
STUDIA MATHEMATICA 208 (1) (2012)

Invariant measures for position dependent random maps
with continuous random parameters

by

Tomoki Inoue (Matsuyama)

Abstract. We consider a family of transformations with a random parameter and
study a random dynamical system in which one transformation is randomly selected from
the family and applied on each iteration. The parameter space may be of cardinality
continuum. Further, the selection of the transformation need not be independent of the
position in the state space. We show the existence of absolutely continuous invariant
measures for random maps on an interval under some conditions.

1. Introduction. We consider a family of transformations τt : X → X
(t ∈W ) and study a random dynamical system such that one transformation
is randomly selected from the family {τt : t ∈W} and then applied on each
iteration.

In many papers on random maps, for example [Ba-G, G-Bo, P], the
number of elements of W (the parameter space) is finite. In this paper,
however, W may even be of cardinality continuum.

Further, in many papers on random maps, for example [M, P], the selec-
tion of τt is independent of the position x ∈ X. In this paper, τt is selected
according to a probability density function p(t, x).

The maps τt we mainly consider in this paper are piecewise monotone
transformations on an interval. A simple example to which our theory can
be applied is the following family of transformations:

Example 1.1. Define τt : [0, 1]→ [0, 1] (t ∈ [1/2, 2]) by

τt(x) =
{
tx, x ∈ [0, 1/2),
2x− 1, x ∈ [1/2, 1],

where t is randomly selected from W = [1/2, 2] according to the probability
density function p(t, x) = 2/3 for each x ∈ [0, 1].
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As in this example, the random map T = {τt, p(t, x) : t ∈ W} is deter-
mined by a family of transformations {τt : t ∈W} and a probability density
function p(t, x).

We note that τt may not be expanding. In Example 1.1, τt is not ex-
panding for t ∈ [1/2, 1).

Further, in Example 1.1, the partition {[0, 1/2), [1/2, 1]} does not vary
with the random parameter t. But we do not assume such a condition in our
main theorems. The partition of [0, 1] may vary with t, as in the following
family of transformations:

Example 1.2. Define τt : [0, 1]→ [0, 1] by

τt(x) = tx for t ∈ (0, 1]

and

τt(x) =
{
tx, x ∈ [0, 1/t),
tx− 1, x ∈ [1/t, 1],

for t ∈ (1, 2),

where t is randomly selected from W = (0, 2) according to the probability
density function p(t, x) = 3

8 t
2 for each x ∈ [0, 1].

If we replace p(t, x) = 3
8 t

2 by p(t, x) = 3
8 t

2x + 1
4 t

3(1 − x), then p(t, x)
really depends on the position x ∈ [0, 1].

In Example 1.2, we note that τ ′t(x) ∈ (0, ε) if t ∈ (0, ε) for ε > 0. We can
apply our theorems to such a random map if we choose a suitable probability
density function p(t, x).

In this paper, we prove the existence of an absolutely continuous in-
variant probability measure for a random map on an interval under some
conditions. Of course, the previous examples of random maps satisfy the
conditions which we will state in Section 5.

Our result (Theorem 5.2) is a generalization of the well known result
of [R] (Theorem 1.3 below) as well as of the famous result of Lasota and
Yorke [L-Y] for deterministic dynamical systems.

In Theorem 1.3, we assume that {Ii} is a countable family of closed in-
tervals with disjoint interiors and that Leb([0, 1]\

⋃
i Ii) = 0. For τ : [0, 1]→

[0, 1], we assume that the restriction of τ to int(Ii) is a C1 and monotone
function. (In this paper int(I) stands for the interior of an interval I.) We
define

g(x) =
{

1/|τ ′(x)|, x ∈
⋃
i int(Ii),

0, x ∈ [0, 1] \
⋃
i int(Ii).

The following theorem is well known:

Theorem 1.3 ([Bo-G, R]). Let τ : [0, 1] → [0, 1] be as above. Suppose
that:

(a1) infx |τ ′(x)| > 1 wherever τ ′(x) is defined;
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(b1) g(x) is of bounded variation.

Then τ has an invariant probability measure which is absolutely continuous
with respect to Lebesgue measure.

Our result concerns position dependent random maps, and is a general-
ization of the result of [Ba-G] and [G-Bo] (Theorem 1.4 below), hence also a
generalization of Theorem 1 in [P] for position independent random maps.

In Theorem 1.4, we assume that {Ii} is a finite family of closed intervals
with disjoint interiors and Leb([0, 1] \

⋃
i Ii) = 0. For τk : [0, 1] → [0, 1]

(k = 1, . . . ,K), we assume that the restriction of τk to int(Ii) is a C1 and
monotone function. Moreover, we assume that {p̃k(x)}Kk=1 is a set of position
dependent measurable probabilities, that is,

∑K
k=1 p̃k(x) = 1 and p̃k(x) ≥ 0

for k = 1, . . . ,K. We define

g̃k(x) =
{
p̃k(x)/|τ ′k(x)|, x ∈

⋃
i int(Ii),

0, x ∈ [0, 1] \
⋃
i int(Ii).

In the position dependent random map T = {τk, p̃k(x)}, τk is selected with
probability p̃k(x).

The following theorem is well known:

Theorem 1.4 ([Ba-G]). For k = 1, . . . ,K, let τk : [0, 1] → [0, 1] be as
above. Suppose that the random map T = {τk, p̃k(x)} satisfies the following
conditions:

(a2) supx
∑K

k=1 g̃k(x) < 1;
(b2) g̃k(x) is of bounded variation for each k.

Then the random map T = {τk, p̃k(x)} has an invariant probability measure
which is absolutely continuous with respect to Lebesgue measure.

The definitions of the random map T = {τk, p̃k(x)} and its invariant
measure are found in Section 2 as well as in [Ba-G].

The paper is organized as follows: In Section 2, we formulate the defi-
nition of a random map T as a Markov process. Further, we introduce the
corresponding Perron–Frobenius operator PT . In Section 3, we state some
basic assumptions and give a representation of PT under those assumptions.
In Section 4, we prove some basic properties of PT . In Section 5, we give our
main theorem on the existence of an absolutely continuous invariant mea-
sure for T and give a key inequality which implies the quasi-compactness of
PT as well as our main theorems. In Section 6, we give some basic estimates
to prove the key inequality. In Section 7, we prove the key inequality.

2. Random maps and invariant measures. In this section, first,
we define random maps in a general setting. Later, we will define invariant
measures for random maps.
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Let (W,B, ν) be a σ-finite measure space. We use W as a parameter
space. Let (X,A,m) be a σ-finite measure space. We use X as a state space.
Let τt : X → X (t ∈W ) be a nonsingular transformation, which means that
m(τ−1

t A) = 0 if m(A) = 0 for any A ∈ A. Assume that τt(x) is a measurable
function of t for each x ∈ X.

Let p : W ×X → [0,∞) be a measurable function which is a probability
density function of t ∈ W for each x ∈ X, that is,

	
W p(t, x) ν(dt) = 1 for

x ∈ X. We sometimes write pt(x) instead of p(t, x).
The random map T = {τt, pt(x) : t ∈W} is defined as a Markov process

with the transition function

(2.1) P(x,A) :=
�

W

p(t, x) 1A(τt(x)) ν(dt),

where A ∈ A and 1A is the indicator function of A. The transition function
P induces an operator P∗ on measures on X defined by

P∗µ(A) :=
�

X

P(x,A)µ(dx)

=
�

X

�

W

p(t, x) 1A(τt(x)) ν(dt)µ(dx) for A ∈ A.

If P∗µ = µ, then µ is called an invariant measure for T = {τt, p(t, x) :
t ∈W}.

Remark 2.1. If W is a finite set {1, . . . ,K}, then (2.1) can be repre-
sented by

P(x,A) =
K∑
k=1

p̃k(x) 1A(τk(x)),

where p̃k(x) = p(k, x)ν({k}). In this case P∗µ = µ means

µ(A) =
K∑
k=1

�

τ−1
k (A)

p̃k(x)µ(dx) for A ∈ A.

This is the definition of an invariant measure for T = {τk, p̃k(x)} in The-
orem 1.4. In addition, if p̃k(x) = p̂k (constant), then P∗µ = µ means
µ(A) =

∑K
k=1 p̂kµ(τ−1

k (A)) for A ∈ A. Of course, if W consists of only
one element, then P∗µ = µ is the usual definition of an invariant measure
for a deterministic transformation.

If µ has a density f , then P∗µ has a density, which we denote PT f . So,
PT : L1(m)→ L1(m) is the operator satisfying
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P∗µ(A) =
�

A

PT f(x)m(dx)(2.2)

=
�

X

�

W

p(t, x) 1A(τt(x)) ν(dt) f(x)m(dx) for A ∈ A.

Remark 2.2. Assume that W consists of only one element t. Then T is
a deterministic transformation, that is, T = τt. In this situation, if µ has a
density f , then

P∗µ(A) =
�

A

PT f(x)m(dx) =
�

T−1A

f(x)m(dx) for A ∈ A,

which means that PT is the Perron–Frobenius operator corresponding to
T = τt and m. (For the Perron–Frobenius operator, [Bo-G] and [L-M] are
good references.)

By this remark, for a random map T = {τt, p(t, x) : t ∈W}, it is natural
to call the operator PT : L1(m) → L1(m) defined by (2.2) the Perron–
Frobenius operator corresponding to T and m. Let Pτt : L1(m)→ L1(m) be
the Perron–Frobenius operator corresponding to τt and m. Then the Fubini
theorem implies that

(2.3) (PT f)(x) =
�

W

Pτt(ptf)(x) ν(dt).

We will use this equality later.

3. One-dimensional random maps. From now on, let X = [0, 1] and
let m be the Lebesgue measure. The other symbols are as in the previous
section. So, τt is a map from [0, 1] into itself for each t ∈ W , τt(x) is a
measurable function of t for each x ∈ [0, 1], and p : W × X → [0,∞) is a
measurable function such that

	
W p(t, x) ν(dt) = 1 for x ∈ [0, 1].

Let Λ be a countable or finite set and let Λt ⊆ Λ for each t ∈ W . We
use Λ as a set of indices of subintervals of [0, 1]. For each t ∈W , we assume
that {It,i}i∈Λt is a family of closed intervals such that int(It,i)∩ int(It,j) = ∅
(i 6= j) and m([0, 1] \

⋃
i∈Λt It,i) = 0.

Remark 3.1. In Example 1.2, we may consider Λ = {1, 2},
Λt = {1, 2}, It,1 = [0, 1/t] and It,2 = [1/t, 1] for t ∈ (1, 2),

Λt = {1} and It,1 = [0, 1] for t ∈ (0, 1].

To avoid using the subscript t on Λt, we set It,i = ∅ for i ∈ Λ \ Λt. For
convenience, we consider the empty set as a closed interval.

For a random map T = {τt, p(t, x), {It,i}i∈Λ : t ∈W}, we make two basic
assumptions. The first is:

(A1) The restriction of τt to int(It,i) is a C1 and monotone function for
each i ∈ Λ and t ∈W .
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Let τt,i be the restriction of τt to int(It,i) for each t ∈W and i ∈ Λ. Put

φt,i(x) :=
{
τ−1
t,i (x), x ∈ τt,i(int(It,i)),

0, x ∈ [0, 1] \ τt,i(int(It,i)),
for each t ∈W and i ∈ Λ. We note that φt,i(x) = 0 if i ∈ Λ \ Λt.

The second assumption is:

(A2) For each x ∈ X and i ∈ Λ, wx,i(t) := φt,i(x) is a measurable
function of t.

Let f ∈ L1(X,m). Under assumptions (A1) and (A2), we are going to
find a representation of PT f .

Put

φ∗t,i(x) :=
{
φ′t,i(x), x ∈ τt,i(int(It,i)),
0, x ∈ [0, 1] \ τt,i(int(It,i)).

By a change of variable we obtain

(3.1) P∗µ(A) =
�

A

PT f(x)m(dx)

=
�

W

�

X

p(t, x) 1A(τt(x))f(x)m(dx) ν(dt)

=
�

W

�

A

∑
i∈Λ

p(t, φt,i(x))f(φt,i(x))φ∗t,i(x)m(dx) ν(dt) for A ∈ A.

Remark 3.2. Assumption (A2) ensures that p(t, φt,i(x))f(φt,i(x))φ∗t,i(x)
is a measurable function of t for each x and i.

Since the equality (3.1) holds for any measurable set A, we obtain

(3.2) (PT f)(x) =
�

W

∑
i∈Λ

p(t, φt,i(x))f(φt,i(x))|φ∗t,i(x)| ν(dt)

for m-a.e. x, or

(3.3) (PT f)(x) =
�

W

∑
i∈Λ

p(t, φt,i(x))f(φt,i(x))|φ′t,i(x)| 1τt(int(It,i))(x) ν(dt)

for m-a.e. x.

Remark 3.3. We note that

(3.4)
∑
i∈Λ

p(t, φt,i(x))f(φt,i(x))|φ′t,i(x)| 1τt(int(It,i))(x) = Pτt(ptf)(x)

for m-a.e. x, where Pτt is the Perron–Frobenius operator for τt.

4. Properties of the Perron–Frobenius operator. In this section,
we summarize the properties of the Perron–Frobenius operator PT corre-
sponding to a random map T . The following lemma gives the basic proper-
ties of PT .
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Lemma 4.1. Let T = {τt, p(t, x) : t ∈ W} be a random map defined in
Section 2, let PT : L1(m) → L1(m) be the corresponding Perron–Frobenius
operator, and let f ∈ L1(m). Then

(i) PT is linear;
(ii) PT f ≥ 0 if f ≥ 0;
(iii)

	
X PT f dm =

	
X f dm;

(iv) ‖PT f‖L1(m) ≤ ‖f‖L1(m).

The proof is analogous to the proof for a deterministic transformation.
The following lemma is important in proving the main result. It follows

from (2.2).

Lemma 4.2. Let T = {τt, p(t, x) : t ∈ W} be a random map defined in
Section 2, let PT : L1(m) → L1(m) be the corresponding Perron–Frobenius
operator, and let f be a probability density function on the measure space
(X,A,m). Set µ(A) =

	
A f(x)m(dx) for A ∈ A. Then PT f = f m-a.e. if

and only if µ is an invariant probability measure for T .

Now, we consider the Perron–Frobenius operator corresponding to the
composition of random maps.

Lemma 4.3. Let T ={τt, p(t, x), {It,i}i∈Λ(T ) : t ∈W} and S={ςs, q(s, x),
{Ĩs,j}j∈Λ(S) : s ∈W} be random maps as in Section 3, and let PT : L1(m)→
L1(m) be the corresponding Perron–Frobenius operator. Then

PT◦S = PTPS ,

where

T ◦ S = {τt ◦ ςs, p(t, ςs(x))q(s, x),

{cl(ψs,j(int(It,i) ∩ ςs(int(Ĩs,j))))}(i,j)∈Λ(T )×Λ(S) : t, s ∈W}

and ψs,j = ς−1
s,j . In particular, PTK = PKT .

Proof. Let f ∈ L1(m). Put φt,i = τ−1
t,i .By (3.3) we have

PT (PSf)(x) =
�

W

∑
i∈Λ(T )

p(t, φt,i(x))(PSf)(φt,i(x))

· |φ′t,i(x)| 1τt(int(It,i))(x) ν(dt)

and

(PSf)(φt,i(x)) =
�

W

∑
j∈Λ(S)

q(s, ψs,j(φt,i(x)))f(ψs,j(φt,i(x)))

· |ψ′s,j(φt,i(x))| 1ςs(int(Ĩs,j))
(φt,i(x)) ν(ds).
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Thus,

(4.1) PT (PSf)(x)

=
�

W

∑
i∈Λ(T )

p(t, φt,i(x))
�

W

∑
j∈Λ(S)

q(s, ψs,j(φt,i(x)))f(ψs,j(φt,i(x)))

· |ψ′s,j(φt,i(x))| 1ςs(int(Ĩs,j))
(φt,i(x)) ν(ds)|φ′t,i(x)| 1τt(int(It,i))(x)ν(dt)

=
�

W

�

W

∑
i∈Λ(T )

∑
j∈Λ(S)

p(t, φt,i(x))q(s, ψs,j(φt,i(x)))f(ψs,j(φt,i(x)))

· |(ψs,j ◦ φt,i)′(x)| 1τt(int(It,i))(x) 1ςs(int(Ĩs,j))
(φt,i(x)) ν(ds) ν(dt).

On the other hand, in a way similar to obtaining (3.2), we have

(4.2) PT◦Sf(x)

=
�

W

�

W

∑
i∈Λ(T )

∑
j∈Λ(S)

p(t, φt,i(x))q(s, ψs,j(φt,i(x)))f(ψs,j(φt,i(x)))

· |(ψs,j ◦ φt,i)′(x)| 1τt(ςs(ψs,j(int(It,i)∩ςs(int(Ĩs,j)))))
(x) ν(ds) ν(dt).

Since

τt(ςs(ψs,j(int(It,i) ∩ ςs(int(Ĩs,j))))) = τt(int(It,i) ∩ ςs(int(Ĩs,j)))

= φ−1
t,i (int(It,i) ∩ ςs(int(Ĩs,j))) = φ−1

t,i (int(It,i)) ∩ φ−1
t,i (ςs(int(Ĩs,j)))

= τt(int(It,i)) ∩ φ−1
t,i (ςs(int(Ĩs,j))),

it follows from (4.2) that

(4.3) PT◦Sf(x)

=
�

W

�

W

∑
i∈Λ(T )

∑
j∈Λ(S)

p(t, φt,i(x))q(s, ψs,j(φt,i(x)))f(ψs,j(φt,i(x)))

· |(ψs,j ◦ φt,i)′(x)| 1τt(int(It,i))(x) 1ςs(int(Ĩs,j))
(φt,i(x)) ν(ds) ν(dt).

Therefore, by (4.1) and (4.3) we obtain the lemma.

5. Existence of an absolutely continuous invariant measure.
In the setting of Section 3, we give a sufficient condition for the exis-
tence of an absolutely continuous invariant measure for a random map
T = {τt, p(t, x), {It,i}i∈Λ : t ∈W}.

For t ∈W and x ∈ [0, 1], put

g(t, x) =
{
p(t, x)/|τ ′t(x)|, x ∈

⋃
i int(It,i),

0, x ∈ [0, 1] \
⋃
i int(It,i).

We denote by
∨
I f the total variation of f on I. Further, we assume the

following conditions:
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(a) supx∈[0,1]

	
W g(t, x) ν(dt) < α < 1;

(b) There exists a constant M such that
∨

[0,1] g(t, ·) < M for a.s. t ∈
W , that is, there exists a ν-measurable set W0 ⊂ W such that	
W0

p(t, x) ν(dt) = 1 and
∨

[0,1] g(t, ·) < M for all t ∈W0.

Remark 5.1. If infx∈[0,1] |τ ′t(x)| > 1, condition (a) is automatically sat-
isfied. Even if infx∈[0,1] |τ ′t(x)| < 1, condition (a) is satisfied by choosing a
suitable probability density function p(t, x). For example, in Examples 1.1
and 1.2, condition (a) is satisfied, while infx∈[0,1] |τ ′t(x)| < 1. Moreover, we
allow inft∈W supx∈[0,1] |τ ′t(x)| = 0 if we choose a suitable probability density
function p(t, x). See Example 1.2.

Now we give our main theorem.

Theorem 5.2. Let T = {τt, p(t, x) : t ∈ W} be a random map as in
Section 3. Assume that the random map T satisfies conditions (a) and (b)
above. Then T has an invariant probability measure which is absolutely con-
tinuous with respect to Lebesgue measure.

Remark 5.3. We have assumed that T satisfies conditions (a) and (b).
However, it is enough to assume that some iterate Tn satisfies conditions
corresponding to (a) and (b).

Remark 5.4. If W consists of only one element, conditions (a) and (b)
coincide with (a1) and (b1) of Theorem 1.3. Hence, Theorem 1.3 is a corollary
of Theorem 5.2.

Remark 5.5. Assume that W is a finite set {1, . . . ,K} and {Ii} = {It,i}
for t ∈W . Set p̃k(x) = pk(x)ν({k}). Then conditions (a) and (b) imply (a2)
and (b2) of Theorem 1.4. Hence, Theorem 1.4 is a corollary of Theorem 5.2.

Theorem 5.2 can be obtained from Lemma 4.2 if we show the existence
of a fixed point of the Perron–Frobenius operator PT .

Let K be a constant. To show the existence of a fixed point of PT , we
will prove that for any function f ≥ 0 on [0, 1] of bounded variation with	1
0 f(x)m(dx) = 1,

(5.1)
∨
[0,1]

PKT f < γ
∨
[0,1]

f + β,

where 0 < γ < 1 and β > 0. Using a standard technique of [Bo-G] or [L-M],
the existence of a fixed point of PT follows from (5.1). Furthermore, PT can
be shown to be quasi-compact and constrictive (see [Bo-G] and [L-M]). So,
we can also obtain the following theorem.

Theorem 5.6. Let T = {τt; p(t, x) : t ∈ W} be a random map as in
Theorem 5.2 and let PT : L1(m) → L1(m) be the corresponding Perron–
Frobenius operator. Then there exists a positive integer r, a sequence of
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probability density functions f1, . . . , fr, a sequence of bounded linear func-
tionals η1, . . . , ηr and an operator Q : L1(m)→ L1(m) such that

PT f =
r∑

k=1

ηk(f)fk +Qf for any f ∈ L1(m),

where:

(1) fi · fj = 0 for all i 6= j;
(2) PT fk = fPerm(k), where Perm is a permutation of 1, . . . , r;
(3) limn→∞ ‖PnTQf‖L1(m) = 0 for any f ∈ L1(m).

Remark 5.7. For random maps T in Examples 1.1 and 1.2, the r in this
theorem is 1, which will be shown in another paper.

6. Basic estimates. Let T be a random map as in Section 3. We give
some basic estimates to prove the key inequality (5.1).

Put
Ft,i(x) := |φ∗t,i(x)|p(t, φt,i(x))f(φt,i(x)) on [0, 1]

for t ∈W and i ∈ Λ.

Lemma 6.1. Let T be a random map as in Section 3 and let PT :
L1(m)→ L1(m) be the corresponding Perron–Frobenius operator. Then∨

[0,1]

PT f ≤
�

W

∑
i∈Λ

∨
cl(τt(int(It,i)))

Ft,i ν(dt).

Further, let J1, . . . , Js be closed intervals such that

[0, 1] =
s⋃
j=1

Jj , int(Ji) ∩ int(Jj) = ∅ (i 6= j).

Then ∨
[0,1]

PT f ≤
s∑
j=1

�

W

∑
i∈Λ

∨
cl(τt(int(It,i)∩Jj))

Ft,i ν(dt).

Proof. By (2.3) it is easy to see that

(6.1)
∨
[0,1]

PT f ≤
�

W

∨
[0,1]

Pτt(ptf) ν(dt).

By (3.4) we have

(6.2)
∨
[0,1]

Pτt(ptf) ≤
∑
i∈Λ

∨
cl(τt(int(It,i)))

Ft,i.

By (6.1) and (6.2) we obtain the first half of the lemma. The rest is obtained
similarly.
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In Lemma 6.1, the sequence of intervals J1, . . . , Js is independent of the
random map T . But, in some lemmas in the rest of this section it does depend
on T . More precisely, the intervals J1, . . . , Js will appear in condition (a1).
To state it, we prepare some notation. Let α̃ satisfy

sup
x∈[0,1]

�

W

g(t, x) ν(dt) < α̃ < α

and put α0 := 2α̃. We will show the following lemma.

Lemma 6.2. Let T be a random map as in Section 3. If condition (b) is
satisfied, then condition (a) implies the following condition (a1):

(a1) For any fixed κ > 0 there exists a positive integer s, a sequence of
closed intervals J1, . . . , Js and a sequence of measurable functions
α1(t), . . . , αs(t) such that

[0, 1] =
s⋃
j=1

Jj , int(Ji) ∩ int(Jj) = ∅ (i 6= j),

�

W

αj(t) ν(dt) < α0 and ν(W \Aj) < κ for j = 1, . . . , s,

where Aj = {t ∈W : g(t, x) ≤ αj(t) for all x ∈ Jj}.

Before proving the lemma, we give a remark.

Remark 6.3. If
	
W supx∈[0,1] g(t, x) ν(dt) < α, then (a1) is satisfied with

s = 1, J1 = [0, 1] and α1(t) = supx∈[0,1] g(t, x). In the next section, we will
use the lemma under the condition α < 1/8. So, the readers who are only
interested in the case

	
W supx∈[0,1] g(t, x) ν(dt) < 1/8 do not need to read

the proof of Lemma 6.2.

Proof of Lemma 6.2. By (a) we can choose a constant k0 > 1 such that

sup
x∈[0,1]

�

W

k0g(t, x) ν(dt) < α̃.

By (b), for a.s. t ∈ W , g(t, x) can be redefined on a countable set of x in
[0, 1] to become an upper semicontinuous function of x, say ḡ(t, x). Note
that

(6.3) sup
x∈[0,1]

�

W

ḡ(t, x) ν(dt)

≤ sup
x∈[0,1]

�

W

lim
y→x+0

g(t, y) ν(dt) + sup
x∈[0,1]

�

W

lim
y→x−0

g(t, y) ν(dt)

≤ 2 sup
x∈[0,1]

�

W

g(t, x) ν(dt).
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By upper semicontinuity, for any x ∈ [0, 1] and a.s. t ∈ W there exists an
ε = ε(t, x) such that

sup
y∈U(x,ε)

g(t, y) ≤ sup
y∈U(x,ε)

ḡ(t, y) ≤ k0ḡ(t, x),

where U(x, ε) = (x − ε, x + ε) ∩ [0, 1]. So, for x ∈ [0, 1] and κ > 0, there
exists an ε̃ = ε̃(x, κ) such that

ν
(
W \

{
t ∈W : sup

y∈U(x,ε̃)
g(t, y) ≤ k0ḡ(t, x)

})
< κ.

Since {U(x, ε̃) :x∈ [0, 1]} is an open covering of [0, 1], there exist U(x1, ε̃), . . . ,
U(xs, ε̃) such that

⋃s
j=1 U(xj , ε̃) = [0, 1]. Let s be the smallest integer with

this property.
If s = 1, we put J1 = [0, 1].
In the case s ≥ 2, without loss of generality, we may assume x1< · · ·<xs.

Choose yj ∈ U(xj , ε̃) ∩ U(xj+1, ε̃) for j = 1, . . . , s − 1. Put J1 = [0, y1],
J2 = [y1, y2], . . . , Js = [ys−1, 1].

Then, in any case, Jj ⊂ U(xj , ε̃) for j = 1, . . . , s. Thus, the closed inter-
vals J1, . . . , Js satisfy

[0, 1] =
s⋃
j=1

Jj , int(Ji) ∩ int(Jj) = ∅ (i 6= j),

ν
(
W \

{
t ∈W : sup

x∈Jj
g(t, x) ≤ k0ḡ(t, xj)

})
< κ for j = 1, . . . , s.

Put αj(t) := k0ḡ(t, xj) for j = 1, . . . , s. Then by (6.3) we have�

W

αj(t) ν(dt) ≤ sup
x∈[0,1]

�

W

k0ḡ(t, x) ν(dt) < 2α̃ = α0 for j = 1, . . . , s.

Hence we obtain the lemma.

Now, we are going to estimate
∑

i∈Λ
∨

cl(τt(int(It,i)∩Jj)) Ft,i for each closed
interval Jj under condition (a1).

For an interval I ⊂ [0, 1], put

∆(t, I) := sup
{n−1∑
k=0

f(xk+1)|g(t, xk+1)− g(t, xk)| :

inf I = x0 < x1 < · · · < xn = sup I
}
.

We use this notation in Lemmas 6.4, 6.8 and 6.9.

Lemma 6.4. Let T be a random map as in Section 3. Assume that (a1)
is satisfied. If t ∈ Aj, then∑

i∈Λ

∨
cl(τt(int(It,i)∩Jj))

Ft,i ≤ ∆(t, Jj) + αj(t)
∨
Jj

f

for each j = 1, . . . , s.
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Further, assume that condition (b) is satisfied instead of (a1). Then∑
i∈Λ

∨
cl(τt(int(It,i)∩J))

Ft,i ≤ ∆(t, J) +M
∨
J

f

for any interval J ⊂ [0, 1] and a.s. t ∈W .

Proof. For yk, yk+1 ∈ cl(τt(int(It,i))) we have

|Ft,i(yk+1)− Ft,i(yk)|
≤ ||φ∗t,i(yk+1)|pt(φt,i(yk+1))f(φt,i(yk+1))− |φ∗t,i(yk)|pt(φt,i(yk))f(φt,i(yk+1))|

+ ||φ∗t,i(yk)|pt(φt,i(yk))f(φt,i(yk+1))− |φ∗t,i(yk)|pt(φt,i(yk))f(φt,i(yk))|.
If t ∈ Aj , we have

sup
y∈cl(τt(int(It,i)∩Jj))

|φ∗t,i(y)|pt(φt,i(y)) = sup
x∈It,i∩Jj

g(t, x) ≤ αj(t).

Thus we obtain∨
cl(τt(int(It,i)∩Jj))

Ft,i ≤ ∆(t, It,i ∩ Jj) + αj(t)
∨

It,i∩Jj

f for t ∈ Aj .

By summing up, we obtain the first half of the lemma.
Assume that condition (b) is satisfied. Then g(t, x) ≤ M for a.s. t ∈ W

and x ∈ [0, 1], and we can argue.

Let Jj be as in condition (a1) and let δ be a constant such that

(6.4) 0 < δ ≤ 1
2

min{m(Jj) : j = 1, . . . , s}.

Put
(6.5)
Gδ,j :=

{
t ∈W :

∨
[c,c+2δ]

g(t, ·) ≤ 2αj(t) for all c ∈ [inf Jj , sup Jj − 2δ]
}

for each j = 1, . . . , s.

Remark 6.5. Let T satisfy (a1). If t ∈ Aj and x0 ∈ Jj , then∣∣∣ lim
x→x0+0

g(t, x)− g(t, x0)
∣∣∣ ≤ αj(t), ∣∣∣ lim

x→x0−0
g(t, x)− g(t, x0)

∣∣∣ ≤ αj(t).
So, if T satisfies (b), then there exists a finite partition inf Jj = ct,0 < ct,1 <
ct,2 < · · · < ct,Nt = sup Jj such that∨

[ct,i−1,ct,i]

g(t, ·) < 2αj(t) for each i = 1, . . . , Nt.

Remark 6.6. If t satisfies 0 < m(It,i ∩ Jj) < 2δ for some i ∈ Λ, it
sometimes occurs that t /∈ Gδ,j .
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Remark 6.7. If W is finite, there exists δ > 0 such that ν(W \Gδ,j) = 0.
But, if W is infinite, this is not necessarily true.

Keeping these remarks in mind, we will show the following lemma.

Lemma 6.8. Let T be a random map as in Section 3. Assume that con-
ditions (a1) and (b) are satisfied. Let δ be a constant as in (6.4) and let Gδ,j
be defined by (6.5). If t ∈ Gδ,j ∩Aj, then

∆(t, Jj) ≤ 2αj(t)
(∨
Jj

f +
1
δ

�

Jj

f(x)m(dx)
)

for each j = 1, . . . , s.

Proof. If t ∈ Gδ,j∩Aj , there exists a finite partition inf Jj = ct,0 < ct,1 <
ct,2 < · · · < ct,Nt = sup Jj such that

ct,i − ct,i−1 ≥ δ and
∨

[ct,i−1,ct,i]

g(t, ·) < 2αj(t) for each i = 1, . . . , Nt.

So, if t ∈ Gδ,j ∩Aj , we have

∆(t, [ct,i−1, ct,i]) ≤ 2αj(t) sup{f(x) : x ∈ [ct,i−1, ct,i]}

≤ 2αj(t)
( ∨

[ct,i−1,ct,i]

f +
1

ct,i − ct,i−1

ct,i�

ct,i−1

f(x)m(dx)
)

≤ 2αj(t)
( ∨

[ct,i−1,ct,i]

f +
1
δ

ct,i�

ct,i−1

f(x)m(dx)
)
,

and the lemma follows.

In Lemma 6.8 we have assumed that t ∈ Gδ,j ∩ Aj . In the next lemma
we do not make this assumption.

Lemma 6.9. Let T be a random map as in Section 3. Assume that con-
dition (b) is satisfied. For a.s. t ∈W and for any interval J ⊂ [0, 1],

∆(t, J) ≤M
(∨

J

f +
1

m(J)

�

J

f(x)m(dx)
)
.

Proof. Since

sup
x∈J

f(x) ≤
∨
J

f +
1

m(J)

�

J

f(x)m(dx),

the lemma follows.

Now, we give an estimate of
	
W

∑
i∈Λ
∨

cl(τt(int(It,i)∩Jj)) Ft,i ν(dt).

Lemma 6.10. Let T be a random map as in Section 3. Assume that
conditions (a1) and (b) are satisfied. Let δ be a constant as in (6.4) and let
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Gδ,j be defined by (6.5). Then
�

W

∑
i∈Λ

∨
cl(τt(int(It,i)∩Jj))

Ft,i ν(dt)

≤ (3α0 + 2Mν(W \ (Gδ,j ∩Aj)))
(∨
Jj

f +
1
δ

�

Jj

f(x)m(dx)
)

for each j = 1, . . . , s.

Proof. By Lemmas 6.8 and 6.9, we obtain

(6.6) ∆(t, Jj) ≤ (2αj(t) +M 1W\(Gδ,j∩Aj)(t))
(∨
Jj

f +
1
δ

�

Jj

f(x)m(dx)
)

for a.s. t ∈ W and each j = 1, . . . , s. It follows from (6.6) and Lemma 6.4
that∑

i∈Λ

∨
cl(τt(int(It,i)∩Jj))

Ft,i

≤ (3αj(t) + 2M 1W\(Gδ,j∩Aj)(t))
(∨
Jj

f +
1
δ

�

Jj

f(x)m(dx)
)

for a.s. t ∈W and each j = 1, . . . , s. Thus, by the inequality
	
W αj(t) ν(dt) <

α0 in (a1), we obtain the lemma.

7. Proof of the key inequality. As we have seen in Section 5, The-
orems 5.2 and 5.6 follow from the key inequality (5.1). So, to complete the
proof of Theorems 5.2 and 5.6 we are going to show (5.1).

Let T = {τt; p(t, x) : t ∈ W} be a random map as in Section 3. Since
PKT = PTK by Lemma 4.3, it is sufficient to show that∨

[0,1]

PTKf < γ
∨
[0,1]

f + β.

First, we are going to check that the random map

TK = {τtK ◦· · ·◦τt1 , p(t1, x) · · · p(tK , τtK−1 ◦· · ·◦τt1(x)) : (t1, . . . , tK) ∈WK}

satisfies essentially the same assumptions as in Section 3.
Since τt(x) is a measurable function of t for each x ∈ [0, 1], τtK ◦· · ·◦τt1(x)

is also a measurable function of (t1, . . . , tK) for each x ∈ [0, 1]. Since p :
W ×X → [0,∞) is a measurable function such that

	
W p(t, x) ν(dt) = 1 for

x ∈ [0, 1], pK : WK ×X → [0,∞) defined by

pK(t1, . . . , tK , x) = p(t1, x) · · · p(tK , τtK−1 ◦ · · · ◦ τt1(x))
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is a measurable function such that�

WK

p(t1, x) · · · p(tK , τtK−1 ◦ · · · ◦ τt1(x)) ν(dt1) · · · ν(dtK) = 1

for x ∈ [0, 1].
Since Λ is at most countable, so is ΛK . For (i1, . . . , ik) ∈ Λk (k =

1, . . . ,K), put

It1,t2,(i1,i2) := cl(φt1,i1(int(It2,i2) ∩ τt1(int(It1,i1)))),

It1,...,tk,(i1,...,ik) := cl(φt1,i1 ◦ · · · ◦ φtk−1,ik−1
(int(Itk,ik)

∩ τtk−1
◦ · · · ◦ τt1(int(It1,...,tk−1,(i1,...,ik−1))))).

For simplicity, i ∈ Λk means i = (i1, . . . , ik) ∈ Λk. Since {It,i}i∈Λ is a
family of closed intervals such that int(It,i) ∩ int(It,j) = ∅ (i 6= j) and
m([0, 1] \

⋃
i∈Λ It,i) = 0, the family of closed intervals {It1,...,tK ,i : i ∈ ΛK}

satisfies
int(It1,...,tK ,i) ∩ int(It1,...,tK ,j) = ∅ (i 6= j),

m
(

[0, 1] \
⋃
i∈ΛK

It1,...,tK ,i

)
= 0.

Assumption (A1) implies

(A∗1) the restriction of τtK◦· · ·◦τt1 to int(It1,...,tK ,i) is a C1 and monotone
function for each i ∈ ΛK and (t1, . . . , tK) ∈WK .

Define τt1,...,tk := τtk ◦ · · · ◦ τt1 and let τt1,...,tk, (i1,...,ik) be the restriction of
τt1,...,tk to int(It1,...,tk,(i1,...,ik)) for k = 1, . . . ,K. For each (t1, . . . , tK) ∈ WK

and each i ∈ ΛK , put

φt1,...,tK ,i(x) :=
{
τ−1
t1,...,tK ,i

(x), x ∈ τt1,...,tK ,i(int(It1,...,tK ,i)),
0, x ∈ [0, 1] \ τt1,...,tK ,i(int(It1,...,tK ,i)).

Further, for each x∈ [0, 1] and i∈ΛK , put wx,i(t1, . . . , tK) :=φt1,...,tK ,i(x)
on WK . Then assumption (A2) implies:

(A∗2) wx,i(t1, . . . , tK) is a measurable function of (t1, . . . , tK) for each
x ∈ [0, 1] and i ∈ ΛK .

Now, for k = 1, . . . ,K, put

g(t1, . . . , tk, x) :=


p(t1, x) · · · p(tk, τtk−1

◦ · · · ◦ τt1(x))/|τ ′t1,...,tk(x)|
on W k ×

⋃
i∈Λk int(It1,...,tk,i),

0 on W k × ([0, 1] \
⋃
i∈Λk int(It1,...,tk,i)).

We are going to show the following lemma.

Lemma 7.1. Let g(t, x) satisfy conditions (a) and (b) of Section 5. Then:

(a∗) supx∈[0,1]

	
WK g(t1, . . . , tK , x) ν(dt1) · · · ν(dtK) < αK ;
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(b∗) there exists a constant MK such that
∨

[0,1] g(t1, . . . , tK , ·) < MK for
a.s. (t1, . . . , tK) ∈WK , where MK depends on K but is independent
of the choice of (t1, . . . , tK).

Proof. (a∗) is easily obtained. We are going to show (b∗).
It is easy to see that

(7.1)
∨
[0,1]

g(t1, t2, ·) =
∨
[0,1]

g(t1, ·)g(t2, τt1(·))

≤ sup
x∈[0,1]

g(t2, τt1(x))
∨
[0,1]

g(t1, ·) +
∑
i

sup
x∈It1,i

g(t1, x)
∨
It1,i

g(t2, τt1(·)).

From ∨
It1,i

g(t2, τt1(·)) ≤
∨
[0,1]

g(t2, ·) < M

we have∑
i

sup
x∈It1,i

g(t1, x)
∨
It1,i

g(t2, τt1(·)) ≤M
∑
i

sup
x∈It1,i

g(t1, x) ≤M2.

By this inequality and (7.1) we obtain∨
[0,1]

g(t1, t2, ·) ≤ 2M2.

Similarly, for k = 2, 3, . . . , we have∨
[0,1]

g(t1, . . . , tk, ·) =
∨
[0,1]

g(t1, . . . , tk−1, ·)g(tk, τt1,...,tk−1
(·))

≤ sup
x∈[0,1]

g(tk, τt1,...,tk−1
(x))

∨
[0,1]

g(t1, . . . , tk−1, ·)

+
∑
i

sup
x∈It1,...,tk−1,i

g(t1, . . . , tk−1, x)
∨

It1,...,tk−1,i

g(tk, τt1,...,tk−1
(·)).

Hence, as we have seen above,∨
[0,1]

g(t1, . . . , tk, ·) ≤ 2M
∨
[0,1]

g(t1, . . . , tk−1, ·).

Therefore, ∨
[0,1]

g(t1, . . . , tK , ·) ≤ 2K−1MK ,

which implies the lemma.

Now, we are in a position to show the following lemma.

Lemma 7.2. Let T be a random map satisfying the assumption of Theo-
rem 5.2 and let PT : L1(m)→ L1(m) be the corresponding Perron–Frobenius
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operator. Let K be a constant such that 8αK < 1. Let f ≥ 0 be a function
of bounded variation with

	1
0 f dm = 1. Then there exist constants γ < 1 and

β > 0 such that ∨
[0,1]

PTKf < γ
∨
[0,1]

f + β.

Proof. Since α < 1, we can choose a constant K with αK < 1/8. As we
have seen before, the random map TK satisfies essentially the same assump-
tions as in Section 3. Further, by Lemma 7.1, TK satisfies conditions (a∗)
and (b∗). So, for simplicity, we assume conditions (b) and (a) with α < 1/8
and prove the lemma with K = 1. By Lemma 6.2 we may assume conditions
(b) and (a1) with α < 1/8.

Set κ = 1
16M in (a1), that is,

(7.2) ν(W \Aj) <
1

16M
for j = 1, . . . , s.

Let δ be a constant as in (6.4) and let Gδ,j be defined by (6.5). Since
ν(W \Gδ,j)→ 0 as δ → 0, we can choose a constant δ0 > 0 such that

(7.3) ν(W \Gδ0,j) <
1

16M
for j = 1, . . . , s.

It follows from (7.2) and (7.3) that

ν(W \ (Gδ0,j ∩Aj)) <
1

8M
for j = 1, . . . , s.

Hence, by Lemma 6.10 we obtain
�

W

∑
i∈Λ

∨
cl(τt(int(It,i)∩Jj))

Ft,i ν(dt) ≤
(

3α0 +
1
4

)(∨
Jj

f +
1
δ0

�

Jj

f(x)m(dx)
)

for j = 1, . . . , s. Therefore, by Lemma 6.1,∨
[0,1]

PT f ≤
(

3α0 +
1
4

) ∨
[0,1]

f +
(

3α0 +
1
4

)
1
δ0
.

Since we assume α < 1/8, we have α0 < 1/4 and 3α0 + 1/4 < 1. Hence, we
obtain the lemma for K = 1 under conditions (b) and (a) with α < 1/8.

In the general case we can prove the lemma by a minor modification.

Proof of the key inequality. The key inequality follows from Lemmas 4.3
and 7.2.
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http://dx.doi.org/10.4064/sm166-3-5


Invariant measures for random maps 29
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