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Constructing non-compact operators into c0

by

Iryna Banakh (Lviv) and Taras Banakh (Lviv and Kielce)

Abstract. We prove that for each dense non-compact linear operator S : X → Y
between Banach spaces there is a linear operator T : Y → c0 such that the operator
TS : X → c0 is not compact. This generalizes the Josefson–Nissenzweig Theorem.

By the Josefson–Nissenzweig Theorem [8], [9] (see also [6], [3], [4, XII],
[2], and [7, 3.27] for alternative proofs and generalizations), for each infinite-
dimensional Banach space Y the weak∗ sequential convergence and norm
convergence in the dual Banach space Y ∗ are distinct. This allows us to find
a sequence (y∗n)n∈ω of norm-one functionals in Y ∗ that converges to zero
in the weak∗ topology. Such functionals determine a non-compact operator
T : Y → c0 that assigns to each y ∈ Y the vanishing sequence (y∗n(y))n∈ω

∈ c0. Thus each infinite-dimensional Banach space Y admits a non-compact
operator T : Y → c0 into the Banach space c0.

The following theorem (which is a crucial ingredient in the topological
classification [1] of closed convex sets in Fréchet spaces) says a bit more:

Theorem 1. For any dense non-compact operator S : X → Y between
Banach spaces there is an operator T : Y → c0 such that the composition
TS : X → c0 is non-compact.

By an operator we understand a continuous linear operator. An operator
T : X → Y is dense if T (X) is dense in Y .

The proof of Theorem 1 uses the famous Rosenthal `1 Theorem [10] (see
also [4, XI] and [2]) saying that any bounded sequence in a Banach space X
contains a subsequence which is either weakly Cauchy or `1-basic.

A sequence (xn)n∈ω in a Banach space (X, ‖ · ‖) is called `1-basic if there
are constants 0 < c ≤ C <∞ such that for each real sequence (αn)n∈ω ∈ `1,

c
∑
n∈ω

|αn| ≤
∥∥∥∑

n∈ω

αnxn

∥∥∥ ≤ C∑
n∈ω

|αn|.
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Proof of Theorem 1. Assume that S : X → Y is a dense non-compact
operator. Let (en)n∈ω be the standard Schauder basis of the Banach space
c0 and (e∗n)n∈ω be the dual basis in the dual space c∗0 = `1. To construct the
operator T : Y → c0 with TS non-compact, we shall consider three cases.

1. First we assume that the following condition holds:

(i) there is an `1-basic sequence (y∗n)n∈ω in Y ∗ such that the sequence
(S∗y∗n)n∈ω is `1-basic and weak∗ null in X∗.

In this case we define the operator T : Y → c0 by T : y 7→ (y∗n(y))n∈ω.
Observe that the dual operator T ∗ : c∗0 → Y ∗ maps the nth coordinate
functional e∗n ∈ c∗0 to y∗n. Consequently, the sequence

(S∗y∗n)n∈ω = ((TS)∗e∗n)n∈ω,

being `1-basic, is not totally bounded in Y ∗, which implies that the dual
operator (TS)∗ : c∗0 → X∗ is not compact. By the Schauder Theorem [5,
7.7], the operator TS : X → c0 is not compact either.

2. Assume that the condition (i) does not hold but

(ii) there is an `1-basic sequence (y∗n)n∈ω in Y ∗ whose image (S∗y∗n)n∈ω

is `1-basic in X∗.

In this case, by [4, XII Exercise 3(i)], the condition (ii) combined with the
negation of (i) implies the existence of an `1-basic sequence (xn)n∈ω in X
whose image (Sxn)n∈ω is an `1-basic sequence in Y . Arguing as in the proof
of the Josefson–Nissenzweig Theorem [4, p. 223], we can construct a bounded
linear operator T : Y → c0 such that T (Sxn) = en ∈ c0 for all n ∈ ω. Since
the operator TS is not compact, we are done.

3. Assume that (ii) does not hold. Since the operator S is not compact, its
dual S∗ : Y ∗ → X∗ is not compact either (see [5, 7.7]). This means that the
image S∗(B∗) of the closed unit ball B∗ ⊂ Y ∗ is not totally bounded in X∗.
Consequently, B∗ contains a sequence (y∗n)n∈ω whose image (S∗y∗n)n∈ω is
ε-separated for some ε > 0. The latter means that ‖S∗(y∗n− y∗m)‖ ≥ ε for all
n 6= m.

By the Rosenthal `1 Theorem, (S∗y∗n)n∈ω contains a subsequence which
is either weak Cauchy or `1-basic. We lose no generality assuming that the
entire sequence (S∗y∗n)n∈ω is either weak Cauchy or `1-basic.

3a. First we assume that the sequence (S∗y∗n)n∈ω is weak Cauchy. Then
it is weak∗ Cauchy and being a subset of the weakly∗ compact set S∗(B∗) it
weakly∗ converges to some point x∗∞ ∈ S∗(B∗). Fix any point y∗∞ ∈ B∗ with
S∗(y∗∞) = x∗∞. The density of the operator S : X → Y implies the injectivity
of the dual operator S∗ : Y ∗ → X∗. The weak∗ compactness of the closed
unit ball B∗ ⊂ Y ∗ guarantees that S∗|B∗ : B∗ → X∗ is a homeomorphic
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embedding for the weak∗ topologies on B∗ and X∗. Now we see that the
weak∗ convergence of the sequence (S∗y∗n)n∈ω to S∗y∗∞ implies the weak∗

convergence of the sequence (y∗n − y∗∞)n∈ω to zero.
Then the bounded operator T : Y → c0, T : y 7→

(
(y∗n − y∗∞)(y)

)
n∈ω

,
is well-defined. Since the set {(TS)∗(e∗n)}n∈ω = {S∗(y∗n − y∗∞)}n∈ω is ε-
separated, the operator (TS)∗ : c∗0 → X∗ is not compact and hence TS :
X → c0 is not compact either.

3b. Finally, assume that (S∗y∗n)n∈ω is an `1-basic sequence in X∗. By [5,
Proposition 5.10] (the lifting property of `1), the sequence (y∗n)n∈ω is `1-basic
in Y ∗, which contradicts our assumption that the condition (ii) fails.
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