — A(t;1))zi1||x > e. Since T = lim; .o £;, the strong continuity of
A(t) on [0,T] in B(Y, X) implies € < 0, which is a contradiction. m

3. A characterization of evolution operators. The main theorem
of this paper is given by

THEOREM 3.1. Let {A(t) : t € [0,T]} be a family of closed linear opera-
tors in X satisfying condition (A). Then there exists a unique solution op-
erator {U(t,s) : (t,s) € A} on X, satisfying ||U(t,s)||x < M for (t,s) € A,
governed by {A(t) : t € [0,T]} if and only if there exist g > 0 and a family
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{J(t,s)} in B(X) defined on the set Ag = {(t,s) € A: |t —s| < eg} such
that conditions (A1) through (A4) of Proposition 1.2 are satisfied.

It has already been shown that conditions (A1) through (A4) are neces-
sary for the existence of a solution operator governed by {A(t) : t € [0,T]}.
Now, to prove the sufficiency assume that conditions (A1) through (A4) are
satisfied.

Let P={0=150 < $1 <...<sg =T} be a partition of [0, 7] such that
(8iy8i—1) € Ag for i = 1,..., K. For such a partition we define an operator
U(t,s; P) on A by

U(t,s; P) HJSl,Sll

I=p+1
whenever ¢ € (s;_1,s;] N[0,7] and s € (sp—1,sp] N [0,7]. Here and sub-
sequently, we set s_1 = —oo for convenience. If F' is an operator-valued

function on [0, 7] then we define a step function F'(¢; P) by
F(t;P)=F(s;) forte (si—1,s)N[0,T]andi=1,..., K.
LEMMA 3.2. Let (s,y) € [0,T) x Y and e > 0. Let {(t;, )}, be a

sequence in [s,T] X Y as in Proposition 2.3, and define a step function
uw:[s,T] =Y by

_Jxo fort=s,
u(t)_{xi forte (ti—i,t;) andi=1,...,N.
If P={0=s0<s1<...<sg =T} is a partition of [0,T] satisfying

) = — < _
(3.1) |P| := lg}ca<XK<8k Sk—1) 2n1<nN(t ti—1),

then
(3.:2)  lu(t) = U(t,s; P)yllx
<{Cs+ M((4+3||Ally,x + I Eslly,x)T + Cs)}e
+ MT max, o(zi—1;|P|)

fort € [s,T], where for each w € Y and r > 0, o(w;r) is defined by
o(w;r) = sup{||Es5(t, s)w||x : [t — s| < r and (t,s) € Ag}.

Proof. Since P is a partition of [0,7], there exists p € {0,1,..., K}
such that tgp = s € (sp_1, 5, N [0,T]. We note that p # K by (3.1). For
k=p+1,..., K we define y, = J(sg, Sp—1)yr—1 and y, = xo = y. Moreover,
we use an auxiliary function v : [s,T] — Y defined by

U(t) = Ti—-1 + (t — tifl)(ZL‘i — ﬂjifl)/(ti — tifl)
for t € [ti—lati] and i =1,...,N.
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If sy € [ti—1,t;] for some i € {1,..., N} then we have, for [ =i — 1 and 1,
(33)  Molsk) —ally = [se = tu] - [|ws — @ically /(8 = ti1) < e

Here we have used (vi) of Proposition 2.3. Since s, € [to,t1] we have, by
(3.3) and condition (S),

(3.4) v(sp) = gl x < Cse.
Fork=p+1,...,K we set
2k = v(sk) — v(sk—1) — (8k — Sk—1)(A(sk—1) + E3(sk, 8k—1))v(Sk—1)-
Since v(sg) = J(sk, Sk—1)v(sk—1) + 2z by (1.3), we have
v(sk) — Yk = J(Sk, Sk—1)(V(Sk—1) — Yr—1) + 2&;
hence it is shown inductively that

k k k
(35) o(sk)—we = [ Tusi0)@s) —w)+ > T Jlss-1)z

l=p+1 Jj=p+1li=j+1
for k = p,..., K. We need to estimate z; for kK = p+ 1,..., K. So, let
ke{p+1,...,K}. By (3.1), either (i) there exists i € {1,..., N} such that
Sk—1,8k € [ti—1,ti], or else (ii) there exists ¢ € {1,...,N — 1} such that
Sk—1 € [ti—1,t;] and si € [t;, t;+1]. In both cases we have
(3.6)  |[(wi —@i1)/(ti — tim1) — (A(sk—1) + E3(sk, se—1))v(sk—1)[Ix

< 3+ 20 Allvox + | Ballvx)e + max oleis5|P).
Indeed, since

A(t ) — (A(sk—1) + E5(sk, s6-1))v(sk-1)
A(ti) (i — wia) + (A(t:) = A(tioa))wion + (A(tio1) = Alsk—1)) i
+ (A(sk-1) + E3(sk, $k-1))(wi—1 — v(sk-1)) — E3(8k, Sk—1)Ti-1,
we have, by (vi) and (vii) of Proposition 2.3 and (3.3),
3.7) Atz — (Alsk—1) + Es(sk, sk-1))v(sk—1)l x
< 2+ 2 Ally.x + [1Eslly.x)e + max o(zi; [P]).
This estimate and (iv) of Proposition 2.3 together imply (3.6).

We begin by considering the case of (ii). By the definition of v, zj is
written as

(v(sk) —v(t:)) + (v(ti) — v(sk-1))
— (sk — sk—1)(A(sk—1) + E3(Sk, 5k—1))v(5k—1),
(55— ) (i1 — 26)/ (b1 — ) — (A(si1) + Bylsrr sn_1)o(551))
+ (ti = sp—1)((xs — wi—1)/(ts — tiz1) — (A(Sk—1) + E3(sk, Sk—1))v(Sk—1))-
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Since (21— i)/ (i1 —ti) — A(ti)xi = (Tiv1—x) /(L1 — 1) = A(ti1)Tip1+
A(tiv1)(@ir1 — @i) + (A(tig1) — A(ti))zs, we have, by (iv), (vi) and (vii) of
Proposition 2.3 and (3.7),

[(@iv1 — @)/ (tigr — ti) — (A(sk—1) + Es(sk, sk—1))v(se—1) [ x
< (@+3[Ally.x + 1 Eslly,x)e + max o(zi—1;|P]).
1<i<N

By this estimate together with (3.6) we find

(3.8) lzellx < (443l Ally.x + I Eslly,x) (s — sk-1)e
+ (K — sK-1) Jmax o(wi-1;|P]).

In the case of (i), we deduce from (3.6) that (3.8) is also valid, because
2k = (sk — sk—1)(Ti —@i—1)/(ti —tim1) — (A(sk—1) + E3(8k,s S5—1))v(Sk-1))-
We use condition (A1), (3.4) and ( 8) to estimate the quantity (3.5). This
yields

(39)  llv(sk) —wrllx < M{((4+3[|Ally.x + I Eslly.x)(sk — sp) + Cs)e

(
+ (sk — sp) max o(zi—1:|Pl)}

fork=p,..., K.

Now, we turn to the proof of (3.2). Let ¢ € (s,T]. Then there exists k €
{1,...,K}suchthatt € (sg_1,sg]. Since s € (sp_1, sp] we have U(t, s; P)y =
yg. If s, € (ti—1,t;] for somei € {1,..., N} then u(t) = z;_; or x;. It follows
from (3.3) that ||v(sk)—u(t)|x < Cse The desired estimate (3.2) is obtained
by combining this estimate and (3.9). m

Proof of Theorem 3.1. Let x € X, (s,y) € [0,T) xY and ¢ > 0. If P
and P are two partitions of [0,7] then by Lemma 3.2 we have
limsup (sup{||U(t, s; P)z — U(t,s; P)z|x : t € [s,T]})
|PL,IP|—0
< 2{Cs + M((4+ 3| Allv.x + [IEslly.x)T + Cs)}e + 2M ||z — y| x-
This implies that for z € X and (¢,s) € A, the limit

U(t,s)x = |1131|IEO Ul(t,s; P)x
exists independently of the choice of the partition P of [0, T]. Property (E1)
is satisfied because U(t,t; P) = I and U(t,r; P)U(r,s; P) = U(t,s; P) for
(t,r),(r,s) € A.
To prove (E2),let w € Y and P = {0 = s9p < 51 < ... < sg =T}
be a partition of [0,7] such that (s;,s;-1) € Ag for i = 1,..., K. For
0 <k <j<i<K wefind, by using (1.1) with (¢,s) = (sp, sp—1) and
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-1
Y= Hf:k-&-l J(Sl7 Slfl)w

H H J(s1,51-1) H J(s1, 81— 1wH

I=k+1 I=k+1
< (sp = sp-1) ([ Allv.x + [ Evlly.x) My exp(BT) |[w]]y
forp=j+1,...,7. Summing up these inequalities we have

(3.10)  ||U(t,s; P)w — U(t,s; P)w||x
< My exp(BT)(t — | + 2[P)) (I Allv,x + 11y, x)|w]ly

for (t,5), (t,s) € A. In a way similar to the derivation of (3.10), we use (1.3)
with (¢,s) = (sk, sg—1) and y = w to obtain
[U(t, s P)w = U(t,5; P)wllx < M(ls = 5]+ 2|P[) (| Ally.x + [ Eslly.x)llwlly
for (t,s),(t,s) € A. This estimate and (3.10) together imply the strong
continuity of U(t,s) on A in B(X).
Now, to check properties (E3) through (E5) let (s,y) € [0,T) x Y and
e > 0. If s > 0 then we choose a sequence {s{ }'=_, such that 0 = s§ < s <
. < sf = s and that sj —sj_; <eand (sf,s;_,) € Qg for k=1,..., L.
We denote by P. = {0 =s§ < 5] <...<s% =T} the partition of [0 T]
which is constructed by appending points t; (i=1,...,N)in[s,T] satisfying
properties (i) through (vii) of Proposition 2.3 to the sequence {s}} above.
We then deduce from the first part of the proof of the theorem that

(3.11) U(t,r)z = 11%1 U(t,r; P:)x

for x € X and (t,r) € A. By (v) of Proposition 2.3 we have

H [1 =70t ti0)S(t)a; — [] ET(0 ti-1)S(-1)25-1

I=j+1 =5

—(t =) T] SJti)(BU)S() + Cag | < Mlt; —t5-1)z
I=j+1

for 1 < j < 4. Summing up these inequalities we find

|5t PoUt s Py - EU(L 5 PS(s)y

t;
- X EU(t,0;P.)(B(0; P:)S(0; P-)+C(0; P:))U (0, s; P:)y dUHZ < M(ti—s)e
for t € (t;j—1,t;] N[0,T] where ¢ > 0 is an integer. On the other hand,

by a fixed point argument there exists a unique strongly continuous fam-
ily {V(t,r) : (t,r) € A} in B(Y, Z) satisfying the Volterra type integral
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equation

Vit,r)w=ZU(t,r)S(r)w+ S ZEU(t,0)(B(o)V(o,r)w+ C(o)U(o,7)w) do

for w € Y and (¢,r) € A. Now, set
p(t) = lim sup 15(8 P)U(t, s Pe)y = V (¢, 5)yll 2
€l0

for t € [s,T]. Then ¢(t) < M|HB|||ZSit9 p(o)do for t € [s,T]. Here we have
used the fact that lim. o ZEU(¢,r; P.)z = ZEU(t,r)z in Z, for z € Z and
(t,r) € A, which follows from (3.11) and the strong continuity of =. An
application of Gronwall’s inequality gives ¢(t) = 0 for t € [s,T]. This
fact together with the norm continuity of S(¢) implies that for ¢ € [s,T],
lim. g U(t,s; P-)y = U(t,s)y in Y and S(t)U(t,s)y = V(t,s)y. Properties
(E3) and (E5) are thus checked.

To prove (E4), we sum up (iv) of Proposition 2.3 from i = 1 to i = k.
This yields

HUtsPy Yy — ZS YU (o, s; P-) yda” (ty — s)e

for t € (tg—1,tx] N[0,7] where k > 0 is an integer. The desired property
(E4) is obtained by taking the limit as ¢ | 0. m

Finally, we give an extension of [11, Main Theorem] and [6, Appendix C].
According to Kato [6] we assume that the family {S(¢) : ¢t € [0,T]} also
has the property that for y € Y, S(t)y is differentiable on [0, 7] in Z and

(3.12) jtS() — QWS+ Rty for t € [0,T],

where {Q(t) : t € [0,T]} is a strongly continuous family in B(Z) and {R(t) :
t € 0,77} is a strongly continuous family in B(X, Z). (The norm continuity
of S(t) on [0,T] in B(Y, Z) follows automatically from (3.12).)

We make the following assumption on the stability condition, which was
proposed in [11] from the viewpoint of finite difference approximations.

(H1)  There exist M 2 1 and X\g > 0 such that (I — (¢; —t;—1)A(t;)) "t €
B(X) and HHZ I = (ti —tic1) At ))_1HX < M for every finite
sequence {t } o with0 <ty <ty <...<tpz <Tandt;,—t;i1 < Ao
fori=1,... k.

REMARK. By Proposition 1.3, condition (H1) is equivalent to the follow-

ing condition: There exist M > 1, Ao > 0 and a family {N:(-) : ¢t € [0,T]}

of norms in X such that

(1) |lzllx < Ni(z) < M||z||x for t € [0,T] and = € X
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(i) N ((I — MNA(t))"tz) < Ny_x(z) for t € (0,T], A € (0,\o A t] and
e X.

The following condition corresponds to the “intertwining condition” in
the sense of Kato [6]:

(H2) Fort e (0,7) and X € (0, g At], (I —XA())" (V) CY and
(3.13) ST — AA(t)y
= Z(I = AA(t) " (S(t)y + AP()S(E)(I — AA(t) " 'y)
for y € Y, where {P(t) : t € [0,T]} is a strongly continuous family
in B(Z).

COROLLARY 3.3. Under hypotheses (H1) and (H2), there exists a unique
solution operator on X governed by {A(t) : t € [0,T]}.

To prove Corollary 3.3 we set J(t,s) = (I — (t —s)A(t)) ! for (t,s) € A
with 0 < t —s < Ao, and J(t,t) = I for t € [0,T], and prove the strong
continuity of J(¢,s) in B(Y') in the following:

LEMMA 3.4. Let g = Ao A (1/(2M||P| z)) and set Ag = {(t,s) € A :
|t —s| <eo}. Then the following assertions hold:

(i) The function (t,s) — ZJ(t,s) is strongly continuous on Ay in B(Z).

(ii) The function (t,s) — J(t,s) is strongly continuous on Aqy in B(Y).

Proof. Let (to,so), (t,s) € Ag and y € Y. Since J(t,s)y — J(to,s0)y =
J(t, s){(t — s)A(t) — (to — s0)A(to)}J (to, s0)y, we deduce from the strong
continuity of A(¢) on [0,7] in B(Y, X) that J(¢, s) is strongly continuous on
Ap in B(X). The strong continuity of = implies (i). By (3.13) we have
S(t)J(t,s)y — S(to)J (to, s0)y

== (ta S)S(t)y - E‘](t()v SO)S(tU)y
+ ((t - S)Ej(t, S)P(t) - (to - So)EJ(tU, So)P(to))S(to)J(to, So)y
(= 5)ZJ(t,5) PA)(SE)I(E )y — S(t0) (tor 50)y).
Since (t — s)||ZJ(t,s)P(t)||z < (t — s)M||P]||z < 1, it follows from (i) that
S(t)J(t,s) is strongly continuous on Ay in B(Y,Z). By using condition

(S), assertion (ii) is deduced from the fact above together with the norm
continuity of S(t) on [0,7] in B(Y,Z). m

Proof of Corollary 3.3. To apply Theorem 3.1 we prove that conditions
(A1) through (A4) are satisfied. Condition (A1) is a direct consequence of
(H1), and condition (A2) follows from (ii) of Lemma 3.4 and (H2). It is
easily seen that (A3) is satisfied with E4(t,s) = 0 for (¢,s) € Ap.

To check (A4), let B(t) = P(t) + Q(t) and C(t) = R(t) for t € [0,T].
Clearly {B(t) : t € [0,T]} and {C(t) : t € [0,T]} are strongly continu-
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ous families on [0,7] in B(Z) and B(X, Z), respectively. Equation (1.2) is
satisfied with Es : Ay — B(Y, Z) defined by

1
t—s

Ea(t, s)y = V27t 5)(Q(r)S(r)y + R(r)y) dr

—(B(t)S(t)+C(t))J(t,s)y+ =J(t,s)P(t)S(t)J(t,s)y

for (t,s) € Ag with t # s, and Eq(t,t) =0 for t € [0,T]. =

[10]
[11]

[12]
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