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Maximal abelian subalgebras and
projections in two Banach algebras

associated with a topological dynamical system

by

Marcel de Jeu (Leiden) and Jun Tomiyama (Hachioji City)

Abstract. If Σ = (X,σ) is a topological dynamical system, where X is a com-
pact Hausdorff space and σ is a homeomorphism of X, then a crossed product Banach
∗-algebra `1(Σ) is naturally associated with these data. If X consists of one point, then
`1(Σ) is the group algebra of the integers. The commutant C(X)′1 of C(X) in `1(Σ) is
known to be a maximal abelian subalgebra which has non-zero intersection with each
non-zero closed ideal, and the same holds for the commutant C(X)′∗ of C(X) in C∗(Σ),
the enveloping C∗-algebra of `1(Σ). This intersection property has proven to be a valu-
able tool in investigating these algebras. Motivated by this pivotal role, we study C(X)′1
and C(X)′∗ in detail in the present paper. The maximal ideal space of C(X)′1 is de-
scribed explicitly, and is seen to coincide with its pure state space and to be a topo-
logical quotient of X × T. We show that C(X)′1 is hermitian and semisimple, and that
its enveloping C∗-algebra is C(X)′∗. Furthermore, we establish necessary and sufficient
conditions for projections onto C(X)′1 and C(X)′∗ to exist, and give explicit formulas
for such projections, which we show to be unique. In the appendix, topological results
on the periodic points of a homeomorphism of a locally compact Hausdorff space are
given.

1. Introduction. Let Σ = (X,σ) be a topological dynamical system,
where X is a compact Hausdorff space, and σ is a homeomorphism of X.
Via σ, the integers Z act on C(X), and this action induces a twisted con-
volution on `1(Z, C(X)), thus leading to a unital involutive Banach algebra
of crossed product type, denoted by `1(Σ), and with enveloping C∗-algebra
C∗(Σ). The relation between the structure of C∗(Σ) and the dynamics of
(X,σ) is rather well studied (see, e.g., [12, 13, 14] for an introduction),
but more recently the algebra `1(Σ) itself, which is the involutive Ba-
nach algebra most naturally associated with Σ, has also been investigated
in [7].
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It turns out that several results which are known for C∗(Σ) have an
analogue for `1(Σ). For example, both `1(Σ) and C∗(Σ) have only trivial
closed ideals, or only trivial self-adjoint closed ideals, precisely when X has
an infinite number of points and Σ is a minimal dynamical system. As a
further example, both `1(Σ) and C∗(Σ) are prime precisely when X has an
infinite number of points and Σ is topologically transitive. In spite of the
formal similarity of such results, the basic underlying proofs for `1(Σ) in [7]
are quite different from the known proofs for C∗(Σ). There are, in fact, also
differences at a structural level. For example, all closed ideals of C∗(Σ) are
naturally self-adjoint, but for `1(Σ) this need not be so: all closed ideals of
`1(Σ) are self-adjoint precisely when Σ is free. Such differences are only to be
expected: if, for example, X consists of one point, then `1(Σ) = `1(Z), and
C∗(Σ) = C(T), and certainly `1(Z) has a rather different, more complicated,
structure than C(T).

The algebra C(X) is embedded in both `1(Σ) and C∗(Σ). It was ob-
served in [10] that its commutant C(X)′∗ in C∗(Σ) is commutative again,
hence a maximal abelian subalgebra. Moreover, C(X)′∗ always has non-zero
intersection with every non-zero closed ideal (1) in C∗(Σ), regardless of
the dynamics. This rather non-obvious fact provides a new point of view
on C∗(Σ), and in [10] this property was put to good use in the study of
this C∗-algebra. Likewise, the commutant C(X)′1 of C(X) in `1(Σ) is also
a maximal abelian subalgebra, and in [7] it was established with some ef-
fort that, analogously, C(X)′1 has non-zero intersection with every non-zero
closed ideal of `1(Σ). As for C∗(Σ), this proved to be a powerful tool to ob-
tain further structural results about `1(Σ). In fact, once this basic property
for each of C(X)′∗ and C(X)′1 has been settled, proofs of further results for
C∗(Σ) and `1(Σ) can be given that are rather similar. The proofs of this
property for C(X)′∗ and C(X)′1, however, are not similar.

In view of the pivotal role of C(X)′1 and C(X)′∗, it is desirable to have
more information on these algebras available, and hence they are the ob-
jects of study in the present paper. We explicitly determine the maximal
ideal space of C(X)′1, show that it is a topological quotient of X × T, and
establish that it coincides with the pure state space of C(X)′1. As a conse-
quence, C(X)′1 is a hermitian Banach algebra, and it is also shown to be
semisimple. Its enveloping C∗-algebra turns out to be C(X)′∗. With that
material in place, it is then possible to investigate projections from C∗(Σ)
onto C(X)′∗ and from `1(Σ) onto C(X)′1, and we obtain a simple topological
dynamical condition which is equivalent to the existence of such projections.
We show, for both algebras, that positive projections are unique, if existing,
and we give an explicit formula (Theorems 5.4 and 5.7). For C∗(Σ), norm

(1) In fact: with every non-zero ideal, not necessarily closed or self-adjoint.
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one projections are necessarily positive, so that norm one projections are
then also unique. It is conceivable that the “actual” condition for unique-
ness is positivity, and that the norm one case can be covered for C∗(Σ) only
coincidentally, because the projection theorem for C∗-algebras happens to
show that norm one implies positivity. At the moment this is not clear, and
the uniqueness issue for norm one projections from `1(Σ) onto C(X)′1 needs
further study.

In spite of the progress made in [7] and the present paper, there are still
several intriguing natural questions open about the involutive algebra `1(Σ)
itself, and about the relation to its enveloping C∗-algebra. For example, is
`1(Σ) always hermitian? If X consists of finitely many points, then this is the
case (cf. [7]). Furthermore, if `1(Σ) is hermitian, then by [8, Theorem 9.8.2]
every maximal abelian ∗-subalgebra is also hermitian. Hence the fact, from
the present paper, that the maximal abelian ∗-subalgebra C(X)′1 is known
to be hermitian for general X can be regarded as additional support for a
possible conjecture that `1(Σ) is always hermitian, but presently the general
answer is still unknown. Furthermore, if I is a proper closed ideal of `1(Σ),
is the closure of I in C∗(Σ) proper again? If so, this would enable us to
translate results between `1(Σ) and C∗(Σ), but at this moment the answer
is known (and affirmative) only when X consists of one point. We hope that
the results in this paper are a further step towards answering such questions
about these involutive Banach algebras, of which `1 is the easiest example,
and which are the involutive Banach algebras of crossed product type most
naturally associated with a single homeomorphism of a compact Hausdorff
space.

This paper is organised as follows.
Section 2 contains the basic definitions, notations, and preliminary re-

sults.
Section 3 is concerned with C(X)′1, the commutant of C(X) in `1(Σ).

We start by studying its maximal ideal space ∆(C(X)′1). All characters
can be described explicitly, and it follows by inspection that they are all
hermitian, so that C(X)′1 is a hermitian algebra. Given the description of
∆(C(X)′1) it is then straightforward to show that C(X)′1 is semisimple, and
that ∆(C(X)′1) is a topological quotient of X × T. The latter fact can be
used to generate dense subsets of ∆(C(X)′1), which will then separate the
points of C(X)′1 as a consequence of the semisimplicity.

In Section 4, C(X)′∗ is brought into play, and we study how pure states
extend and restrict in the chain C(X) ↪→ C(X)′1 ↪→ C(X)′∗ ↪→ C∗(Σ) of
unital involutive Banach algebras. The maximal ideal space ∆(C(X)′∗) of
C(X)′∗ can then be shown to be homeomorphic to ∆(C(X)′1).

Section 5 contains applications of the results in Sections 3 and 4. It is
shown that C(X)′∗ is the enveloping C∗-algebra of C(X)′1, which, in ret-
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rospect, explains the homeomorphism between ∆(C(X)′1) and ∆(C(X)′∗).
The rest of the section consists of a detailed study of projections from C∗(Σ)
onto C(X)′∗, and from `1(Σ) onto C(X)′1.

In the Appendix we have included, all in one place, topological results
on the periodic points that have proved to be useful in various papers. Our
results, valid for a homeomorphism of a locally compact Hausdorff space, are
actually somewhat stronger than those in the existing literature and have a
common basis in a new general result on equal closures.

2. Preliminaries. Throughout this paper, with the exception of the
Appendix, X is a non-empty compact Hausdorff space, and σ : X → X is a
homeomorphism. We let Aper(σ) and Per(σ) denote the aperiodic and the
periodic points of σ, respectively. For n ∈ Z, let Fixn(σ) be the set of points
fixed by σn, and, for p ≥ 1, let Perp(σ) be the set of points of period p. If
S ⊂ X, then we will denote its interior and closure by S◦ and S, respectively.
For typographical reasons, we will write Fix◦n(σ) and Per◦n(σ), rather than
Fixn(σ)◦ and Pern(σ)◦.

We let C(X) denote the algebra of continuous complex-valued functions
on X, and write α for be the automorphism of C(X) induced by σ via
α(f) := f ◦ σ−1 for f ∈ C(X). Via n 7→ αn, the integers act on C(X). With
‖ · ‖∞ denoting the supremum norm on C(X), we let

`1(Σ) =
{
` : Z→ C(X) : ‖`‖ :=

∑
k

‖`(k)‖∞ <∞
}
.

We supply `1(Σ) with the usual multiplication and involution:

(``′)(n) :=
∑
k∈Z

`(k) · αk(`′(n− k)) (`, `′ ∈ `1(Σ))

and
`∗(n) = αn(`(−n)) (` ∈ `1(Σ)),

so that it becomes a unital Banach ∗-algebra with isometric involution.
A convenient way to work with `1(Σ) is provided by the following. For

n,m ∈ Z, let

χ{n}(m) =
{

1 if m = n,
0 if m 6= n,

where the constants denote the corresponding constant functions in C(X).
Then χ{0} is the identity element of `1(Σ). Let δ = χ{1}; then χ{−1} =
δ−1 = δ∗. If we put δ0 = χ{0}, then δn = χ{n} for all n ∈ Z. We may view
C(X) as a closed abelian ∗-subalgebra of `1(Σ), namely as {f0δ

0 : f0 ∈
C(X)}. If ` ∈ `1(Σ), and if we write `(k) = fk for short, then ` =

∑
k fkδ

k

and ‖`‖ =
∑

k ‖fk‖∞ < ∞. In the rest of this paper we will constantly use
this series representation ` =

∑
k fkδ

k of an arbitrary element ` ∈ `1(Σ), for
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uniquely determined fk ∈ C(X). Thus `1(Σ) is generated as a unital Banach
algebra by an isometrically isomorphic copy of C(X) and the elements δ and
δ−1, subject to the relation δfδ−1 = f ◦ σ−1 for f ∈ C(X). The isometric
involution is determined by f∗ = f for f ∈ C(X), and δ∗ = δ−1.

The crossed product C∗-algebra C∗(Σ) is the enveloping C∗-enveloping
algebra of `1(Σ); we refer to [15] for the general theory of such algebras.
According to [4, 2.7.1], the enveloping C∗-seminorm of an element ` ∈ `1(Σ)
can be calculated as

‖`‖′ = sup
φ∈B

φ(`∗`)1/2,

whereB is the set of continuous positive forms on `1(Σ) of norm at most 1 (2).
For x ∈ X the formula φx(a) := f0(x) for ` =

∑
k fkδ

k ∈ `1(Σ) defines a
continuous positive form of norm 1, and since φx(`∗`) =

∑
k |fk(σkx)|2, one

sees that ‖ · ‖′ is actually a norm on `1(Σ). Thus we can view `1(Σ) as a
dense subalgebra of C∗(Σ).

It can be shown [12, 13] that the canonical norm one projection E1 :
`1(Σ) → C(X), defined by E1(`) = f0 if ` =

∑
k fkδ

k ∈ `1(Σ), extends to
a faithful norm one projection E∗ : C∗(Σ) → C(X) (automatically) such
that E∗(fcg) = fE∗(c)g for c ∈ C∗(Σ) and f, g ∈ C(X) (3). If c ∈ C∗(Σ),
and k ∈ Z, then we define its generalised Fourier coefficient c(k) ∈ C(X) as
c(k) := E∗(c · δ−k). Then

(2.1) (f · c)(k) = f · c(k), (c · f)(k) = (f ◦ σ−k) · c(k)

for f ∈ C(X), c ∈ C∗(Σ), and n ∈ Z. Furthermore, if c ∈ C∗(Σ), then its
sequence (σCN (c))N of Cesàro means, defined by

σCN (c) :=
N∑

j=−N

(
1− |j|

N + 1

)
c(j)δj ,

converges to c in the norm of C∗(Σ) as N →∞ (cf. [?, Theorem 1]).
We let C(X)′1 denote the commutant of C(X) in `1(Σ), and C(X)′∗

denote the commutant of C(X) in C∗(Σ). It is not difficult to see (cf. [7,
Propositions 3.1 and 3.2]) that

(2.2) C(X)′1 =
{∑

k

fkδ
k ∈ `1(Σ) : supp(fk) ⊂ Fixk(σ) for all k ∈ Z

}
,

and that C(X)′1 is commutative again, hence an involutive maximal abelian
subalgebra of `1(Σ). Likewise (cf. [10, Proposition 3.2])

(2) Since `1(Σ) is unital, a positive form φ on `1(Σ) is automatically continuous, and
‖φ‖ = φ(1) (cf. [4, 2.1.4]).

(3) In a purely C∗-algebra context it is customary to write E for this projection
in C∗(Σ). With `1(Σ) also under consideration, E∗, together with E1, is now a more
appropriate notation.
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(2.3) C(X)′∗ = {c ∈ C∗(Σ) : supp(c(k)) ⊂ Fixk(σ) for all k ∈ Z},
and C(X)′∗ is again commutative, hence an involutive maximal abelian sub-
algebra of C∗(Σ).

We let c00(Σ) denote the elements of `1(Σ) of the form ` =
∑

k fkδ
k,

where the summation is finite. It is a unital involutive subalgebra of `1(Σ),
which is dense in `1(Σ) in the norm of `1(Σ), and hence dense in C∗(Σ).
Let C(X)′00 denote the commutant of C(X) in c00(Σ). Clearly C(X)′00 =
C(X)′1 ∩ c00(Σ) = C(X)′∗ ∩ c00(Σ). It is obvious from (2.2) that C(X)′00 is
dense in C(X)′1 in the norm of `1(Σ). It is also true that C(X)′00 is dense
in C(X)′∗. Indeed, if c ∈ C(X)′∗, then it is clear from (2.3) that each of the
Cesàro means σCN (c) is an element of C(X)′00, and we know that these means
converge to c. The density of C(X)′00 in C(X)′∗ implies that C(X)′1 is dense
in C(X)′∗. To summarise, we have the following inclusions:

`1(Σ)� _

dense

��

C(X) � � // C(X)′00
� � // c00(Σ)

+ �

dense
99ssssssssss

� s

dense

%%KKKKKKKKKK

C∗(Σ)

C(X)′1
� � //

� _

dense

��

`1(Σ)� _

dense

��

C(X) � � // C(X)′00

+ �

dense
99ssssssssss

� s

dense

%%KKKKKKKKKK

C(X)′∗
� � // C∗(Σ)

Furthermore, let us recall that the GNS-theory is available for unital
Banach algebras with an isometric involution (cf. [4]), so that the pure states
of C(X)′1 are in bijection with its topologically irreducible representations.
Since C(X)′1 is commutative, Schur’s lemma then implies that the pure
states of C(X)′1 are precisely the hermitian (i.e., self-adjoint) characters of
C(X)′1. We will use these terms interchangeably.

For convenience, we explicitly list the following elementary facts, to be
used without further mention:

(i) σm(Fixn(σ)) = Fixn(σ) for all m,n ∈ Z.
(ii) If f ∈ C(X) and supp(f) ⊂ Fixn(σ) for some n ∈ Z, then also

supp(f ◦ σm) ⊂ Fixn(σ) for all m ∈ Z.
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(iii) If f ∈ C(X) and supp(f) ⊂ Fixn(σ) for some n ∈ Z, then f◦σmn = f
for all m ∈ Z.

(iv) Fixm(σ) ∩ Fixn(σ) = Fixgcd(m,n)(σ) for all m,n ≥ 0.

We conclude our preliminaries with the following result, which is also
elementary, but nevertheless central to several arguments.

Lemma 2.1. Suppose x ∈ Fix◦n(σ) for some n ≥ 1, and let n be minimal
with this property. If f ∈ C(X), m ∈ Z, supp(f) ⊂ Fixm(σ), and n - m,
then f(x) = 0.

Proof. We may assume that m ≥ 1. There exists an open neighbourhood
U of x such that U ⊂ Fixn(σ). If f(x) 6= 0, then there exists an open
neighbourhood V of x such that V ⊂ Fixm(σ). Then x ∈ U ∩V ⊂ Fixn(σ)∩
Fixm(σ) = Fixgcd(n,m)(σ), so that x ∈ Fix◦gcd(n,m)(σ). Now 1 ≤ gcd(n,m),
and gcd(n,m) < n, since n - m, contradicting the minimality of n .

3. The commutant C(X)′1 of C(X) in `1(Σ). In this section we de-
scribe the maximal ideal space ∆(C(X)′1) of the commutant C(X)′1 of C(X)
in `1(Σ): as a set in Proposition 3.8, and as a topological quotient of X×T in
Theorem 3.10. It turns out (cf. Proposition 3.8) that all characters of C(X)′1
are hermitian, or equivalently, that ∆(C(X)′1) coincides with the pure state
space of C(X)′1. As a consequence, C(X)′1 is a hermitian involutive Banach
algebra, which moreover can be shown to be semisimple (cf. Theorem 3.9).
It is then easy to generate dense subsets of ∆(C(X)′1) which will separate
the points of C(X)′1, as in Corollary 3.11.

The first step is to determine all characters of the algebra C(X)′00, i.e.,
all non-zero complex homomorphisms, including those which are not contin-
uous in the norm induced from `1(Σ). Continuity can then easily be taken
into account later on. The next lemma describes the basic structure of pos-
sible characters of C(X)′00, showing that they are closely related to point
evaluations evx on C(X).

Lemma 3.1. Let ω be a character of C(X)′00, and let x ∈ X be the
unique point such that ω�C(X) = evx. Then there exists a sequence (ck)k∈Z,
with c0 = 1, such that ω(fδk) = ckf(x) for all k ∈ Z and all f ∈ C(X) with
supp(f) ⊂ Fixk(σ).

Proof. For f ∈ C(X) and k ∈ Z we compute, using supp(f) ⊂ Fixk(σ)
in the third step:

ω(fδk)2 = ω(fδk · fδk) = ω(f · [f ◦ σ−k]δ2k) = ω(f2δ2k) = ω(f)ω(fδ2k)

= f(x)ω(fδ2k).

Hence, if we let Vk := {f ∈ C(X) : supp(f) ⊂ Fixk(σ)}, then the linear map
ωk : V → C defined by f 7→ ω(fδk) for f ∈ Vk has a kernel containing the
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kernel of evx�Vk
. Therefore, there exists ck ∈ C such that ωk = ckevx�Vk

, as
claimed. Clearly c0 = 1.

We will now investigate this further, depending on the properties of x.
The relevant criterion will turn out to be whether x is in

⋃
q≥1 Fix◦q(σ) or

not.

Lemma 3.2. Let ω be a character of C(X)′00, and let x ∈ X be the
unique point such that ω�C(X) = evx. Suppose that x /∈

⋃
q≥1 Fix◦q(σ). Then

ω(
∑

k fkδ
k) = f0(x) for all

∑
k fkδ

k ∈ C(X)′00.

Proof. From Lemma 3.1 we have ω(
∑

k fkδ
k) =

∑
k ckfk(x) for some

sequence (ck)k∈Z with c0 = 1. However, for k 6= 0 we must have fk(x) = 0,
since otherwise x ∈ Fix◦|k|(σ), which would contradict the assumption on x.

Lemma 3.2 shows that, for x /∈
⋃
q≥1 Fix◦q(σ), the character evx of C(X)

has at most one extension to a character of C(X)′00. This candidate is ac-
tually a character, as is asserted by the following lemma.

Lemma 3.3. If x /∈
⋃
q≥1 Fix◦q(σ), then defining ωx(

∑
k fkδ

k) := f0(x)
for

∑
k fkδ

k ∈ C(X)′00 yields a character ωx of C(X)′00 extending evx.

Proof. We check multiplicativity on a spanning set. Let n,m ∈ Z, and
suppose fn, fm ∈ C(X) with supp(fn) ⊂ Fixn(σ) and supp(fm) ⊂ Fixm(σ).
Then we must check that

(3.1) ωx(fnδn · fmδm) = ωx(fnδn)ωx(fmδm).

We distinguish two cases. If n = m = 0, then both sides in (3.1) are equal
to fn(x)fm(x), and we are done. If at least one of n and m is non-zero,
then the right hand side in (3.1) is zero. The left hand side is equal to
ωx(fn · [fm ◦ σ−n]δn+m). If n + m 6= 0, then this is zero, and we are done
with this subcase. If n + m = 0, then in particular n = −m 6= 0, and the
left hand side equals fn(x)fm(σ−nx). Since x /∈

⋃
q≥1 Fix◦q(σ), it follows that

fn(x) = 0, as otherwise x ∈ Fix◦|n|(σ), contradicting the assumption on x.
Hence we are done with the subcase n+m = 0 as well.

Having taken care of the characters of C(X)′00 extending evx for x /∈⋃
q≥1 Fix◦q(σ), we turn to the case where x ∈

⋃
q≥1 Fix◦q(σ). As we will see,

the extensions of evx are then parametrised by C× := C \ {0}. As above, we
start by first describing potential extensions.

Lemma 3.4. Let ω be a character of C(X)′00, and let x ∈ X be the unique
point such that ω�C(X) = evx. Suppose that x ∈

⋃
q≥1 Fix◦q(σ). Let n ≥ 1 be

minimal such that x ∈ Fix◦n(σ). Then there exists a unique c ∈ C× such that
ω(
∑

k fkδ
k) =

∑
j fjn(x)cj for all

∑
k fkδ

k ∈ C(X)′00.
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Proof. Lemma 3.1 provides a sequence (ck)k∈Z such that ω(
∑

k fkδ
k) =∑

k ckfk(x). By Lemma 2.1, this simplifies to ω(
∑

k fkδ
k) =

∑
j cjnfjn(x),

so it remains to show that there exists c ∈ C×, evidently unique, such that
cjn = cj for all j ∈ Z. Since x ∈ Fix◦n(σ), there exists f0 ∈ C(X) with
supp(f0) ⊂ Fix◦n(σ) and f0(x) = 1. Then

(3.2) ω(f0δ
n · f0δ

−n) = ω(f0δ
n)ω(f0δ

−n).

The right hand side in (3.2) equals cnf0(x)c−nf0(x) = cnc−n. The left hand
side equals ω(f0 · [f0 ◦ σ−n]) = ω(f2

0 ) = f2
0 (x) = 1. Write c = cn; then c 6= 0.

For j ≥ 1 we have (f0δ
n)j = f j0δ

jn, hence ω((f0δ
n)j) = ω(f j0δ

jn), so cj =
cjnf

j
0 (x) = cjn. Also, for j ≥ 1, (f0δ

−n)j = f j0δ
−jn, hence ω((f0δ

−n)j) =
ω(f j0δ

−jn), so (c−n)j = c−jnf
j
0 (x) = c−jn. Since c−n = 1/cn = 1/c, we find

that c−jn = c−j . Hence cjn = cj for all j ∈ Z.

Just as before, the candidate extensions are, in fact, characters of C(X)′00,
as is asserted by the next result.

Lemma 3.5. Let x ∈
⋃
q≥1 Fix◦q(σ), and suppose n ≥ 1 is minimal such

that x ∈ Fix◦n(σ). Let c ∈ C×. Then ωx,c(
∑

k fkδ
k) :=

∑
j fjn(x)cj for∑

k fkδ
k ∈ C(X)′00 defines a character ωx,c of C(X)′00 extending evx.

Proof. We check multiplicativity on a spanning set. Let k, l ∈ Z, fk, fl ∈
C(X), and suppose supp(fk) ⊂ Fixk(σ) and supp(fl) ⊂ Fixl(σ). We must
check that

(3.3) ωx,c(fkδk · flδl) = ωx,c(fkδk)ωx,c(flδl).

There are three cases to consider.
If n | k and n | l, then we see that the right hand side in (3.3) is equal

to fk(x)ck/nfl(x)cl/n. The left hand side is equal to fk(x)fl(σ−kx)c(k+l)/n.
Since x ∈ Fixn(σ) and n | k, this equals the right hand side.

If n - k, then the right hand side in (3.3) is zero, since the first factor
is. If n - (k + l), then the left hand side in (3.3) is zero, and we are done.
If n | (k+ l), then the left hand side is equal to fk(x)fl(σ−kx)c(k+l)/n. Since
n - k, we have fk(x) = 0 by Lemma 2.1, and so the left hand side in (3.3) is
also seen to be zero.

If n - l, then (3.3) holds as a consequence of the second case and the
commutativity of C(X)′1.

To summarise:

Lemma 3.6. The characters of C(X)′00 are, without multiple occurrences,
the following, where

∑
k fkδ

k ∈ C(X)′00:
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(i) for x /∈
⋃
q≥1 Fix◦q(σ),

ωx

(∑
k

fkδ
k
)

= f0(x);

(ii) for x ∈
⋃
q≥1 Fix◦q(σ), and c ∈ C×,

ωx,c

(∑
k

fkδ
k
)

=
∑
j

fjn(x)cj ,

where n ≥ 1 is minimal such that x ∈ Fix◦n(σ).

It is easy to see which characters of C(X)′00 are hermitian, and which
are continuous in the norm of `1(Σ).

Lemma 3.7.

(i) For x /∈
⋃
q≥1 Fix◦q(σ), ωx is a hermitian character of C(X)′00, which

is continuous in the topology induced by `1(Σ).
(ii) Let x ∈

⋃
q≥1 Fix◦q(σ), and c ∈ C×. Then the following are equiva-

lent:

(a) ωx,c is continuous on C(X)′00 in the topology induced by `1(Σ).
(b) ωx,c is a hermitian character of C(X)′00.
(c) c ∈ T.

Proof. The first part is obvious. As to the second, it is clear that (c)
implies (a). To see that (a) implies (c), let n be as in Lemma 3.6. Pick
f0 ∈ C(X) such that supp(f0) ⊂ Fixn(σ) and ‖f0‖∞ = f0(x) = 1. Then
for all j ∈ Z we have ‖f0δ

jn‖ = 1 and f0δ
jn ∈ C(X)′00. The assumed

continuity implies that |ωx,c(f0δ
jn)| = |cj | remains bounded for j ∈ Z. Hence

c ∈ T. In order to show the equivalence between (b) and (c) we compute, for
x ∈

⋃
q≥1 Fix◦q(σ), c ∈ C×, and

∑
k fkδ

k ∈ C(X)′00, with n as in Lemma 3.6
again:

(ωx,c)∗
(∑

k

fkδ
k
)

= ωx,c

(∑
k

δ−kf̄k

)
= ωx,c

(∑
k

(f̄k ◦ σk)δ−k
)

= ωx,c

(∑
k

(f̄−k ◦ σ−k)δk
)

=
∑
j

(f̄−jn ◦ σ−jn)(x)cj

=
∑
j

(f̄−jn)(x)cj =
∑
j

fjn(x)(1/c)j = ωx,1/c

(∑
k

fkδ
k
)
,

where in the fifth step we used the fact that x ∈ Fixn(σ). Hence ω∗x,c = ωx,1/c.
From the uniqueness of the parametrisation we see that ω∗x,c = ωx,c if and
only if 1/c = c, i.e., if and only if c ∈ T.

The characters of C(X)′00 which extend to characters of C(X)′1 are the
continuous ones, and from Lemmas 3.6 and 3.7 we know what these are. For
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such characters, we will employ the same notation when viewing them as
characters of C(X)′1. Hence we have the following description of the maximal
ideal space ∆(C(X)′1) of C(X)′1 as a set. In Theorem 3.10 we will also
describe its topology.

Proposition 3.8. The characters of C(X)′1 are, without multiple oc-
currences, the following, where

∑
k fkδ

k ∈ C(X)′1:

(i) for x /∈
⋃
q≥1 Fix◦q(σ),

ωx

(∑
k

fkδ
k
)

= f0(x);

(ii) for x ∈
⋃
q≥1 Fix◦q(σ) and c ∈ T,

ωx,c

(∑
k

fkδ
k
)

=
∑
j

fjn(x)cj ,

where n ≥ 1 is minimal such that x ∈ Fix◦n(σ).

All characters of C(X)′1 are hermitian, and the map from ∆(C(X)′1) into
∆(C(X)) given by restriction of characters is a continuous surjection.

As a consequence of Proposition 3.8 we have the following.

Theorem 3.9. The Banach algebra C(X)′1 is hermitian and semisimple.

Proof. It is clear from Proposition 3.8 that the spectrum of a self-adjoint
element of C(X)′1 is real, i.e., C(X)′1 is hermitian. To show that it is semisim-
ple, suppose

∑
k fkδ

k ∈ C(X)′1 and ω(
∑

k fkδ
k) = 0 for all ω ∈ ∆(C(X)′1).

In that case, if x /∈
⋃
q≥1 Fix◦q(σ), then f0(x) = ωx(

∑
k fkδ

k) = 0. If n 6= 0,
then also fn(x) = 0, because otherwise x ∈ Fix◦|n|(σ). Hence, for all k ∈ Z,
fk vanishes at the complement of

⋃
q≥1 Fix◦q(σ). In order to show that all

fk also vanish at an arbitrary x ∈
⋃
q≥1 Fix◦q(σ), let n ≥ 1 be minimal such

that x ∈ Fix◦n(σ). Then, by Lemma 2.1, we know that fm(x) = 0 if n - m. To
show that this is also true if m = jn for arbitrary j ∈ Z, we use the fact that
for all c ∈ T, 0 = ωx,c(

∑
k fkδ

k) =
∑

j fjn(x)cj . That is: the Fourier trans-
form of the element (. . . , f−2n(x), f−n(x), f0(x), fn(x), f2n(x), . . .) of `1(Z)
is equal to zero. We conclude that fjn(x) = 0 for all j ∈ Z, as was to be
shown.

We will now proceed to show that ∆(C(X)′1) is a topological quotient
of X × T. If x ∈ X and z ∈ T, define ψx,z : `1(Σ)→ C by ψx,z(

∑
k fkδ

k) :=∑
k fk(x)zk for

∑
k fkδ

k ∈ C(X)′1. Since z ∈ T, this is well-defined. We claim
that ψx,z is, in fact, a character of C(X)′1. There are two cases to consider:

(i) If x /∈
⋃
q≥1 Fix◦q(σ), then fk(x) = 0 for all k 6= 0. Hence, regardless

of z, ψx,z = ωx in this case, which we know to be a character of
C(X)′1.
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(ii) If x ∈
⋃
q≥1 Fix◦q(σ), we let n ≥ 1 be minimal such that x ∈ Fix◦n(σ).

Then, by Lemma 2.1, fm(x) = 0 if n - m, so ψx,z(
∑

k fkδ
k) =∑

j fjn(x)zjn = ωx,zn(
∑

k fkδ
k). We conclude that ψx,z = ωx,zn ,

which again we already know to be a character of C(X)′1.

We conclude that ψ, sending (x, z) to ψx,z, not only maps X × T into
∆(C(X)′1), but is also surjective. In fact, we have the following.

Theorem 3.10. The maximal ideal space ∆(C(X)′1) is the topological
quotient of X×T via the surjective continuous map ψ : X×T→ ∆(C(X)′1).
The fibres are:

(i) for ωx with x /∈
⋃
q≥1 Fix◦q(σ), ψ−1({ωx}) = {x} × T;

(ii) for ωx,c with x ∈
⋃
q≥1 Fix◦q(σ) and c ∈ T, ψ−1({ωx,c}) = {(x, z) :

zn = c}, where n ≥ 1 is minimal such that x ∈ Fix◦n(σ).

Proof. All is clear from the above discussion and Proposition 3.8, except
for the statement on the topological quotient. Since any quotient of X × T
is compact, and ∆(C(X)′1) is Hausdorff, it is sufficient to show that ψ is
continuous. To this end, fix (x, z0) ∈ X×T and

∑
k∈Z fkδ

k ∈ C(X)′1, and let
ε > 0 be given. There exists N ≥ 0 such that ‖

∑
k∈Z fkδ

k−
∑N

k=−N fkδ
k)‖ <

ε/4. Then, if (x, z) ∈ X×T, using the contractivity of characters of a Banach
algebra, we find that∣∣∣ψx,z0(∑

k∈Z
fkδ

k
)
− ψx,z

(∑
k∈Z

fkδ
k
)∣∣∣

<
ε

2
+
∣∣∣ψx,z0( N∑

k=−N
fkδ

k
)
− ψx,z

( N∑
k=−N

fkδ
k
)∣∣∣

≤ ε

2
+

N∑
k=−N

|fk(x)zk0 − fk(x)zk|.

It is clear that there exist open neighbourhoods Ux of x and Vz0 of z0 such
that the last sum is less than ε/2 for all (x, z) ∈ Ux × Vx.

The continuity and surjectivity of ψ in Theorem 3.10 provide a conve-
nient tool to generate dense subsets of ∆(C(X)′1). Indeed, ψ(X̃ × T̃) will be
such a set whenever X̃ is dense in X and T̃ is dense in T. Moreover, since
C(X)′1 is semisimple, ψ(X̃× T̃ ) will then also separate the points of C(X)′1.
Applying this with X̃ equal to the set in the third part of Corollary A.3, and
with T̃ = T, we obtain the result given below. It will be instrumental in the
proof of the uniqueness statement for projections in `1(Σ) (Theorem 5.7)
and, when combined with the homeomorphism of maximal ideal spaces in
Proposition 4.1, also for the uniqueness statement for projections in C∗(Σ)
(Theorem 5.4).
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Corollary 3.11. The set consisting of all ωx for x ∈ Aper(σ) together
with all ωx,c for x ∈

⋃
q≥1 Per◦q(σ) and c ∈ T is a dense subset of ∆(C(X)′1)

which separates the points of C(X)′1.

4. Extending and restricting pure states. In this section, we study
the behaviour of pure states under restriction in the following chain of in-
volutive algebras:

(4.1) C(X) � � // C(X)′1
� � dense // C(X)′∗

� � // C∗(Σ).

The results are summarised in Theorem 4.2 and will be applied in Section 5.
As a preliminary remark, we note that C(X)′1 need not be a C∗-algebra,

hence the standard extension theorem for (pure) states does not apply if
this algebra is involved. This complicates the arguments, but in the end the
picture for the first two inclusions in (4.1) turns out to be quite simple.

Beginning with the inclusion C(X) ↪→ C(X)′1, we recall from Proposi-
tion 3.8 that all characters of C(X)′1 are hermitian, i.e., the maximal ideal
space ∆(C(X)′1) of C(X)′1 coincides with its pure state space. Furthermore,
Proposition 3.8 also shows that restriction not only maps the pure state
space ∆(C(X)′1) into the pure state space ∆(C(X)), which is obvious since
a hermitian character restricts to a hermitian character, but actually onto
∆(C(X)). Moreover, it describes explicitly the fibres of this continuous sur-
jection. Hence the situation for C(X) ↪→ C(X)′1 is already clear.

For the inclusion C(X)′1 ↪→ C(X)′∗ it is likewise obvious that restriction
yields an injective continuous map from the pure state space ∆(C(X)′∗) into
the pure state space ∆(C(X)′1), but it is not obvious that this map should be
surjective. Nevertheless, restriction even yields a homeomorphism between
these two pure state spaces (cf. Proposition 4.1), and this will later (cf.
Theorem 5.1) be improved by showing that C(X)′∗ is actually the enveloping
C∗-algebra of C(X)′1.

The key to understanding the restriction map for C(X)′1 ↪→ C(X)′∗ lies in
understanding part of the restriction map for the inclusion C(X)′∗ ↪→ C∗(Σ).
To be precise: for x ∈ X, we will be concerned with the pure state extensions
of the pure state evx on C(X) to C∗(Σ), and determine how these extensions
restrict to C(X)′∗. Although it is not a priori evident, they restrict to pure
states. On the other hand, it is a priori evident that all pure states of C(X)′∗
can be obtained in this way. Indeed, a pure state ω of C(X)′∗ is a character,
so that its restriction to C(X) is of the form evx for some x in X. Then
each pure state extension of ω to C∗(Σ) is also a pure state extension of
evx, showing that ω can be obtained as described.

We will now supply the detailed arguments needed to understand the
behaviour of pure states for the inclusion C(X)′1 ↪→ C(X)′∗. They are based
on an explicit description, for all x ∈ X, of the restriction of each pure state
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extension of evx to C∗(Σ) to the dense subalgebra C(X)′00 of C(X)′∗. We
start with a description of these pure state extensions to C∗(Σ) and the
corresponding GNS-representations, referring to [13, §4] for further details
and proofs.

First of all, if x ∈ Aper(σ), then there is a unique pure state extension
of evx to C∗(Σ), which we denote by φx. The Hilbert space for the GNS-
representation πx corresponding to φx has an orthonormal basis (en)n∈Z,
and the representation itself is determined by πx(δ)en = en+1 for n ∈ Z,
and πx(f)en = f(σnx)en for f ∈ C(X) and n ∈ Z. The vector e0 reproduces
the state φx of C∗(Σ).

If x ∈ Per(σ), say x ∈ Perp(σ) (p ≥ 1), then the pure state exten-
sions of evx to C∗(Σ) are in bijection with the points in T, and we denote
these pure states of C∗(Σ) by φx,λ, for λ ∈ T. The Hilbert space for the
GNS-representation πx,λ corresponding to φx,λ has an orthonormal basis
{e0, . . . , ep−1}, πx,λ(δ) is represented with respect to this basis by the matrix

0 0 . . . 0 λ

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


,

and, for f ∈ C(X), πx,λ(f) is represented with respect to this basis by the
matrix 

f(x) 0 . . . 0
0 f(σx) . . . 0
...

...
. . .

...
0 0 . . . f(σp−1x)

 .

The vector e0 reproduces the state φx,λ of C∗(Σ).
Next, we describe the restriction of these pure states φx, for x ∈ Aper(σ),

and of φx,λ, for x ∈ Per(σ) and λ ∈ T, to C(X)′00. By density, this will then
enable us to obtain information about the restriction to C(X)′∗. There are
three cases to consider.

Case 1: x ∈ Aper(σ). It is immediate from the GNS-model that φx(fkδk)
= 0 for all fk ∈ C(X) and all k 6= 0. Since φx(f) = f(x) for f ∈ C(X), we
see that φx(

∑
k fkδ

k) = f0(x) = ωx(
∑

k fkδ
k) for all

∑
k fkδ

k ∈ C(X)′00 =
C(X)′00, where ωx is as in the first part of Lemma 3.6. In particular, φx is
multiplicative on C(X)′00. By continuity we conclude that the restriction of
φx to C(X)′∗ is likewise a character, hence a pure state of C(X)′∗.
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Case 2: x ∈ Per(σ) with x ∈
⋃
q≥1 Fix◦q(σ); λ ∈ T arbitrary. Let n ≥ 1

be minimal such that x ∈ Fix◦n(σ), and let p be the period of x, so that p |n.
As a preparation, we observe that the GNS-model implies that φx,λ(fkδk) =
0 for all fk ∈ C(X) and all k ∈ Z with p - k. Furthermore, if p | k, then
φx,λ(fkδk) = f(x)λk/p. Turning to C(X)′∗, suppose k ∈ Z, fk ∈ C(X), and
fkδ

k ∈ C(X)′00, so that supp(fk) ⊂ Fixk(σ). According to our preparations,
φx,λ(fkδk) = 0 if p - k, and φx,λ(fkδk) = fk(x)λk/p if p | k. But, since
supp(fk) ⊂ Fixk(σ), we know in addition from Lemma 2.1 that fk(x) = 0 if
n - k. Hence

φx,λ(fkδk) =
{
fk(x)λk/p if n | k,
0 otherwise.

Therefore, if
∑

k fkδ
k ∈ C(X)′00, then

φx,λ

(∑
k

fkδ
k
)

= φx,λ

(∑
j

fjnδ
jn
)

=
∑
j

fjn(x)λjn/p

= ωx,λn/p

(∑
k

fkδ
k
)
,

where, for c ∈ C×, ωx,c is as in the second part of Lemma 3.6. As in the first
case, since we know ωx,λn/p to be multiplicative on C(X)′00, we conclude
that the restriction of φx,λ to C(X)′∗ is, in fact, a pure state of C(X)′∗.

Case 3: x ∈ Per(σ) with x /∈
⋃
q≥1 Fix◦q(σ); λ ∈ T arbitrary. If p ≥ 1

is the period of x, then, as in the second case, the GNS-model shows that
φx,λ(fkδk) = 0 for all fk ∈ C(X) and all k ∈ Z such that p - k, and also that
φx,λ(fkδk) = fk(x)λk/p if p | k. However, if k ∈ Z, fk ∈ C(X), and fkδ

k ∈
C(X)′00, so that supp(fk) ⊂ Fixk(σ), then we must have fk(x) = 0 if k 6= 0,
since x /∈

⋃
q≥1 Fix◦q(σ). All in all, we conclude that for

∑
k fkδ

k ∈ C(X)′00

we have φx,λ(
∑

k fkδ
k) = f0(x) = ωx(

∑
k fkδ

k), where ωx is as in the first
part of Lemma 3.6. As in the previous two cases, we conclude that φx,λ0 is
multiplicative on C(X)′∗, hence the restriction of φx,λ0 to C(X)′∗ is, in fact,
a pure state of C(X)′∗.

As a consequence of the above three cases, we see that the pure states
φx, for x ∈ Aper(σ), and φx,λ, for x ∈ Per(σ) and λ ∈ T, restrict to pure
states of C(X)′∗, as announced earlier. A further consequence is the following
result, which will be improved in Theorem 5.1.

Proposition 4.1. The map given by restricting a character of C(X)′∗
to C(X)′1 yields a homeomorphism between the maximal ideal space (i.e.,
the pure state space) of the commutative Banach algebra C(X)′∗ and the
maximal ideal space (which coincides with the pure state space) of C(X)′1.
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Proof. The restriction map is obviously continuous, and it is also injec-
tive, since C(X)′00 = C(X)′00 is dense in C(X)′∗. Hence it is sufficient to
show surjectivity, and for this we combine the description of ∆(C(X)′1) in
Proposition 3.8 with the results in the three cases preceding the present
proposition.

In the first case, if x ∈ Aper(σ), then the density of C(X)′00 implies
that, when restricting the restriction of φx to C(X)′∗ further to C(X)′1, one
obtains ωx as in the first part of Proposition 3.8.

In the second case, if λ ∈ T and x ∈ Per(σ) with x ∈
⋃
q≥1 Fix◦q(σ) of

period p, then, when restricting the restriction of φx,λ to C(X)′∗ further to
C(X)′1, one obtains ωx,λn/p , where, for c ∈ T, ωx,c is as in the second part
of Proposition 3.8.

In the third case, if λ ∈ T and x ∈ Per(σ) with x /∈
⋃
q≥1 Fix◦q(σ),

then, when restricting the restriction of φx,λ to C(X)′∗ further to C(X)′1,
one obtains ωx as in the first part of Proposition 3.8.

All in all, we see that the characters in the first part of Proposition 3.8
are all obtained from the combined first and third cases, and the characters
in the second part of Proposition 3.8 are all obtained from the second case.

In view of Proposition 4.1, we will identify the pure states (characters)
of C(X)′∗ and C(X)′1, writing ωx (for x /∈

⋃
q≥1 Per◦q(σ)) and ωx,c (for x ∈⋃

q≥1 Per◦q(σ) and c ∈ T) for both.
We summarise most of our findings in the following theorem, which also

describes the fibres under restriction maps, as we have, in fact, determined
them during the discussion of the Cases 1 through 3 and the proof of Propo-
sition 4.1.

Theorem 4.2.

(i) The pure state space of C(X)′1 and its maximal ideal space ∆(C(X)′1)
coincide. Restricting pure states of C(X)′1 to C(X) yields a contin-
uous map from the pure state space ∆(C(X)′1) onto the pure state
space ∆(C(X)), and the fibres of this surjection are given in Propo-
sition 3.8.

(ii) Restricting pure states of C(X)′∗ to C(X)′1 yields a homeomorphism
between the pure state spaces ∆(C(X)′∗) and ∆(C(X)′1).

(iii) If x ∈ X, then the restriction of each pure state extension of evx to
C∗(Σ) and to C(X)′∗ is a pure state of C(X)′∗.

(iv) The following diagrams describe, depending on the dynamical prop-
erties of x ∈ X, how the pure state extensions of evx to C∗(Σ)
restrict down the chain in (4.1). In these diagrams, the pure state
at the top of the right hand side is the general pure state extension
of evx to C∗(Σ); the cardinality of the fibres is also indicated.



Maximal abelian subalgebras and projections 63

• Case 1: x ∈ Aper(σ).

C∗(Σ) φx

1-1
��

C(X)′∗
?�

OO

ωx

1-1
��

C(X)′1
?�

dense

OO

ωx

1-1
��

C(X)
?�

OO

evx

• Case 2: x ∈ Per(σ) with x ∈
⋃
q≥1 Fix◦q(σ); λ ∈ T arbitrary. Let

n ≥ 1 be minimal such that x ∈ Fix◦n(σ), and let p ≥ 1 be the
period of x.

C∗(Σ) φx,λ

n/p to 1

��
C(X)′∗

?�

OO

ωx,λn/p

1-1
��

C(X)′1
?�

dense

OO

ωx,λn/p

T to 1

��
C(X)

?�

OO

evx

• Case 3: x ∈ Per(σ) with x /∈
⋃
q≥1 Fix◦q(σ); λ ∈ T arbitrary.

C∗(Σ) φx,λ

T to 1

��
C(X)′∗

?�

OO

ωx

1-1
��

C(X)′1
?�

dense

OO

ωx

1-1
��

C(X)
?�

OO

evx
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The following result will be needed in the proof of the uniqueness state-
ment for projections in Theorem 5.4.

Corollary 4.3.

(i) For x ∈ Aper(σ), the pure state ωx of C(X)′∗ has only φx as state
extension to C∗(Σ).

(ii) For x ∈
⋃
q≥1 Per◦q(σ), and c ∈ T, the pure state ωx,c of C(X)′∗ has

only φx,c as state extension to C∗(Σ).

Proof. As to the first part, it is immediate from Case 1 in Theorem 4.2
that ωx has only one pure state extension to C∗(Σ), hence also only one
state extension. For the second part, Case 2 of Theorem 4.2 applies. If p is
the period of x, then clearly the minimal n ≥ 1 such that x ∈ Fix◦n(σ) is p
itself, so that the top arrow in the right hand side of the diagram for Case 2
is injective. Therefore, ωx,c has only one pure state extension to C∗(Σ),
hence also only one state extension.

Remark 4.4. (a) Corollary 3.11 and Proposition 4.1 imply that the
pure states of C(X)′∗ in the first part of Corollary 4.3, together with those
in the second part, constitute a dense subset in ∆(C(X)′∗), hence separate
the points of C(X)′∗. As Corollary 4.3 itself, this will be used in the proof
of the uniqueness statement for projections in Theorem 5.4.

(b) More generally, in view of the homeomorphism in Proposition 4.1,
the paragraph preceding Corollary 3.11 is now seen to provide a tool to
generate dense (hence separating) subsets of ∆(C(X)′∗).

(c) In [10, Lemma 3.5] it was observed that the (unique) pure state
extension to C∗(Σ) of the pure states of ∆(C(X)′∗) in the first part of this
remark is total on C∗(Σ). Hence this involves a larger algebra, but then
only its positive cone.

5. The C∗-envelope of C(X)′1 and projections onto C(X)′∗ and
C(X)′1. The results in Section 3 and 4 enable us to clarify the relation
between `1(Σ) and its enveloping C∗-algebra C∗(Σ) a bit further in Theo-
rem 5.1, and also provide the tools to study the existence and uniqueness of
projections onto C(X)′∗ and C(X)′1 in detail (Theorems 5.4 and 5.7).

To begin with, we have already seen in Proposition 4.1 that the pure
state spaces of C(X)′∗ and C(X)′1 are homeomorphic via a restriction map.
In fact, more is true.

Theorem 5.1. The C∗-algebra C(X)′∗ is the enveloping C∗-algebra of
C(X)′1.

Proof. We already know that C(X)′1 is a dense subalgebra of C(X)′∗,
since C(X)′00 ↪→ C(X)′1 ↪→ C(X)′∗. Hence all we need to show is that the
enveloping C∗-norm of the unital involutive Banach algebra C(X)′1 coincides
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with the restriction of the norm of C(X)′∗ to C(X)′1. According to [4, 2.7.1],
the enveloping C∗-norm ‖`‖′ of an element ` of C(X)′1 can be calculated as

‖`‖′ = sup
φ∈P

φ(`∗`)1/2,

where P is the pure state space of C(X)′1. We have already observed (cf.
Theorem 4.2) that this pure state space coincides with ∆(C(X)′1), hence

‖`‖′ = sup
ω∈∆(C(X)′1)

|ω(`)|.

Invoking Proposition 4.1 then yields

‖`‖′ = sup
ω∈∆(C(X)′∗)

|ω(c)|.

By the commutative Gelfand–Naimark theorem, this is indeed equal to the
norm of ` in the C∗-algebra C(X)′∗, as was to be proved.

Thus, after the fact, the homeomorphism in Proposition 4.1 is explained
by Theorem 5.1 and the general correspondence theorems for the states of
an involutive Banach algebra with a 1-bounded approximate identity and
the states of its enveloping C∗-algebra (cf. [4, 2.7.4 and 2.7.5]).

We now turn to the existence and uniqueness of projections from C∗(Σ)
onto C(X)′∗, and from `1(Σ) onto C(X)′1. This topic will occupy the re-
mainder of this section. We start with existence in C∗(Σ).

Theorem 5.2. The following are equivalent for C∗(Σ):

(i) There exists a not necessarily continuous linear map E′∗ : c00(Σ)→
C(X)′∗ which is the identity on C(X)′00 and which is a morphism
of left C(X)-modules.

(ii) There exists a not necessarily continuous linear map E′∗ : c00(Σ)→
C(X)′∗ which is the identity on C(X)′00 and which is a morphism
of right C(X)-modules.

(iii) The sets Fix◦k(σ) are closed for all k ∈ Z.
(iv) There exists a faithful positive norm one projection E′∗ : C∗(Σ) →

C(X)′∗ onto C(X)′∗ which is a morphism of C(X)′∗-bimodules and
which restricts to a projection from c00(Σ) onto C(X)′00.

Proof. We start by showing that (i) implies (iii). Fix k ∈ Z; we may
assume that Fixk(σ) 6= ∅. Suppose that x ∈ Fix◦k(σ), and let (xα) be a
net in Fix◦k(σ) converging to x. For each α, choose hα ∈ C(X) such that
hα(xα) = 1 and supp(hα) ⊂ Fixk(σ). Then hαδ

k ∈ C(X)′∗ for all α. Since
E′∗ is a morphism of left C(X)-modules, we have hαδ

k = E′∗(hαδ
k) =

hαE
′
∗(δ

k) for all α. Using this and the first part of (2.1), we find that
hα = (hαδk)(k) = [hαE′∗(δ

k)](k) = hα[E′∗(δ
k)(k)] for all α. Evaluation at
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x yields [E′∗(δ
k)(k)](xα) = 1 for all α, hence [E′∗(δ

k)(k)](x) = 1 by continu-
ity. Therefore, x is an interior point of the support of [E′∗(δ

k)(k)]. Since this
support is contained in Fixk(σ), we conclude that x ∈ Fix◦k(σ), as was to be
shown.

The proof that (ii) implies (iii) is similar, and we use the same notation.
Since δkhα = hαδ

k ∈ C(X)′∗, and E′∗ is a morphism of right C(X)-modules,
we have δkhα = E′∗(δ

khα) = E′∗(δ
k)hα for all α. Using the second part

of (2.1), this implies that hα = (hαδk)(k) = (δkhα)(k) = [E′∗(δ
k)hα](k) =

(hα ◦σ−k)[E′∗(δk)(k)] = hα[E′∗(δ
k)(k)] for all α. Evaluation at x again yields

[E′∗(δ
k)(k)](xα) = 1 for all α, and as before this implies that x ∈ Fix◦k(σ).

In order to show that (iii) implies (iv), we let χk be the characteristic
function of Fix◦k(σ) for k ∈ Z. As Fix◦k(σ) is clopen, χk ∈ C(X) for all k ∈ Z,
hence we can define E′∗ : c00(Σ) → C(X)′∗ by E′∗(

∑
k fkδ

k) :=
∑

k χkfkδ
k

for
∑

k fkδ
k ∈ c00(Σ). It is easy to see that the image of E′∗ is, in fact, con-

tained in C(X)′∗, hence in C(X)′00, and that E′∗ is the identity on C(X)′00.
We start by showing that, when c00(Σ) carries the norm from C∗(Σ),
E′∗ is continuous, has norm at most one, is positive, and is a morphism
of C(X)′00-bimodules. Then the continuous extension of E′∗ to C∗(Σ) will
provide a projection from C∗(Σ) onto C(X)′1 for which all required prop-
erties are clear with the exception of faithfulness, which we will consider
later.

As to the continuity and the contractivity of E′∗, since C(X)′∗ is a com-
mutative C∗-algebra, we need to show that |ψ(

∑
k χkfkδ

k)| ≤ ‖
∑

k fkδ
k‖ for

all ψ ∈ ∆(C(X)′∗) and all
∑

k fkδ
k ∈ c00(Σ). Since Proposition 4.1 and The-

orem 3.10 provide a surjective map from X×T onto ∆(C(X)′∗), we see that
we are left with demonstrating that |

∑
k χk(x)fk(x)zk| ≤ ‖

∑
k fkδ

k‖ for all∑
k fkδ

k ∈ c00(Σ), x ∈ X, and z ∈ T. In that case, |
∑

k χk(x)fk(x)zk| ≤∑
k ‖χkfk‖∞ ≤

∑
k ‖fk‖∞ = ‖

∑
k fkδ

k‖1, and since C∗(Σ) is the enveloping
C∗-algebra of `1(Σ), we certainly have ‖

∑
k fkδ

k‖1 ≤ ‖
∑

k fkδ
k‖. Hence E′∗

is contractive.
As to the positivity, if

∑
k fkδ

k ∈ c00(Σ), then a short calculation yields

(5.1) E′∗

[(∑
k

fkδ
k
)∗(∑

k

fkδ
k
)]

=
∑
m

[
χm
∑
k

(f̄kfk+m) ◦ σk
]
δm.

In order to see that the right hand side is positive in the commutative
C∗-algebra C(X)′∗, we apply its characters as described in Proposition 3.8.
To begin with, if x /∈

⋃
q≥1 Fix◦q(σ), then

(5.2) ωx

(∑
m

[
χm
∑
k

(f̄kfk+m) ◦ σk
]
δm
)

=
∑
k

|fk(σkx)|2 ≥ 0.

If x ∈
⋃
q≥1 Fix◦q(σ), let n ≥ 1 be minimal such that x ∈ Fix◦n(σ). Then, for
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all c ∈ T,

(5.3) ωx,c

(∑
m

[
χm
∑
k

(f̄kfk+m) ◦ σk
]
δm
)

=
∑
j

[
χjn(x)

∑
k

(f̄kfk+jn)(σkx)
]
cj

=
∑
j

∑
k

(f̄kfk+jn)(σkx)cj =
n−1∑
r=0

∑
i,j

(f̄r+infr+(i+j)n)(σr+inx)cj

=
n−1∑
r=0

∑
i,j

(f̄r+infr+jn)(σrx)cj−i =
n−1∑
r=0

∣∣∣∑
j

fr+jn(σrx)cj
∣∣∣2 ≥ 0.

Hence E′∗ is positive, and it remains to show that E′∗ : c00(Σ) → C(X)′∗ is
a morphism of C(X)′00-bimodules.

Let k, l ∈ Z, fk ∈ C(X), and gl ∈ C(X), with supp(gl) ⊂ Fixl(σ). We
need to prove that E′∗(fkδ

k · glδl) = [E′∗(fkδ
k)]glδl and E′∗(glδ

l · fkδk) =
glδ

lE′∗(fkδ
k). The first relation is easily seen to be equivalent to

(5.4) χk+l(x)fk(x)gl(σ−kx) = χk(x)fk(x)gl(σ−kx)

being valid for all x ∈ X. If gl(σ−kx) = 0, then (5.4) clearly holds. If
gl(σ−kx) 6= 0, then σ−kx ∈ supp(gl)◦ ⊂ Fix◦l (σ), hence x ∈ Fix◦l (σ). It
is easily seen that this implies χk+l(x) = χk(x), so that (5.4) holds once
more. Hence E′∗ preserves the right C(X)′00-action. The requirement that
E′∗(glδ

l · fkδk) = glδ
lE′∗(fkδ

k) is equivalent to

(5.5) χk+l(x)fk(σ−lx)gl(x) = χk(σ−lx)fk(σ−lx)gl(x)

holding for all x ∈ X. If gl(x) = 0, then this is clear. If gl(x) 6= 0,
then x ∈ supp(gl)◦ ⊂ Fix◦l (σ), and (5.5) reduces to χk+l(x)fk(x)gl(x) =
χk(x)fk(x)gl(x). Since x ∈ Fix◦l (σ) implies that χk+l(x) = χk(x) again, this
indeed holds true. Hence E′∗ preserves the left C(X)′00-action.

As already mentioned, the continuous extension of E′∗ to C∗(Σ) satisfies
all requirements, except that we still have to prove that it is faithful. Now
E∗ ◦ E′∗ = E∗ on c00(Σ) by construction, and by continuity this holds on
C∗(Σ) as well. Therefore the known faithfulness of E∗ on C∗(Σ) implies
that of E′∗.

It is clear that (iv) implies both (i) and (ii).

Remark 5.3. (a) It is interesting that preservation of a one-sided C(X)-
action in (i) and (ii) implies preservation of a two-sided action of a larger
algebra C(X)′∗ in (iv).

(b) The proof that (iii) implies (iv) could be simplified somewhat by
merely establishing that E′∗ : C∗(Σ) → C(X)′∗ as constructed is a norm
one projection, and then invoking the projection theorem for C∗-algebras



68 M. de Jeu and J. Tomiyama

(cf. [11] or [2, II.6.10.2]) to conclude that E′∗ is automatically positive and
a morphism of C(X)′∗-bimodules. Likewise, (iv) could be replaced by an
equivalent statement which merely requires the existence of a faithful norm
one projection from C∗(Σ) onto C(X)′∗, projecting c00(Σ) onto C(X)′00. We
have preferred a direct proof, and we have also included the “redundant”
properties in (iv), in order to bring out the parallel with the correspond-
ing statements in Theorem 5.6 for `1(Σ), where such a general projection
theorem is not available.

We use Theorem 5.2 and its proof in our next result on uniqueness for
C∗(Σ) (4).

Theorem 5.4. The following are equivalent for C∗(Σ):

(i) The sets Fix◦k(σ) are closed for all k ∈ Z.
(ii) There exists a norm one projection from C∗(Σ) onto C(X)′∗.
(iii) There exists a positive projection from C∗(Σ) onto C(X)′∗.

A projection as in (ii) or (iii) is unique. Denote it by E′∗, and denote by χk
the continuous characteristic function of Fix◦k(σ) for k ∈ Z. Then on the
dense involutive subalgebra c00(Σ) of C∗(Σ) the projection E′∗ is given by

(5.6) E′∗

(∑
k

fkδ
k
)

=
∑
k

χkfkδ
k

for
∑

k fkδ
k ∈ c00(Σ). Furthermore, E′∗ is a faithful positive norm one pro-

jection which is a morphism of C(X)′∗-bimodules and which restricts to a
projection from c00(Σ) onto C(X)′00.

Proof. It is clear from Theorem 5.2 that (i) implies (ii), and that (iii) im-
plies (i). By the projection theorem for C∗-algebras (cf. [11] or [2, II.6.10.2]),
any projection as in (ii) is a projection as in (iii). Hence (ii) implies (iii),
and for the uniqueness statements it is sufficient to establish the uniqueness
for projections as in (iii). For this, assume that E′∗ and F ′∗ are two positive
projections from C∗(Σ) onto C(X)′∗. If x ∈ Aper(σ), then ωx◦E′∗ and ωx◦F ′∗
are two state extensions of ωx from C(X)′∗ to C∗(Σ). According to Corol-
lary 4.3, there is only one such, hence ωx ◦E′∗ = ωx ◦F ′∗ for all x ∈ Aper(σ).
Likewise, if x ∈

⋃
q≥1 Per◦q(σ), and c ∈ T, then, again by Corollary 4.3, it

follows that ωx,c ◦ E′∗ = ωx,c ◦ F ′∗. Since we know from Remark 4.4 that the
states ωx for x ∈ Aper(σ), together with all ωx,c for x ∈

⋃
q≥1 Per◦q(σ) and

c ∈ T, separate the points in C(X)′1, we conclude that E′∗ = F ′∗, as desired.
Now that the uniqueness of positive projections has been established, the

(4) The equivalence of (i) and (ii) and the uniqueness and faithfulness of a norm one
projection as in Theorem 5.4 were announced in [10, Theorem 6.1], but with a misprint. In
the notation of [10], which is slightly different from ours, Perk(σ)0 in Theorem 6.1 should
be replaced with Perk(σ)0.
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rest is immediate, since then the projection E′∗ in Theorem 5.2 must be this
positive projection. The remainder of the present theorem therefore follows
from Theorem 5.2 and its proof.

Remark 5.5. For a topologically free system, C(X)′∗ = C(X) (and vice
versa). For such a system, Theorem 5.4 implies that E∗ is the unique norm
one projection from C∗(Σ) onto C(X), so that we have retrieved this pre-
viously known result [14, Proposition 2.11] as a special case.

We now turn to `1(Σ). Part (iv) of the following companion result of
Theorem 5.2 uses a notion of positivity in the algebra `1(Σ). As usual, we
define the positive cone `1(Σ)+ in `1(Σ) as the set of all elements of the
form

∑
j l
∗
j lj , where lj ∈ `1(Σ) for all j, and the summation is finite. This

is a convex cone and it is also proper, as becomes obvious when viewing
`1(Σ) as an involutive subalgebra of the C∗-algebra C∗(Σ). Hence this cone
induces a partial ordering on the self-adjoint elements of C(X)′1. As usual,
a linear map from `1(Σ) to a vector space will then be called faithful if 0 is
the only positive element in its kernel.

Theorem 5.6. The following are equivalent for `1(Σ):

(i) There exists a not necessarily continuous linear map E′1 : c00(Σ)→
C(X)′1 which is the identity on C(X)′00 and which is a morphism
of left C(X)-modules.

(ii) There exists a not necessarily continuous linear map E′1 : c00(Σ)→
C(X)′1 which is the identity on C(X)′00 and which is a morphism
of right C(X)-modules.

(iii) The sets Fix◦k(σ) are closed for all k ∈ Z.
(iv) There exists a faithful involutive norm one projection E′1 : `1(Σ)→

C(X)′1 onto C(X)′1 which is a morphism of C(X)′1-bimodules, which
restricts to a projection from c00(Σ) onto C(X)′00, and which is
positive in the sense that φ(E′1(`)) ≥ 0 for all ` ∈ `1(Σ)+ and all
states φ of C(X)′1.

Proof. The proof that each of (i) and (ii) implies (iii) is a simplified
version (since no projection is needed to define coefficients) of the proof of
the analogous implications in Theorem 5.2, and is therefore omitted.

In order to show that (iii) implies (iv), we let χk be the characteristic
function of the clopen set Fix◦k(σ) again, for k ∈ Z. Instead of arguing by
density, as in the proof of Theorem 5.2, we can now directly define E′1 :
`1(Σ) → C(X)′1 by E′1(

∑
k fkδ

k) :=
∑

k χkfkδ
k for

∑
k fkδ

k ∈ `1(Σ). It
is easily checked that, in fact, E′1 maps `1(Σ) into C(X)′1, and that it is
the identity on C(X)′1. Clearly it restricts to a projection from c00(Σ) onto
C(X)′00. It is obvious from the definition that E′∗ is a norm one projection,
and it follows as in the proof of Theorem 5.2 that it preserves the left and
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right C(X)′1-action. It is routine to verify that E′1 is involutive. As to the
faithfulness, we now have an analogue of (5.1) with infinite summations,
namely

(5.7) E′1

[(∑
k

fkδ
k
)∗(∑

k

fkδ
k
)]

=
∑
m

[
χm
∑
k

(f̄kfk+m) ◦ σk
]
δm

for
∑

k fkδ
k ∈ `1(Σ). The coefficient of δ0 in the right hand side of (5.7) is∑

k |fk◦σk|2. Therefore, if the left hand side in (5.7) is zero, then
∑

k fkδ
k=0,

and this argument obviously extends to the finite sums in the definition of
the positive cone of `1(Σ). To check the positivity in the sense as stated we
may assume that φ is pure. From the first part of Theorem 4.2 and from
Proposition 3.8 we know what these pure states of C(X)′1 are, and then the
positivity follows from the obvious calculations parallelling (5.2) and (5.3),
for the infinite summations in (5.7).

It is clear that (iv) implies both (i) and (ii).

Uniqueness is considered in the next result.

Theorem 5.7. The following are equivalent for `1(Σ):

(i) The sets Fix◦k(σ) are closed for all k ∈ Z.
(ii) There exists a not necessarily continuous projection from `1(Σ) onto

C(X)′1 which is positive in the sense that φ(E′1(`)) ≥ 0 for all ` ∈
`1(Σ)+ and all states φ of C(X)′1.

In that case, a projection as in (ii) is unique. Denote it by E′1, and denote
by χk the continuous characteristic function of Fix◦k(σ) for k ∈ Z. Then

(5.8) E′1

(∑
k

fkδ
k
)

=
∑
k

χkfkδ
k

for
∑

k fkδ
k ∈ `1(Σ). Furthermore, E′1 is a faithful involutive norm one

projection which is a morphism of C(X)′1-bimodules and which restricts to
a projection from c00(Σ) onto C(X)′00.

Proof. It is clear from Theorem 5.6 that (i) implies (ii), and that (ii)
implies (i). Just as in the proof of Theorem 5.4, we need only show that a
positive projection as in (ii) is unique, because it must then be the positive
projection in part (iv) of Theorem 5.6. For this, we use a slight modification
of the earlier argument. Assume that E′1 and F ′1 are two projections from
`1(Σ) onto C(X)′1, positive as indicated. If x ∈ Aper(σ), then ωx ◦ E′1 and
ωx◦F ′1 are two state extensions of ωx from C(X)′1 to `1(Σ). These extensions,
in turn, can be extended to states φE,x and φF,x of the enveloping C∗-algebra
C∗(Σ) of `1(Σ). Both φE,x and φF,x then extend the state ωx of C(X)′∗.
However, according to the first part of Corollary 4.3, there is only one such
state extension, hence φE,x = φF,x. We conclude that ωx ◦ E′1 = ωx ◦ F ′1 for
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all x ∈ X. Likewise, if x ∈
⋃
q≥1 Per◦q(σ) and c ∈ T, then the second part of

Corollary 4.3 implies that ωx,c ◦ E′1 = ωx,c ◦ F ′1. Corollary 3.11 then shows
that E′1 = F ′1.

Remark 5.8. The notions of positivity for `1(Σ) and C(X)′1, as occur
in Theorems 5.6 and 5.7, are not the same. For `1(Σ), positivity is de-
fined in terms of a convex cone—a variation, passing to its closure, would
also be natural to consider—whereas for C(X)′1, positivity is defined in
terms of states. For C∗-algebras, all these notions coincide, but for gen-
eral involutive Banach algebras they need not. Relations between these
notions are subtle, as attested, e.g., by the material in [1, 5, 6, 8]. More
research is needed to determine whether more symmetric versions of Theo-
rems 5.6 and 5.7, involving cone-to-cone positivity, or state-to-state positiv-
ity, can be established, perhaps under additional conditions on the dynam-
ics.

Appendix. Topological results on the periodic points. The pe-
riodic points of a homeomorphism σ : X → X play an important role in
the investigation of C∗(Σ) and `1(Σ), and consequently various topolog-
ical results concerning these points have been established, scattered over
a number of papers. In this Appendix, we collect the optimal version of
these results as we know them, establishing non-trivial criteria for topolog-
ical freeness in Corollary A.2 and exhibiting non-trivial dense subsets in
Corollary A.3. These two results are to some extent an improvement over
what is already known, and it also seemed worthwhile to collect all material
in this direction in one place. Moreover, it is instructive to see how they
are easily inferred from a new and rather general statement on equal clo-
sures (Proposition A.1). The results are actually valid when X is a locally
compact Hausdorff space, and it is in this context that we will again use
the obvious notations Fixq(σ), Perq(σ), Per(σ), and Aper(σ), which were
previously only defined for a compact Hausdorff space X.

As a preparation, we recall [9, Theorem 2.2] that the category theorem is
valid for a locally compact Hausdorff space X: the countable intersection of
open dense subsets ofX is still dense. Consequently, ifX 6= ∅ is the countable
union of subsets, then the closure of at least one of these subsets must have
a non-empty interior. Furthermore, we recall that the locally compact (in
the induced topology) subspaces of a locally compact Hausdorff space X are
precisely the sets which are the intersection of an open subset of X and a
closed subset of X (cf. [3, I.3.3 and I.9.7]).

Proposition A.1. Let X be a locally compact Hausdorff space, and
σ : X → X a homeomorphism. Suppose S ⊂ {1, 2, . . .} is a non-empty finite
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or infinite set, and let PS = {p ∈ {1, 2, . . .} : p divides some s ∈ S}. Then⋃
p∈PS

Per◦p(σ) ⊂
⋃
s∈S

Fix◦s(σ) ⊂
( ⋃
s∈S

Fixs(σ)
)◦
⊂
⋃
p∈PS

Per◦p(σ),(A.1)

⋃
p∈PS

Per◦p(σ) ⊂
( ⋃
p∈PS

Perp(σ)
)◦
⊂
( ⋃
s∈S

Fixs(σ)
)◦
,(A.2)

( ⋃
p∈PS

Perp(σ)
)◦

=
⋃
p∈PS

Per◦p(σ) =
⋃
s∈S

Fix◦s(σ) =
( ⋃
s∈S

Fixs(σ)
)◦
.(A.3)

Proof. Clearly, (A.3) follows immediately from (A.1) and (A.2). As to the
first inclusion in (A.1): if x ∈ V ⊂ Per◦p0(σ) for some p0 ∈ PS with p0 | s0 ∈ S,
and V open in X, then x ∈ V ⊂ Perp0(σ) ⊂ Fixs0(σ), so that x ∈ Fix◦s0(σ).
This establishes the first inclusion in (A.1), and a similar argument yields
the second inclusion in (A.2). Since the second inclusion in (A.1) and the
first inclusion in (A.2) are obvious, we are left with the proof of the third
inclusion in (A.1). While doing so, we will use the notations intA(B) and
B
A for the interior, respectively the closure, of a set B ⊂ A ⊂ X in the

topological space A with topology induced from X. The interior of B ⊂ X
with respect to X will still be denoted by B◦, the closure in X by B and
the complement in X by Bc.

We may assume that (
⋃
s∈S Fixs(σ))◦ 6= ∅. Let x ∈ (

⋃
s∈S Fixs(σ))◦

and an open neighbourhood V of x in X be given. We must show that
V ∩

⋃
p∈PS

Per◦p(σ) 6= ∅. Since (
⋃
s∈S Fixs(σ))◦ is open in X, we can replace

V with the open neighbourhood V ∩ (
⋃
s∈S Fixs(σ))◦ of x in X, and hence

assume that V is open in X and x ∈ V ⊂ (
⋃
s∈S Fixs(σ))◦. It will be

sufficient to prove that V ∩
⋃
p∈PS

Per◦p(σ) 6= ∅ for such V . In that case,
certainly V ⊂

⋃
s∈S Fixs(σ), hence V =

⋃
s∈S(V ∩ Fixs(σ)), and since V

is a locally compact Hausdorff space in the induced topology, there exists
s0 ∈ S such that intV (V ∩ Fixs0(σ)

V
) 6= ∅. Since Fixs0(σ) is closed in X, we

conclude that intV (V ∩ Fixs0(σ)) 6= ∅. Since certainly s0 ∈ S ⊂ PS , we thus
see that it is meaningful to define p0 as the smallest element of PS with the
property that intV (V ∩ Fixp0(σ)) 6= ∅.

Let then V ′ be an open subset of X such that ∅ 6= V ∩V ′ ⊂ V ∩Fixp0(σ).
Then V ∩V ′ = V ∩V ′ ∩Fixp0(σ) = V ∩V ′ ∩

⋃
d|p0 Perd(σ) =

⋃
d|p0(V ∩V ′ ∩

Perd(σ)), and by the category theorem there exists a divisor d0 of p0 (note

that then d0 ∈ PS , since p0 ∈ PS) such that intV ∩V ′
(
V ∩ V ′ ∩ Perd0(σ)

V ∩V ′)
6= ∅. Since V ∩ V ′ ∩ Perd0(σ)

V ∩V ′ ⊂ V ∩ V ′ ∩ Fixd0(σ)
V ∩V ′

= V ∩ V ′ ∩
Fixd0(σ), we conclude that there exists an open subset V ′′ of X such that
∅ 6= V ∩ V ′ ∩ V ′′ ⊂ V ∩ V ′ ∩ Fixd0(σ). In particular, V ∩ V ′ ∩ V ′′ is a
non-empty subset of V , open in V , and contained in V ∩ Fixd0(σ). Hence
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intV (V ∩ Fixd0(σ)) 6= ∅, and by the minimality property of p0 we conclude

that d0 = p0. Hence intV ∩V ′
(
V ∩ V ′ ∩ Perp0(σ)

V ∩V ′) 6= ∅. In particular,
V ∩ V ′ ∩ Perp0(σ) 6= ∅. As V ∩ V ′ ⊂ Fixp0(σ), and Perp0(σ) = Fixp0(σ) ∩⋂
d|p0, d 6=p0 Fixd(σ)c, we have

V ∩ V ′ ∩ Perp0(σ) = V ∩ V ′ ∩ Fixp0(σ) ∩
⋂

d|p0, d 6=p0

Fixd(σ)c

= V ∩ V ′ ∩
⋂

d|p0, d 6=p0

Fixd(σ)c.

Consequently, V ∩ V ′ ∩Perp0(σ) is open in X, hence contained in Per◦p0(σ).
Since it is non-empty, we conclude that V ∩ Per◦p0(σ) 6= ∅. Consequently,
V ∩

⋃
p∈PS

Per◦p(σ) 6= ∅, as was to be shown.

In particular, if we take S = {1, 2, . . .}, we see that

(A.4)
( ⋃
q≥1

Perq(σ)
)◦

=
⋃
q≥1

Per◦q(σ) =
⋃
q≥1

Fix◦q(σ) =
( ⋃
q≥1

Fixq(σ)
)◦
.

We can now combine (A.4) with other known results. For example, the
equivalence of the first and second parts in the following result is taken
from [7, Lemma 2.1], and we include the brief proof for completeness of
presentation.

Corollary A.2. Let X be a locally compact Hausdorff space, and σ :
X → X a homeomorphism. Then the following are equivalent:

(i) (X,σ) is topologically free, i.e., Aper(σ) is dense in X.
(ii) Fixq(σ) has empty interior for all q ≥ 1.
(iii)

⋃
q≥1 Fixq(σ) has empty interior.

(iv) Perq(σ) has empty interior for all q ≥ 1.
(v)

⋃
q≥1 Perq(σ) has empty interior.

Proof. For the equivalence of the first and second parts, note that Aper(σ)
=
⋂∞
q=1 Fixq(σ)c. Since the sets Fixq(σ)c are all open, the category theorem

shows that Aper(σ) is dense if and only if Fixq(σ)c is dense for all q ≥ 1,
i.e., if and only if Fix◦q(σ) = ∅ for all q ≥ 1. The equivalence of the second,
third, fourth and fifth parts is immediate from (A.4).

The first part of the next result is also from [7, Lemma 2.1], and we
include the short proof again for the sake of completeness. The third part
was established independently in [10, Lemma 2.1], but will now be seen to
be an immediate consequence of the first part and (A.4).

Corollary A.3. Let X be a locally compact Hausdorff space, and σ :
X → X a homeomorphism. Then:
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(i) Aper(σ) ∪
⋃
q≥1 Fix◦q(σ) is dense in X.

(ii) Aper(σ) ∪ (
⋃
q≥1 Fixq(σ))◦ is dense in X.

(iii) Aper(σ) ∪
⋃
q≥1 Per◦q(σ) is dense in X.

(iv) Aper(σ) ∪ (
⋃
q≥1 Perq(σ))◦ is dense in X.

Proof. We start with the first part and use the same notational conven-
tions as in the proof of Proposition A.1. Let

Y = Aper(σ) ∪
⋃
q≥1

Fix◦q(σ)
c

.

Suppose that Y 6= ∅. Since Y ⊂ Per(σ), Y =
⋃
q≥1 Y ∩Fixq(σ). The category

theorem shows that there exists q0 ≥ 1 such that intY (Y ∩ Fixq0(σ)
Y

) 6= ∅.
Since Fixq0(σ) is closed in X, we see that intY (Y ∩ Fixq0(σ)) 6= ∅. Let V be
an open subset of X such that ∅ 6= V ∩ Y ⊂ Y ∩ Fixq0(σ). In particular,
V ∩Y ⊂ Fixq0(σ), and since Y is open inX, this shows that V ∩Y ⊂ Fix◦q0(σ).
Since Y ∩(V ∩Y ) 6= ∅, we conclude that Y ∩Fix◦q0(σ) 6= ∅, which contradicts
Y ∩ Fix◦q(σ) = ∅ for all q ≥ 1 by construction.

The second, third and fourth parts are immediate from the first part and
(A.4).
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