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Generalized recurrence, compactifications,
and the Lyapunov topology

by

Ethan Akin (New York) and Joseph Auslander (College Park, MD)

Abstract. We study generalized recurrence for closed relations on locally compact
spaces. This includes continuous maps and real flows. The main tools are Lyapunov func-
tions and their compactifications. Under certain conditions it is shown that the Lyapunov
functions determine the topology of the space.

In [2] a theory of generalized recurrence in dynamical systems is de-
veloped by means of continuous real-valued functions on the phase space.
Let {ϕt} be a real action on the locally compact metric space X. Let L
be a real-valued function on X which is non-decreasing on every orbit:
L(ϕt(x)) ≥ L(x) for x ∈ X and t > 0. The generalized recurrent set R
is defined to be those x ∈ X for which all such “Lyapunov” functions L
are constant on the orbit of x. Clearly R contains the non-wandering points
(and therefore the ordinary recurrent points). An intrinsic characterization
of R can be obtained by means of prolongational limit sets.

An interesting class of flows are those for which the generalized recurrent
set is empty. Such flows are characterized by the existence of a Lyapunov
function which is strictly increasing on every orbit: L(ϕt(x)) > L(x) for all
x ∈ X and t > 0. It turns out that in this case the Lyapunov functions
separate points, and so determine a Hausdorff topology on X. A natural
question is whether this “Lyapunov” topology coincides with the original
topology of X. Equivalently, if {xn} is a sequence in X, x ∈ X and L(xn)→
L(x) for all Lyapunov functions L, is it the case that xn → x?

The purpose of this note is to answer this question in the affirmative (and
in fact we will obtain a somewhat more general result). This will require an
extensive detour into closed relations on locally compact metric spaces, as
well as compactifications of such. In fact, we will obtain the corresponding
result for closed relations (and as a consequence for continuous maps).
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1. Relations and generalized recurrence. Recall that a relation on
a set X is just a subset of X×X. In particular a self-map of X is a relation.
We write (X,R) if R is a relation on X. If C ⊂ X, RC denotes the induced
relation on C, RC = R ∩ (C × C).

The inverse relation R−1 is defined by (x, y) ∈ R−1 if (y, x) ∈ R.
If R and S are relations onX, R◦S is the relation defined by (x, y) ∈ R◦S

if there is z ∈ X with (x, z) ∈ S and (z, y) ∈ R. If R and S are maps, this
coincides with the usual definition of composition. We write R2 for R ◦ R.
For a positive integer n, Rn is defined inductively, and R−n = (R−1)n.

Let |R| = {x ∈ X | (x, x) ∈ R}. If R is transitive, then (R ∩ R−1)|R| is
an equivalence relation on |R| and 1X ∪ (R∩R−1) is an equivalence relation
on X (where 1X denotes the diagonal, equivalently the identity map on X).

If X is a topological space, then R is a closed relation if it is a closed
subset of X ×X. Thus a continuous self-map of X is a closed relation.

In this paper, we will assume that X is a separable locally compact
metric space.

The relation R is said to be + proper if R(A) is compact whenever A
is compact, and is said to be proper if R and R−1 are + proper. Thus a
continuous map is always + proper, and our definition of proper coincides
with the usual definition for maps (the inverse image of each compact set is
compact)..

The composition of closed relations need not be closed. If the space X
is locally compact, then sufficient conditions for R ◦ S to be closed are that
both R and S are closed, and either R−1 or S is + proper.

We write GR for the smallest closed transitive relation containing R
(equivalently the intersection of all closed transitive relations containing R).
Note that for a map f , Gf is in general not a map.

The relation GR can be obtained by an inductive procedure. The orbit
of R is defined as OR =

⋃
i≥1R

i. Let NR = OR. Thus y ∈ NR(x) if there
are sequences {xn} and {yn} in X with xn → x, yn → y and yn ∈ Rkn(xn)
for some kn > 0.

Now let N0R = R and define inductively, for α an ordinal number,
Nα+1R = N (NαR) (so N1 = N ). If β is a limit ordinal, define NβR =⋃
α<β NαR.

The procedure stabilizes at some ordinal, giving the closed transitive
relation GR. Since X is a separable metric space this occurs at a countable
ordinal.

We define the generalized recurrent set of (X,R) to be |GR|.
Note that if x and y satisfy (x, y) ∈ GR ∩ GR−1 then both x and y are

in |GR|. In this case, we will frequently say that x and y are GR ∩ GR−1-
equivalent, even though this relation is not in general an equivalence relation
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(since it may not be reflexive). As is noted above, it is in fact an equivalence
relation when restricted to |GR|.

The following remark is elementary, but will be extremely useful.

Lemma 1. Let R be a closed + proper relation. Then GR = R∪GR ◦R.

Proof. Clearly the right side is closed, contains R, and is contained in
GR. Consideration of four cases (R◦R, R◦GR, GR◦R, and GR◦GR) shows
that the right side is transitive. By definition, it coincides with GR.

Lyapunov functions. A Lyapunov function for (X,R) is a continuous
real-valued function L on X such that L(x) ≤ L(y) for (x, y) ∈ R. (Thus
for a map f we have L(x) ≤ L(f(x)).) Equivalently, if we define the relation
≤L by ≤L = {(x, y) | L(x) ≤ L(y)} then R ⊂ ≤L. Since ≤L is a closed
transitive relation, this in turn is equivalent to GR ⊂ ≤L, and so L is a
Lyapunov function for (X,GR). Clearly a Lyapunov function is constant on
1X ∪ (GR ∩ GR−1)-equivalence classes. It will be convenient (and is no loss
of generality) to assume that a Lyapunov function has range contained in
[0, 1].

A collection L of Lyapunov functions for (X,R) is said to be sufficient
if whenever L(x) ≤ L(y) for all L ∈ L then (x, y) ∈ 1X ∪ GR. Equivalently,
if (x, y) /∈ GR with x 6= y then there is an L ∈ L with L(x) > L(y). Still
another formulation: 1X ∪ GR is the intersection of the relations ≤L for
L ∈ L.

Thus L(x) = L(y) for all L in a sufficient family L if and only if x and
y are in the same 1X ∪ (GR ∩ GR−1)-equivalence class.

Sufficient families always exist. (In particular, the collection of all Lya-
punov functions for (X,R) is sufficient.) This is a consequence of the follow-
ing theorem, an “Urysohn Lemma” for Lyapunov functions.

Theorem 2. Let R be a closed transitive relation on X, and let A and
B be disjoint closed subsets of X with R(A) ⊂ A and R−1(B) ⊂ B. Then
there is a Lyapunov function L : X → [0, 1] which is 1 on A and 0 on B.

Theorem 2 will be proved at the end of the paper.

Corollary 3. (X,R) admits a countable sufficient family.

Proof. Suppose that (x, y) /∈ GR and x 6= y. Let S = 1X ∪ GR, let
A = S(x), and B = S−1(y). As S is transitive, and (x, y) /∈ S, the theorem
implies the existence of a Lyapunov function with L(x) = 1 and L(y) = 0.
Since X is separable metric, X×X \(1X∪GR) satifies the Lindelöf property
and we can choose a countable family L such that {>L | L ∈ L} covers it.

In the case of a continuous map, an alternative description of the gener-
alized recurrent set can be formulated using Lyapunov functions.
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Let f : X → X be continuous, and let R = {x ∈ X | L(f(x)) = L(x)}
for all Lyapunov functions L}. Clearly R is closed, and since L ◦ f is also
a Lyapunov function, R is f -invariant. We will show that R coincides with
the generalized recurrent set for f . For this we need the following lemma.

Lemma 4. Let f : X → X be continuous, let y ∈ Gf(x), and let L be a
Lyapunov function for f . Then L(y) ≥ L(f(x)).

Proof. Recall that Gf = f ∪ Gf ◦ f . If y = f(x) then of course L(y) =
L(f(x)). Otherwise y ∈ Gf(f(x)), so L(y) ≥ L(f(x)).

Theorem 5. Let f : X → X be continuous. Then

(i) |Gf | = R and if x is in R then x and f(x) are Gf ∩Gf−1-equivalent.
(Therefore each Gf ∩ Gf−1-equivalence class is f -invariant.)

(ii) If the Lyapunov functions for (X, f) separate points, then |Gf | is
empty or consists of fixed points.

Proof. (i) Suppose x ∈ |Gf |, x ∈ Gf(x), and let L be a Lyapunov func-
tion. By Lemma 4, L(x) ≥ L(f(x)). Since always L(f(x)) ≥ L(x), we have
L(f(x)) = L(x) so x ∈ R.

For the opposite inclusion, suppose x ∈ R. Then L(f(x)) = L(x) for
every Lyapunov function L, so (x, f(x)) and (f(x), x) are in Gf . Thus we
have f(x) = x or (x, x) ∈ Gf ◦ Gf ⊂ Gf . In either case x ∈ |Gf |, and f(x)
is Gf ∩ Gf−1-equivalent to x.

(ii) If x ∈ |Gf | then by (i), L(f(x)) = L(x) for all Lyapunov functions L
so f(x) = x.

In general, if R is a closed relation, it is not the case that |GR| is R-
invariant. (That is, if x ∈ |GR| and (x, y) ∈ R then y need not be in |GR|.)

Now suppose L is a sufficient family for (X,R) and x 6= y with L(x) =
L(y) for all L ∈ L. Then y ∈ GR(x) and x ∈ GR(y). Thus x and y are in
|GR| and lie in the same GR ∩ GR−1-equivalence class.

It follows that a sufficient family of Lyapunov functions separates points
if and only if GR ∩ GR−1 ⊂ 1X . (In particular, this latter condition holds if
there are no generalized recurrent points.)

Thus in this case such a family (in particular, the collection of all Lya-
punov functions) defines a Hausdorff topology on X. A natural question is
whether this topology coincides with the given topology of X. We will show
that under certain reasonable conditions this is in fact the case for the col-
lection of all Lyapunov functions, although not necessarily for any sufficient
family.

Compactifications. This is accomplished by using a compactification
of (X,R). A compactification of X is a continuous map j : X → X̂ where X̂



Generalized recurrence 53

is a compact metric space and j(X) is dense in X̂. If R is a relation on X,
then R̂ is the closure of j(R) in X̂ × X̂.

For a general theory of compactifications, see Akin and Auslander [2].
The compactification is good if j is a homeomorphism onto its image. In

this case we identify X with j(X), and (since X is locally compact) we may
regard X as an open dense subspace of X̂, and R̂ is the closure of R.

If L is a countable sufficient family of Lyapunov functions we construct
a compactification of (X,R) by the following standard method. Let S be
L together with a countable collection of continuous functions into [0, 1] of
compact support such that the interiors of the supports form a basis for X.
Define θ : X → [0, 1]S by (θ(x))s = s(x) for s ∈ S, and let X̂ be the closure
of θ(X) in [0, 1]S . Clearly X̂ is compact and it is metrizable because S is
countable. Since the supports of the functions in S form a basis the com-
pactification is good. The topology is independent of the choice of functions
of compact support, and we refer to (X̂, R̂) as the L-compactification of
(X,R).

If f is a continuous self-map of X, then L ◦ f is a Lyapunov function
whenever L is, and if in addition f is proper, then u◦f has compact support
whenever u does. Hence, if f is a proper continuous map then we can choose
S so that u ∈ S implies u◦f ∈ S (and conversely if f is a homeomorphism).
In that case f̂ is a continuous map (respectively a homeomorphism) on X̂.

Clearly, a Lyapunov function for (X̂, R̂) restricts to one for (X,R). More-
over, if L ∈ L, then L extends to a Lyapunov function for (X̂, R̂) by pro-
jection on the Lth coordinate. Thus we may regard the members of L as
Lyapunov functions for (X̂, R̂). (In general, there are Lyapunov functions
for (X̂, R̂) in addition to those in L.)

Lemma 6. Let L be a countable sufficient family of Lyapunov functions
for (X,R) and let (X̂, R̂) be the L-compactification of (X,R). Then

(i) If x̂ and ŷ are distinct points of X̂ \X, then L(x̂) 6= L(ŷ) for some
L ∈ L. (Therefore x̂ and ŷ are in different GR̂ ∩ GR̂−1-equivalence
classes.)

(ii) (1X ∪ GR̂) ∩ (X ×X) = 1X ∪ GR.

Proof. (i) L together with the continuous functions with compact supp-
port generate the continuous functions on X̂. Hence if x̂ and ŷ are in X̂ \X
with x̂ 6= ŷ they are distinguished by some such function. But if s has com-
pact support, s(x̂) and s(ŷ) are both 0. Therefore L(x̂) 6= L(ŷ) for some
L ∈ L.

(ii) Let (x, y) ∈ (1X ∪ GR̂) ∩ (X × X), and let L ∈ L. Since L may be
regarded as a Lyapunov function for (X̂, R̂), we have L(x) ≤ L(y). Since this
holds for every L in the sufficient family L, it follows that (x, y) ∈ 1X ∪GR.
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A compactification (X̂, R̂) satisfying the condition in (ii) of Lemma 6,
(1X ∪GR̂)∩ (X ×X) = 1X ∪GR, is said to be almost dynamic. This occurs
precisely when the Lyapunov functions for (X̂, R̂) restrict to a sufficient
family for (X,R).

The compactification will be called dynamic if it satisfies the stronger
condition GR̂ ∩ (X ×X) = GR. The only difference between the two condi-
tions is that in the almost dynamic but not dynamic case we may have, for
some x ∈ X, x /∈ |GR| but x ∈ |GR̂|.

The following theorem describes the GR̂ ∩ GR̂−1-equivalence classes.

Theorem 7. Let L be a countable sufficient family of Lyapunov func-
tions for (X,R) and let (X̂, R̂) be the L-compactification of (X,R). Let Ê
be a GR̂ ∩ GR̂−1-equivalence class and let E = Ê ∩X. Then exactly one of
the following occurs:

(i) Ê consists of a single point of X̂ \X (so E = ∅).
(ii) E ⊂ |GR| and is a non-compact GR ∩ GR−1-equivalence class with

Ê its one-point compactification.
(iii) Ê = E ⊂ |GR| and is a compact GR ∩ GR−1-equivalence class.
(iv) E is non-empty and compact and Ê \E is a single point {x̂}, so Ê

is the disjoint union of E and {x̂}.
The proof is almost immediate. The only problem occurs in case (iii) and

in fact the conclusion is clear when Ê = E contains more than one point. If
Ê = {x} a singleton with x ∈ X, it is necessary to show that x ∈ |GR|.

This is a consequence of the following lemma:

Lemma 8. Suppose x, y ∈ X with (x, y) ∈ GR̂. Then either (x, y) ∈ GR
or there is a ẑ ∈ X̂ \X such that (x, ẑ) and (ẑ, y) are in GR̂.

In particular, if x ∈ X with x ∈ |GR̂| then either x ∈ |GR| or there is a
ẑ ∈ X̂ \X such that x and ẑ are in the same GR̂ ∩ GR̂−1-equivalence class.

Proof. Let A = {(x, y) ∈ GR̂ | at least one of x, y is in X̂ \ X}, B =
{(x, y) ∈ X × X | (x, ẑ), (ẑ, y) ∈ GR̂ for some ẑ ∈ X̂ \ X}, and let R∗ =
GR ∪A ∪B.

Then R̂ ⊂ R∗ ⊂ GR̂, and R∗ is closed and transitive, so R∗ = GR̂.

Case (iv) is somewhat surprising, and in fact it is precisely when it occurs
that the Lyapunov functions may separate points, but fail to determine the
topology of the space.

The Lyapunov topology. As was mentioned above, when the Lya-
punov functions separate points, they determine a Hausdorff topology. This
can occur when there are no generalized recurrent points, or more generally
there are generalized recurrent points, but for such points their GR∩GR−1-
equivalence classes consist only of the point (so in the case of a continuous



Generalized recurrence 55

map, such a point is a fixed point). The question is whether in such cases
this “Lyapunov” topology coincides with the original topology. We will show
that in the first case it always does, and if R is + proper it does in the second
case as well. The two proofs are quite different.

The following lemma is the main step in dealing with the case of no
generalized recurrent points.

Lemma 9. Let R be a closed relation on X and suppose x ∈ X is not a
generalized recurrent point. Then

(i) There is a compact neighborhood U of x such that GR(U)∩GR−1(U)
= ∅.

(ii) Let U be as in (i). Let L0 be a Lyapunov function with 0 ≤ L0 ≤ 1
which is 1 on GR(U) and 0 on GR−1(U), and let L be a countable
sufficient family which contains L0. Let (X̂, R̂) be the L-compact-
ification of (X,R). Then there is no z ∈ X̂ which is in the same
GR̂ ∩ GR̂−1-equivalence class as x.

(iii) x is not a generalized recurrent point for (X̂, R̂).

Proof. (i) If not, then this intersection would be non-empty for every
compact neighborhood U of x, so by transitivity GR(U) ∩ U 6= ∅ for every
such U . That is, there are points y, z ∈ U with (y, z) ∈ GR. Since this holds
for all neighborhoods U of x, taking limits we obtain (x, x) ∈ GR. That is,
x ∈ |GR|.

(ii) Note that an L0 with the stated property exists by Theorem 2.
We will show that if there were such a z (so z ∈ GR̂(x) ∩ GR̂−1(x)) we

would have L0(z) equal to both 0 and 1. By Lemma 1, GR̂ = R̂∪ (GR̂ ◦ R̂).
If z ∈ R̂(x), then there are (xn, zn) ∈ R with (xn, zn) → (x, z). We may
suppose xn ∈ U . Then zn ∈ R(U) ⊂ GR(U) and L0(zn) = 1, so L0(z) = 1.
If z ∈ GR̂(R̂(x)), then z ∈ GR̂(x′) where x′ ∈ R̂(x) so as above L0(x′) = 1.
Since L0 is a Lyapunov function for R̂, we have L0(z) = 1.

Now let R′ = R−1 and let L′0 = 1−L0. Then L′0 is a Lyapunov function
for R′ and z ∈ GR̂′(x). Moreover L′0 = 1 on GR′(U). The argument in the
previous paragraph yields L′0(z) = 1, so L0(z) = 0.

(iii) follows from (ii) and Lemma 8.

Corollary 10. Let L be a sufficient family of Lyapunov functions for
(X,R) with the property that if x /∈ |GR| there is an L ∈ L as in (ii) of
Lemma 9. Then the L-compactification (X̂, R̂) is dynamic.

Proof. Suppose (x, y) ∈ GR̂ ∩ (X × X). If x 6= y then (since the com-
pactification is almost dynamic) we have (x, y) ∈ GR. Otherwise x ∈ |GR̂|
so by Lemma 9, x ∈ |GR|.

We note that since X0 = X \ |GR| is Lindelöf, we can find a countable
collection of compacta contained in X0 whose interiors cover X0. Hence we
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can find a countable sufficient family as is required in the hypothesis of
Corollary 10.

Theorem 11. Let R be a closed relation on X such that (X,R) has
no generalized recurrent points. Then the topology defined by the Lyapunov
functions coincides with the original topology of X.

Proof. Let L be the collection of all Lyapunov functions for (X,R), and
let L0 be a countable sufficient family which satisfies the conditions of Corol-
lary 10. Let (X̂, R̂) be the (metrizable and dynamic) L0-compactification of
(X,R). Let L̂ be the Lyapunov functions for (X̂, R̂) and let L̂0 be a count-
able uniformly dense subfamily of L̂.

Now the topology of X is finer than the topology defined by L, which in
turn is finer than the topology defined by (the restrictions of) L̂0. Thus it
suffices to show that the latter topology agrees with the original one on X.
Since L̂0 is countable, this topology is metrizable. If the L̂0 topology did
not coincide with the original topology, there would be a sequence {xn}
with no convergent subsequence and an x ∈ X such that L(xn)→ L(x) for
every L ∈ L̂0. We may suppose that {xn} converges to z ∈ X̂ \ X. Since
the compactification is dynamic, and |GR| = ∅, the points x and z are not
GR̂ ∩ GR̂−1-equivalent, so there is an L∗ ∈ L̂ such that L∗(z) 6= L∗(x). We
may choose L∗ ∈ L̂0, since the latter is dense in L̂. It follows that L∗(xn)
does not converge to L∗(x).

Now we turn to the case where the relation R is + proper, and the Lya-
punov functions separate points. The proof that they determine the topology
of X depends on several lemmas about closed relations on compact spaces,
some of which concern the chain relation.

(If R is not + proper, it is possible that the Lyapunov functions separate
points, but do not determine the original topology. An example will be given
below.)

We recall the definition of the chain relation for a closed relation R on a
compact space. If ε ≥ 0 an ε-chain from x to y is a finite sequence

{x = x0, y0, x1, y1, . . . , yn−1, xn = y} with (xi, yi) ∈ R and d(yi−1, xi) ≤ ε.
(In the case of a map f , yi = f(xi) and d(f(xi−1), xi) ≤ ε.) The chain
relation CR is defined by (x, y) ∈ CR if for every ε > 0 there is an ε-chain
from x to y. Thus CR =

⋂
ε>0O(Vε ◦R) (where Vε = {(x, y) | d(x, y) < ε}).

The relation CR contains R and is closed and transitive, so GR ⊂ CR.
We call a set C GR-unrevisited (or just unrevisited) if GR(C)∩GR−1(C)

⊂ C.

Lemma 12. Suppose that X is compact, and R is a closed relation on X.
Let C be a closed unrevisited subset of X. Suppose D is a closed neighborhood
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of C. Then (GR)C ⊂ G(RD). (That is, if x, y ∈ C with y ∈ GR(x) then (x, y)
is in the smallest closed transitive relation containing RD.)

Moreover (GR)C ⊂ C(RC). (That is, if x, y ∈ C with y ∈ GR(x) then for
every ε > 0 there is an ε-chain from x to y all of whose members are in C.)

Proof. We show that for every ordinal number α, (NαR)C ⊂ G(RD).
The proof is by induction on α.

If α = 0 this just says that RC ⊂ G(RD), which is obvious.
Although it is not logically required, we give the proof for α = 1. Let

ε > 0 be such that D contains the ε-neighborhood of C. Suppose that x, y ∈
C with y ∈ N1R(x). Then there are xn and yn with yn ∈ Rkn(xn), xn → x,
yn → y so there is a 0-chain for R from xn to yn. If, for sufficiently large n,
all the members of this 0-chain are in D then certainly (x, y) ∈ G(RD). If
not, there are sn and tn and zn /∈ D with zn ∈ Rsn(xn) and yn ∈ Rtn(zn).
Let (a subsequence of) zn → z. Then d(z, C) ≥ ε so z /∈ C. We then have
z ∈ GR(x) and y ∈ GR(z), which contradicts the assumption that C is
unrevisited.

Therefore we have (N1R)C ⊂ G(RD).
By compactness, there is a closed unrevisited set C1 with C ⊂ intC1

and C1 ⊂ intD. Since C1 is closed unrevisited, and is in the interior of D,
we may apply the induction hypothesis to C1.

Suppose α is a limit ordinal, and that for all β < α we have (NβR)C1 ⊂
G(RD). Let (xi, yi) ∈ (Nβi

R)C1 with (xi, yi) → (x, y) and βi < α. By the
induction hypothesis, (xi, yi) ∈ G(RD) so (x, y) ∈ G(RD).

Now suppose α = β + 1. Let S = Nβ. The induction hypothesis is
SC1 ⊂ G(RD). Then there are (xi, yi) ∈ (Ski)C1 with (xi, yi) → (x, y). For
sufficiently large i, all the members of this 0-chain (for S) from xi to yi are
in C1. (If not, just as in the case α = 1 above, taking a limit point of those
members outside C1 we would obtain a contradiction to the assumption that
C is unrevisited.) Then by the induction hypothesis, and the transitivity of
G(RD), we have (xi, yi) ∈ G(RD) so (x, y) ∈ G(RD).

This completes the induction. It now follows immediately that (GR)C ⊂
C(RD) for every closed neighborhood D of C,

From this we may conclude, intersecting over all such neighborhoods D,
that in fact (GR)C ⊂ C(RC).

This is a consequence of the fact that the chain relation is an upper
semicontinuous map on closed relations. While this is proved in [1, Theorem
7.23, p. 138], we will indicate the main steps.

What we show is that given ε > 0 there is a δ > 0 such that S ⊂ Vδ◦R◦Vδ
implies CS ⊂ Vε ◦ CR ◦ Vε. This in turn follows from the identity CR =⋂
ε>0N (Vε ◦ R ◦ Vε), which is proved in [1, Proposition 1.8, p. 12]. (Recall

that N is the closure of the orbit relation.) So, by compactness, given ε > 0
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there is a δ > 0 such thatN (V2δ◦R◦V2δ) ⊂ Vε◦CR◦Vε. Hence if S ⊂ Vδ◦R◦Vδ
we have CS ⊂ O(Vδ ◦S) ⊂ O(V2δ ◦R◦V2δ) ⊂ N (V2δ ◦R◦V2δ) ⊂ Vε ◦CR◦Vε.

Applying this to the situation at hand, we see that if (x, y) ∈ C(RD) for
every closed neighborhood D of C, then (x, y) is in every neighborhood of
C(RC) so in fact (x, y) ∈ C(RC).

Theorem 13. Suppose R is + proper, and let (X̂, R̂) be an almost dy-
namic compactification of (X,R). Let C be a compact subset of X with
GR(C) ∩ GR−1(C) ⊂ C. Then GR̂(C) ∩ GR̂−1(C) ⊂ C. In particular, if
x ∈ X satisfies GR(x) ∩ GR−1(x) ⊂ {x}, then GR̂(x) ∩ GR̂−1(x) ⊂ {x}.

Proof. Let Ĉ = GR̂(C) ∩ GR̂−1(C). We need to show that Ĉ = C. Note
that Ĉ is a compact subset of X̂ and that GR̂(Ĉ) ∩ GR̂−1(Ĉ) ⊂ Ĉ.

We first show that Ĉ ∩X = C. Let z ∈ Ĉ ∩X. Let x, y ∈ C be such that
z ∈ GR̂(x) and y ∈ GR̂(z). Then (x, z) and (z, y) are in (1X∪GR̂)∩(X×X) =
1X ∪GR. Of course if (x, z) or (z, y) is in 1X then z ∈ C, and if (x, z) and
(z, y) are in G(R) then z ∈ C since GR(C) ∩ GR−1(C) ⊂ C.

Thus it is sufficient to show that Ĉ ⊂ X, and in turn for this it is
sufficient to show that GR̂(C) ⊂ X.

Let x ∈ C and let z ∈ GR̂(x). It follows from Lemma 12 that for every
ε > 0 there is an ε-chain for R from x to z all of whose members are in Ĉ.

Since R is + proper, C ∪ R(C) is a compact subset of X and so equals
C ∪ R̂(C). Let ε > 0 be such that N , the ε-neighborhood of C ∪ R(C), is
contained in X. Let x = x0, y0, x1, y1, . . . , xn, yn = z be an ε-chain from x
to z, so (xi, yi) ∈ R̂ and d(yi−1, xi) ≤ ε, with xi, yi ∈ Ĉ. We show that xi
and yi are in X. Now x0 = x ∈ C, so suppose xi ∈ C. Then yi ∈ R(C) ⊂ X,
so yi ∈ Ĉ ∩X = C and xi+1 ∈ N ⊂ X and similarly we have xi+1 ∈ C. It
follows that z ∈ C.

Theorem 14. Suppose R is + proper, and suppose GR(x) ∩ GR−1(x) ⊂
{x} for all x ∈ X (equivalently, the Lyapunov functions separate the points
of X). Then the Lyapunov functions for (X,R) determine the topology of X.

Proof. We proceed as in the proof of Theorem 11. If the conclusion
were false there would be a sequence {xn} in X and an x ∈ X such that
L(xn)→ L(x) for all L in a countable sufficient family. But {xn} converges
in X̂ to a point z ∈ X̂ \X. Since L(z) = L(x) for all such L it follows that
x and z are GR̂ ∪ GR̂−1-equivalent. But this contradicts Theorem 13.

Here is a simple example where the Lyapunov functions for (X,R) sepa-
rate points (equivalently GR is anti-symmetric) but the topology they define
does not coincide with the given topology of X.
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Let X be the countable subset of the plane

{(0, 0), (1,−1), (1/2,−1/2), (1/3,−1/3), . . . }
∪ {(1, 1), (1/2, 1/2), (1/3, 1/3), . . . } ∪ {(−1, 1), (−1, 2), (−1, 3), . . . }

and let the map f : X → X be given by f(1/n,−1/n) = (−1, n), f(−1, n) =
(1/n, 1/n), f(1/n, 1/n) = (1/n+ 1, 1/n+ 1), f(0, 0) = (0, 0). Note that f is
not continuous, but it is a closed relation. Moreover f is not + proper, since
f((0, 0), (1,−1), (1/2,−1/2), . . . ) is not compact.

It is easy to see that the Lyapunov functions separate points, and that if
L is a Lyapunov function, we have L(1/n,−1/n) ≤ L(−1, n) ≤ L(1/n/1/n)
so L(−1, n) → L(0, 0) as n → ∞. Thus the Lyapunov topology is weaker
than the given topology on X.

If (X̂, f̂) is a Lyapunov compactification, then X̂ \X is a point x̂ which
is the limit of the sequence {(−1, n)}, so case (iv) of Theorem 7 occurs. The
Gf̂ ∩ Gf̂−1-equivalence class of (0, 0) is {(0, 0), x̂}.

Real actions. Theorem 14 applies to a real action {ϕt}. Let I = [0, 1],
and write ϕ for the closed relation ϕI , so ϕ = {(x, y) ∈ X ×X | y = ϕt(x)
for some t with 0 ≤ t ≤ 1}.

Note that ϕ is proper, and the Lyapunov functions for ϕ are those con-
tinuous real-valued functions L for which L(ϕt(x)) ≥ L(x) for x ∈ X and
t ≥ 0, so these are exactly the class of functions as defined at the beginning
of the paper. Therefore, if Gϕ ∩ Gϕ−1 ⊂ 1X , equivalently if the Lyapunov
functions separate the points of the phase space X, then the Lyapunov
topology coincides with the given topology.

Next, we want to consider those orbits on which all Lyapunov functions
are constant, and relate these to generalized recurrence. This will require
some modification of the definition, since 1X ⊂ ϕ so every point is a gener-
alized recurrent point for the relation ϕ.

Of course this does not really capture the idea of recurrence—namely of
a point “returning to itself” in the long term. In order to achieve this, we
consider two relations ϕJ (where J = [1, 2]) and Λ, the prolongational limit
relation. As we will see below, GϕJ and GΛ do not differ much from each
other, but it is convenient to have both at hand.

Recall the definition of the prolongational limit relation Λ: (x, y) ∈ Λ if
there are sequences {xn} in X and {tn} in R with xn → x, tn → ∞ and
ϕtn(xn)→ y. The prolongational limit set Λ(x) contains the omega limit set
of x. Note that |Λ| coincides with the non-wandering set of the flow.

It is immediate that the relation Λ depends only on the orbit. That is,
Λ(x) = Λ(ϕt(x)) = ϕt(Λ(x)) for all t ∈ R and the next lemma shows that
the same holds for GΛ.
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Lemma 15. If x ∈ X and t ∈ R, then ϕtGΛ(x) = GΛ(ϕt(x)) = GΛ(x).

Proof. For a fixed t ∈ R, let the relation Σ be defined by (x, y) ∈ Σ
if y ∈ ϕ−tGΛ(ϕt(x)). Then Σ is closed and transitive, and since Λ ⊂ Σ
we have GΛ ⊂ Σ. It follows immediately that ϕtGΛ(x) ⊂ GΛ(ϕt(x)) and
equality follows by symmetry.

The equality with GΛ(x) can be proved by transfinite induction, but here
is another proof. Note that the first part of this proof says that if y ∈ GΛ(x)
then ϕs(y) ∈ GΛ(ϕs(x)) for all s ∈ R.

Now let K = {(x, y) | (x, ϕt(y)) ∈ GΛ for all t ∈ R}. Then Λ ⊂ K and K
is closed and transitive. (For, if (x, y), (y, z) ∈ K and t ∈ R, then (x, ϕt/2(y))
and (y, ϕt/2(z)) are in GΛ so (ϕt/2(y), ϕt(z)) ∈ GΛ so (x, ϕt(z)) ∈ GΛ.)
Therefore GΛ ⊂ K. That is, if y ∈ GΛ(x) and t ∈ R, then ϕt(y) ∈ GΛ(x).
Equivalently ϕt(GΛ(x)) ⊂ GΛ(x), and applying ϕ−t equality follows.

Lemma 16.

(i) G(ϕJ) = ϕ[1,∞) ∪ G(Λ).
(ii) G(ϕ) = ϕI ∪ G(ϕJ).
(iii) G(ϕ) = ϕ[0,∞) ∪ G(Λ).
(iv) GϕJ = GϕJ ◦ ϕJ ∪ ϕJ = GϕJ ◦ ϕI = ϕI ◦ GϕJ .
(v) If t ∈ R and x ∈ X, then ϕtGϕJ(x) = GϕJϕt(x).

Proof. (i) Clearly Λ ⊂ G(ϕJ), and it follows that the right side of (i)
is contained in G(ϕJ). Moreover the right side is closed and contains ϕJ .
It remains to show that it is transitive. This follows immediately from the
previous lemma.

The proof of (ii) is similar (using (i)), and (iii) follows from (i) and (ii).
(iv) The second relation contains ϕJ , is contained in GϕJ , and is transi-

tive and closed. The third relation contains GϕJ (since ϕI is reflexive) and
substituting from the second relation it equals (GϕJ ◦ϕJ ∪ϕJ) ◦ϕI which is
contained in GϕJ . The proof that the fourth relation equals GϕJ is similar.
(Note that ϕI and ϕJ are proper, so the various compositions are closed.)

(v) follows from (i) and Lemma 15.

Theorem 17. Let x ∈ X. The following are equivalent:

(i) x ∈ |GϕJ |.
(ii) x ∈ |GΛ|.
(iii) x is either a stationary point (ϕt(x) = x for all t ∈ R) or there is

a y 6= x such that x and y are in the same Gϕ ∩ Gϕ−1-equivalence
class as x.

(iv) There is a t 6= 0 such that x and ϕt(x) are in the same Gϕ∩Gϕ−1-
equivalence class.

(v) Every Lyapunov function ϕ is constant on the orbit of x.
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Proof. If (v) holds, then for all t ∈ R, x and ϕt(x) are in the same
Gϕ ∩ Gϕ−1-equivalence class, and it follows easily that (v) implies (i)–(iv).

Suppose (iv) holds. If t > 0, and L is a Lyapunov function, then L(ϕs(x))
= L(x) for all s with 0 ≤ s ≤ t and (since L ◦ ϕτ is a Lyapunov function
for every real τ) it follows immediately that L is constant on the orbit of x.
A similar argument works if t < 0, so (iv) implies (v).

(Thus in fact all ϕt(x) are Gϕ ∩ Gϕ−1-equivalent.)
Suppose (iii) holds. If x is a stationary point, clearly the other four

conditions hold. Otherwise there is a y 6= x as stated in (iii). Again if y is in
the orbit of x then (iv) holds. If not, by (iii) of Lemma 16, y ∈ GΛ(x) and
x ∈ GΛ(y), so x ∈ GΛ(x). Therefore (ii) holds.

Recall that GΛ(x) is flow invariant, and GΛ(ϕt(x)) = GΛ(x) for all t ∈ R,
so by Lemma 15, (ii) implies (iv).

If x ∈ |G(ϕJ)|, then (Lemma 16) either x ∈ ϕ[1,∞)(x) in which case (iv)
holds, or x ∈ |G(Λ)| and (ii) holds. Thus (i) implies the other conditions.

Condition (v) is analogous to the situation for continuous maps (Theo-
rem 5).

A point satisfying the equivalent conditions in Theorem 17 is said to be
a generalized recurrent point for the real flow {ϕt}.

Corollary 18. Consider the following conditions:

(i) |GΛ| = ∅.
(ii) |GϕJ | = ∅.
(iii) The Lyapunov functions for ϕ separate points.

Then (i) and (ii) are equivalent and they imply (iii). If there are no stationary
points then all three are equivalent.

Proof. The equivalence of (i) and (ii) follows from Theorem 17. If x 6= y
and L(x) = L(y) for all Lyapunov functions L then x and y are Gϕ∩Gϕ−1-
equivalent, so by Theorem 17, x ∈ |GΛ| = |GϕJ |. Therefore (i) and (ii)
imply (iii). If there are no stationary points and (iii) holds, then since the
Lyapunov functions determine the 1X ∪ (Gϕ ∩ Gϕ−1)-equivalence classes, it
follows from (iii) of Theorem 17 that (i) and (ii) hold.

The proof of Theorem 2. The following, which is a special case of a
theorem of Nachbin [4], is the main step.

Theorem 19. Let X0 be a compact subset of a locally compact σ-compact
space X, and let R be a closed transitive relation on X. Let R0 = R ∩
(X0 × X0). If L0 : X0 → [a, b] is a Lyapunov function for R0 then there
exists a Lyapunov function L : X → [a, b] for R which extends L0.
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Proof. In the proof, we will write A ⊂⊂ B to mean that the closure of
A is contained in the interior of B.

It is sufficient to prove Theorem 19 under the assumption that X is
compact. For, once this is accomplished, let {Kn} be a sequence of compact
subsets of the locally compact σ-compact space X whose union is X with
X0 = K0 and Kn−1 ⊂⊂ Kn. Let Rn = R∩ (Kn ×Kn), and apply the result
for compact spaces inductively to extend the Rn-Lyapunov function Ln to
an Rn+1-Lyapunov function Ln+1 on Kn+1. The union of the functions Ln
is the required extension L. Note that L is continuous on L because each
Kn+1 is a neighborhood of Kn.

Now suppose that X is compact.
We can assume a = 0 and b = 1. By replacing R by R ∪ 1X and R0 by

R0 ∪ 1X0 we can assume that R and R0 are reflexive as well as transitive.
We mimic the proof of Urysohn’s Lemma. Let Λ be an enumeration of

the rational numbers in [0, 1] with λ0 = 0, λ1 = 1.
We will define, for λ ∈ Λ, sets Bλ satisfying

R(Bλ) = Bλ, R(L−1
0 ((λ, 1])) ⊂⊂ (Bλ), R(L−1

0 ([λ, 1])) ⊂ Bλ
R−1(L−1

0 ([0, λ))) ∩Bλ = ∅ and λ′ > λ implies Bλ′ ⊂⊂ Bλ.
Let B1 = R(L−1

0 (1)) and B0 = X. Notice that for all λ,

R(L−1
0 ([λ, 1])) ∩R−1(L−1

0 ([0, λ))) = ∅,
since R is transitive with restriction R0 and L0 is an R0-Lyapunov function.

In the induction which follows, we will make use of the following fact,
which is a direct consequence of compactness. If C is a closed set with
R(C) = C and U is an open set containing C, then there is a closed set C1

with C1 ⊂ U , R(C1) = C1, and C contained in the interior of C1.
Assume that Bλ has been defined for all λ in Λn = {λi : i = 0, . . . , n}

with n ≥ 1. Let λ = λn+1 and let λ′ < λ < λ′′ be the nearest points in Λn
below and above λ.

Choose a sequence {t−n } with t−0 = λ′, increasing with limit λ, and {t+n }
with t+0 = λ′′, decreasing with limit λ.

Define Q−0 = Bλ′ and Q+
0 = Bλ′′ . Inductively, choose Q+

n and then Q−n
for n = 1, 2, . . . so that R(Q±n ) = Q±n and

R(L−1
0 ([t+n , 1])) ∪Q+

n−1⊂⊂ Q
+
n ⊂⊂ Q−n−1 \R

−1(L−1
0 ([0, λ])),

R(L−1
0 ([λ, 1])) ∪Q+

n ⊂⊂ Q−n ⊂⊂ Q−n−1 \R
−1(L−1

0 ([0, t−n ])).

Finally, define
Bλ =

⋂
n

Q−n so that Bλ ⊃
⋃
n

Q+
n .

It is easy to check that Bλ satisfies the required conditions, thus ex-
tending the definitions to Λn+1. By induction they can be defined on all
of Λ.
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Having defined the Bλ’s we proceed as in Urysohn’s Lemma to define
L(x) by the Dedekind cut associated with x. That is,

L(x) = inf{λ : x /∈ Bλ} = sup{λ : x ∈ Bλ}.
Continuity follows as in Urysohn’s Lemma. Because each Bλ is R-invariant,
L is a Lyapunov function. The additional conditions on these sets imply that
if x ∈ X0 then x ∈ Bλ if and only if λ ≤ L0(x). Hence, L is an extension
of L0.

Now we can prove Theorem 2. Let {Kn} be a sequence of compact sets
as in the proof of Theorem 19 with K0 = ∅ and let Rn be as in that proof.
For n = 0, 1, . . . let

Kn+1/2 = Kn ∪ [(A ∪B) ∩Kn+1], Rn+1/2 = R ∩ (Kn+1/2 ×Kn+1/2).

For K1/2 = (A∪B)∩K1, let L1/2 be 1 on A and 0 on B, so L1/2 is obviously
a Lyapunov function on K1/2. Apply Theorem 19 to obtain a Lyapunov
function L1 on K1. Inductively, if Ln is an Rn-Lyapunov function on Kn

which is 1 on A∩Kn and 0 on B ∩Kn obtain an Rn+1/2-Lyapunov function
Ln+1/2 on Kn+1/2 by defining it to be 1 and 0 on the new points of A and B
respectively. Now apply Theorem 19 to obtain an Rn+1-Lyapunov function
Ln+1 on Kn+1. Finally L is the union of the functions Ln.
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