Constructing non-compact operators into c_0

by

IRYNA BANAKH (Lviv) and TARAS BANAKH (Lviv and Kielce)

Abstract. We prove that for each dense non-compact linear operator $S: X \to Y$ between Banach spaces there is a linear operator $T: Y \to c_0$ such that the operator $TS: X \to c_0$ is not compact. This generalizes the Josefson-Nissenzweig Theorem.

By the Josefson-Nissenzweig Theorem [8], [9] (see also [6], [3], [4, XII], [2], and [7, 3.27] for alternative proofs and generalizations), for each infinite-dimensional Banach space Y the weak* sequential convergence and norm convergence in the dual Banach space Y^* are distinct. This allows us to find a sequence $(y_n^*)_{n\in\omega}$ of norm-one functionals in Y^* that converges to zero in the weak* topology. Such functionals determine a non-compact operator $T: Y \to c_0$ that assigns to each $y \in Y$ the vanishing sequence $(y_n^*(y))_{n\in\omega} \in c_0$. Thus each infinite-dimensional Banach space Y admits a non-compact operator $T: Y \to c_0$ into the Banach space c_0 .

The following theorem (which is a crucial ingredient in the topological classification [1] of closed convex sets in Fréchet spaces) says a bit more:

Theorem 1. For any dense non-compact operator $S: X \to Y$ between Banach spaces there is an operator $T: Y \to c_0$ such that the composition $TS: X \to c_0$ is non-compact.

By an operator we understand a continuous linear operator. An operator $T: X \to Y$ is dense if T(X) is dense in Y.

The proof of Theorem 1 uses the famous Rosenthal ℓ_1 Theorem [10] (see also [4, XI] and [2]) saying that any bounded sequence in a Banach space X contains a subsequence which is either weakly Cauchy or ℓ_1 -basic.

A sequence $(x_n)_{n\in\omega}$ in a Banach space $(X, \|\cdot\|)$ is called ℓ_1 -basic if there are constants $0 < c \le C < \infty$ such that for each real sequence $(\alpha_n)_{n\in\omega} \in \ell_1$,

$$c \sum_{n \in \omega} |\alpha_n| \le \left\| \sum_{n \in \omega} \alpha_n x_n \right\| \le C \sum_{n \in \omega} |\alpha_n|.$$

Key words and phrases: compact operator, Banach space, Josefson-Nissenzweig Theorem.

²⁰¹⁰ Mathematics Subject Classification: 47B07, 46B15.

Proof of Theorem 1. Assume that $S: X \to Y$ is a dense non-compact operator. Let $(e_n)_{n \in \omega}$ be the standard Schauder basis of the Banach space c_0 and $(e_n^*)_{n \in \omega}$ be the dual basis in the dual space $c_0^* = \ell_1$. To construct the operator $T: Y \to c_0$ with TS non-compact, we shall consider three cases.

- 1. First we assume that the following condition holds:
- (i) there is an ℓ_1 -basic sequence $(y_n^*)_{n\in\omega}$ in Y^* such that the sequence $(S^*y_n^*)_{n\in\omega}$ is ℓ_1 -basic and weak* null in X^* .

In this case we define the operator $T: Y \to c_0$ by $T: y \mapsto (y_n^*(y))_{n \in \omega}$. Observe that the dual operator $T^*: c_0^* \to Y^*$ maps the *n*th coordinate functional $e_n^* \in c_0^*$ to y_n^* . Consequently, the sequence

$$(S^*y_n^*)_{n\in\omega} = ((TS)^*e_n^*)_{n\in\omega},$$

being ℓ_1 -basic, is not totally bounded in Y^* , which implies that the dual operator $(TS)^*: c_0^* \to X^*$ is not compact. By the Schauder Theorem [5, 7.7], the operator $TS: X \to c_0$ is not compact either.

- 2. Assume that the condition (i) does not hold but
- (ii) there is an ℓ_1 -basic sequence $(y_n^*)_{n\in\omega}$ in Y^* whose image $(S^*y_n^*)_{n\in\omega}$ is ℓ_1 -basic in X^* .

In this case, by [4, XII Exercise 3(i)], the condition (ii) combined with the negation of (i) implies the existence of an ℓ_1 -basic sequence $(x_n)_{n\in\omega}$ in X whose image $(Sx_n)_{n\in\omega}$ is an ℓ_1 -basic sequence in Y. Arguing as in the proof of the Josefson–Nissenzweig Theorem [4, p. 223], we can construct a bounded linear operator $T: Y \to c_0$ such that $T(Sx_n) = e_n \in c_0$ for all $n \in \omega$. Since the operator TS is not compact, we are done.

3. Assume that (ii) does not hold. Since the operator S is not compact, its dual $S^*: Y^* \to X^*$ is not compact either (see [5, 7.7]). This means that the image $S^*(B^*)$ of the closed unit ball $B^* \subset Y^*$ is not totally bounded in X^* . Consequently, B^* contains a sequence $(y_n^*)_{n \in \omega}$ whose image $(S^*y_n^*)_{n \in \omega}$ is ε -separated for some $\varepsilon > 0$. The latter means that $\|S^*(y_n^* - y_m^*)\| \ge \varepsilon$ for all $n \ne m$.

By the Rosenthal ℓ_1 Theorem, $(S^*y_n^*)_{n\in\omega}$ contains a subsequence which is either weak Cauchy or ℓ_1 -basic. We lose no generality assuming that the entire sequence $(S^*y_n^*)_{n\in\omega}$ is either weak Cauchy or ℓ_1 -basic.

3a. First we assume that the sequence $(S^*y_n^*)_{n\in\omega}$ is weak Cauchy. Then it is weak* Cauchy and being a subset of the weakly* compact set $S^*(B^*)$ it weakly* converges to some point $x_\infty^* \in S^*(B^*)$. Fix any point $y_\infty^* \in B^*$ with $S^*(y_\infty^*) = x_\infty^*$. The density of the operator $S: X \to Y$ implies the injectivity of the dual operator $S^*: Y^* \to X^*$. The weak* compactness of the closed unit ball $B^* \subset Y^*$ guarantees that $S^*|B^*: B^* \to X^*$ is a homeomorphic

embedding for the weak* topologies on B^* and X^* . Now we see that the weak* convergence of the sequence $(S^*y_n^*)_{n\in\omega}$ to $S^*y_\infty^*$ implies the weak* convergence of the sequence $(y_n^* - y_\infty^*)_{n\in\omega}$ to zero.

convergence of the sequence $(y_n^* - y_\infty^*)_{n \in \omega}$ to zero. Then the bounded operator $T: Y \to c_0, T: y \mapsto ((y_n^* - y_\infty^*)(y))_{n \in \omega}$, is well-defined. Since the set $\{(TS)^*(e_n^*)\}_{n \in \omega} = \{S^*(y_n^* - y_\infty^*)\}_{n \in \omega}$ is ε -separated, the operator $(TS)^*: c_0^* \to X^*$ is not compact and hence $TS: X \to c_0$ is not compact either.

3b. Finally, assume that $(S^*y_n^*)_{n\in\omega}$ is an ℓ_1 -basic sequence in X^* . By [5, Proposition 5.10] (the lifting property of ℓ_1), the sequence $(y_n^*)_{n\in\omega}$ is ℓ_1 -basic in Y^* , which contradicts our assumption that the condition (ii) fails. \blacksquare

References

- T. Banakh and R. Cauty, Topological classification of closed convex sets in Fréchet spaces, arXiv:1006.3092.
- [2] E. Behrends, New proofs of Rosenthal's l¹-theorem and the Josefson-Nissenzweig theorem, Bull. Polish Acad. Sci. Math. 43 (1995), 283-295.
- [3] J. Bourgain and J. Diestel, Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55–58.
- [4] J. Diestel, Sequences and Series in Banach Spaces, Springer, New York, 1984.
- [5] M. Fabian, P. Habala, P. Hájek, V. S. Montesinos, J. Pelant and V. Zizler, Functional Analysis and Infinite-Dimensional Geometry, Springer, New York, 2001.
- [6] J. Hagler and W. Johnson, Banach spaces whose dual balls are not weak* sequentially compact, Israel J. Math. 28 (1977), 325–330.
- [7] P. Hájek, V. S. Montesinos, J. Vanderwerff and V. Zizler, Biorthogonal Systems in Banach Spaces, Springer, New York, 2008.
- [8] B. Josefson, Weak sequential convergence in the dual of a Banach space does not imply norm convergence, Ark. Mat. 13 (1975), 79–89.
- [9] A. Nissenzweig, W* sequential convergence, Israel J. Math. 22 (1975), 266–272.
- [10] H. P. Rosenthal, A characterization of Banach spaces containing ℓ₁, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413.

Iryna Banakh
Department of Functional Analysis
Ya. Pidstryhach Institute for Applied
Problems of Mechanics and Mathematics
Naukova 3b
Lviv, Ukraine
E-mail: ibanakh@yahoo.com

Taras Banakh
Instytut Matematyki
Uniwersytet Humanistyczno-Przyrodniczy
Jana Kochanowskiego
Kielce, Poland
and
Department of Mathematics
Ivan Franko National University of Lviv
Universytetska 1

79000, Lviv, Ukraine E-mail: t.o.banakh@gmail.com