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Isolated points of spectrum of k-quasi-∗-class A operators

by

Salah Mecheri (Medina)

Abstract. Let T be a bounded linear operator on a complex Hilbert space H. In
this paper we introduce a new class, denoted KQA∗, of operators satisfying T ∗k(|T 2| −
|T ∗|2)T k ≥ 0 where k is a natural number, and we prove basic structural properties of
these operators. Using these results, we also show that if E is the Riesz idempotent for
a non-zero isolated point µ of the spectrum of T ∈ KQA∗, then E is self-adjoint and
EH = ker(T − µ) = ker (T − µ)∗. Some spectral properties are also presented.

1. Introduction. Let B(H) be the algebra of all bounded linear oper-
ators acting on an infinite-dimensional separable complex Hilbert space H.
An operator T ∈ B(H) is said to have the single-valued extension prop-
erty (or SVEP) if for every open subset G of C and any analytic function
f : G → H such that (T − z)f(z) ≡ 0 on G, we have f(z) ≡ 0 on G. For
T ∈ B(H) and x ∈ H, the set ρT (x), called the local resolvent set of T
at x, is defined to consist of all z0 ∈ C such that there exists an analytic
function f(z) defined in a neighborhood of z0, with values in H, which sat-
isfies (T − z)f(z) = x. We denote by σT (x) the complement of ρT (x), called
the local spectrum of T at x, and define the local spectral subspace of T ,
HT (F ) = {x ∈ H : σT (x) ⊂ F}, for each subset F of C.

An operator T ∈ B(H) is said to have Bishop’s property (β) if for every
open subset G of C and every sequence fn : G → H of H-valued ana-
lytic functions such that (T − z)fn(z) converges uniformly to 0 in norm on
compact subsets of G, fn(z) converges uniformly to 0 in norm on compact
subsets of G. An operator T ∈ B(H) is said to have Dunford’s property (C)
if HT (F ) is closed for each closed subset F of C. It is well known that

Bishop’s property (β) ⇒ Dunford’s property (C) ⇒ SVEP.
As an easy extension of normal operators, hyponormal operators have

been studied by many mathematicians. Though there are many unsolved
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interesting problems for hyponormal operators (e.g., the invariant subspace
problem), one of recent trends in operator theory is to study natural ex-
tensions of hyponormal operators. Below we introduce some of these non-
hyponormal operators. Recall ([3, 14]) that T ∈ B(H) is called hyponormal
if T ∗T ≥ TT ∗, paranormal (resp. ∗-paranormal) if ‖T 2x‖ ≥ ‖Tx‖2 (resp.
‖T 2x‖ ≥ ‖T ∗x‖2) for all unit vectors x ∈ H. Following [14] and [21] we
say that T ∈ B(H) belongs to class A if |T 2| ≥ |T |2 where T ∗T = |T |2.
Recently, B. P. Duggal, I. H. Jeon and I. H. Kim [12] considered the follow-
ing new class of operators: we say that T ∈ B(H) belongs to ∗-class A if
|T 2| ≥ |T ∗|2.

For brevity, we shall denote classes of hyponormal operators, paranormal
operators, ∗-paranormal operators, class A operators, and ∗-class A opera-
tors by H, PN , PN ∗, A, and A∗, respectively. From [3] and [14], it is well
known that

H ⊂ A ⊂ PN and H ⊂ A∗ ⊂ PN ∗.
Recently, the authors of [35] have extended ∗-class A operators to quasi-
∗-class A operators. An operator T ∈ B(H) is said to be quasi-∗-class A
if T ∗|T 2|T ≥ T ∗|T ∗|2T , and quasi-∗-paranormal if ‖T ∗Tx‖2 ≤ ‖T 3x‖ ‖Tx‖
for all x ∈ H. In [28], many results on quasi-∗-paranormal operators were
proved. In particular, quasi-∗-paranormal operators have Bishop’s prop-
erty (β). If we denote the class of quasi-∗-class A operators by QA∗ and
of quasi-∗-paranormal operators by QPN ∗, we have

H ⊂ A∗ ⊂ QA∗ ⊂ QPN ∗

(see Proposition 2.1). As a further generalization, we introduce the class of
k-quasi-∗-class A operators. An operator T is said to be a k-quasi-∗-class A
operator if

T ∗k(|T 2| − |T ∗|2)T k ≥ 0,

where k is a natural number. 1-quasi-∗-class A is quasi-∗-class A.
Let T ∈ B(H). Then kerT denotes the null space of T and [ranT ]

denotes the closure of ranT , where ranT is the range of T . The operator T
is called isoloid if every isolated point of σ(T ) is an eigenvalue of T .

Let µ be an isolated point of σ(T ). Then the Riesz idempotent E of T
with respect to µ is defined by

E :=
1

2πi

�

∂D

(µI − T )−1 dµ,

where D is a closed disk centered at µ which contains no other points of
the spectrum of T . It is well known that E2 = E, ET = TE, σ(T |E(H))
= {µ} and ker(T − µI) ⊆ E(H). In [36], Stampfli showed that if T satisfies
the growth condition G1, then E is self-adjoint and E(H) = ker(T − µ).
Recently, Jeon and Kim [21] and Uchiyama [38] obtained Stampfli’s result



k-quasi-∗-class A operators 89

for quasi-class A operators and paranormal operators. In general even if T
is a paranormal operator, the Riesz idempotent E of T with respect to µ is
not necessarily self-adjoint.

Recently the authors of [39] showed that every ∗-paranormal operator
has Bishop’s property (β). In this paper we give basic properties of k-quasi-
∗-class A operators. We show that every k-quasi-∗-class A operator has
Bishop’s property (β). It is also shown that if E is the Riesz idempotent for
a nonzero isolated point µ of the spectrum of a k-quasi-∗-class A operator T ,
then E is self-adjoint and EH = ker(T − µ) = ker(T ∗ − µ). Some spectral
properties are also presented.

2. Main results. We begin with the following lemma which is the es-
sence of this paper; it is a structure theorem for k-quasi-∗-class A operators.

Lemma 2.1. Let T ∈ B(H) be a k-quasi-∗-class A operator, and suppose
the range of T k is not dense and

T =
(
T1 T2

0 T3

)
on H = [ranT k]⊕ kerT ∗k.

Then T1 is a ∗-class A operator, T k
3 = 0 and σ(T ) = σ(T1) ∪ {0}.

Proof. Let P be the orthogonal projection of H onto [ranT k]. Since T
is k-quasi-∗-class A, we have

P (T ∗2T 2 − TT ∗)P ≥ 0, P (T ∗2T 2)P − P (TT ∗)P ≥ 0.

Hence T ∗21 T 2
1 − T1T

∗
1 ≥ 0. This shows that T1 is ∗-class A on [ranT k].

Further, we have

〈T k
3 x2, x2〉 = 〈T k(I − P )x, (I − P )x〉 = 〈(I − P )x, T ∗k(I − Px)〉 = 0

for any x =
(

x1
x2

)
∈ H. Thus T k

3 = 0.
We have σ(T1) ∪ σ(T3) = σ(T ) ∪ G, where G is the union of certain

holes in σ(T ) which are subsets of σ(T1) ∩ σ(T3) [19, Corollary 7]. Since
σ(T1) ∩ σ(T3) has no interior points, we have

σ(T ) = σ(T1) ∪ σ(T3) = σ(T1) ∪ {0}.

Let K be an infinite-dimensional separable Hilbert space. The above de-
composition of k-quasi-∗-class A operators motivates the following question:
Is the operator matrix

T =
(
A B

0 C

)
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acting on H ⊕K a k-quasi-∗-class A operator if A is ∗-class A and Ck = 0?
We do not know the answer. However, for k = 1 we have

Theorem 2.1. Let T be an operator on H ⊕K defined as

T =
(
A B

0 0

)
.

If A is ∗-class A, then T is 1-quasi-∗-class A.

Proof. A simple calculation shows that

T ∗(T ∗2T 2 − TT ∗)T =
(
A∗(A∗2A2 −AA∗)A A∗(A∗2A2 −AA∗)B
B∗(A∗2A2 −AA∗)A B∗(A∗2A2 −AA∗)B

)
.

Let u = x⊕ y ∈ H ⊕K. Then

〈(T ∗(T ∗2T 2 − TT ∗)T )u, u〉
= 〈A∗(A∗2A2 −AA∗)Ax, x〉+ 〈A∗(A∗2A2 −AA∗)By, x〉

+ 〈B∗(A∗2A2 −AA∗)Ax, y〉+ 〈B∗(A∗2A2 −AA∗)By, y〉
= 〈(A∗2A2 −AA∗)(Ax+By), (Ax+By)〉 ≥ 0

because A is ∗-class A. This proves the result.

Theorem 2.2. Let T ∈ B(H) be a k-quasi-∗-class A operator. Then T
has Bishop’s property (β), the single-valued extension property and Dunford
property (C).

Proof. From the introduction, it suffices to prove that T has Bishop’s
property (β). If the range of T k is dense, then T is a ∗-class A operator,
and hence has Bishop’s property (β) by [12]. So, we assume that the range
of T k is not dense. Suppose (T − z)fn(z) → 0 uniformly on every compact
subset of D for analytic functions fn(z) on D. Then we can write(

T1 − z T2

0 T3 − z

)(
fn1(z)
fn2(z)

)
=

(
(T1 − z)fn1(z) + T2fn2(z)

(T3 − z)fn2(z)

)
→ 0.

Since T3 is nilpotent, it has Bishop’s property (β). Hence fn2(z) → 0 uni-
formly on every compact subset of D. Then (T1−z)fn1(z)→ 0. Since T1 is a
∗-class A operator, it has Bishop’s property (β) [12]. Hence fn1(z)→ 0 uni-
formly on every compact subset of D. Thus T has Bishop’s property (β).

T is called isoloid if every isolated point of σ(T ) is an eigenvalue of T .

Lemma 2.2. Let T ∈ B(H) be a k-quasi-∗-class A operator. Then T is
isoloid.

Proof. Suppose T has a representation given in Lemma 2.1. Let z be an
isolated point in σ(T ). Since σ(T ) = σ(T1) ∪ {0}, z is an isolated point in
σ(T1) or z = 0. If z is an isolated point in σ(T1), then z ∈ σp(T1). Assume
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that z = 0 and z 6∈ σ(T1). Then for x ∈ kerT3, −T−1
1 T2x⊕ x ∈ kerT . This

completes the proof.

The following theorems are structural results.

Theorem 2.3. Let T ∈ B(H) be a k-quasi-∗-class A operator, and let
M be a closed T -invariant subspace of H. Then the restriction T |M of T to
M is a k-quasi-∗-class A operator.

Proof. Let

T =
(
A C

0 B

)
on H = M ⊕M⊥.

Since T is quasi-∗-class A, we have

T ∗2T 2 − TT ∗ ≥ 0.

Hence(
A C

0 B

)∗k[(
A C

0 B

)∗2(A C

0 B

)2

−
(
A C

0 B

)(
A C

0 B

)∗](
A C

0 B

)k

≥ 0.

Therefore (
A∗k(A∗2A2 − (AA∗ + CC∗))Ak E

F G

)
≥ 0

for some operators E,F and G. Hence

A∗k(A∗2A2 −AA∗)Ak ≥ A∗k(CC∗)Ak ≥ 0.

This implies that A = T |M is k-quasi-∗-class A.

Theorem 2.4. Let M be a closed non-trivial invariant subspace for a
k-quasi-∗-class A operator T . If T |M is an injective normal operator, then
M reduces T .

Proof. Suppose that P is an orthogonal projection of H onto [ranT k].
Since T is a k-quasi-∗-class A operator, we have P (T ∗2T 2−TT ∗)P ≥ 0. Since
by assumption T |M is an injective normal operator, we have E ≤ P for the
orthogonal projection E of H onto M and [ranT k|M ] = M because T |M has
dense range. Therefore M ⊆ [ranT k] and hence E(T ∗2T 2−TT ∗)E ≥ 0. Let

T =
(
T |M A

0 B

)
on H = M ⊕M⊥.

Then we have

TT ∗ =
(
T |MT ∗|M +AA∗ AB∗

B∗A BB∗

)
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and

T ∗2T 2 =
(
T ∗2|MT 2|M E

F G

)
for some operators E,F and G. Thus(

T |MT ∗|M +AA∗ 0
0 0

)
= ETT ∗E = E|T ∗|2E ≤ E(T ∗2T 2)1/2E

≤ (ET ∗2T 2E)1/2 =
(
T ∗2|MT 2|M 0

0 0

)1/2

.

This implies that T |MT ∗|M + AA∗ ≤ T |MT ∗|M . Since T |M is normal and
AA∗ is positive, it follows that A = 0. Hence M reduces T .

Remark 2.1. In Theorem 2.4 we cannot drop the injectivity condition.
Without it, M may not reduce T . Indeed, take any nilpotent operator T with
T k−1 6= 0 = T k. Then T |[ran T k−1] = 0 is normal. If [ranT k−1] reduces T , then
T ∗T k−1H ⊂ [ranT k−1]. Hence T ∗k−1T k−1H ⊂ [ranT k−1] and kerT k−1 =
kerT ∗k−1T k−1 ⊃ kerT ∗k−1. Since T ∗k = T ∗k−1T ∗ = 0, we have T k−1T ∗ = 0.
Hence T k−1T ∗k−1 = 0, and hence T k−1 = 0. This is a contradiction.

Theorem 2.5. Let T be k-quasi-∗-class A. If λ 6= 0 and (T − λ)x = 0,
then (T − λ)∗x = 0.

Proof. We may assume x 6= 0. Let M = span{x} and

T =
(
λ A

0 B

)
on M ⊕M⊥,

and let P be the orthogonal projection from H onto M . Then T |M = λ
and T |M is an injective normal operator. This implies that M reduces T by
Theorem 2.4. Hence A = 0.

Proposition 2.1. If T ∈ B(H) is quasi-∗-class A, then it is quasi-∗-
paranormal.

Proof. Since T is quasi-∗-class A, we have T ∗|T ∗|2T ≤ T ∗|T 2|T . Let
x ∈ H. Then

‖T ∗T‖2 = 〈T ∗Tx, T ∗Tx〉 = 〈T ∗|T ∗|2Tx, x〉
≤ 〈T ∗|T 2|Tx, x〉 ≤

∥∥|T 2|Tx
∥∥ ‖Tx‖ = ‖T 3x‖ ‖Tx‖.

Therefore ‖T ∗Tx‖2 ≤ ‖T 3x‖ ‖Tx‖. Hence T is quasi-∗-paranormal.

Theorem 2.6. Let T ∈ B(H) be a quasi-∗-paranormal operator. Then
it is normaloid, i.e. ‖T‖ = r(T ) (the spectral radius of T ).

Proof. It suffices to show

‖T 2m‖ = ‖T‖2m (∗)
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for m = 1, 2, . . . . We argue by induction. First we prove (∗) for m = 1. Since
T is quasi ∗-paranormal,

‖T‖4 = ‖T ∗T‖2 ≤ ‖T 3‖ ‖T‖ ≤ ‖T 2‖ ‖T‖2 ≤ ‖T‖4.
Hence ‖T‖2 = ‖T 2‖. Now assume that (∗) is true for m = k. Since

‖T 3x‖2 + λ2‖Tx‖2 ≥ 2λ‖T ∗Tx‖2,
we have

‖T 2(k+1)x‖+ λ2‖T 2kx‖ ≥ 2λ‖T ∗T 2kx‖2

⇒ ‖T 2(k+1)‖2 + λ2‖T 2k‖2 ≥ 2λ‖T ∗T 2k‖2

⇒ ‖T‖2(2k−1)[‖T 2(k+1)‖2 + λ2‖T 2k‖2] ≥ 2λ‖T‖2(2k−1)‖T ∗T 2k‖2

≥ 2λ‖T ∗2kT 2k‖2

⇒ ‖T‖2(2k−1)[‖T 2(k+1)‖2 + λ2‖T 2k‖2] ≥ 2λ‖T 2k‖4.
Since (∗) is true for m = k, we find

‖T 2(k+1)‖2 + λ2‖T‖4k ≥ 2λ‖T‖4k+2.

Let λ = ‖T‖2. Then the last inequality gives

‖T 2(k+1)‖2 + ‖T‖4‖T‖4k ≥ 2‖T‖4k+4.

Hence
2‖T‖4k+4 ≥ ‖T 2(k+1)‖2 + ‖T‖4k+4 ≥ 2‖T‖4k+4.

Clearly ‖T‖2(k+1) = ‖T 2(k+1)‖. This proves the result.

Remark 2.2. For k > 1, a nilpotent operator is k-quasi-∗-class A. This
shows that operators in this class need not be normaloid. However, it is
obvious that for k = 1, this is not true. But for k = 1, operators of this class
are normaloid. Indeed, a quasi-∗-class A operator is quasi-∗-paranormal by
Proposition 2.1 and a quasi-∗-paranormal operator is normaloid by Theo-
rem 2.6. Hence a quasi-∗-class A operator is normaloid.

Corollary 2.1. A ∗-paranormal operator T is normaloid. In particular
a ∗-class A operator is normaloid.

Theorem 2.7. Let A be a k-quasi-∗-class A operator and λ be a non-zero
isolated point of σ(A). Then the Riesz idempotent E for λ is self-adjoint and

EH = ker(A− λ) = ker (A− λ)∗.

Proof. If A is k-quasi-∗-class A, then λ is an eigenvalue of A and EH =
ker(A− λ) by Lemma 2.2. Since ker(A− λ) ⊂ ker (A− λ)∗ by Theorem 2.5,
it suffices to show that ker (A − λ)∗ ⊂ ker(A − λ). Since ker(A − λ) is a
reducing subspace of A by Theorem 2.5 and the restriction of a k-quasi-∗-
class A operator to its reducing subspace is also a k-quasi-∗-class A operator
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by Theorem 2.3, A can be written as

A = λ⊕A1 on H = ker(A− λ)⊕ (ker(A− λ))⊥,

where A1 is k-quasi-∗-class A with ker(A1 − λ) = {0}. Since

λ ∈ σ(A) = {λ} ∪ σ(A1)

is isolated, only two cases occur: either λ 6∈ σ(A1), or λ is an isolated point
of σ(A1) and this contradicts the fact that ker(A1 − λ) = {0}. Since A1 is
invertible as an operator on (ker(A−λ))⊥, we have ker(A−λ) = ker (A−λ)∗.

Next, we show that E is self-adjoint. Since

EH = ker(A− λ) = ker (A− λ)∗,

we have
((z −A)∗)−1E = (z − λ)−1E.

Therefore

E∗E = − 1
2πi

�

∂D

((z −A)∗)−1E dz = − 1
2πi

�

∂D

(z −A)−1E dz

=
(

1
2πi

�

∂D

(z −A)−1 dz

)
E = E.

This completes the proof.

Corollary 2.2. Let A ∈ B(H) be quasi-∗-class A and λ be a non-zero
isolated point of σ(A). Then the Riesz idempotent E for λ is self-adjoint
and

EH = ker(A− λ) = ker (A− λ)∗.
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