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Asymptotically cyclic quasianalytic contractions

by

László Kérchy and Attila Szalai (Szeged)

Abstract. The study of quasianalytic contractions, motivated by the hyperinvariant
subspace problem, is continued. Special emphasis is put on the case when the contraction is
asymptotically cyclic. New properties of the functional commutant are explored. Analytic
contractions and bilateral weighted shifts are discussed as illuminating examples.

1. Introduction. In this paper we continue the study of quasianalytic
contractions initiated and carried out in [Kér01], [Kér11] and [Kér13]. These
investigations are motivated by the Invariant Subspace Problem (ISP) and
the Hyperinvariant Subspace Problem (HSP), since in the setting of asymp-
totically non-vanishing contractions these problems can be reduced to spe-
cial classes of quasianalytic contractions.

We recall that (ISP) asks about the existence of a non-trivial invari-
ant subspace M of an arbitrary (bounded linear) operator T acting on a
(complex) Hilbert space H, while (HSP) asks whether there exists a non-
trivial hyperinvariant subspace N of a non-scalar T . The subspace (closed
linear manifold) N is hyperinvariant for T if it is invariant for every op-
erator C commuting with T : CN ⊂ N whenever CT = TC, and it is
non-trivial if N 6= {0} and N 6= H. The invariant subspace lattice of T is
denoted by LatT , and the hyperinvariant subspace lattice of T is denoted
by HlatT .

(ISP) and (HSP) are arguably the most challenging open questions in
operator theory. Studying these problems we may assume that dimH = ℵ0
and T is an absolutely continuous (a.c.) contraction, that is, T = Tu ⊕ Tc
where Tu is an a.c. unitary operator and Tc is a completely non-unitary
(c.n.u.) contraction. The latter means that ‖Tc‖ ≤ 1 and there is no non-zero
invariant subspace M such that the restriction Tc|M is unitary.

Let L(H) stand for the C∗-algebra of all operators acting onH. Assuming
that T ∈ L(H) is an a.c. contraction, the Sz.-Nagy–Foiaş functional calculus
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ΦT is a contractive, unital algebra-homomorphism from the Hardy spaceH∞

of bounded analytic functions on the open unit disc D into L(H), which is
continuous in the weak-∗ topologies and satisfies the condition T = ΦT (χ)
= χ(T ), where χ(z) = z is the identical function. It is also worth mentioning
that ΦT is monotone in the sense that ‖f(T )x‖ ≤ ‖g(T )x‖ for every x ∈ H
(in notation: f(T )

a
≺ g(T )) whenever |f(z)| ≤ |g(z)| for every z in the unit

disc D (in notation: f
a
≺ g).

Another tool in the study of T is its unitary asymptote. We recall that
the pair (X,V ) is a unitary asymptote of T if V is a unitary operator acting
on a Hilbert space K and X : H → K is a linear transformation satisfying
the conditions
∞∨
n=1

V −nXH=K, ‖Xh‖= lim
n→∞

‖Tnh‖ for every h∈H, XT = V X.

The nullspace of X is the hyperinvariant subspace of stable vectors:

H0(T ) =
{
h ∈ H : lim

n→∞
‖Tnh‖ = 0

}
.

We say that T is asymptotically non-vanishing if H0(T ) 6= H. Moreover,
T ∈ C1· if H0(T ) = {0}; T ∈ C0· if H0(T ) = H; T ∈ C·1 if T ∗ ∈ C1·;
T ∈ C·0 if T ∗ ∈ C0·; and Cij = Ci· ∩ C·j (i, j = 0, 1). For further properties
of unitary asymptotes we refer to [Kér13] and [NFBK, Chapter IX]. Our
basic reference for the theory of contractions is [NFBK].

Our paper is organized in the following way. In Section 2 we introduce
a local version of the quasianalytic spectral set and exhibit its connection
with the residual set. In Section 3 the fundamental properties of quasian-
alytic contractions are summarized including their asymptotic behaviour.
Asymptotically cyclic quasianalytic contractions are studied in Section 4,
where conditions equivalent to the existence of a non-trivial hyperinvariant
subspace are given. For such a contraction T the commutant {T}′ can be
identified with a function algebra F(T ), the so-called functional commutant.
Answering a question posed in [Kér11] we show in Section 5 that F(T ) can
be a pre-Douglas algebra only in the case when F(T ) = H∞. We also prove
similarity invariance of F(T ) and find its representation in the functional
model. The last two sections are devoted to special classes of operators,
where quasianalytic contractions naturally arise. Namely, we study analytic
contractions in Section 6 and bilateral weighted shifts in Section 7.

2. Local quasianalytic spectral set. Let T ∈ L(H) be an a.c. con-
traction and let (X,V ) be a unitary asymptote of T . It is known that
V ∈ L(K) is an a.c. unitary operator, that is, the spectral measure E of
V is a.c. with respect to the normalized Lebesgue measure m on the unit
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circle T. The residual set ω(T ) of T is the measurable support of E. For any
x, y ∈ H, wx,y ∈ L1(T) is the asymptotic density function of T at x and y:
EXx,Xy = wx,y dm. The measurable set

ω(T, x) = {ζ ∈ T : wx,x(ζ) > 0}

is the local residual set of T at x. (It is easy to check that wx,y and ω(T, x) are
independent of the choice of (X,V ).) It is worth mentioning that Hω(T ) =
{x ∈ H : ω(T, x) = ω(T )} is a dense Gδ-set in H (see [NFBK, Lem-
ma IX.2.15]).

Given a decreasing sequence F = {fn}∞n=1 inH∞ (fn+1
a
≺ fn for every n),

consider the limit function ϕF on T, defined by ϕF (ζ) = limn→∞ |fn(ζ)| for
a.e. ζ ∈ T, and the measurable set NF = {ζ ∈ T : ϕF (ζ) > 0}. Then the

sequence F (T ) = {fn(T )}∞n=1 of operators is also decreasing (fn+1(T )
a
≺

fn(T ) for every n) and the set

H0(T, F ) =
{
x ∈ H : lim

n→∞
‖fn(T )x‖ = 0

}
of stable vectors for F (T ) is a hyperinvariant subspace of T .

For measurable subsets α and β of T, we write α = β, α 6= β and
α ⊂ β if m(α 4 β) = 0, m(α 4 β) > 0 and m(α \ β) = 0 respectively,
that is, χα = χβ, χα 6= χβ and χα ≤ χβ respectively for the corresponding
characteristic functions as elements of the Banach space L1(T).

We say that T is quasianalytic on a measurable subset α of T at a vec-
tor x ∈ H if x /∈ H0(T, F ) whenever F is non-vanishing on α, that is,
NF ∩ α 6= ∅. Let A(T, x) be the system of sets α with this property and set
a(T, x) = sup{m(α) : α ∈ A(T, x)}. Taking a sequence {αn}∞n=1 in A(T, x)
so that limn→∞m(αn) = a(T, x), it is easy to see that π(T, x) =

⋃∞
n=1 αn

will be the largest element ofA(T, x). The set π(T, x) is called the local quasi-
analytic spectral set of T at x. (Note that π(T, x) is uniquely determined
up to sets of measure 0.) We recall from [Kér11] that T is quasianalytic
on α if H0(T, F ) = {0} whenever NF ∩ α 6= ∅; the (global) quasianalytic
spectral set π(T ) is the largest element of A(T ), the system of sets on which
T is quasianalytic. The following statement follows immediately from the
definitions.

Proposition 1. The set π(T ) is the largest measurable set such that
π(T ) ⊂ π(T, x) for every non-zero x ∈ H.

The next lemma states that local stability is determined by the asymp-
totic density function.

Lemma 2. Let F = {fn}∞n=1 be a decreasing sequence in H∞ and x ∈ H.

(a) If limn→∞ ‖fn(T )x‖ = 0 then ϕFwx,x = 0.
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(b) If ϕFwx,x = 0 then there exists an increasing mapping τ : N → N
such that limn→∞ ‖T τ(n)fn(T )x‖ = 0.

Proof. Part (a) readily follows from the equalities

lim
n→∞

‖Xfn(T )x‖2 = lim
n→∞

‖fn(V )Xx‖2

= lim
n→∞

�

T

|fn|2wx,x dm =
�

T

ϕ2
Fwx,x dm.

Since there exists an increasing τ : N→ N satisfying

lim
n→∞

‖Xfn(T )x‖2 = lim
n→∞

‖T τ(n)fn(T )x‖,

the same equalities yield (b) too.
Note that G = {χτ(n)fn}∞n=1 is also a decreasing sequence with

ϕG = ϕF .

The following theorem establishes a connection between the local and
global spectral invariants introduced before.

Theorem 3. For every non-zero x ∈ H we have

π(T ) ⊂ π(T, x) = ω(T, x) ⊂ ω(T ).

Proof. Let F = {fn}∞n=1 be a decreasing sequence with NF ∩ω(T, x) 6= ∅.
Then ϕFwx,x 6= 0 implies limn→∞ ‖fn(T )x‖ > 0 by Lemma 2. Thus T is
quasianalytic on ω(T, x) at x, and so ω(T, x) ⊂ π(T, x).

Setting α = T \ω(T, x), let ϑ ∈ H∞ be such that |ϑ| = χα + 1
2χT\α, and

form the decreasing sequence F = {ϑn}∞n=1 with ϕF = χα. By Lemma 2,
ϕFwx,x = 0 yields the existence of an increasing τ : N → N such that
limn→∞ ‖T τ(n)fn(T )x‖ = 0. Then G = {χτ(n)ϑn}∞n=1 is a decreasing se-
quence with NG = α and x ∈ H0(T,G). Therefore π(T, x) ⊂ ω(T, x).

As a consequence we obtain conditions for the existence of a non-trivial
hyperinvariant subspace. (Statement (b) below already appears in [Kér01].)

Corollary 4.

(a) If ω(T, x) 6= ω(T ) for some non-zero x ∈ H and F = {fn}∞n=1 is a
decreasing sequence with NF = ω(T ) \ ω(T, x), then x ∈ H0(T, F )
and H0(T, F ) ∩ Hω(T ) = ∅, therefore H0(T, F ) is a non-trivial hy-
perinvariant subspace of T .

(b) If π(T ) 6= ω(T ) then HlatT is non-trivial.

Remark 5. We know that ω(T, x) = ω(T ) for every x ∈ Hω(T ), which is
a dense Gδ-set in H. On the other hand, it may happen that π(T, x) 6= π(T )
for every non-zero x ∈ H. Indeed, let α1 and α2 be sets of positive measure
on T such that α1 6= α 6= α2 for α = α1 ∩ α2. For j = 1, 2, let Tj ∈ L(Hj)
be an a.c. contraction satisfying π(Tj) = ω(Tj) = αj . (Its existence follows
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from the results of Section 3.) Form the orthogonal sum T = T1 ⊕ T2
∈ L(H = H1 ⊕ H2). For a non-zero x = x1 ⊕ x2 ∈ H the local residual
set ω(T, x) is α1 if x2 = 0, α2 if x1 = 0, and α1 ∪ α2 if x1 6= 0 6= x2. On the
other hand, π(T ) = α.

It is known that the local asymptotic density function, and so the local
quasianalytic spectral set as well, can be expressed in terms of the resolvent
as a non-tangential limit (see [ARS07, Lemma 2.2].)

Proposition 6. Given any x ∈ H we have

nt- lim
z→ζ

(1− |z|2)‖(I − zT )−1x‖2 = wx,x(ζ) for a.e. ζ ∈ T.

Proof. For the sake of completeness we sketch the proof, which is based
on the representation of the unitary asymptote in the dilation space.

Let UT ∗,+ ∈ L(K∗,+) be the minimal isometric dilation of T ∗. Then
U∗ = (UT ∗,+)∗ is the minimal coisometric extension of T . Taking the Wold
decomposition UT ∗,+ = Sn ⊕ R∗∗ ∈ L(K∗,+ = S∗ ⊕ R∗), where Sn is a
unilateral shift of some multiplicity n and R∗ is unitary, we obtain the
decomposition U∗ = S∗n ⊕ R∗. The pair (X∗, R∗) is a unitary asymptote
of T , where X∗ = PR∗ |H.

Given x ∈ H we have

nt-lim
z→ζ

(1− |z|2)‖(I − zR∗)−1X∗x‖2

= nt-lim
z→ζ

�

T

1− |z|2

|1− zs|2
wx,x(s) dm(s) = wx,x(ζ) for a.e. ζ ∈ T.

Notice that the Poisson kernel appears in the integral. Using tools from
harmonic analysis it can be shown that, for every y ∈ S∗,

nt-lim
z→ζ

(1− |z|2)‖(I − zS∗n)−1y‖2 = 0 for a.e. ζ ∈ T.

Now the statement follows from the decomposition

(I − zT )−1x = (I − zU∗)−1x = (I − zS∗n)−1PS∗x⊕ (I − zR∗)−1X∗x.

3. Quasianalytic contractions. An a.c. contraction T ∈ L(H) is
quasianalytic if π(T ) = ω(T ) 6= ∅. In view of Corollary 4, in the setting
of asymptotically non-vanishing contractions, (HSP) can be reduced to the
case when T is quasianalytic.

For the sake of convenience and easy reference, in the following theorem
we collect some fundamental statements on quasianalytic contractions. For
their proofs we refer to [Kér01] and [Kér11].

First we recall some definitions. The simple unilateral shift S ∈ L(H2)
is defined by Sf = χf . An operator A ∈ L(H) is a quasiaffine transform of
B ∈ L(K), in notation: A ≺ B, if there exists a quasiaffinity (i.e. an injective
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transformation with dense range) Q ∈ L(H,K) such that QA = BQ. The
operators A and B are quasisimilar , in notation: A ∼ B, if A ≺ B and
B ≺ A. A function f ∈ H∞ is partially inner if |f(0)| < 1 = ‖f‖∞ and the
set Ω(f) = {ζ ∈ T : |f(ζ)| = 1} is of positive measure. A partially inner
function f is regular if α ⊂ Ω(f) and m(α) = 0 imply m(f(α)) = 0; or
equivalently, if f(α) is measurable whenever α ⊂ Ω(f) is measurable.

Theorem 7. The operators T , T1 and T2 below are all a.c. contractions.

(a) The unilateral shift S ∈ L(H2) is quasianalytic with π(S) = T.
(b) If T ≺ S, then T is quasianalytic with π(T ) = T.
(c) If T is quasianalytic, then its inflation

T (n) = T ⊕ · · · ⊕ T︸ ︷︷ ︸
n terms

is quasianalytic with π(T (n)) = π(T ) (n ∈ N).
(d) If T is quasianalytic and M is a non-zero invariant subspace of T ,

then T |M is quasianalytic with π(T |M) = π(T ).
(e) If T is quasianalytic and f is a regular partially inner function sat-

isfying Ω(f)∩ π(T ) 6= ∅, then f(T ) is quasianalytic with π(f(T )) =
f(Ω(f) ∩ π(T )).

(f) If T1 ∼ T2 and T1 is quasianalytic, then so is T2 and π(T2) = π(T1).

On the basis of these statements a lot of examples of quasianalytic con-
tractions can be constructed.

We show that quasianalycity determines the asymptotic behaviour of a
contraction.

Theorem 8. If T is a quasianalytic contraction, then T ∈ C10.

Proof. Since π(T ) 6= ∅ and F = {χn}∞n=1 is a decreasing sequence with
NF = T, we infer that T ∈ C1·.

Suppose that T /∈ C·0. Then H1 = H0(T
∗)⊥ is a non-zero invariant

subspace of T and T1 = T |H1 ∈ C11. Hence T1 is quasisimilar to an a.c.
unitary operator V1. By Theorem 7(d)&(f) it follows that V1 is quasianalytic,
which is impossible since π(V1) = ∅ 6= ω(V1). Therefore T ∈ C·0.

4. Asymptotically cyclic contractions. Let T ∈ L(H) be an a.c.
contraction, and let (X,V ) be a unitary asymptote of T . We say that T is
asymptotically cyclic if the a.c. unitary operator V ∈ L(K) is cyclic, that is,∨∞
n=0 V

ny = K for some y ∈ K. It is known that V is cyclic exactly when
its commutant {V }′ = {D ∈ L(K) : DV = V D} is abelian. The universal
property of the unitary asymptote implies that for every C ∈ {T}′ there is a
unique D ∈ {V }′ such that XC = DX, and the mapping γ : {T}′ → {V }′,
C 7→ D, is a contractive, unital algebra-homomorphism. Hence {T}′ is
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abelian if so is {V }′ and γ is injective, which is evidently true if T ∈ C1·.
(Injectivity of γ was studied in [GK11].)

We give a sufficient condition for the contraction T to be asymptotically
cyclic. First we fix some notation. Given A ∈ L(E) and B ∈ L(F),

I(A,B) = {Q ∈ L(E ,F) : QA = BQ}
is the set of transformations intertwining A with B. The operators A and B
are unitarily equivalent , in notation: A ∼= B, if I(A,B) contains a unitary
transformation. Moreover, A and B are similar , in notation: A ≈ B, if
I(A,B) contains an affinity (invertible transformation). Finally, A can be

injected into B, in notation: A
i
≺ B, if I(A,B) contains an injection. The

minimal unitary extension of the simple unilateral shift S ∈ L(H2) is the

simple bilateral shift S̃ ∈ L(L2(T)), defined by S̃f = χf .

Proposition 9. If T ∈ L(H) is a contraction and T ≺ S, then T is
asymptotically cyclic and V |(XH)− ∼= S.

Proof. The relation T ≺ S immediately implies that T ∈ C10; in par-
ticular, T is a.c. and the unitary asymptote V acts on a non-zero space K.

Suppose that V is not cyclic. Then S2 = S ⊕ S
i
≺ T by [Kér07, Theorem 1]

(see also [NFBK, Theorem IX.3.2]). Thus S2
i
≺ S, which is impossible by

[NF74, Theorem 5]. Therefore V is cyclic, that is, T is asymptotically cyclic.

Let Q ∈ I(T, S) be a quasiaffinity, and let Q̃ ∈ I(T, S̃) be defined by

Q̃h = Qh (h ∈ H). There exists a unique Y ∈ I(V, S̃) such that Q̃ = Y X.

It is known that kerY is reducing for V , (YK)− is reducing for S̃, and

V |(kerY )⊥ ∼= S̃|(YK)−. Since (YK)− ⊃ (QH)− = H2, it follows that

(YK)− = L2(T), and so V |(kerY )⊥ ∼= S̃. Taking into account that V is
cyclic, we infer that kerY = {0}, thus Y is a quasiaffinity. The relations
Y (XH)− ⊂ (Y XH)− = (QH)− = H2 imply that (XH)− is a non-trivial
invariant subspace of V . Since

∨∞
n=0 V

−n(XH)− = K, we conclude that
V |(XH)− ∼= S.

We note that S2 ≺ S̃, and so T ≺ S̃ does not imply that T is asymp-
totically cyclic. Indeed, Q ∈ I(S2, S̃) defined by Q(f ⊕ g) = ϑf + g is a
quasiaffinity provided ϑ ∈ L∞(T) is a.e. non-zero and

	
T log |ϑ| dm = −∞.

The set of asymptotically cyclic, quasianalytic contractions acting on the
Hilbert space H is denoted by L0(H). If T is cyclic then so is V (but not
conversely), hence (ISP) in the setting of quasianalytic contractions can be
reduced to the class L0(H).

Proposition 10. If T ∈ L0(H) then

(i) {T}′ is abelian, and
(ii) every non-zero C ∈ {T}′ is injective.
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Proof. If T ∈ L0(H) then T ∈ C10 by Theorem 8, and so γ is injective.
Since {V }′ is abelian it follows that {T}′ is abelian too. For the proof of (ii)
see [Kér01, Proposition 23].

Proposition 11. If T1, T2 ∈L0(H) and T1T2 = T2T1, then {T1}′= {T2}′.
Proof. Fix any C ∈ {T1}′. Since T2 ∈ {T1}′, the commutativity of {T1}′

yields CT2 = T2C, that is, C ∈ {T2}′.
We have a lot of information on the structure of a contraction if its

residual set covers the unit circle. Hence it is worth considering the special
class

L1(H) = {T ∈ L0(H) : π(T ) = T}.
In the next theorem we summarize important properties of operators in
L1(H); for the proof we refer to [NFBK, Section IX.3]. We recall that Lats T
stands for the set of those invariant subspaces M for which the restriction
T |M is similar to S. The range of the functional calculus ΦT is denoted by
H∞(T ), and the algebraW(T ) is the closure of H∞(T ) in the weak operator
topology. Finally, T is called reflexive if C ∈ W(T ) whenever LatC ⊃ LatT .

Theorem 12. If T ∈ L1(H) then

(i)
∨

Lats T = H,
(ii) ΦT is an isometry,

(iii) H∞(T ) =W(T ), and
(iv) T is reflexive.

Examples of operators in L1(H) are provided by the following proposi-
tions.

Proposition 13. If T ∈ L(H) is a contraction such that T ≺ S, then
T ∈ L1(H) and H∞(T ) = {T}′.

Proof. By Theorem 7(b) and Proposition 9 it follows that T ∈ L1(H).
For the proof of H∞(T ) = {T}′ see [Kér11, Proposition 5.3].

Proposition 14. If T ∈ L1(H), then T |M ∈ L1(M) for every non-zero
invariant subspace M of T .

Proof. The restriction T |M is quasianalytic with π(T |M) = π(T ) = T
by Theorem 7(d). Since T is asymptotically cyclic, so is T |M, since its
unitary asymptote is a direct summand of V .

There is a strong connection between the classes L0(H) and L1(H). The
following statement is the content of [KT12, Theorem 1].

Theorem 15. For every T0 ∈ L0(H) we can find T1 ∈ L1(H) such that
T0T1 = T1T0; hence {T0}′ = {T1}′ and so HlatT0 = HlatT1.

Therefore, (HSP) in L0(H) can be reduced to L1(H), where Theorem 12
provides a lot of information on the operator. If {T}′ = H∞(T ), then
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HlatT = LatT is non-trivial. However, if {T}′ 6= H∞(T ) then shift-type
invariant subspaces are not hyperinvariant.

Proposition 16. Let T ∈ L1(H) be such that {T}′ 6= H∞(T ). Then

LatC ∩ Lats T = ∅ for every C ∈ {T}′ \H∞(T ).

Proof. Let C ∈ {T}′ be such that CM⊂M for someM∈ Lats T . Since
{T |M}′ = H∞(T |M) by Proposition 13 and C|M ∈ {T |M}′, there exists
f ∈ H∞ such that C|M = f(T |M) = f(T )|M. In view of Proposition 10(ii),
the relations C − f(T ) ∈ {T}′ and (C − f(T ))|M = 0 yield C = f(T ).

Corollary 17. For any T ∈ L1(H),

{T}′ = H∞(T ) if and only if HlatT = LatT.

The following theorem states that if non-trivial hyperinvariant subspaces
exist, then they can be derived from shift-invariant subspaces.

Theorem 18. Let T ∈ L1(H) with {T}′ 6= H∞(T ). Then the following
statements are equivalent:

(i) HlatT is non-trivial;
(ii) there exists M∈ Lats T such that

∨
{CM : C ∈ {T}′} 6= H;

(iii) there exists S ⊂ Lats T such that H 6=
∨
S ∈ HlatT .

Proof. Assume that N is a non-trivial hyperinvariant subspace of T .
Since T |N ∈ L1(N ), there exists a subspace M ∈ Lats(T |N ) ⊂ Lats T
included in N (see Theorem 12 and Proposition 14). It is clear that N0 =∨
{CM : C ∈ {T}′} is a hyperinvariant subspace satisfying the conditions
M⊂ N0 ⊂ N , in particular N0 is non-trivial.

For any C ∈ {T}′ and λ ∈ C, we have (C − λI)M ∨ M = CM ∨ M.
Hence N0 =

∨
{CM : C ∈ {T}′ invertible}. However, if C ∈ {T}′ is invert-

ible, then T |CM≈ T |M ≈ S and so CM∈ Lats(T ).

It is known that the unilateral shift S is cellular-indecomposable, that is,
the intersection of any two non-zero invariant subspaces of S is non-zero.
A contraction T ∈ L1(H) is called quasiunitary if X has dense range and so
it is a quasiaffinity, where (X,V ) is a unitary asymptote of T (see [Kér01,
Section 5].)

Proposition 19. If T ∈ L1(H), then the following conditions are equiv-
alent:

(i) T is not quasiunitary;
(ii) T ≺ S;

(iii) T is cellular-indecomposable.

Proof. Let (X,V ) be a unitary asymptote of T ; we know that L(K) 3
V ∼= S̃. The subspace (XH)− is invariant for V and

∨∞
n=1 V

−n(XH)− = K.
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Hence, if (XH)− 6= K then V |(XH)− ∼= S, and so (i) implies (ii). The
converse follows from Proposition 9.

If T is not quasiunitary, then S ≺ S̃ implies T ≺ S̃. Hence T ≺ S̃ always
holds. Therefore, (ii) and (iii) are equivalent by the result of [Tak90].

If T is not quasiunitary, then HlatT = LatT is a rich lattice containing
Lats T and (ker(T ∗−λI))⊥ (λ ∈ D) because S∗ ≺ T ∗ (see Propositions 13, 19
and Theorem 12). Hence (HSP) in L1(H) can be reduced to the quasiunitary
case. Propositions 14, 19 and Theorem 12 yield:

Proposition 20. If T ∈ L1(H) is quasiunitary, then there exist
M1,M2 ∈ Lats T such that M1 ∩M2 = {0}.

5. Functional commutant. Let T ∈ L(H) be an asymptotically cyclic
a.c. contraction, and assume that T ∈ C1· and ω(T ) = T. Let (X,V )
be a unitary asymptote of T , and consider the contractive algebra-homo-
morphism γ : {T}′ → {V }′, C 7→ D, where XC = DX, which is injective
because T ∈ C1·. The functional calculus Φ : L∞(T)→ {V }′, f 7→ f(V ) is an
isomorphism between the corresponding Banach algebras. The composition

γ̂T = Φ−1 ◦ γ : {T}′ → L∞(T)

is also an injective, contractive, unital algebra-homomorphism. It can be
easily checked that γ̂T is independent of the special choice of (X,V ). Indeed,
for j = 1, 2 let (Xj , Vj) be a unitary asymptote of T , and let γj , Φj be
defined as before. There exist unitary transformations Y1 ∈ I(V1, V2) and
Y2 ∈ I(V2, V1) such that X2 = Y1X1, X1 = Y2X2 and Y2 = Y1

−1. Given any
C ∈ {T}′ we have XjC = DjXj = fj(Vj)Xj . Hence

f2(V1)X1 = Y2f2(V2)Y1X1 = Y2f2(V2)X2 = Y2X2C = X1C = f1(V1)X1,

and so f2(V1) = f1(V1), whence f2 = f1.
The uniquely determined γ̂T is called the functional mapping of T , and its

range F(T ) is called the functional commutant of T . Since γ̂T (f(T )) = f for
every f ∈ H∞, we see that F(T ) is a subalgebra of L∞(T) containing H∞.
It is natural to ask the following questions. Which function algebras H∞ ⊂
A ⊂ L∞(T) are attainable as a functional commutant: A = F(T ), and
what kind of information on the behaviour of T can be derived from the
properties of γ̂T and F(T )? We recall that the function algebra A is called
quasianalytic if f(ζ) 6= 0 for a.e. ζ ∈ T whenever f is a non-zero element
of A. The following statement was proved in [Kér11, Proposition 4.2].

Proposition 21. If T ∈ L1(H), then F(T ) is quasianalytic.

It is clear that F(T ) = H∞ exactly when {T}′ = H∞(T ), and this
happens in particular if T ≺ S. (For a more complete characterization of
this case see [Kér11, Theorem 5.2].)
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If T ∈ L1(H) and F(T ) 6= H∞, then the closure F(T )− contains
H∞ + C(T) (see [Gar07, Theorems IX.1.4 and IX.2.2]); thus F(T )− is not
quasianalytic, and so F(T ) is not closed, or equivalently, γ̂T is not bounded
from below.

We recall that η ∈ H∞ is an inner function if |η(ζ)| = 1 for a.e. ζ ∈ T.
Let H∞i stand for the multiplicative semigroup of all inner functions. Given
a subsemigroup B of H∞i , the algebra B · H∞ generated by B (the set of
conjugates of functions in B) and H∞ is clearly quasianalytic. The closure
(B · H∞)− is called the Douglas algebra induced by B. By the celebrated
Chang–Marshall theorem every closed subalgebra A of L∞(T) containing
H∞ is a Douglas algebra (see [Gar07, Theorem IX.3.1]). Therefore, F(T )− =
(B ·H∞)− with B = {η ∈ F(T )− ∩H∞i : η ∈ F(T )−}. We note that B can
be replaced by a semigroup generated by interpolating Blaschke products
(see [Gar07, Theorems IX.3.2 and IX.3.4]). The question which pre-Douglas
algebras B ·H∞ arise as functional commutants was posed in [Kér11]. The
next theorem settles this problem.

Theorem 22. The only attainable pre-Douglas algebra is H∞.

Proof. Fix T ∈ L1(H), and assume that F(T ) 6= H∞. If the spectrum
σ(T ) covers the closed unit disc D−, then η /∈ F(T ) for every non-constant
η ∈ H∞i (see [Kér11, Proposition 4.4]), hence F(T ) cannot be a pre-Douglas
algebra.

Assume now that σ(T ) 6= D−. Select a point a ∈ D \ σ(T ), and consider
the operator A = (T−aI)−1 ∈ {T}′ and the function g = γ̂T (A) = (χ−a)−1

∈ F(T ). Since Ã := expA =
∑∞

n=0(n!)−1An ∈ {T}′, it follows that

g̃ := γ̂T (Ã) =
∞∑
n=0

(n!)−1gn = exp g

belongs to F(T ). The function g̃, defined on T, has an analytic extension
G(z) = exp(1/(z−a)) defined for z ∈ C\{a}. It is clear that a is an essential
isolated singularity of G. Assume that we can find functions h ∈ H∞ and
k ∈ H∞i so that g̃ = hk = h/k. Let H and K be analytic extensions of h
and k, respectively, onto D. Then H/K is a meromorphic function on D,
and

nt-lim
z→ζ

H(z)

K(z)
=
h(ζ)

k(ζ)
= g̃(ζ) = G(ζ)

for every ζ ∈ ω0, where m(T \ ω0) = 0. Let Ω be a domain in D bounded
by an open arc α1 on T and a closed segment α2, such that a /∈ Ω−. Let
ψ be a conformal mapping of D onto Ω, and consider the bounded analytic
function

F = (H ◦ ψ)− (G ◦ ψ)(K ◦ ψ)

on D. By Carathéodory’s theorem, ψ can be extended to a homeomorphism
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of D− onto Ω−. Since the Jordan curve ∂Ω is rectifiable, the set ω1 =
ψ−1(ω0 ∩ α1) ⊂ T is of positive measure. For every ζ ∈ ω1, there is an
rζ ∈ (0, 1) such that Iζ = {rψ(ζ) : rζ ≤ r < 1} ⊂ Ω. Then the arc
Cζ = ψ−1(Iζ) ⊂ D terminates at ζ, and F (z) converges to 0 when z tends to
ζ along Cζ . We conclude that nt-limz→ζ F (z) = 0 by Lindelöf’s theorem (see
[CL66, Theorem 2.3]). Hence the theorem of F. and M. Riesz implies that F
is identically zero (see [CL66, Theorem 2.5]). Therefore, G = H/K, which
is impossible since H/K is meromorphic on D and a ∈ D is an essential
singularity.

A special case of the following property of the functional commutant has
been exploited in the previous proof.

Proposition 23. If f ∈ F(T ), r > ‖γ̂−1T (f)‖ and ϕ is analytic on rD,
then ϕ ◦ f ∈ F(T ).

Proof. Consider the Taylor expansion ϕ(z) =
∑∞

n=0 cnz
n (z ∈ rD),

where limn→∞
n
√
|cn| ≤ r. Setting C = γ̂−1T (f) ∈ {T}′, we know that

C̃ = ϕ(C) =
∑∞

n=0 cnC
n ∈ {T}′ (convergence in norm), and so

ϕ(f) =

∞∑
n=0

cnf
n = γ̂T (C̃) ∈ F(T ).

We recall thatH∞ ⊂ A ⊂ L∞ is a generalized Douglas algebra if for every
f ∈ A and λ ∈ C, |λ| > ‖f‖∞ implies (f − λ)−1 ∈ A. These algebras were
introduced and studied in [Tol92], where Gelfand’s theory of maximal ideals
and the theory of Douglas algebras were carried over to such algebras. We
know that F(T ) is a generalized Douglas algebra if and only if γ̂T preserves
the spectral radius, and in that case σ(T ) = T (see [Kér11, Theorems 5.5
and 5.6]). It remains open which (if any) generalized Douglas algebras other
than H∞ arise as a functional commutant F(T ) of a contraction T ∈ L1(H).
Are there any quasianalytic generalized Douglas algebras other than H∞

at all?

We provide an example of an operator T ∈ L1(H) such that F(T ) 6= H∞

and F(T ) ∩H∞i = C1. (Here 1 denotes the constant 1 function.)

Example 24. We consider an extended version of [Kér11, Example 5.8].
Given 0 ≤ δ < 1, set Gδ = {reit :

√
δ < r < 1, 0 < t < π}. Let ηδ denote

the conformal mapping of D onto Gδ satisfying ηδ(ζ) = ζ for ζ = 1, i,−1.
Forming the regular partially inner function ϑδ = η2δ , consider the analytic
Toeplitz operator Tδ ∈ L(H2) defined by Tδf = ϑδf . It can be easily verified
(see [Kér11]) that Tδ ∈ L1(H2), σ(Tδ) = {z ∈ C : δ ≤ |z| ≤ 1} and

F(Tδ) = {g ∈ L∞(T) : g ◦ ϑδ,+ = h|T+ for some h ∈ H∞},
where T+ = {z ∈ C : |z| = 1, Im z > 0} and ϑδ,+ = ϑδ|T+.
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Let gδ ∈ L∞(T) be the inverse of ϑδ,+, that is, gδ(ϑδ,+(ζ)) = ζ for every
ζ ∈ T+. Since gδ(T \ {1}) = T+, it follows that gδ /∈ H∞. (Indeed, assuming
gδ ∈ H∞ choose a fractional linear function ψ transforming T+ onto (0, 1).
Then Im(ψ ◦ gδ) = 0 a.e. on T; taking the Poisson transform we infer that
Im(ψ ◦ gδ) is zero on D. The Cauchy–Riemann equations show that ψ ◦ gδ is
constant. Thus gδ is constant, which is impossible because gδ(T\{1}) = T+.)
On the other hand, the equality gδ ◦ ϑδ,+ = χ|T+ implies that gδ ∈ F(Tδ).
Therefore F(Tδ) 6= H∞ for every δ ∈ [0, 1). In particular, if δ = 0 then
σ(T0) = D−, and so F(T0) ∩H∞i = C1.

Though F(Tδ) 6= H∞, there is a connection between these algebras.
Namely, for any δ ∈ [0, 1), the commutation relation TδS = STδ yields
{Tδ}′ = {S}′ (see Proposition 11). It is known that {S}′ = H∞(S) and γ̂S
is an isometry. Thus γ̂T ◦ γ̂−1S is a contractive algebra-isomorphism from H∞

onto F(T ).

We show that the functional commutant is a similarity invariant. Actu-
ally, the following theorem contains a more general statement.

Theorem 25. For j = 1, 2, let Tj ∈ L1(Hj) have unitary asymptote
(Xj , Vj). Assume that there exist Y ∈ I(T1, T2) and Z ∈ I(T2, T1) such that
ZY 6= 0. Then:

(a) Y and Z are injective,
(b) 0 6= γ̂T1(ZY ) = γ̂T2(Y Z) =: g belongs to F(T1) ∩ F(T2) and

gF(T1) ⊂ F(T2), gF(T2) ⊂ F(T1),
(c) in particular, if ZY = I, that is, T1 ≈ T2, then g = 1 and F(T1) =
F(T2).

Proof. By the universality property of unitary asymptotes there exist
A ∈ I(V1, V2) and B ∈ I(V2, V1) such that AX1 = X2Y and BX2 = X1Z.
Since X1(ZY ) = BX2Y = (BA)X1, ZY ∈ {T1}′ and BA ∈ {V1}′, we infer
that γ̂T1(ZY ) = g where g(V1) = BA. Similarly, AB = h(V2) with h =
γ̂T2(Y Z). The assumption ZY 6= 0 yields 0 6= g ∈ F(T1). Since the function
algebra F(T1) is quasianalytic, we see that g(V1) is a quasiaffinity, and so
B has dense range. Now the equalities g(V1)B = BAB = Bh(V2) = h(V1)B
imply that g(V1) = h(V1), whence g = h. Thus Y Z ∈ {T2}′ is also non-zero,
and we conclude by Proposition 10(ii) that ZY and Y Z are injective, hence
so are Y and Z.

Given f1 ∈F(T1), consider C1 = (γ̂T1)−1(f1)∈ {T1}′, C2 = Y C1Z ∈ {T2}′
and γ̂T2(C2) = f2. Then the equalities

f2(V2)X2 = X2C2 = X2Y C1Z = AX1C1Z = Af1(V1)X1Z

= Af1(V1)BX2 = f1(V2)ABX2 = f1(V2)g(V2)X2

yield f2 = f1g. Therefore gF(T1) ⊂ F(T2), and in a similar way we find
that gF(T2) ⊂ F(T1).
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Since Z is injective, the equality ZY = I is equivalent to the invertibility
of Z with Y = Z−1. In that case g = γ̂T1(ZY ) = 1, and so F(T1) = F(T2).

We conclude this section by providing a representation of the functional
mapping in the functional model.

Let E , E∗ be Hilbert spaces, and let Θ : D→ L(E , E∗) be a purely contrac-
tive, analytic, inner and ∗-outer function. Then H(Θ) = H2(E∗)	 ΘH2(E)
is the corresponding model space, and the model operator S(Θ) ∈ L(H(Θ))
is defined by S(Θ)u = PH(Θ)(χu), where PH(Θ) ∈ L(H2(E∗)) denotes the
orthogonal projection onto H(Θ). We know that S(Θ) ∈ C10, and every
contraction of class C10 is unitarily equivalent to a model operator of this
kind. Let us consider the measurable projection-valued function ∆∗(ζ) =
I−Θ(ζ)Θ(ζ)∗ defined for a.e. ζ ∈ T, the subspace R∗ = ∆∗L

2(E∗) in L2(E∗),
and the a.c. unitary operator R∗ ∈ L(R∗) defined by R∗v = χv. The pair
(X∗, R∗) is a unitary asymptote of S(Θ), where X∗ ∈ L(H(Θ),R∗) is defined
by X∗u = ∆∗u. (For the characteristic properties of ∆∗ see [Kér13].)

The spectral-multiplicity function of R∗ is δ∗(ζ) = rank∆∗(ζ). Hence
S(Θ) is asymptotically cyclic exactly when δ∗ ≤ 1. The asymptotic density
function of S(Θ) at u, v ∈ H(Θ) is wu,v(ζ) = 〈∆∗(ζ)u(ζ), v(ζ)〉. Thus the lo-
cal residual set of S(Θ) at u is ω(S(Θ), u) = {ζ ∈ T : ∆∗(ζ)u(ζ) 6= 0},
while the global residual set is ω(S(Θ)) = {ζ ∈ T : ∆∗(ζ) 6= 0}. In
view of Proposition 1 and Theorem 3 we obtain the following characteri-
zation.

Proposition 26. We have S(Θ) ∈ L1(H(Θ)) if and only if

(i) δ∗(ζ) = 1 for a.e. ζ ∈ T, and
(ii) ∆∗(ζ)u(ζ) 6= 0 for a.e. ζ ∈ T whenever 0 6= u ∈ H(Θ).

By the Lifting Theorem, C ∈ {S(Θ)}′ if and only if there exists a
bounded analytic function Ψ : D → L(E∗) such that ΨΘH2(E) ⊂ ΘH2(E)
and Cu = PH(Θ)Ψu for every u ∈ H(Θ). We note that Ψ can be chosen

so that ‖Ψ‖∞ = ‖C‖. Furthermore, the condition ΨΘH2(E) ⊂ ΘH2(E) is
equivalent to the existence of a bounded analytic function Ψ0 : D → L(E)
such that ΨΘ = ΘΨ0. Let H∞(Θ) stand for the set of all bounded ana-
lytic functions Ψ : D → L(E∗) satisfying ΨΘH2(E) ⊂ ΘH2(E), and for any
Ψ ∈ H∞(Θ) let CΨ be the operator in {S(Θ)}′ defined by CΨu = PH(Θ)Ψu
(u ∈ H(Θ)). Moreover, let ΓΘ(Ψ) denote the function ψ ∈ L∞(T) defined
by ∆∗Ψ∆∗ = ψ∆∗. (Notice that dim∆∗(ζ)E∗ = 1 for a.e. ζ ∈ T.)

Theorem 27. If S(Θ) ∈ L1(H(Θ)), then for every Ψ ∈ H∞(Θ) we
have:

(i) ∆∗Ψ(I −∆∗) = 0, and
(ii) γ̂S(Θ)(CΨ ) = ΓΘ(Ψ).
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Proof. Fix Ψ ∈ H∞(Θ), and let ψ = ΓΘ(Ψ). For any u ∈ H2(E) and
n ∈ N, we have

∆∗ΨΘ(χ−nu) = χ−n∆∗ΨΘu = 0,

since ΨΘu ∈ ΘH2(E) and ∆∗Θ = 0. Thus ∆∗ΨΘv = 0 for every v ∈ L2(E),
and so ∆∗ΨΘ = 0. Since Θ(ζ) is an isometry from E onto E∗ 	∆∗(ζ)E∗ for
a.e. ζ ∈ T, it follows that ∆∗Ψ(I −∆∗) = 0.

For every u ∈ H(Θ), we have

X∗CΨu = ∆∗PH(Θ)Ψu = ∆∗Ψu = ∆∗Ψ(∆∗u+ (I −∆∗)u)

= ∆∗Ψ∆∗u = ψ∆∗u = ψ(R∗)X∗u.

Therefore, γ̂S(Θ)(CΨ ) = ψ.

6. Analytic contractions. In [ARS07] the multiplication operator on
a general Hilbert space of analytic functions has been studied. Namely, let
Ha be a Hilbert space of analytic functions defined on D, with the usual
vector space operations, satisfying the following conditions:

(i) for every f ∈ Ha, we have χf ∈ Ha and ‖χf‖ ≤ ‖f‖ (χ(z) = z);
(ii) for every λ ∈ D, the evaluation Kλ : Ha → C, f 7→ f(λ), is a

bounded linear functional, and so there is a unique reproducing
kernel kλ ∈ Ha with the property f(λ) = 〈f, kλ〉 (f ∈ Ha);

(iii) 1 ∈ Ha.
The operator Ma ∈ L(Ha), Maf = χf , is called an analytic multiplication
operator. Since M∗akλ = λkλ (λ ∈ D) and

∨
{kλ : λ ∈ D} = Ha, it follows

that Ma is a C·0-contraction. Condition (iii), which yields H∞ ⊂ Ha, is not
always assumed in [ARS07]; we suppose it here for simplicity. The boundary
behaviour of functions in Ha is governed by the set

∆(Ha) =
{
ζ ∈ T : nt- lim

λ→ζ
(1− |λ|2)−1‖kλ‖−2 > 0

}
.

Namely, it has been shown in [ARS07] that

(a) for every f ∈ Ha, nt-limz→ζ f(z) exists for a.e. ζ ∈ ∆(Ha);
(b) there exists f ∈ Ha such that nt-limz→ζ f(z) does not exist for a.e.

ζ ∈ T \∆(Ha).
The measurable set ∆(Ha) can be related to the quasianalytic spectral set
of Ma.

Proposition 28. We have ∆(Ha) ⊂ π(Ma). Therefore Ma is quasian-
alytic whenever ∆(Ha) = ω(Ma) 6= ∅.

Proof. Pick a non-zero f ∈ Ha. The inequality

|f(λ)|2

(1− |λ|2)‖kλ‖2
≤ (1− |λ|2)‖(I − λMa)

−1f‖ (λ ∈ D)
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implies by Proposition 6 that

nt- lim
λ→ζ

|f(λ)|2

(1− |λ|2)‖kλ‖2
≤ wf,f (ζ) for a.e. ζ ∈ T.

By Proposition 3.3 of [ARS07] we know that

nt- lim
λ→ζ

|f(λ)|2

(1− |λ|2)‖kλ‖2
> 0 for a.e. ζ ∈ ∆(Ha).

Thus ω(Ma, f) ⊃ ∆(Ha), and so ∆(Ha) ⊂ π(Ma) (see Proposition 1 and
Theorem 3).

Conditions ensuring ∆(Ha) = ω(Ma) are given in [ARS07].

It is easy to verify that the mapping λ 7→ kλ is coanalytic, which means
that the function ϕ(λ) = 〈f, kλ〉 (λ ∈ D) is analytic for every f ∈ Ha. Hence
Ma is an analytic operator in the sense of [CEP89]. We say that T ∈ L(H)
is an analytic contraction if ‖T‖ ≤ 1 and there exists a coanalytic function
η : D→ H satisfying:

(i) T ∗η(λ) = λη(λ) for every λ ∈ D,
(ii)

∨
{η(λ) : λ ∈ D} = H.

(We note that such contractions are called fully analytic in [CEP89].) The
function η has an expansion η(λ) =

∑∞
n=0 λ

n
yn (λ ∈ D), where

lim
n→∞

‖yn‖1/n ≤ 1,
∨
{yn}∞n=0 = H, T ∗yn = yn−1 for n ∈ N, T ∗y0 = 0.

We say that T is a purely analytic contraction if η can be chosen so that y0 /∈∨
{yn}∞n=1. It can be easily verified that these are exactly those contractions

which are unitarily equivalent to an analytic multiplication operator. We
also note that T ∗ belongs to the Cowen–Douglas class B1(D) introduced in
[CD78] if and only if T is an analytic contraction with approximate point
spectrum σap(T ) = T and with Fredholm index ind T = −1. Surprisingly,
rather general spectral conditions ensure the existence of purely analytic
invariant subspaces, restriction to which is a purely analytic contraction.
Namely, let T ∈ L(H) be an a.c. contraction with an isometric functional
calculus ΦT , and assume that the extended right spectrum

σ̃r(T ) = D \ {λ ∈ D : (T − λI)H = H and 0 < dim ker(T − λI) <∞}
is dominating in D, that is, a.e. ζ ∈ T is a non-tangential cluster point
of σ̃r(T ). Then there is a dense set H0 in H such that

∨
{Tnx}∞n=0 is a

purely analytic invariant subspace of T for every x ∈ H0 (see [CEP89]).

It is not obvious how to identify the unitary asymptote of a general
analytic multiplication operator Ma. This identification can be carried out
in the special case when Ha is induced by a measure satisfying particular
conditions considered in [ARS09]. Let µ be a finite positive Borel measure
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supported on D−, with µ(T) > 0. Let P stand for the algebra of complex
polynomials, and P2(µ) for the closure of P in L2(µ). We consider the cyclic
subnormal operator Sµ ∈ L(P2(µ)) defined by Sµf = χf . The following
assumptions are made:

(i) P2(µ) is irreducible, i.e. contains no non-trivial characteristic func-
tion;

(ii) for every λ ∈ D, the evaluation Kλ : P → C, p 7→ p(λ), is a bounded
linear functional; its continuous extension to P2(µ) is represented
by kλ ∈ P2(µ), i.e. p(λ) = 〈p, kλ〉 (p ∈ P).

By the results of [ARS09] (see also [Con91, Chapter VIII]), we know that for

every f ∈ P2(µ), the function f̃(λ) = 〈f, kλ〉 is analytic on D, f̃(λ) = f(λ)

for µ-a.e. λ ∈ D, and nt-limλ→ζ f̃(λ) = f(ζ) for µ0-a.e. ζ ∈ T. Here µ0
denotes the restriction of µ to the Borel subsets of T, which is a.c. with
respect to m. Therefore, Sµ can be considered as an analytic multiplication
operator. Furthermore, for h = dµ0/dm we have

h(ζ) = nt- lim
λ→ζ

(1− |λ|2)−1‖kλ‖−2 for a.e. ζ ∈ T,

and ∆(P2(µ)) = {ζ ∈ T : h(ζ) > 0}. It is clear that (X,V ) is a unitary
asymptote of Sµ, where V ∈ L(L2(µ0)), V f = χf and X ∈ L(P2(µ), L2(µ0))
is defined by Xf = f |T. Thus Sµ is asymptotically cyclic. Since ω(Sµ) =
∆(P2(µ)), it follows by Proposition 28 that Sµ is quasianalytic.

Proposition 29. If h(ζ) > 0 for a.e. ζ ∈ T, then Sµ ∈ L1(P2(µ)) and
F(Sµ) = X(P2(µ) ∩ L∞(µ)).

Proof. The last equality follows from Yoshino’s theorem (see [Con91,
Theorem II.5.4]).

7. Bilateral weighted shifts. Weighted shifts always serve as a source
of examples. Here we consider those bilateral weighted shifts which are
C10-contractions. As earlier, S̃ ∈ L(L2(T)), S̃f = χf , is the simple bilat-

eral shift. The Fourier transformation F : L2(T) → l2(Z), f 7→ f̂ , where

f̂(n) = 〈f, χn〉 (n ∈ Z), is a Hilbert space isomorphism. Assume that
β : Z→ (0,∞) satisfies:

(i) β(n) ≥ β(n+ 1) for every n ∈ Z,
(ii) limn→∞ β(−n) =∞,

(iii)0 limn→∞ β(n) > 0.

It is clear that

l2(β) =
{
ξ : Z→ C : ‖ξ‖2β :=

∞∑
n=−∞

|ξ(n)|2β(n)2 <∞
}
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is a dense linear manifold in l2(Z), which is a Hilbert space with the
norm ‖ξ‖β. Hence

L2(β) = {f ∈ L2(T) : f̂ ∈ l2(β)}
is a dense linear manifold in L2(T), which forms a Hilbert space with the

norm ‖f‖β := ‖f̂‖β. It can be easily verified that Tβ ∈ L(L2(β)) defined
by Tβf = χf is a C10-contraction (see [NFBK, Section IX.2]). Further-
more, in this way we obtain all bilateral weighted shifts which are C10-
contractions. Since Tβ is unitarily equivalent to Tcβ (c > 0), we may assume
that limn→∞ β(n) = 1. Moreover, in that case Tβ is similar to T

β̃
, where

β̃(−n) = β(−n) for n > 0 and β̃(n) = 1 for n ≥ 0. Therefore, without
restricting generality, condition (iii)0 can be replaced by

(iii) β(n) = 1 for every n ∈ Z+.

Obviously, (Xβ, S̃) is a unitary asymptote of Tβ, where Xβ : L2(β)→ L2(T),
f 7→ f , is a quasiaffinity. Thus Tβ is asymptotically cyclic and quasiunitary,
with ω(Tβ) = T.

The special form of Xβ implies that, for any φ ∈ F(Tβ), the operator
Mφ,β := (γ̂Tβ )−1(φ) ∈ {Tβ}′ acts as multiplication:Mφ,βf = φf (f ∈ L2(β)).

Clearly, F(Tβ) ⊂ L∞(T)∩L2(β). The following characterization follows from
the Closed Graph Theorem.

Proposition 30. The functional commutant F(Tβ) consists of all mea-
surable functions φ : T→ C satisfying φL2(β) ⊂ L2(β).

The previous discussion shows that Tβ belongs to the class L1(L2(β)) ex-
actly when the function space L2(β) is quasianalytic, that is, when f(ζ) 6= 0
for a.e. ζ ∈ T whenever f is a non-zero element of L2(β). This happens if
β(−n) increases sufficiently fast as n→∞.

Proposition 31. The function space L2(β) is quasianalytic if and only if
∞∑
n=1

n−2 log β(−n) =∞.

Proof. Suppose that
∑∞

n=1 n
−2 log β(−n) =∞, and consider a non-zero

function f ∈ L2(β). For any n ∈ N, we have

Fn :=
[ ∞∑
k=n

|f̂(−k)|2
]1/2
≤ 1

β(−n)

[ ∞∑
k=n

|f̂(−k)|2β(−k)2
]1/2
≤
‖f‖β
β(−n)

,

whence
∞∑
n=1

logFn
n2

≤ (log ‖f‖β)

∞∑
n=1

1

n2
−
∞∑
n=1

log β(−n)

n2
= −∞.

By [Beu77, Corollary III.4.2] we infer that f(ζ) 6= 0 for a.e. ζ ∈ T.
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Assume now that
∑∞

n=1 n
−2 log β(−n) < ∞, and set W (n) = β(−|n|)2

(n ∈ Z). Since
∑∞

n=−∞(logW (n))/(n2 + 1) < ∞, W (n) ≥ 1 for every

n ∈ Z, and lim|n|→∞W (n) =∞, by [Koo98, Corollary] there exists a non-

identically zero sequence {an}n∈Z ⊂ C such that
∑∞

n=−∞ |an|W (n) < ∞
and the continuous function f =

∑∞
n=−∞ anχ

n satisfies f(eit) = 0 whenever
h ≤ |t| ≤ π, where h ∈ (0, π) is an arbitrarily prescribed number. Notice

that, by uniform convergence, f̂(n) = an for every n ∈ Z, and so f is
non-zero. On the other hand, the relations

∞∑
n=−∞

|f̂(n)|β(n)2 ≤
∞∑

n=−∞
|an|W (n) <∞ and lim

|n|→∞
f̂(n) = 0

imply that
∑∞

n=−∞ |f̂(n)|2β(n)2<∞, and so f ∈L2(β).

The invertibility of Tβ is controlled by the number

δβ := inf{β(n+ 1)/β(n) : n ∈ Z} ∈ R+.

Namely, Tβ is invertible if and only if δβ > 0. The non-invertible case is well
understood.

Proposition 32. If δβ = 0, then F(Tβ) = H∞ and so HlatTβ = LatTβ
is non-trivial.

Proof. For the reader’s convenience we sketch the short proof. Given
φ ∈ F(Tβ), for any n ∈ N and k ∈ Z we have

〈Mφ,βχ
k, χk−n〉β = φ̂(−n)β(k − n)2,

whence
|φ̂(−n)| ≤ ‖Mφ,β‖β(k)/β(k − n).

Since δβ = 0, we infer that φ̂(−n) = 0.

Remarks 33. (a) If β(−n) = exp(n2) (n ∈ N), then Tβ ∈ L1(L2(β)),
{Tβ}′ = H∞(Tβ), but Tβ is not a quasiaffine transform of S, since T ∗β is
injective. This example can be contrasted with Proposition 13.

(b) The sequence β can be chosen so that

δβ = 0 and

∞∑
n=1

log β(−n)

n2
<∞.

In that case the functional commutant F(Tβ) is a quasianalytic algebra,
while the C10-contraction Tβ is not quasianalytic.

Now let us turn to the case when δβ > 0, and so δβ = ‖T−1β ‖
−1. Let

rβ := r(T−1β )−1 be the inner spectral radius of Tβ. It is easy to verify that

0 < δβ ≤ rβ ≤
(

lim
n→∞

β(−n)1/n
)−1
≤
(

lim
n→∞

β(−n)1/n
)−1

=: Rβ ≤ 1.
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It is known that the operators of the form
∑N

n=−N cnT
n
β are dense in {Tβ}′

in the strong operator topology (see [Shi74, Section 8, Corollary (b)]). Thus
HlatTβ = LatTβ ∩LatT−1β , and the hyperinvariant subspaces of Tβ may be
called biinvariant.

The case rβ = 1 has been settled by Esterle, by providing a subspaceM
satisfying condition (ii) of Theorem 18. Namely, Theorem 5.7 of [Est97] can
be stated in the following way.

Theorem 34 (Esterle). If rβ = 1, then there exists M ∈ Lats Tβ such

that M̃ =
∨
{CM : C ∈ {Tβ}′} 6= L2(β), and so M̃ is a non-trivial hyper-

invariant subspace of Tβ.

For any R ∈ (0, 1), let A(R) := {z ∈ C : R < |z| < 1}. It is known that
the point spectrum of the adjoint satisfies the condition A(Rβ) ⊂ σp(T

∗
β )

⊂ A(Rβ)− (see [Shi74, Section 5, Theorem 9]). Thus the (HSP) for bilateral
weighted shifts, which are C10-contractions, is open (up to our knowledge)
in the case when

0 < δβ ≤ rβ < Rβ = 1 and
∞∑
n=1

log β(−n)

n2
=∞.

Under these conditions the functional commutant can be related to bounded
analytic functions defined on an annulus. ForR ∈ (0, 1), letH∞(A(R)) stand
for the Banach algebra of bounded analytic functions on A(R). We note that
F(Tβ) is an abelian Banach algebra with the norm ‖φ‖β,∞ := ‖Mφ,β‖. In
the next statement we consider this norm on F(Tβ).

Proposition 35. If 0 < δβ ≤ rβ < 1, then the mapping

Λβ : F(Tβ)→ H∞(A(rβ)), φ 7→ Φ, where Φ(z) =
∞∑

n=−∞
φ̂(n)zn,

is an injective and contractive algebra-homomorphism, while the mapping

Λ̃β : H∞(A(δβ))→ F(Tβ), Φ→ φ, where φ(ζ) = nt- lim
z→ζ

Φ(z) for a.e. ζ ∈T,

is a bounded algebra-homomorphism; moreover

ΛβΛ̃β : H∞(A(δβ))→ H∞(A(rβ)), Φ 7→ Φ|A(rβ).

In particular, if 0 < δβ = rβ < 1 then Λβ is an algebra-isomorphism.

Proof. For the sake of completeness we sketch the proof, which is an
adaption of the proof of Theorem 10′ in Section 6 of [Shi74] to our situation,
avoiding formal series.

Fix φ ∈ F(Tβ). The inequality in the proof of Proposition 32 shows that

|φ̂(−n)| ≤ ‖Mφ,β‖ inf{β(k)/β(k−n) : k ∈ Z} = ‖Mφ,β‖·‖T−nβ ‖
−1 (n ∈ N),
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so limn→∞ |φ̂(−n)|1/n ≤ rβ. Therefore, the Laurent series
∑∞

n=−∞ φ̂(n)zn

converges to an analytic function Φ on A(rβ). Fix z ∈ A(rβ). Since the
linear functional Ez : F(Tβ)→ C, φ 7→ Φ(z), is multiplicative and F(Tβ) is
an abelian Banach algebra, we infer that ‖Ez‖ ≤ 1, and so |Φ(z)| ≤ ‖φ‖β,∞.
Thus Λβ is a contractive algebra-isomorphism.

Given any Φ ∈ H∞(A(δβ)), consider the Laurent expansion Φ(z) =∑∞
n=−∞ cnz

n. The function Φ+(z) =
∑∞

n=0 cnz
n is analytic on D, while

Φ−(z) =
∑∞

n=1 c−nz
−n is analytic on C \ (δβD)−. For any r ∈ (δβ, 1), Φ−

is bounded on A(r), hence Φ+ = Φ− Φ− is bounded on A(r), and so Φ+ is
bounded on D. By Fatou’s theorem,

φ(ζ) = nt-lim
z→ζ

Φ(z) = nt-lim
z→ζ

Φ+(z) + Φ−(ζ)

exists for a.e. ζ ∈ T. Set φr(ζ) = Φ(rζ) (r ∈ (δβ, 1), ζ ∈ T). Lebesgue’s

dominating convergence theorem yields φ̂(n) = limr→1 φ̂r(n) = cnr
n = cn

for every n ∈ Z. (This argument shows that φ can be recovered from Λβφ,
and so Λβ is injective.)

For any N ∈ N, set

σN =
N∑

n=−N

(
1− |n|

N + 1

)
cnχ

n.

By a von Neumann-type inequality for an annulus we know that

‖σN (Tβ)‖ ≤ Cβ sup{|σN (z)| : z ∈ A(δβ)},
where Cβ depends only on δβ see [Shi74, Section 6, Proposition 23]. Since
|σN (rζ)| ≤ ‖φr‖∞ ≤ ‖Φ‖∞ for r ∈ (δβ, 1) and ζ ∈ T, it follows that
{MσN ,β = σN (Tβ)}∞N=1 is a bounded sequence of operators. Taking into
account that

〈σNχk, χl〉β = σ̂N (l − k)β(l)2 → cl−kβ(l)2 as N →∞ (k, l ∈ Z),

we conclude that MσN ,β ∈ {Tβ}′ converges in the weak operator topology
to an operator Mψ,β with ψ ∈ F(T ), as N →∞. Since

ψ̂(l − k)β(l)2 = lim
N→∞

〈σNχk, χl〉β = cl−kβ(l)2 (k, l ∈ Z),

we find that ψ̂(n) = cn = φ̂(n) (n ∈ Z), and so φ = ψ ∈ F(Tβ). Clearly,

‖φ‖β,∞ ≤ Cβ‖Φ‖∞, which means that Λ̃β is a bounded algebra-homo-

morphism. The relation (Λβ ◦ Λ̃β)Φ = Φ|A(rβ) readily follows from the
previous discussions.
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