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Isolated points of spectrum of k-quasi-x-class A operators
by

SALAH MECHERI (Medina)

Abstract. Let T be a bounded linear operator on a complex Hilbert space H. In
this paper we introduce a new class, denoted KQA*, of operators satisfying T**(|T?| —
|T*\2)Tk > 0 where k is a natural number, and we prove basic structural properties of
these operators. Using these results, we also show that if F is the Riesz idempotent for
a non-zero isolated point p of the spectrum of T' € KQA*, then E is self-adjoint and
EH = ker(T — pu) = ker (T' — p)*. Some spectral properties are also presented.

1. Introduction. Let B(H) be the algebra of all bounded linear oper-
ators acting on an infinite-dimensional separable complex Hilbert space H.
An operator T' € B(H) is said to have the single-valued extension prop-
erty (or SVEP) if for every open subset G of C and any analytic function
f G — H such that (T'— z)f(z) = 0 on G, we have f(z) = 0 on G. For
T € B(H) and = € H, the set pr(z), called the local resolvent set of T
at x, is defined to comnsist of all zp € C such that there exists an analytic
function f(z) defined in a neighborhood of zy, with values in H, which sat-
isfies (T'— z) f(z) = x. We denote by op(z) the complement of pr(x), called
the local spectrum of T at x, and define the local spectral subspace of T,
Hp(F)={z € H : or(x) C F}, for each subset F' of C.

An operator T' € B(H) is said to have Bishop’s property (3) if for every
open subset G of C and every sequence f, : G — H of H-valued ana-
lytic functions such that (T — 2) f,(2) converges uniformly to 0 in norm on
compact subsets of G, f,(z) converges uniformly to 0 in norm on compact
subsets of G. An operator T' € B(H) is said to have Dunford’s property (C)
if Hy(F') is closed for each closed subset F' of C. It is well known that

Bishop’s property (8) = Dunford’s property (C) = SVEP.

As an easy extension of normal operators, hyponormal operators have
been studied by many mathematicians. Though there are many unsolved
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interesting problems for hyponormal operators (e.g., the invariant subspace
problem), one of recent trends in operator theory is to study natural ex-
tensions of hyponormal operators. Below we introduce some of these non-
hyponormal operators. Recall ([3, [14]) that 7" € B(H) is called hyponormal
if T*T > TT*, paranormal (resp. *-paranormal) if |T%z|| > ||Tz||? (resp.
|T2z| > ||T*x||?) for all unit vectors z € H. Following [I4] and [21] we
say that T € B(H) belongs to class A if |[T?| > |T'|? where T*T = |T|*.
Recently, B. P. Duggal, I. H. Jeon and I. H. Kim [12] considered the follow-
ing new class of operators: we say that 7' € B(H) belongs to *-class A if
) > [T .

For brevity, we shall denote classes of hyponormal operators, paranormal
operators, x-paranormal operators, class A operators, and x-class A opera-
tors by H, PN, PN*, A, and A*, respectively. From [3] and [14], it is well
known that

HCc ACPN and HC A* C PN*.

Recently, the authors of [35] have extended *-class A operators to quasi-
x-class A operators. An operator T' € B(H) is said to be quasi-x-class A
if T*|T?|T > T*|T*|?T, and quasi-+-paranormal if |T*Tz|?> < ||T3z| || Tz||
for all x € H. In [28], many results on quasi-#-paranormal operators were
proved. In particular, quasi-k-paranormal operators have Bishop’s prop-
erty (). If we denote the class of quasi-x-class A operators by Q.A* and
of quasi-*-paranormal operators by QPN *, we have

HcC A" C QA" C OPN*

(see Proposition 2.1). As a further generalization, we introduce the class of
k-quasi-*-class A operators. An operator 1 is said to be a k-quasi-x-class A
operator if

T(T?| - [T*P)T* > 0,
where k is a natural number. 1-quasi-*-class A is quasi-*-class A.

Let T € B(H). Then kerT denotes the null space of T" and [ranT|
denotes the closure of ranl’, where ran T is the range of 1. The operator T’
is called isoloid if every isolated point of o(T') is an eigenvalue of T'.

Let p be an isolated point of o(7T). Then the Riesz idempotent E of T
with respect to u is defined by

_ 1 -1
oD
where D is a closed disk centered at p which contains no other points of
the spectrum of T It is well known that E? = E, ET = TE, o(T|gm))
= {u} and ker(T — pl) C E(H). In [36], Stampfli showed that if T" satisfies
the growth condition G, then E is self-adjoint and E(H) = ker(T — p).
Recently, Jeon and Kim [2I] and Uchiyama [38] obtained Stampfli’s result
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for quasi-class A operators and paranormal operators. In general even if T
is a paranormal operator, the Riesz idempotent E of T with respect to pu is
not necessarily self-adjoint.

Recently the authors of [39] showed that every s-paranormal operator
has Bishop’s property (/). In this paper we give basic properties of k-quasi-
x-class A operators. We show that every k-quasi-x-class A operator has
Bishop’s property (). It is also shown that if E' is the Riesz idempotent for
a nonzero isolated point u of the spectrum of a k-quasi-*-class A operator T,
then FE is self-adjoint and FH = ker(T — u) = ker(T* — ). Some spectral
properties are also presented.

2. Main results. We begin with the following lemma which is the es-
sence of this paper; it is a structure theorem for k-quasi-*-class A operators.

LEMMA 2.1. LetT € B(H) be a k-quasi-+-class A operator, and suppose
the range of T* is not dense and

T T
T= ( ! 2) on H = [ranT*] @ ker T**.
0 Ty
Then Ty is a *-class A operator, T¥ =0 and o(T) = o(Ty) U {0}.

Proof. Let P be the orthogonal projection of H onto [ranT*]. Since T
is k-quasi-*-class A, we have

P(T**T? —TT*)P >0, P(T**T?)P — P(TT*)P > 0.

Hence T72T2 — TyT; > 0. This shows that T} is #-class A on [ran T*].
Further, we have

(T¥xy,x0) = (T™(I — P)x, (I — P)x) = (I — P)x, T**(I — Pz)) =0

for any « = (7}) € H. Thus T = 0.

We have o(T1) U o(T3) = o(T) U G, where G is the union of certain
holes in ¢(7T") which are subsets of o(77) N o(13) [19, Corollary 7]. Since
o(T1) No(T3) has no interior points, we have

o(T)=0c(T1)Uo(I3) =o(1T1) U{0}. =

Let K be an infinite-dimensional separable Hilbert space. The above de-
composition of k-quasi-*-class A operators motivates the following question:

Is the operator matrix
< )
[ =
0 C
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acting on H @ K a k-quasi-*-class A operator if A is #-class A and C* = 0?
We do not know the answer. However, for k = 1 we have

THEOREM 2.1. Let T be an operator on H ® K defined as

T = (A B).
0 0
If A is x-class A, then T is 1-quasi-x-class A.
Proof. A simple calculation shows that
A*(A*2A% — AAA A" (A*2A% — AAY)B
B*(A*?A? — AA*)A B*(A*?A? - AA*)B>'
Letu=x®dy e H® K. Then
(T*(T**T% — TT*)T)u, u)
= (A*(A™2A% — AA*) Az, z) + (A" (A2 A% — AA¥)By, 1)
+ (B*(A*A? — AA*) Az, y) + (B* (A A% — AA*)By,y)
= ((A*?A? — AA*)(Az + By), (Az + By)) >0
because A is *-class A. This proves the result. m

THEOREM 2.2. Let T € B(H) be a k-quasi-+-class A operator. Then T
has Bishop’s property ([3), the single-valued extension property and Dunford
property (C).

Proof. From the introduction, it suffices to prove that T has Bishop’s
property (). If the range of T* is dense, then T is a *-class A operator,
and hence has Bishop’s property (/) by [12]. So, we assume that the range
of T* is not dense. Suppose (T — 2) f,(z) — 0 uniformly on every compact
subset of D for analytic functions f,(z) on D. Then we can write

(Tl -z T > <fn1(2)> _ ((Tl —2)fn1(2) + T2fn2(2)> 50
0 T5—2/ \fa2Az) (T5 — 2) fn2(2)

Since T3 is nilpotent, it has Bishop’s property (). Hence fp2(z) — 0 uni-

formly on every compact subset of D. Then (11 —2) fn1(2) — 0. Since T} is a

«-class A operator, it has Bishop’s property (5) [12]. Hence fp1(z) — 0 uni-
formly on every compact subset of D. Thus T has Bishop’s property (). =

T(T**T? - TT*T = <

T is called isoloid if every isolated point of o(T") is an eigenvalue of T'.

LEMMA 2.2. Let T € B(H) be a k-quasi-x-class A operator. Then T is
isoloid.

Proof. Suppose T has a representation given in Lemma 2.1. Let z be an
isolated point in o (7). Since o(T') = o(T1) U {0}, =z is an isolated point in
o(T1) or z = 0. If z is an isolated point in ¢(77), then z € o,(17). Assume
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that z =0 and z & (7). Then for x € ker T3, —Tl_ngx @ x € kerT. This
completes the proof. =

The following theorems are structural results.

THEOREM 2.3. Let T € B(H) be a k-quasi-x-class A operator, and let
M be a closed T-invariant subspace of H. Then the restriction T'|pyr of T to
M is a k-quasi-x-class A operator.

Proof. Let

T:(A C) on H=Mo® M.
0 B

Since T is quasi-*-class A, we have
7% - TT* > 0.

Hence

0 It It A e e [
0 B 0 B 0 B 0 B/\0 B 0 B/
Therefore

>0

<A*k(A*2A2 — (AA* + COC™))Ax E)
F
for some operators F, F' and G. Hence
AF(A*2 A% — AA") AR > Ak (o) AR > 0.
This implies that A = T'|5s is k-quasi-*-class A. m

THEOREM 2.4. Let M be a closed non-trivial invariant subspace for a
k-quasi-x-class A operator T'. If T'|pr is an injective normal operator, then
M reduces T'.

Proof. Suppose that P is an orthogonal projection of H onto [ranT*].
Since T is a k-quasi-*-class A operator, we have P(T*2T?—TT*)P > 0. Since
by assumption 7’| is an injective normal operator, we have E < P for the
orthogonal projection E of H onto M and [ran T*|,;] = M because T|; has
dense range. Therefore M C [ran T*] and hence E(T**T? — TT*)E > 0. Let

Ty A
T:< [ > on H=Ma M*.
0 B

Then we have
T T* * *
TT*:< |M |M+AA AB>
B*A BB*
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and

TR _ (T*2\MT2\M E)
F G

for some operators F, F' and G. Thus
T|nT* AA* 0

T*2| 0 T2\ 0r 0>1/2

0 o/

This implies that T'|p/T*|ar + AA* < T'|pT*|pr. Since T'|pr is normal and
AA* is positive, it follows that A = 0. Hence M reduces T. =

< (ET*QTQE)l/Q — <

REMARK 2.1. In Theorem 2.4 we cannot drop the injectivity condition.
Without it, M may not reduce 7T'. Indeed, take any nilpotent operator T" with
TF1 40 =TF*. Then T'|pan7+-1) = 0 is normal. If [ran T*= ! reduces T, then
T*T*1H C [ranT*"1]. Hence T**'T*'H C [ranT*"!] and ker 7% ! =
ker T*F=1Tk=1 5 ker T*F=1. Since T*F = T**~1T* = 0, we have T*~1T* = 0.
Hence TF-1T*=1 = 0, and hence T%~! = 0. This is a contradiction.

THEOREM 2.5. Let T be k-quasi-x-class A. If A # 0 and (T — N)x = 0,
then (T — \)*z = 0.
Proof. We may assume x # 0. Let M = span{x} and

T = on M & M—,
0 B

and let P be the orthogonal projection from H onto M. Then Ty = A
and T'|p is an injective normal operator. This implies that M reduces T by
Theorem 2.4. Hence A = 0. =

PropPOSITION 2.1. If T € B(H) is quasi-x-class A, then it is quasi-x-
paranormal.

Proof. Since T is quasi-*-class A, we have T*|T*|*T < T*|T?T. Let
x € H. Then

|T*T||? = (T*Tx, T*Tx) = (T*|T*)*Tx, x)
<A(T*|T?|T2,2) < |[|T?|Ta|| | T2l = |T°| | T].
Therefore | T*Tx|> < ||T3x2|| || Tx||. Hence T is quasi-*-paranormal. =

THEOREM 2.6. Let T' € B(H) be a quasi-x-paranormal operator. Then
it is normaloid, i.e. ||T'|| = r(T) (the spectral radius of T)).

Proof. 1t suffices to show
12" = ||| (%)
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form =1,2,.... We argue by induction. First we prove (x) for m = 1. Since
T is quasi *-paranormal,

IT* = 771> < | T*IIT| < NT*(HT)* < 7%
Hence ||T||? = ||T?||. Now assume that (%) is true for m = k. Since
IT52]* + N[ Ta|® > 2| T T|f?,
we have
T2+ Dz |+ N2 Tz = 20| T T2
o TR0V 2 £ 22| T2 > o\ | T T2 2
= |TPERDITPED 2 4 2T 2 2| 7|20 T T2 2
> O[T 2R T2k |2
= [ TPEEDYTHEEDN2 4 A2 T27] = 20 72|,
Since (%) is true for m = k, we find
HT?(k-i-l)HQ + /\QHTHZUC > 2AHTH4]€+2
Let A = ||T||%. Then the last inequality gives
T2 T T = 2T

Hence
2|| T[4 > || T2 |2 4 || 7|+ > 2| 7|+,

Clearly ||T)|?®*+1) = |72 +1)|. This proves the result. m

REMARK 2.2. For k > 1, a nilpotent operator is k-quasi-*-class A. This
shows that operators in this class need not be normaloid. However, it is
obvious that for k = 1, this is not true. But for £ = 1, operators of this class
are normaloid. Indeed, a quasi-*-class A operator is quasi-#-paranormal by
Proposition 2.1 and a quasi-*-paranormal operator is normaloid by Theo-
rem 2.6. Hence a quasi-*-class A operator is normaloid.

COROLLARY 2.1. A x-paranormal operator T is normaloid. In particular
a *-class A operator is normaloid.

THEOREM 2.7. Let A be a k-quasi--class A operator and A be a non-zero
isolated point of o(A). Then the Riesz idempotent E for X is self-adjoint and

EH =ker(A—\) =ker (A—\)".
Proof. If A is k-quasi-*-class A, then \ is an eigenvalue of A and EH =
ker(A — \) by Lemma 2.2. Since ker(A — \) C ker (A — A)* by Theorem 2.5,
it suffices to show that ker (A — A\)* C ker(A — \). Since ker(A — \) is a

reducing subspace of A by Theorem 2.5 and the restriction of a k-quasi-*-
class A operator to its reducing subspace is also a k-quasi-*-class A operator
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by Theorem 2.3, A can be written as
A=X®A on H=ker(A -\ @ (ker(A — \))*,
where A; is k-quasi-x-class A with ker(A; — \) = {0}. Since
Aeo(A)={ }Uo(4)
is isolated, only two cases occur: either A & o(A;), or A is an isolated point
of 0(A1) and this contradicts the fact that ker(4; — A) = {0}. Since A; is

invertible as an operator on (ker(A—\))*, we have ker(A—\) = ker (A—\)*.
Next, we show that F is self-adjoint. Since

EH =ker(A— ) =ker (A—\)",

we have
(z—ANE=(z-N"1E.
Therefore
g R e =TI
E*FE = 57 S((z A ) Edz = 2m,S(z AT Edz
oD oD

_ <21m agD(z _ Ay dz)E - E

This completes the proof. m

COROLLARY 2.2. Let A € B(H) be quasi-+-class A and \ be a non-zero
isolated point of o(A). Then the Riesz idempotent E for X\ is self-adjoint
and

EH =ker(A—\) =ker (A—\)".
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